
An Index for Two Dimensional String MatchingAllowing RotationsKimmo Fredriksson ?, Gonzalo Navarro ??, and Esko Ukkonen ? ? ?Abstract. We present an index to search a two-dimensional patternof size m � m in a two-dimensional text of size n � n, even when thepattern appears rotated in the text. The index is based on (path com-pressed) tries. By using O(n2) (i.e. linear) space the index can search thepattern in O((log� n)5=2) time on average, where � is the alphabet size.We also consider various schemes for approximate matching, for whichwe obtain either O(polylog�n) or O(n2�) search time, where � < 1 inmost useful cases. A larger index of size O(n2(log� n)3=2) yields an aver-age time of O(log� n) for the simplest matching model. The algorithmshave applications e.g. in content based information retrieval from imagedatabases.1 IntroductionTwo dimensional pattern (image) matching has important applications in manyareas, ranging from science to multimedia. String matching is one of the mostsuccessful special areas of algorithmics. Its theory and potential applicationsin the case of one{dimensional data, that is, linear strings and sequences, iswell understood. However, the string matching approach still has considerableunexplored potential when the data is more complicated than just a linear string.Two dimensional digital images are an example of such a data.Examples of combinatorial pattern matching algorithms that work in twodimensions, but do not allow rotations are e.g. [1, 7, 11{15]. On the other hand,there are many non{combinatorial approaches to rotation invariant patternmatching, for a review, see e.g. [16]. The only combinatorial methods, that comeclose to us in some respects, are [12, 14]. However, these do not address thepattern rotations. As stated in [2], a major open problem in two{dimensional(combinatorial) pattern matching is to �nd the occurrences of a two-dimensionalpattern of size m�m in a two-dimensional text of size n� n when the patterncan appear in the text in rotated form. This was addressed from a combinatorial? The corresponding author. Email: Kimmo.Fredriksson@cs.Helsinki.FI. Fax: +358 91914 4441. Department of Computer Science, P.O.Box 26, FIN-00014 University ofHelsinki, Finland. Work supported by ComBi.?? Department of Computer Science, University of Chile. Work developed while the au-thor was in a postdoctoral stay at the Dept. of Computer Science, Univ. of Helsinki.Partially supported by the Academy of Finland and Fundaci�on Andes.? ? ? Department of Computer Science, University of Helsinki. Work supported by theAcademy of Finland.

point of view �rst in [3], in which an online algorithm allowing pattern rotationswas presented.In this work we give the �rst algorithms for o�ine searching, that is, forbuilding an index over the text that allows fast querying. The data structure weuse is based on tries. Su�x trees for two-dimensional texts have been considered,e.g. in [8{10]. The idea of searching a rotated pattern using a \su�x" array ofspiral like strings is mentioned in [10], but only for rotations of multiples of 90degrees. The problem is much more complex if we want to allow any rotation.In [3] the consideration was restricted to the matches of a pattern inside thetext such that the geometric center of the pattern has been put exactly on topof the exact center point of some text cell. This is called the \center{to{centerassumption". Under this assumption, there are O(m3) di�erent relevant rotationangles to be examined for each text cell. In this paper we make this assumption,too, and consider the following four matching models:Exact: the value of each text cell whose center is covered by some pattern cellmust match the value of the covering pattern cell.Hamming: an extension of the Exact model in which an error threshold 0 �k < m2 is given and one is required to report all text positions and rotationangles such that at most k text cells do not match the covering pattern cell.Grays: an extension of the Exact model more suitable for gray level images: thevalue of each text cell involved in a match must be between the minimumand maximum value of the 9 neighboring cells surrounding the correspondingpattern cell [5].Accumulated: an extension of the Hamming model, more suitable for graylevels. The sum of the absolute di�erences between the value of the textcells involved in a match and the values of the corresponding patterns cellsmust not exceed a given threshold k.Our results are summarized in Table 1. For some algorithms we have twoversions, one with pattern partitioning technique, and one without it. We denoteby � the alphabet size and assume in our average case results that the cellvalues are uniformly and independently distributed over those � values. Thetimes reported are average{case bounds for the search. In the Hamming andAccumulated models � = k=m2 (note that � < 1 for Hamming and � < �for Accumulated) and k�H and k�A denote the maximum k values up to wheresome techniques work: k�H = k=(1 � e=�) and k�A = k=(�=(2e) � 1). Moreover,HH� (�) = �� log�(�) � (1 � �) log�(1 � �) and HA� (�) = �� log�(�) + (1 +�) log�(1 + �). According to Table 1, the search times are sublinear on averagewhen the conditions are met, which implies in particular that � < 1 � e=� forHamming and � < �=(2e)� 1 for Accumulated. In all the cases the index needsO(n2) space and it can be constructed in average time O(n2 log� n).We have also considered the alternative model in which the pattern centersare used instead of the text centers. For this case we obtain an index that forthe Exact model needs O(n2(log� n)3=2) space and gives O(log� n) time.The algorithms are easily generalized for handling large databases of images.That is, we may store any number of images in the index, and search the query

Model Search time ConditionExact (log� n)5=2 �m2=4 � log� n2Hamming (2 log� n)k+3=2(�=k)k �m2=4 � log� n2 > k�HHamming (pattern partitioning) n2(�+HH� (�))m5= log� n �m2=4 � log� n2 > k�HGrays n2(1�log�(5=4))(log� n)3=2 �m2=4 � log� n2Accumulated nlog� 4(1 + 2(log� n)=k)k(log� n)3=2 �m2=4 � log� n2 > k�AAccumulated (pattern partitioning) n2(log� 2+HA� (�))m5= log� n �m2=4 � log� n2 > k�ATable 1. Time complexities achieved under di�erent models.pattern simultaneously from all the images. The time complexities remain thesame, if we now consider that n2 denotes the size of the whole image library.2 The Data StructuresLet T = T [1::n; 1::n] and P = P [1::m; 1::m] be two dimensional arrays of pointsamples, such that m < n. Each sample has a color in a �nite ordered alphabet�. The size j�j of � is denoted by �. The arrays P and T are point samplesof colors of some \natural" image. There are several possibilities to de�ne amapping between T and P , that is, how to compare the colors of P to colorsof T . Our approach to the problem is combinatorial. Assume that P has beenput on top of T , in some arbitrary position. Then we will compare each colorsample of T against the color of the closest sample of P . The distance betweenthe samples is simply the Euclidean distance. This is also technically convenient.The Voronoi diagram for the samples is a regular array of unit squares.Hence we may de�ne that the array T consists of n2 unit squares calledcells, in the real plane R2 (the (x; y){plane). The corners of the cell for T [i; j]are (i � 1; j � 1); (i; j � 1); (i � 1; j) and (i; j). Each cell has a center whichis the geometric center point of the cell, i.e., the center of the cell for T [i; j] is(i� 12 ; j� 12). The array of cells for pattern P is de�ned similarly. The center of thewhole pattern P is the center of the cell in the middle of P . Precisely, assumingfor simplicity that m is odd, the center of P is the center of cell P [m+12 ; m+12].For images, the cells are usually called pixels.Assume now that P has been moved on top of T using a rigid motion (trans-lation and rotation), such that the center of P coincides exactly with the centerof some cell of T . The location of P with respect to T can be uniquely given as((i� 12 ; j� 12); �), where (i� 12 ; j� 12) is the location of the center of P in T , and� is the angle between the x{axis of T and the x{axis of P . The occurrence (ormore generally, distance) between T and P at some location, is determined bycomparing the colors of the cells of T and P that overlap. We will use the centersof the cells of T for selecting the comparison points. That is, for the pattern atlocation ((i � 12 ; j � 12); �), we look which cells of the pattern cover the centersof the cells of the text, and compare the corresponding colors of those cells. Asthe pattern rotates, the centers of the cells of the text move from one cell of Pto another. In [3] it is shown that this happens O(m3) times, so there are O(m3)

relevant orientations of P to be checked. The actual comparison result of twocolors depends on the matching model.We propose to use a trie based index of the text, de�ned as follows. Trie is awell{known tree structure for storing strings in which each edge is labeled by acharacter. Each cell of the text de�nes a string which is obtained by reading textpositions at increasing distances from the center of the cell. The �rst characteris that of the cell, then come the 4 closest centers (from the cells above, below,left and right of the central cell), then the other 4 neighbors, and so on. Thecells at the same distance are read in some prede�ned order, the only importantthing is to read the cells in the order of increasing distance from the center cell.This e�ectively utilizes the O(m3) result to restrict the number of rotations ouralgorithms must consider on average, see Sec. 3. If such a string hits the borderof the text it is considered �nished there. We will call sistrings (for \semi{in�nitestrings") [10] the strings obtained in this way. Figure 1 shows a possible readingorder.
1213 2021 24

0 249 11

1016 1722 23

15 615 18

3 7814 19

1213 222 4

2 52831 23

3 1963 1

2 5 9

1256 12 3

1 7

(a) (b) (c)Fig. 1. A possible reading order (\spiral") for the sistring that starts in the middle ofa text of size 5 � 5. Figure (a) shows the reading order by enumerating the cells, and�gure (b) shows the enumeration graphically. Figure (c) shows the color values of thecells of the image, and for that image the sistring corresponding to the reading orderis < 3; 2; 19; 2; 6; 7; 5; 5; 28; 3; 12; 1; 12; 13; 31; 1; 56; 1; 9; 23; 22; 2; 2; 3; 4 >Therefore each text cell de�nes a sistring of length O(n2). A trie on thosestrings (called the sistring trie) can be built, which has average size O(n2) andaverage depth O(log� n2). Alternatively, the unary paths of such a trie can becompressed, in similar manner used to compress the su�x trees. In such a treeeach new string adds at most one leaf and one internal node, so the worst casesize is O(n2).Still another possibility is to construct an array of n2 pointers to T , sorted inthe lexicographic order of the n2 sistrings in T . Such an array, called the sistringarray, can be formed by reading the leaves of a sistring trie in the lexicographicorder, or directly, by sorting the sistrings. The array needs O(n2) space, but ismuch smaller that the sistring trie or tree in practice. Hence the sistring array is

the most attractive alternative from the practical point of view and will thereforebe used in the experiments.The sistring trie can be built in O(n2 log� n) average time, by level{wiseconstruction. The sistring array can be built in O(n2 logn) string comparisons,which has to be multiplied by O(log� n2) to obtain the average number of char-acter comparisons. The sistring array is very similar to the su�x array, whichin turn is a compact representation of a su�x tree.For simplicity, we describe the algorithms for the sistring trie, although theyrun with the same complexity over sistring trees. For sistring arrays one needsto multiply the search time results by O(logn) as well, because searching thearray uses binary search.We consider now a property of the sistring trie that is important for all theresults that follow. We show that under a uniform model, the number of sistringtrie nodes at depth ` is �(min(�`; n2)). This roughly is to say that in levels` � h, for h = log�(n2) = 2 log� n all the di�erent strings of length ` exist, whilefrom that level on the �(n2) sistrings are already di�erent. In particular thismeans that nodes deeper than h have O(1) children because there exists onlyone sistring in the text with that pre�x of length h (note that a sistring pre�x isgraphically seen as a spiral inside the text, around the corresponding text cell).To prove this property we consider that there are n2 sistrings uniformlydistributed across �` di�erent pre�xes, of length `, for any `. The probability ofa pre�x not being \hit" after n2 attempts is (1�1=�`)n2 , so the average numberof di�erent pre�xes hit (i.e. existing sistring trie nodes) is�`(1� (1� 1=�`)n2) = �`(1� e��(n2=�`)) = �`(1� e�x)for x = �(n2=�`). Now, if n2 = o(�`) then x = o(1) and 1 � e�x = 1 � (1 �x + O(x2)) = �(x) = �(n2=�`), which gives the result �(n2). On the otherhand, if n2 =
(�`) then x =
(1) and the result is �(�`). Hence the numberof sistring trie nodes at depth ` is on average �(min(�`; n2)), which is the sameas the worst case. Indeed, in the worst case the constant is 1, i.e. the number ofdi�erent strings is at most min(�`; n), while on average the constant is smaller.We need this result for giving bounds for the maximum number of sistring trienodes inspected by our algorithms.3 The Exact ModelWe �rst describe the algorithm for the exact matching model. The other algo-rithms are relatively straight{forward extensions of it. As shown in [3], thereare O(m3) relevant orientations in which the pattern can occur in a given textposition. A brute force approach is to consider the O(m3) pattern orientationsin turn and search each one in the sistring trie. To check the pattern in a givenorientation we have to see in which order the pattern cells have to be read sothat they match the reading order of the sistring trie construction.Figure 2 shows the reading order induced in the pattern by a rotated occur-rence, using the spiral like reading order given in Figure 1. For each possible

rotation we compute the induced reading order, build the string obtained byreading the pattern in that order from its center, and search that string in thesistring trie. Note in particular that some pattern cells may be read twice andothers may not be considered at all. Observe that in our example the cells num-bered 30, 32, 34, and 36 are outside the maximum circle contained in the pattern,and are therefore ignored in the sistring trie search. This is because those valuescannot be used unless some levels are skipped in the search, which would meanentering into all the branches after reading cell number 20. Text cells 21{29, 31,33, 35, and 37{ all fall outside the pattern.The algorithm �rst considers the sistring of P for angle � = 0. The sistringis searched from the trie until some cell of P mismatches, at depth `. Nowthe pattern must be rotated a little in order to read the next sistring. The nextrotation to try is such that any of the �rst ` cells of the previous sistring changes,that is, any of the centers of the cells of T hits some border of the �rst ` sistringcells of P .
121314

3 789 20

0 2415 19

15 6 1116

10 17 18 36

32

34

30 67 52 4

2 5129 3

3 463 1

2 5 9

719 1 3

1 7

2

(a) (b) (c)Fig. 2. Reading order induced in the pattern by a rotated occurrence. Figure (a) showsthe pattern superimposed on the image, Figure (b) shows the enumeration of the in-duced reading order, and Figure (c) shows the color values for the pattern cells. The cor-responding sistring is < 3; 2; 4; 2; 6; 7; 5; 5; 12; 9; 19; 9; 5; 6; 7; 3; 1; 7; 1; 1; 3 >. Cells num-bered 30, 32, 34, and 36 are ignored in the trie search.The number of rotations to try depends on how far we are from the center.That is, the number of the text centers that any cell of P may cover depends onhow far the cell is from the rotation center. If the distance of some cell of P fromthe rotation center id d, then it may cover O(d) center of T . In general, thereare O(m3) rotations for a pattern of size m�m cells. The number of rotationsgrows as we get farther from the center, and they are tried only on the existingbranches of the sistring trie. As the pattern is read in a spiral form, when weare at depth ` in the sistring trie we are considering a pattern cell which is atdistance O(p`) from the center. This means that we need to consider O(`3=2)di�erent rotations if the search has reached depth `. For each rotation we assumein the analysis that the sistring is read and compared from the beginning.

The fact that on average every di�erent string up to length h exists in thesistring trie means that we enter always until depth h. The number of sistringtrie nodes considered up to depth h is thushX̀=1 `3=2 = O(h5=2)At this point we have O(h3=2) candidates that are searched deeper in thesistring trie. Now, each such candidate corresponds to a node of the sistringtrie at depth h, which has O(1) children because there exist O(1) text sistringswhich share this pre�x with the pattern (a \pre�x" here means a circle aroundthe pattern center).Two alternative views for the same process are possible. First, consider allthe O(h3=2) candidates together as we move to deeper levels ` > h in the sistringtrie. There are on average n2=�` sistrings of length ` matching a given string, sothe total work done when traversing the deeper levels of the sistring trie untilthe candidates get eliminated isX`�h+1 n2�` `3=2 = X̀�1 (`+ h)3=2�` = O(h3=2)An alternative view is that we directly check in the text each candidate thatarrived to depth h, instead of using the sistring trie. There areO(h3=2) candidatesand each one can be checked in O(1) time: if we perform the comparison in aspiral way, we can add the �ner rotations as they become relevant. The `-thpattern cell in spiral order (at distance p` from the center) is compared (i.e. thecomparison is not abandoned before) with probability `3=2=�`. Summing up theprobabilities of being compared over all the characters yieldsX̀�1 `3=2�` = O(1)where for simplicity we have not considered that we have compared already hcharacters and have an approximate idea of the orientations to try.Therefore we have a total average search cost of O((log� n)5=2). This assumesthat the pattern is large enough, i.e. that we can read h characters from the cen-ter in spiral form without hitting the border of the pattern. This is equivalent tothe condition m2 � 4� log� n2 which is a precondition for our analysis. Smallerpatterns leave us without the help of the sistring trie long before we have elim-inated enough candidates to guarantee low enough average time to check theiroccurrences in the text.4 The Hamming ModelThis model is an extension of the exact matching model. An additional parameterk is provided to the search algorithm, such that a mismatch occurs only when

more than k characters have not matched. In this section we use � = k=m2. Werequire 0 � � < 1, as otherwise the pattern would match everywhere.The problem is much more complicated now. Even for a �xed rotation, thenumber of sistring trie nodes to consider grows exponentially with k. To see this,note that at least k characters have to be read in all the sistrings, which givesa minimum of O(�k) nodes. This means in particular that if k � h then we willconsider the n2 sistrings and the index will be of no use, so we assume k < h;still stricter conditions will appear later. We �rst present a standard techniqueand then a pattern partitioning technique.4.1 Standard SearchingImagine that for each possible rotation we backtrack on the sistring trie, en-tering into all the possible branches and abandoning a path when more thank mismatches have occurred. As explained, up to depth k we enter into all thebranches. Since h > k, we have to analyze which branches we enter at depthsk < ` � h. Since all those strings exist in the sistring trie, this is the same asto ask how many di�erent strings of length ` match a pattern pre�x of length `with at most k mismatches.A pessimistic model assumes that there are �k̀� ways to choose the cells thatwill not match, and �k selections for them. As we can replace a cells by itself weare already counting the cases with less than k errors. The model is pessimisticbecause not all these choices lead to di�erent strings. To all this we have to addthe fact that we are searching O(`3=2) di�erent strings at depth `. Hence, thetotal number of sistring trie nodes touched up to level h iskX̀=1 `3=2�` + hX`=k+1 `3=2�k̀��k = O�h3=2�k�hk��For the second part of the search, we consider that there are on average n2=�`sistrings of length ` > h equal to a given string. So the total amount of nodestouched after level h isX`�h+1 `3=2�k̀��k n2�` = X`�h+1 `3=2n2�k̀� 1�`�kIn the Appendix A we show that �k̀� 1�`�k is exponentially decreasing with `for ` > k�H = k1� e=�while otherwise it is
(1=p`).Therefore, the result depends on whether or not h > k�H . If h � k�H , thenthe �rst term of the summation alone is
(hn2) and there is no sublinearity. If,on the other hand, h > k�H , we have an exponentially decreasing series where

the �rst term dominates the whole summation. That is, the cost of the searchin levels deeper than h ish3=2n2�hk� 1�h�k = h3=2�hk��k = O �(log� n)k+3=2(�=k)k�which matches the cost of the �rst part of the search as well. Therefore, thecondition for a sublinear search time is k�H < h < m2. This in particular impliesthat � < 1� e=�.4.2 Pattern PartitioningThe above search time is still polylogarithmic in n, but exponential in k. Wepresent now a pattern partitioning technique that obtains a cost of the formO(n2�) for � < 1. The idea is to split the pattern in j2 pieces (j divisions acrosseach coordinate). If there are at most k mismatches in a match, then at leastone of the pieces must have at most bk=j2c errors. So the technique is to searchfor each of the j2 pieces (of size (m=j)� (m=j)) separately allowing k=j2 errors,and for each (rotated) match of a piece in the text, go to the text directly andcheck if the match can be extended to a complete occurrence with k errors. Notethat the � for the pieces is the same as for the whole pattern.The center{to{center assumption does not hold when searching for the pieces.However, for each possible rotation of the whole pattern that matches with thecenter{to{center assumption, it is possible to �x some position of the center ofeach piece inside its text cell. (The center of the piece is ambiguous, as thereare in�nitely many angles for the matching pattern: there are O(m3) di�erentrelevant rotations of the pattern, and between the corresponding angles, there arein�nitely many angles where the occurrence status does not change. However,any of the possible positions for the center of the pieces can be chosen). Thetechniques developed to read the text in rotated form can be easily adapted tointroduce a �xed o�set at the center of the matching subpattern. Therefore wesearch each of the j2 pieces in every of the O(m3) di�erent rotations.The search cost for this technique becomes j2m3 times the cost to search apiece (with a �xed rotation and center o�set) in the sistring trie and the cost tocheck for a complete occurrence if the piece is found.If we consider that (m=j)2 � h, then all the strings exist when a piece issearched. Therefore the cost to traverse the sistring trie for a piece at a �xedrotation is equivalent to the number of strings that can be obtained with kmismatches from it, i.e. U = �(m=j)2k=j2 ��k=j2while the cost to check all the U candidates is Ukn2=�(m=j)2 , i.e. k times pergenerated string times the average number of times such a string appears in thetext. Therefore the overall cost isj2m3�U + Uk n2�(m=j)2 �

where (after distributing the initial factor) the �rst term decreases and the sec-ond term increases as a function of j. The optimum is found when both termsmeet, i.e. j = m=p2 log� n which is in the limit of our condition (m=j)2 � h. Infact, the second term is decreasing only for � < 1� e=�, otherwise the optimumis j = 1, i.e. no pattern partitioning.For this optimal j, the overall time bound becomesO� m5log� n n2(�+HH� (�))�where we have written HH� (�) = �� log�(�)� (1� �) log�(1� �):This bound is sublinear as long as � < 1� e=�. On the other hand, we canconsider to use a larger j, violating the assumed condition (m=j)2 � h in orderto reduce the veri�cation time. However, the search time will not be reducedand therefore the time bound cannot decrease.5 The Grays ModelIn the Grays model a match requires that the color of text cell must be betweenthe minimum and maximum pattern colors in a neighborhood of the pattern cellthat corresponds to the text cell. In this case, we do not enter into a single branchof the sistring trie, but for each pattern cell we follow all branches where color isbetween the minimum and maximum neighbor of that pattern cell. The numberof characters qualifying for the next pattern character is a random variable thatwe call �, where 1 � � � �.Since there are now O(�`) possible strings that match the pattern pre�x oflength `, we touch hX̀=1 `3=2�` = O(h3=2�h)sistring trie nodes up to depth h, because all those qualifying strings exist up tothat depth. From that depth on, there are on average O(n2=�`) sistrings in thetext matching a given string of length `. Therefore, the work in the deeper partof the sistring trie isX̀>h `3=2 n2�` �` = O�h3=2 n2�h �h� = O(h3=2�h)since the �rst term of the summation dominates the rest. Therefore, the totalcomplexity isO(h3=2�h) = O �(log� n)3=2n2 log� �� = O �(log� n)3=2n2(1�log� 5=4)� :Here the last step is based on that �, the average value of �, equals (4=5)�as the di�erence between the maximum and minimum of 9 values uniformlydistributed over � On the other hand, the cost function is concave in terms of�, and hence f(�) � f(�). In practice � is much less than (4=5)�, see [5].

6 The Accumulated ModelEven more powerful model is the Accumulated model, which provides aHamming-like matching capability for gray-level images. Here, the sum of the ab-solute di�erences between text colors and the color of the corresponding patterncell must not exceed k.As for the Hamming model, we have to enter, for each relevant rotation,into all the branches of the sistring trie until we obtain an accumulated di�er-ence larger than k. We present �rst a standard approach and then a patternpartitioning technique.6.1 Standard SearchingWe enter into all the branches of the sistring trie until we can report a match orthe sum of the di�erences exceeds k. As we show in Appendix B, the number ofstrings matching a given string of length ` under this model is at most 2`�k+`k �.Since up to length h all them exist, we traversehX̀=1 `3=22`�k + `k � = O�h3=22h�k + hk ��nodes in the trie. For the deeper parts of the trie there are O(n2=�`) stringsmatching a given one on average, so the rest of the search takesX̀>h `3=2 n2�` 2`�k + `k � = X̀>h `3=2 n2 2`�`�k + `k �In Appendix B we show that (2=�)`�k+`k � is exponentially decreasing with `for k=` < �=(2e)� 1, otherwise it is
(1=p`). Therefore, we de�nek�A = k�=(2e)� 1and if h � k�A the summation is at least O(hn2) and therefore not sublinear. If,on the other hand, h > k�A, then the �rst term of the summation dominates therest, for a total search cost ofO�h3=22h�k + hk �� = O (log� n)3=2n2 log� 2�1 + 2 log� nk �k!which is sublinear in n for � > 2. On the other hand, � = 2 means a bilevel image,where the Hamming model is the adequate choice. Hence we obtain sublinearcomplexity (albeit exponential on k) for k�A < 2 log� n.

6.2 Pattern PartitioningAs for the Hamming model, we can partition the pattern to j2 subpatterns thatare searched exhaustively in the sistring trie. Again considering (m=j)2 � h wehave a total search cost of j2m3�U + Uk n2�(m=j)2 �where this time U = 2(m=j)2�(m=j)2 + k=j2k=j2 �After distributing the initial factor of the cost formula, we see that the �rstterm decreases and the second term increases as a function of j. The optimum isfound when both terms meet, which is again j = m=p2 log� n which is consis-tent with our condition (m=j)2 � h. In fact, the second term is decreasing onlyfor � < �=(2e)� 1, otherwise the optimum is j = 1, i.e. no pattern partitioning.For this optimal j, the overall complexity isO� m5log� n n2(log� 2+HA� (�))�where we have de�ned HA� (�) = �� log�(�) + (1 + �) log�(1 + �):This complexity is sublinear as long as � < �=(2e)�1. Again, we can considerto use a larger j value but the complexity does not improve.7 An Alternative Matching ModelWe have considered up to now that text centers match the value of the patterncells they lie in. This has been done for technical convenience, although anequally reasonable alternative model is that the pattern cells must match thetext color where their centers lie in the text.Except for the Grays model, all the algorithms considered can be adapted tothis case. The algorithms are more complex in practice now, because there maybe more than one pattern center lying at the same text cell, and even no patterncenter at all. This means that in some branches of the sistring trie we may havemore than one condition to �t (which may be incompatible and then the branchcan be abandoned under some models) and there may be no condition at all, inwhich case we have to follow all the branches at that level of the trie.On average, however, we still have �(`) conditions when entering in thesistring trie with a pattern string of length `, and therefore all the time boundsremain the same. However, in the Exact matching model, we can do better usingthe pattern centers.We consider now indexing the rotated versions of the text sistrings, instead ofconsidering the rotated versions of the pattern at search time. Hence, the patternis simply searched with no rotations. Imagine that we index all the rotations of

the text up to depth H . This means that there will be O(n2H3=2) sistrings, andthe sizes of the sistring trie and array will grow accordingly.The bene�t comes at search time: in the �rst part of the search we do notneed to consider rotations of the pattern, since all the rotated ways to read thetext are already indexed. Since we index O(n2H3=2) strings now, all the di�erentsistrings will exist until depth h0 = log�(n2H3=2) = 2 log� n+3=2 log� H . We �rstassume that H � h0. This means that until depth H we pay O(H). After thatdepth all the surviving rotations are considered. Since H � h0, they all yielddi�erent strings, and the summation, as in Section 3, yields O(n2H3=2=�H).Therefore the total search time isO�H + n2H3=2�H �which is optimized for H = 2 log� n+ (1=2) log� H . Since this is smaller than h0we take the minimal H = h0. For instance H = x log� n works for any x > 2.This makes the total search time O(log� n) on average. The space complexitybecomes now O(n2(log� n)3=2). Trying to use H < h0 worsens the complexity.The matching model has changed, however. In the normal index the textsistrings are indexed once at a �xed rotation (zero). When a given pattern rota-tion is tried, the pattern is read in rotated form, in an order driven by the textcenters. Now the text sistrings are read in all the rotated forms, and the patternwill be read once. The way to index a text sistring in rotated form is to assumethat a rotated pattern is superimposed onto it and read the text cells where thepattern cells, read in order, fall. This e�ectively corresponds to the model weare considering in this section.8 Experimental Results (Preliminary)We have implemented the algorithms for Exact and Accumulated models, with-out the pattern partitioning technique. For the index structure, we used sistringarray. The array based implementation is much more space e�cient, but thesearch cost is also higher (both asymptotically and by the constant factors).The implementation is in C, compiled using gcc 2.95.2 on Linux 2.0.38,running in 700MHz PentiumIII machine. The implementation is not very opti-mized, and much of the time is spent in trigonometry; for computing the nextangle to try, and for computing the coordinates of the cells for the given angle.Our test text was an image of size 768� 768 cells, with 35 colors (gray levels),and a pattern of size 41� 41 was extracted from it.Table 2 shows some timings for the search. The di�erence between the timesof the Exact model and the Accumulated model with k = 0 reveals the morecomplex implementation of the Accumulated model. Our results show that thealgorithms can be implemented, and although preliminary versions, they runreasonably fast. For comparison, our optimized O(n2(k=�)3=2) expected timeon{line algorithm [4] spends 0.81 seconds for k = 0, 1.67 seconds for k = 8, 3.62seconds for k = 192, and 3.85 seconds for k = 256. With the pattern partitioning,the algorithms would be much faster for large k.

k Exact 0 1 2 4 8 16 32 64 96 128 192 256time 0.0055 0.0086 0.0088 0.0089 0.0090 0.0097 0.0110 0.0165 0.0567 0.1720 0.3930 2.0390 6.3910Table 2. Experimental results for the Exact and Accumulated models. The times aregiven in seconds.9 Conclusions and Future WorkWe have proposed a sistring tree index to search two dimensional patterns intwo dimensional texts allowing rotations. We have considered di�erent matchingmodels and obtained average time bounds that are sublinear for most reasonablecases.It is possible to extend the model by removing the center{to{center assump-tion [4]. In this case the number of patterns grows as high as O(m7) and thereforethere are O(`7=2) sistrings to search at depth `. The search time for the Exactmodel becomes O(log� n)9=2. By indexing all the rotations and center displace-ments we get O(log� n) time again, but at a space cost of O(n2(log� n)7=2).It is also possible to extend the methods to three dimensions [6]. With thecenter{to{center assumption we have O(m11) rotations. This means O(`11=3)sistrings at depth `. Therefore, at O(n3) space the total search time be-comes O((log� n)14=3) for exact searching. If we index all the rotationsup to H = x log� n with x > 3 we will have a space requirement ofO(n3(log� n)11=3) and a search cost of O(log� n). For the Grays model we haveO((log� n)11=3n3(1�log�(28=27)) time. All the other techniques can be extended aswell.References1. A. Amir, G. Benson, and M. Farach. Alphabet independent two dimensional match-ing. In N. Alon, editor, Proceedings of the 24th Annual ACM Symposium on theTheory of Computing, pages 59{68, Victoria, B.C., Canada, May 1992. ACM Press.2. A. Amir. Multidimensional pattern matching: A survey. Technical Report GIT-CC-92/29, Georgia Institute of Technology, College of Computing, 1992.3. K. Fredriksson and E. Ukkonen. A rotation invariant �lter for two-dimensionalstring matching. In Proceedings of the 9th Annual Symposium on CombinatorialPattern Matching (CPM'98), LNCS 1448, pages 118{125, 1998.4. K. Fredriksson and E. Ukkonen. Algorithms for 2{d hamming distance underrotations. Manuscript, 1999.5. K. Fredriksson and E. Ukkonen. Combinatorial methods for approximate imagematching under translations and rotations. Pattern Recognition Letters, 20(11{13):1249{1258, 1999.6. K. Fredriksson and E. Ukkonen. Combinatorial methods for approximate patternmatching under rotations and translations in 3D arrays. Submitted, 2000.7. Z. Galil and K. Park. Truly alphabet-independent two-dimensional pattern match-ing. In IEEE, editor, Proceedings of the 33rd Annual Symposium on Foundations ofComputer Science, pages 247{257, Pittsburgh, PN, October 1992. IEEE ComputerSociety Press.

8. R. Giancarlo. A generalization of su�x trees to square matrices, with applications.SIAM J. on Computing, 24:520{562, 1995.9. R. Giancarlo and R. Grossi. On the construction of classes of su�x trees for squarematrices: Algorithms and applications. Information and Computation, 130:151{182, 1996.10. G. H. Gonnet. E�cient searching of text and pictures. Report OED-88-02, Uni-versity of Waterloo, 1988.11. J. K�arkk�ainen and E. Ukkonen. Two and higher dimensional pattern matching inoptimal expected time. In Daniel D. Sleator, editor, Proceedings of the 5th AnnualACM-SIAM Symposium on Discrete Algorithms, pages 715{723, Arlington, VA,January 1994. ACM Press.12. G. M. Landau and U. Vishkin. Pattern matching in a digitized image. Algorithmica,12(4/5):375{408, October 1994.13. G. Navarro and R. Baeza-Yates. Fast multi-dimensional approximate string match-ing. In Proceedings of the 10th Annual Symposium on Combinatorial PatternMatching (CPM'99), LNCS, pages 243{257, 1999.14. T. Takaoka. Approximate pattern matching with grey scale values. In Michael E.Houle and Peter Eades, editors, Proceedings of Conference on Computing: TheAustralian Theory Symposium, pages 196{203, Townsville, January 29{30 1996.Australian Computer Science Communications.15. J. Tarhio. A sublinear algorithm for two-dimensional string matching. PRL: Pat-tern Recognition Letters, 17, 1996.16. J. Wood. Invariant pattern recognition: a review. Pattern Recognition, 29(1):1{17,1996.A Probability of Matching under the Hamming ModelWe need to determine which is the probability of the search being active at agiven node of depth ` in the sistring trie under the Hamming model. We aretherefore interested in the probability of a pattern pre�x of length ` matchinga text substring of length `. For this to hold, at least `� k text characters textmust match the pattern. Hence, the probability of matching is upper boundedby 1�`�k�k̀�where the combinatorial counts all the possible locations for the matching char-acters.In the analysis that follows, we call � = k=` and take it as a constant (whichis our case of interest, as seen later). We will prove that, after some length `,the matching probability is O((�)`), for some (�) < 1. By using Stirling'sapproximation x! = (x=e)xp2�x(1 +O(1=x)) over the matching probability wehave 1�`�k ``p2�`kk(`� k)`�kp2�kp2�(`� k)!�1 +O� 1̀��which is � 1�1����(1� �)1���` `�1=2 1p2��(1� �) +O� 1̀�!

This formula is of the form (�)` O(1=p`), where we de�ne(x) = 1�1�xxx(1� x)1�xTherefore the probability is exponentially decreasing with ` if and only if(�) < 1, that is,� > � 1��(1� �)1��� 11�� = 1� �1�� (1� �)It is easy to show analytically that e�1 � � �1�� � 1 if 0 � � � 1, so it su�cesthat � > e=(1��), or equivalently, � < 1� e=� is a su�cient condition for theprobability to be exponentially decreasing with `.Hence, the result is that the matching probability is very high for � = k=` �1� e=�, and that otherwise it is O((�)`=p`), where (�) < 1.B Probability of Matching under the Accumulated ModelWe need to determine what is the probability of the search being active at agiven node of depth ` in the sistring trie under the Accumulated model. We aretherefore interested in the probability of two random strings of length ` matchingwith at most k errors. Our model is as follows: we consider the sequence of `absolute di�erences between both strings �1 : : : �`. The matching condition statesthat Pì=1 �i � k.The number of di�erent sequences of di�erences satisfying this is �k+`` �, whatcan be seen as the number of ways to insert ` divisions into a sequence of kelements. The ` divisions divide the sequence in ` + 1 zones. The sizes of the�rst ` zones are the �i values and the last allows the sum to be � k instead ofexactly k. Note that we are pessimistically forgetting about the fact that indeed�i � �.Finally, each di�erence �i can be obtained in two ways: Pi+�i and Pi��i (weagain pessimistically count twice the case �i = 0). Therefore, the total matchingprobability is upper bounded by 2`�`�`+ kk �In the analysis that follows, we call � = k=` and take it as a constant (whichis our case of interest, as seen later). We will prove that, after some length `,the matching probability is O((�)`), for some (�) < 1. By using Stirling'sapproximation x! = (x=e)xp2�x(1 +O(1=x)) over the matching probability wehave 2`�` (k + `)k+`p2�(k + `)kk``p2�kp2�` !�1 +O� 1̀��

which is �2(1 + �)1+���� �` `�1=2 s1 + �2�� +O� 1̀�!This formula is of the form (�)` O(1=p`), where we de�ne(x) = 2(1 + x)1+x�xxTherefore the probability is exponentially decreasing with ` if and only if(�) < 1, that is, 2(1 + �)� �1 + 1��� < 1It can be easily seen analytically that (1 + 1=�)� � e, so � < �=(2e)� 1 isa su�cient condition for the probability to be exponentially decreasing with `.Hence, the result is that the matching probability is very high for � = k=` ��=(2e)� 1, and that otherwise it is O((�)`=p`), where (�) < 1.

