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Abstract
We describe two success stories on the application of compact data structures (cds) to solve
the problem of the excessively redundant space requirements posed by worst-case-optimal (wco)
algorithms for multijoins in databases, and particularly basic graph patterns on graph databases.
The aim of cds is to represent the data and additional data structures on it, using total space close to
that of the plain (and, sometimes, compressed) data, while efficiently simulating the data structure
operations. Cds turn out to be a perfect approach for the described problem: We designed and
implemented cds that effectively use space close to that of the plain or compressed data, which is
orders of magnitude less than existing systems, while retaining worst-case optimality and performing
competitively with those systems in query time, sometimes being even considerably faster.
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1 Motivation

1.1 Graph databases
Graph databases [48, 26] have gained momentum with the rise of large unstructured repositories
of information that emphasize relations between entities. They have become an attractive
alternative to the relational model in cases where the information has no fixed structure.
Dozens of graph database management systems [41, 51, 12, 36], prototypes [1, 35, 29, 2],
models and languages [25, 17, 27, 3], and large repositories like Wikidata [54], illustrate how
active is the interest on this relatively new technology.

A graph database represents information in the form of a labeled graph or network. There
are many possible models to represent information in this way, such as knowledge graphs [27],
property graphs [17], and RDF [34], to name a few. In general, the graph nodes represent
objects and the edges between them represent relations. The models differ on what kind of
information can be associated with the nodes or the edges, whether the edge labels can also
be objects, and so on. For concreteness, we will focus on the RDF model, where the graph
is seen as a set of triples (s, p, o), where s is the subject (or source node), p is the predicate
(or label of the edge), and o is the object (or target node). Consider the graph of Figure 1
(cf. [4]) as our running example. The nodes are scientists and the Nobel prize. The arrows
indicate that a scientist advised another and that a scientist won the Nobel prize.

The language to query a graph database also varies. In the widely used SPARQL standard
[25], queries are built on relatively small graph patterns, which have to be matched in the
database graph. In its simplest form, this can be just a triple pattern, which searches
for the existence of a certain edge (or triple). The triple pattern specifies constants or
variables for the subject, predicate, and object of the desired triples; every matching triple in
the graph corresponds to binding the variables of the triple pattern. In our example, the
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Figure 1 An example labeled graph.

triple (Nobel,won, ?x) returns all the bindings of x to Nobel prize winners (i.e., x = Thorne,
x = Bohr, etc.).

Basic graph patterns (BGPs) are sets of triple patterns sharing variables. They correspond
to matching a subgraph in the database, returning all the variable bindings that make the
subgraph occur. BGPs are akin to multijoins in relational databases, or full conjunctive
queries in logic databases. In our example, the BGP

(?y, adv, ?x), (Nobel,won, ?x), (Nobel,won, ?y) (1)

returns pairs (y, x) where y advised x and both won the Nobel prize (those are (y, x) =
(Bohr,Thompson) and (y, x) = (Thompson,Strutt)).

The third type of graph pattern are the regular path queries (RPQs). An RPQ is basically
a regular expression that matches variable-length paths in the database graph, so that the
sequence of traversed labels belong to the language denoted by the regular expression. RPQs
are distinctive of graph databases and cannot be emulated in the relational algebra. In
our example, the RPQ “Wheeler adv+ ?x” retrieves the academic descent of Wheeler (i.e.,
x = Bohr, x = Thomson, and x = Strutt).

1.2 Worst-case optimality and the space problem
While triple patterns are easily solved with plain data retrieval structures, BGPs and RPQs
are much more challenging and pose serious performance issues on graph database engines
(e.g., it is typical to set timeouts in the minutes). Join evaluation is the most costly part in
relational queries, and this carries over graph databases, where in addition it is not strange
to see BGPs joining tens of triple patterns (e.g., up to 22 were found in a Wikidata query log
[33]). Languages like SPARQL also enable projections, unions, and other operations, though
the efficiency focus of database engines is generally on BGPs and RPQs.

An important breakthrough in the resolution of multijoin queries was the development of
worst-case optimal (wco) join algorithms. A join algorithm is wco if its time complexity is
of the order of the so-called AGM bound [7], that is, the maximum possible output of the
query over some database with the same table attributes and sizes of the one at hand. It was
shown that the techniques used by relational engines since the sixties, where multijoins were
performed pairwise, were doomed to be non-wco. At the same time, several wco algorithms
were developed [43, 44, 53, 31, 45, 42]. This technique was translated to graph databases [29],
where it is particularly relevant because multijoins tend to be large and complex [45, 1, 30, 29].
It was shown that wco algorithms considerably outperformed traditional join algorithms on
complex queries, especially when the BGPs contained cycles [1].

This improvement came at the cost of space, however. For example, the most popular
wco algorithm, Leapfrog Triejoin (LTJ) [53], requires to index the rows of every database
table as sequences of values in trie data structures, in every possible ordering of the attributes.
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That is, a table of d columns needs to be stored in d! tries. In particular, supporting wco
joins on triples (s, p, o) poses a space overhead factor of 3! = 6. Other wco algorithms pose
similar or worse space problems. This is particularly unfortunate with the emergence of
enormous repositories of unstructured data in graph form, and hinders the adoption of the
faster wco strategies in the resolution of complex multijoin queries. To illustrate, Wikidata is
approaching 14 billion triples,1 so 6 copies of it, using just 32 bits per element and without
the additional trie structures, surpasses the terabyte.

1.3 Compact data structures to the rescue
Our recent research has shown that the use of compact data structures (cds) can play a
significant role in the reduction of the space required by wco multijoin algorithms. Compact
data structures [38] aim to represent the data and its needed data structures within space
close to the entropy, or amount of information, present in the data. There exist to date a
number of compact representations for bit vectors, sequences, trees, graphs, matrices, point
grids, texts, and many others. Cds have been very successful in reducing the size of relevant
data structures by orders of magnitude, as well as greatly increasing the functionality of data
representations within space close to the actual information of the data.

It is then more than natural to apply cds to the problem of supporting wco algorithms on
graph databases, with the aim of retaining time optimality while removing the redundancy.
We have recently proved the viability of this concept in two forms.

Qdags [40, 6]: We represented relations of d attributes as d-dimensional point grids called
qdags, where every tuple becomes a point (qdags are a kind of compressed quadtrees
[49, 50]). To solve a multijoin between several tables, qdags traverse and intersect all
their grids in synchronization. The resulting algorithm not only was proved to be wco
and to require only one copy of the data independently of d, but it was also shown
to be competitive in time with the state of the art (at least for low d; the query time
is exponential on d). Qdags use orders of magnitude less space than other indices on
graph databases, actually compressing the graph to less than its plain size. As they are
compositional (i.e., the result of a query is also a qdag) we also showed how to extend
their functionality to the full relational algebra.

Ring [4, 5]: We represented the database triples as texts, and built on text indexing cds
[14, 16] to support the LTJ algorithm. The resulting structure, the ring, is once again
wco and uses just one copy of the data. In many cases (but not when d is very small), the
ring is faster than qdags, but it requires O(2d) (not d! as classical approaches) copies on
d-dimensional tables, though one suffices no graph databases, where d = 3. Both qdags
and the ring could index the Wikidata in under 70 GB. In a further development [5], we
solved RPQs on the ring in time competitive with the state of the art, while using an
order of magnitude less space than other indices. This solution uses techniques from text
searching, like converting the RPQ to its Glushkov automaton [23, 39] and exploiting the
flexibility of the wavelet trees [24, 37] used by the ring to represents its text.

Our results demonstrate that cds can be used to compactly represent graph databases
while efficiently solving BGPs and RPQs. In this survey we describe those results in some
detail and discuss the features and challenges of this new and promising technology. We

1 https://grafana.wikimedia.org/d/000000489/wikidata-query-service
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Figure 2 On the left, a join query seen as a hypergraph where nodes are attributes. In the middle,
as a graph where nodes are relations. On the right, the triangle query on the graph where nodes are
attributes.

strive for simplicity and informality in this introductory survey, further details and precisions
can be found in the references.

2 State of the Art in (Graph) Databases

2.1 Multijoin queries
We focus on so-called multijoin queries, which compute the natural join between a set of tables
(we discuss the case of graph databases soon). It is customary to regard multijoin queries
as hypergraphs, where the nodes are attributes and the involved relations are hyperedges
covering their attribute nodes. For example, the left hypergraph in Figure 2 corresponds to
the join R(a, b, c) ./ S(b, d, e) ./ T (c, d).

An alternative view, shown in the middle of the figure, is to regard the relations as nodes
and put edges between relations that share attributes. We speak of cyclic and acyclic queries
referring to this second kind of graph.

2.2 The AGM bound
Asterias, Grohe, and Marx [7] showed how to compute the maximum possible size of the
output of a multijoin query. The maximization is done over every possible content of the
tables participating in the join, while retaining their attributes and sizes. This bound, also
shown to be tight, is since then known as the AGM bound. The bound immediately yields
the concept of worst-case optimality: a join algorithm is worst-case optimal (wco) if the time
it takes to compute a join is of the order of the AGM bound (possibly multiplied by a factor
that depends at most polylogarithmically on the data size), because that is the possible
output size for this query on some tables, and we need at least time to write the output.
This differs from the stricter instance optimal algoritms, which take time proportional to the
output of the query on the given tables.

The precise form of the bound is not important for our discussion; what is relevant for
now is that the bound implies that no pair-wise join strategy can be wco. The paradigmatic
example is the so-called “triangle query” R(a, b) ./ S(b, c) ./ T (c, a) (see the right of Figure 2).
If the tables have n rows, the triangle query can produce only O(n3/2) results; however there
exist tables R, S and T where every pairwise join strategy takes time Ω(n2). It is worth
noting that all the classical work on query plan optimization since the birth of the relational
model built on pair-wise joins.
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A number of wco algorithms appeared since then [43, 44, 53, 31, 45, 42]; we describe the
most popular one in some detail next. For the particular case of acyclic queries, it is indeed
possible to obtain the famous instance-optimal Yannakakis’ algorithm [57]. It is also possible
to obtain intermediate measures, like the fractional hypertreewidth (fhw), which is related to
the strategy of separating a cyclic query into a tree of cyclic components, solving each of
those with a wco algorithm, and then solving the resulting acyclic query instance-optimally
[1] (we omit some details for simplicity). The fhw bound is then the sum of the AGM bounds
for the nodes in the best possible decomposition of the query into a tree of cycles.

2.3 Leapfrog Triejoin
Leapfrog Triejoin (LTJ) [53] is the most popular wco multijoin algorithm. Instead of
performing the joins pair-wise (or, we could say, table-wise), LTJ proceeds attribute-wise
over all the tables at the same time. We say that LTJ binds one attribute at a time, meaning
that it finds all the possible values it may get in the output. Say that we decide to start
by binding attribute A. We then find the values of A that appear in all the joined tables.
For each such value A = a, we run a branch where the tables keep only their rows where A
has value a, and continue binding the next variables. This branching continues until either
there are no binding values for an attribute (and thus the current branch is abandoned), or
we have bound all the attributes (and then we output all the possible combinations of the
non-joined attributes, as a Cartesian product). We show an example soon.

For LTJ to run efficiently, it is convenient to arrange the tables as tries [19], or digital
trees. Each row of the table becomes a root-to-leaf path in its trie. The order in which the
attributes are read root to leaf must correspond to the order in which they are bound along
the query process, and the attributes not participating in the join must come at the end.
Each branch of LTJ then starts with a pointer to a node of the trie of each joined relation
(all start at the root). When it comes to bind A, all the relations having attribute A intersect
the children of their current node. For each value a that appears in the children of all the
relevant trie nodes, LTJ descends to that child in all those tries and continues by that branch,
where now we have bound A = a.

Because one cannot predict which attributes will be joined in queries, and furthermore it
is convenient to choose different binding orders to improve performance, LTJ requires that
each relation with d attributes is indexed in d! tries, one per possible attribute ordering. This
is the main problem for using LTJ in practice. An interesting alternative is to build query
plans that combine wco algorithms with (non-wco) pairwise joins [35, 20].

2.4 The case of graph databases
A graph database can be seen as a single relation over three attributes; every edge s p→ o is
interpreted as a tuple (s, p, o) in the relation (for subject, predicate, and object, following the
RDF terminology [34]). Alternatively, it can be seen as a set of relations over two attributes,
one per predicate p containing the pairs (s, o) such that the edge s p→ o is in the graph.

Standard query languages like SPARQL and many others feature two core query types,
Basic Graph Patterns (BGPs) and Regular Path Queries (RPQs).

Basic graph patterns BGPs can be seen as a composition of a selection and a join in the
corresponding relational database. A BGP is a set of triple patterns, each describing a graph
edge where each of the components s, p, and o can be a fixed constant (hence the selection) or
a variable. Shared variables among the triple patterns of the BGP correspond to equijoins by

ICDT 2023
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Figure 3 On the left, the subgraph of Eq. (1). On the right, the tries to traverse when solving
this query using LTJ.

the corresponding attributes. When the predicates are constant, we can see the hypergraph
of the query as a classic labeled digraph; we can support variable predicates by allowing
labels be variables too. With this modelling, solving the BGP query corresponds exactly to
finding all the bindings of the variables that make that graph be a subgraph of the database.
On the left of Figure 3 we see the graph of the BGP of Eq. (1); note it is analogous to the
triangle query.

By regarding every triple pattern as a relation, where some attributes may by bound
from the beginning (if they are constants) or be named after a variable otherwise, we can
adapt LTJ to solve BGPs, resulting in a wco algorithm as well [29]. The relevant parts of
the tries for our example query, in the correct order to bind first y and then x, are shown
on the right of Figure 3 (we use the first trie for (?y, adv, ?x), starting at the node “adv”,
and two copies of the second trie for (Nobel,won, ?x) and (Nobel,won, ?y), starting at the
node “won”). When we bind y, we intersect the lists of children of both nodes, obtaining
bindings y = Bohr, y = Thomson, and y = Thorne. Branching with each such value of y we
intersect the only child of each node in the first trie with the children of “won” in the second,
obtaining x = Thomson when y = Bohr, and x = Strutt when y = Thomson.

The space issues of LTJ carry over the graph database formulation, so we require to store
3! = 6 tries, each representing the whole database graph in a different order, (s, p, o), (s, o, p),
(o, s, p), (o, p, s), (p, o, s), and (p, s, o). Alternatives are giving up with wco algorithms, as
mentioned, or building some orders at query time, which is generally too expensive.

Regular path queries RPQs are akin to regular expressions that must be matched to paths
in the database graph. They may fix the starting node x and/or the ending node y, and
otherwise they specify the language of the sequences of labels that can connect x with y.
Apart from the regular expression operations, one can use ˆp to denote an edge labeled p
in reverse direction. This can be handled by duplicating the graph database edges so as to
include those reversed labels.

There are no wco algorithms for RPQs. The standard solution is to build the product
graph between the graph database and the nondeterministic finite automaton (NFA) of the
RPQ. The product graph has nodes (u, v) for each node u of the graph and v of the NFA.
There is an edge (u, v) p→ (u′, v′) iff there is an edge u p→ u′ in the graph and we can go
from v to v′ by symbol p in the NFA. We then traverse the product automaton from every
possible initial node (x, i) (where x may be fixed or not in the RPQ and i is the initial NFA
state) towards every possible final node (y, f) (where y may be fixed or not in the RPQ and
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f is a final NFA state) and report all the pairs (x, y).
Several heuristics have been proposed over this basic solution [32, 56, 46], aiming at

filtering the traversal of the product graph. For example, if the RPQ forces the existence
of a certain label in the path that is infrequent in the graph, then it is more convenient to
focus on those edges and trying to match the RPQ path in both directions from the arrow.

An elegant way to mix BGPs and RPQs is to permit triple patterns of the form (x,R, y),
where x and y are the endpoints of the RPQ R. This can then be treated as just another
relation to join. For example, one can run the RPQ and materialize the output, and then
run the query as a normal BGP. Or one can run the rest of the BGP so that these triples,
which are likely to be more expensive, are processed at the end, only for the bound variables
that have survived all the intersections.

3 Compact Data Structures

We describe in this section the compact data structures we used in our developments. Again,
we aim at an intuitive description; more details and references can be found elsewhere [38].

3.1 Bitvectors

A bitvector B[1..n] is a sequence of n bits that provides the following two operations:
rankb(B, i) is the number of bits equal to b ∈ {0, 1} in B[1..i].
selectb(B, j) is the position of the jth occurrence of b ∈ {0, 1} in B.

It is possible to represent B within n+ o(n) bits so that both operations are supported in
constant time [11]. It is also possible to represent B in compressed space when it has many
more or fewer 0s than 1s, while retaining constant-time operations. Let m be the number of
0s, then the compressed representation uses log2

(
n
m

)
+ o(n) bits [47].

3.2 Cardinal trees

A cardinal tree is a rooted tree where each node has children with labels in [1..σ]; each
node has at most one child with a given label. The basic operations supported by this data
structure are:
root(T ) is the root node of T .
child(v, a) is the child of node v labeled a, or null if there is no such child.
parent(v) is the parent of node v, or null if v is the root.

It is possible to represent a cardinal tree with n nodes within (log2 σ + 2 + o(1))n bits,
while supporting the given operations in constant time [9]. We are going to use tries of
alphabet size σ = 4, in which case a more practical representation using the same space
is the k2-tree [10] (with k = 2). It represents each node with 4 bits, which marks which
children exist. The 4-bit signatures of all the nodes are concatenated in levelwise form, into
a large bitvector T [1..]. The node identifiers correspond to the index of their signatures in
this array. The root identifier is 0, corresponding to the first signature, and the identifier of
the ith child of a node with identifier v is child(v, i) = rank1(T, 4v+ i). The identifier of the
parent of v, instead, is parent(v) = dselect(T, v)/4e − 1.

ICDT 2023
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Figure 4 On the left, the relations adv and won of Figure 1 seen as two-dimensional grids. On
the right, their representations as quadtrees, which are just cardinal trees of arity four (we show the
signatures of the tree nodes), and their final representation as k2-tree bitvectors at their bottom.

3.3 Quadtrees

A quadtree is a geometric data structure that represents points in a discrete two-dimensional
grid. The quadtree is a tree of arity four. The root represents the whole grid, which is
divided as evenly as possible into four quadrants. Each quadrant is recursively represented
by a child of the root: top-left, top-right, bottom-left, and bottom-right. If the grid has
no points, the corresponding quadtree node is a leaf and the grid is not further subdivided.
When the nodes represent single cells, they also become leaves that store a point or not.

A compact representation of a quadtree can be obtained by seeing it as a cardinal
tree of arity σ = 4. Each grid point then corresponds to a root-to-leaf path of length
` = dlog4(u2)e = dlog2 ue, on a u× u grid. Since all the paths in this trie are of the same
length, we do not need to store information on the children of the nodes of depth `.

Figure 4 shows how our two predicates adv and won can be regarded as two-dimensional
grids (as done with qdags). We also show how those grids are represented as quadtrees,
which in turn are seen as cardinal trees of σ = 4 children. Their final concrete representation,
as k2-trees, is just a sequence of bits.

The space of this representation is, in the worst case, 4 log2 u bits per point, which is
twice the 2 log2 u bits needed by a representation as pairs of coordinates. When the points
have some regularity, like clustering, the space decreases, as shown in the figure for relation
won. Within this space, the quadtree can efficiently search for points.
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Figure 5 The wavelet tree of S = 32511234. Each node v shows in gray the string Sv it represents
(but does not store) and below it the bitvector Bv it stores.

3.4 Wavelet trees
A wavelet tree [24, 37] represents a sequence S[1..n] over an alphabet [1..σ] using n log2 σ +
o(n log σ) bits, so that several interesting queries can be answered, including the following
ones in O(log σ) time:
access(S, i) returns S[i].
ranka(S, i) is the number of symbols equal to a ∈ [1..σ] in S[1..i].
selecta(S, j) is the position of the jth occurrence of a ∈ [1..σ] in S.

The wavelet tree is a balanced binary tree with σ leaves, where each node handles a
range of the alphabet; the root represents [1..σ] and each leaf represents one symbol. If an
internal node v represents range [a..b], then its left child represents [a..m] and its right child
represents [m+ 1..b], with m = b(a+ b)/2c. The node v represents, virtually, the subsequence
Sv of S with symbols in [a..b], but it only stores a bitvector Bv of length |Sv|, where Bv[i] = 0
if Sv[i] belongs to the left child of v, and Bv[i] = 1 otherwise. Figure 5 shows an example.

The wavelet tree has height dlog2 σe. At each level, it stores exactly n bits because each
position of S is in exactly one node at that level. By representing those bitvectors so that
they answer rank and select in constant time (Section 3.1), the space is n+ o(n) bits per
level and n log2 σ + o(n log σ) overall. Note that a plain representation of S requires n log2 σ

bits, and it can be less if we use compressed bitvectors or give the tree a Huffman shape.
It is not hard to see how to support the basic operations in O(log σ) time, with a top-down

or bottom-up traversal on the wavelet tree. For example, to compute S[i], we start with v
being the root. If Bv[i] = 0, we move to its left child with i := rank0(Bv, i), otherwise we
move to its right child with i := rank1(Bv, i). When we arrive at a leaf, its symbol is S[i].
Wavelet trees can perform more complex operations on S; we will mention them as needed.

3.5 The FM-Index
Rather than describing the general FM-Index [14, 16], which belongs to the realm of
text compression and searching, we show the ideas that adapt to our particular case of
interest. Consider a set of n distinct strings of length `, Si[1..`] for 1 ≤ i ≤ n. Sort them
lexicographically and write them one per row. The last column of symbols, read downwards,
is called L`.

Now take the last symbol of each Si and put it in front of the first symbol, that is, Si

becomes Si[`] ·Si[1..`− 1]. Stably re-sort the strings and call L`−1 the last column. Continue

ICDT 2023
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Figure 6 On the left, a mapping the nodes and labels of Figure 1 to integers. Right to it, the
resulting table of triples. On the right, the three reorderings from which the columns Lo, Lp, and Ls

are obtained.

with this process until obtaining all the strings Lj , for 1 ≤ j ≤ `.
If we consider the strings Si as the rows of a relational table, then the strings Lj are akin

to a column store, where the table is represented column-wise and the columns have some
suitable order. We do not require pointers to connect the same row across different columns,
because the row i′ in Lj−1 corresponding to row i in Lj turns out to be

i′ = Cj [c] + rankc(Lj , i),

where c = Lj [i] and Cj [c] is the number of symbols smaller than c in Lj . The same
formula navigates from L1 to L`. We can therefore extract any row Si in time O(` log σ) by
representing the strings Lj with wavelet trees (Section 3.4), from its position in any column.
We can also navigate forwards, from Lj−1[i′] to Lj [i], with the inverse formula

i = selectc(Lj , i
′ − Cj−1[c]),

where c is such that Cj−1[c] < i′ ≤ Cj−1[c].
This representation, which uses basically the same n` log2 σ bits of a plain representation

of the rows Si, allows for other interesting queries. In particular, given some substring X[1..t]
and a column a, we can obtain the set of all rows Si such that Si[a + 1..a + t] = X, by
starting from st+1 = 1, et+1 = n, and then, for j = t down to 1, computing c = X[j] and

sj = Ca+j [c] + rankc(La+j , sj+1 − 1) + 1,
ej = Ca+j [c] + rankc(La+j , ej+1).

At the end, the desired strings are those represented in the range La+1[s1..e1]. This process
is called backward search.

Figure 6 illustrates this structure on the three-column table that results from representing
the labeled graph of Figure 1. The table is represented by the resulting columns Lo, Lp, and
Ls. These three strings, represented as wavelet trees, plus the corresponding arrays C∗, form
the ring data structure for graph databases. Note that Figure 5 shows the wavelet tree of Lo.

4 Qdags

Qdags [40, 6] represent each d-attribute table as a d-dimensional version of the quadtrees
described in Section 3.3. A multijoin query between several tables represented by such
quadtrees is solved by:
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?z

?y

?x

Figure 7 Extending the quadtree adv of Figure 4 to a third dimension to account for variable ?z.

1. Converting each quadtree into one that includes the missing attributes that appear in
any other joined table, all in the same order.

2. Traversing the quadtrees in synchronization to collect the points in common.
3. Writing the output of the query as a new quadtree on the increased dimension.

Qdags solve the problem of lifting the dimension of the quadtrees (step 1) at almost
no extra cost. A qdag is a quadtree plus a mapping function that can be used to permute
attributes and, most importantly, lift its dimension: for each d-dimensional point (x1, . . . , xd),
if we raise the dimension to d′, we assume that the points (x1, . . . , xd, yd+1, . . . , yd′) exist
for all the possible values of yd+1, . . . , yd′ . The qdag then simulates the operations on the
virtual d′-dimensional quadtree without materializing it.

To illustrate, consider the following variant of the BGP of Eq. (1)

(?y, adv, ?x), (?z,won, ?x), (?z,won, ?y)

which has the same output in our database with the binding ?z = Nobel. Since the output
will be a table with attributes (?z, ?y, ?x), we need to raise the dimension of the intervening
quadtrees (shown in Figure 4) to three. For the first triple pattern, (?y, adv, ?x), we must
create the third dimension, ?z. The corresponding qdag must represent an octree (i.e.,
a 3-dimensional version of a quadtree) where every point (?y, ?x) in the quadtree adv is
extended to every possible value of ?z; see Figure 7. Instead of materializing that octree, the
qdag combines the quadtree adv with the mapping function (1, 2, 3, 4, 1, 2, 3, 4). This indicates
how to traverse the 8 children of every node in the octree, reading the 4 front cubes and then
the 4 back cubes; note the 4 back cubes are identical to the 4 front cubes. The quadtree is
then used to support the octree navigation with just this O(2d′) additive space and time
penalty. Analogously, the qdag for the triple pattern (?z,won, ?x) is built from the quadtree
won and the mapping function (1, 2, 1, 2, 3, 4, 3, 4), and the triple pattern (?z,won, ?y) is built
from the same quadtree won and the mapping function (1, 1, 2, 2, 3, 3, 4, 4).

Optimality Note that the intersection process may work on subgrids where no output points
are found, so the intersection process is not necessarily instance-optimal. It was shown,
however, that there is always a database which, essentially, has points wherever the algorithm
traverses in the grids, which makes this multijoin algorithm wco.
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Full algebra The algorithm is compositional, since the output is also a quadtree (and hence
a qdag, with the identity mapping function). This compositionality leads to including the
other operations of the relational algebra. For this sake, qdags are extended to the so-called
lazy qdags (lqdags), which are akin to the syntax tree of the algebraic expression, through
which the results flow on demand. The scheme stays wco for Boolean operations (under some
constraints), but not for other operations like general selections and projections.

In practice The practical implementation uses kd-trees to represent the quadtrees, as
described in Section 3.3. The resulting quads are evaluated on a subset of Wikidata, where
one two-dimensional qdag is built for each distinct predicate. The qdags use less than 5 bytes
per triple, about half of the plain representation and 10–300 times less than state-of-the-art
engines. Their times to solve BGPs from a query log are competitive, from much faster
to much slower depending on the query types. Qdags perform better in general on lower
dimensions of the output and are unbeaten on small cyclic queries.

5 The Ring

The ring [4] is a text-based compressed representation for the database triples, which can
simulate the 6 tries needed by the LTJ algorithm with just a single copy of the data. The
high-level idea is that each (s, p, o) triple is regarded as a circular string that can be navigated
forwards or backwards. Any of the 6 orders can be then obtained by starting somewhere on
the circle and moving in some direction.

As described in Section 3.5, the ring represents the table of triples (s, p, o) by means of the
sequences Lo, Lp, and Ls. The key idea to simulate the LTJ algorithm of Section 2.3 is that
every node of each of the 6 tries corresponds to a range in some of the L∗ sequences: both
represent sets of triples with some attributes already bound. We then start by associating
each triple pattern in the BGP to a range in some L∗ corresponding to its bound values.
To find that range, we use backward search (Section 3.5). For example, for the BGP of
Eq. (1) the triple (?y, adv, ?x) corresponds to the range Ls[1..4], whereas (Nobel,won, ?x)
and (Nobel,won, ?y) correspond to Lo[5..8] (see Figure 6).

The LTJ algorithm is then started, binding the variables one by one. The main primitive
needed to implement the intersections carried out by LTJ is: given a value k, find the leftmost
child of the current trie node with value k′ ≥ k. In the ring, this corresponds to finding the
smallest value k′ ≥ k appearing in a given range L∗[i..j]. This can be done in logarithmic
time on the wavelet tree of L∗ [8, 37]. Wavelet trees also implement the needed primitives to
simulate trie navigation on the sequences L∗, forwards or backwards as needed [21, 37].

For example, if we first bind ?y, we must find the common values between Ls[1..4] and
Lo[5..8], yielding 1 (Bohr), 3 (Thomson), and 4 (Thorne). Those are the instances of ?y that
advised someone and won a Nobel prize (recall Section 2.4). Consider the branch y = 1.
We use the backward search formula to move from Ls[1..4] to Lo[1..1] (which represents
the further bounded triple pattern (Bohr, adv, ?x)), and from Lo[5..8] to Lp[2..2] (which
represents (Nobel,won,Bohr); this triple pattern is now totally bound). Now we bind ?x,
looking for the common values in Lo[1..1] and Lo[5..8]. We here find the common value 3
(Thomson), and take that binding by moving from Lo[1..1] to Lp[5..5] (representing the triple
(Bohr, adv,Thomson)) and from Lo[5..8] to Lp[6..6] (representing (Nobel,won,Thomson)).
Now we have bound all the variables and the three triples represent one solution of the BGP:
Bohr advised Thomson and both won the Nobel prize.
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Optimality and practical performance The ring handles BGPs in wco time, since it directly
simulates the LTJ algorithm. Depending on how much it compresses its wavelet trees, the
ring can use about the same space of qdags, and it is also competitive in time with the state
of the art (it is faster than qdags in most cases, but not on small cyclic queries). Without
wavelet tree compression, it uses about 13 bytes per triple (close to the space needed by the
raw graph data, and still 5–140 times smaller than the other indices) and it is on average
twice as fast as the next-best competitor.

Higher dimensions The ring can be extended to higher dimensions, needing much fewer
than the d! copies required by classical schemes (e.g., one needs 7 rings, instead of 720 tries,
for d = 6). This makes it usable to implement LTJ on relational tables where the classical
wco indices are completely impractical. Still, the number of required rings grows as O(2d),
so it soon ceases to be practical as well.

Regular path queries The ring was also used to solve RPQs [5] by just performing the
classical traversal of the product automaton, with a couple of twists. First, the NFA is
produced by Glushkov’s algorithm [23, 39], which obtains the worst-case minimum number
of states and has some regularities that are exploited (e.g., all the transition leading to a
given state have the same label). Second, the wavelet trees of the sequences L∗ are enhanced
so as to avoid spending any time on edges of the product automaton that lead to no active
NFA states, or that cycle on the automaton. The resulting algorithm, even if not using any
filtration technique, is competitive with the state of the art (3 times faster than the next-best,
on average), while using 3–5 times less space than all of them. More recent developments
using filtration techniques become about 5 times faster than the others.

6 Now What?

Our research has demonstrated that cds can successfully implement the core of graph database
engines, providing wco multijoin algorithms that are also efficient in practice, and removing
all of the redundancy associated with those algorithms. As such, they can make a reality the
efficient querying of the huge graph databases that are emerging.

But we have just scratched the surface of the problem. There are many issues to consider
in the way, on many of which we are working. We list only some of the most prominent ones.

How to handle higher dimensions? While three dimensions (or four, in some models) suffice
to describe graph databases, relational ones may have many more columns. Both qdags
and the ring have time or space troubles with higher dimensions, and even if they can
handle them better than current schemes, they soon become impractical. In order to
provide competitive solutions for relational data, we must probably combine wco and
non-wco schemes [35, 20]. Cds have demonstrated that they can provide more than the
basic functionality on the data, so an interesting question is what can they support in
the direction of combining both kinds of query plans.

Can we provide more functionality? A formidable challenge is to combine BGPs and RPQs
in an efficient manner, as this is supported in SPARQL and other query languages.
Interactive querying requires retrieving (possibly only some) results in decreasing order of
relevance [52]. Providing more semantics to the nodes leads to problems like supporting
similarity joins [13], spatio-temporal predicates, and so on. The concept of wco with
those extended semantics is yet to be studied. Again, cds can provide novel and more
efficient solutions to those problems.
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How to scale to a real system? Real graph database systems are very complex, and thus it
is not direct to put our performance improvements, which focus on specific subproblems,
into use. Consider for example going from our BGPs and RPQs to the full SPARQL
support. The fastest path is to integrate our research prototypes into an existing system.
A good candidate for this is MillenniumDB [55], a full-fledged graph database system
with strong algorithmic foundations and designed to plug-and-play different solutions to
subproblems.

Can we support graph analytics? BGPs serve not only for querying graph databases, but
also as building blocks to support graph analytics [28]. In our example graph, we could
ask how likely is that the advisee of a Nobel winner also wins the prize, by counting
the number of answers to BGP queries (rather than listing them all). Graph analytics
require various sorts of summarization operations on the query results, where in addition
it is acceptable to return approximate answers. It is interesting to see if cds can support
counting (perhaps approximately) the number of results of queries without listing them
all; some of their extended functionality can be of use. More in general, we can explore
the use of cds to represent other objects that are key in analytics, like matrices. There is
some preliminary work in this direction [15, 18, 22].
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