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Abstract

Among different spatial data models, the topological model for spatial regions
explicitly represents common boundaries. This model pursues the efficiency
of topology-related queries and the elimination of data redundancy. This pa-
per proposes several space-efficient data structures to support access to the
topological representation of two-dimensional regions that are organized in a
multi-granular or hierarchical structure, such as the political and administra-
tive partition of a country. In the context of these hierarchies, we focus on
queries that search for inclusion, disjointness, and adjacency between regions.
The proposed structures build upon compact planar graph embeddings, which
show to have a good trade-off between space and time.
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1. Introduction

Spatial modeling usually distinguishes between field- and entity-based views
of the space [2| [3]. While the field-based view of the space associates attributes
with areas in the space, the entity-based view represents the space as spa-
tial objects with explicit identities. The latter is the most common approach
to represent objects in spatial databases, and thus there exist several spatial
data models implementing it. Within these spatial data models, the topological
model [4,[5] explicitly represents common boundaries between entities. Basic el-
ements of this model are points, nodes, arcs, and regions. An arc is composed of
its extreme nodes (or points of intersection), a sequence of points between those
nodes, and the two regions that share the arc. By using the concept of arcs, the
representation of a common boundary is unique, eliminating duplication when
representing two adjacent entities. Such a model is useful to answer topological
queries that search for objects that are adjacent or disjoint. Adjacency and dis-
jointness are the most useful topological relations when the space is partitioned
into regions, that is, it is divided into disjoint regions whose geometric union

make up the whole space.

Partitions are a central notion for the spatial domain [6]. They can be also
formalized as a form of granularity composed of granules that cannot partially
overlap. The notion of granularity refers to the level of detail used in the rep-
resentation of a domain composed of identifiable and disjoint units [7), 8]. For
example, the spatial granularity of ‘county’ contains all counties that are spatial
regions that do not overlap. The definition of granularity we use in this work
generalizes spatial partitions, but we analyze the relation between these two
concepts in Section Partitions can be organized in terms of a partial order
relation by the topological relation of inclusion (inside or part-of) creating spa-
tial hierarchical structures such as the administrative subdivisions of a country,
which are useful to associate spatial references with statistical or non spatial

data in traditional databases, and also to define dimensions in data warehous-
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ing systems. Such a structure captures different levels of detail or granularity

in the representation of space.

The work in this paper proposes new data structures to implement a topolog-
ical model that represents and accesses data organized as a hierarchical structure
of regions defined by the inclusion relation. Our approach differs from classical
indexing structures that optimize spatial queries [9] [10, [I1], which are specially
designed to answer spatial range queries that return objects that are inside of

a specific region given as the input of the query.

The new structures are based on Compact Data Structures (CDSs) [12],
which have proven to successfully represent different data types in small space
while supporting rich sets of operations. CDSs have obtained remarkable results
in domains where there is a need to handle data in devices whose capacity is
surpassed by the data volume. The sheer volume of data is known to be one
of the main characteristics of the spatial domain, and hence, CDSs have been
also successfully applied in this domain [13] [I4] [15], [16]. With this approach
we expect not only to handle large volume of spatial data, but also to support

spatial algorithms on small devices such as sensors, wearables or smartphones.

In this regard, the work by [I7] showed how to implement the topological
spatial data model using a planar-graph compact structure, which is based on
Turdn’s representation [I8]. We extended their work by adding extensions to
answer the topological relations of disjointness, inclusion, and adjacency at dif-
ferent levels of detail, which are useful in the context of spatial partitions such
as administrative subdivision of the space. Note that this approach restricts
our results to the two-dimensional space. Recently, the work by [1] introduced
a compact data structure to support the same relations. Our work includes
the following contributions: i) we propose two new approaches that offer good
space-time trade-offs, ii) we show how to generalize our approaches to the case

where the maps are composed by more than one connected component, and iii)
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we perform a comprehensive experimental evaluation of the three approaches.

Our three approaches use planar graphs to represent partitions of the space,
which allows us to use well-studied properties and methods from graph the-
ory [19] 20]. The main difference between our approaches is in how they repre-
sent inclusion relationships between regions at different granularities. Both the
representation of these relationships and the planar graphs use compact data
structures, which allows performing most of the work in main memory, resorting
to secondary memory only to solve operations about the actual geometries. Our

strategies then complement classical spatial indexing methods.

The organization of the paper is as follows. Section [2] describes related work
and preliminaries including syntax notation used along the paper. Sections 3] [4]
and [f] introduce the three proposed data structures. Then, Section [6] generalizes
those data structures to domains composed by more than one connected com-
ponent. Section [7] experimentally evaluates our structures. Final conclusions

and research directions are in Section

2. Related work and preliminaries

2.1. Multi-granular hierarchies

The definition of spatial granularity [8] comes from the definition of tem-
poral granularity by [21I]. Formally, the spatial granularity is a function that
maps non-overlapping portions, referred as granules of the spatial domain, into
indexes or identifiers. [22] defined a spatio-temporal granule as a tuple (s,t),
meaning that at time index ¢, the spatial index s is valid. [23] assigns to each
spatio-temporal granule a sequence of spatial granules, one per temporal gran-

ule.

There exist several relations between granularities. Among them, a granular-

ity P is said to be a partition of a granularity @, if for each granule g € @, there
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exists a set S of granules in P whose geometric union makes up ¢ [21}, [8] 22] 24].
This definition of spatial partition is a natural realization of a granularity, but
the notion of granularity is more general because the set of granules that form

the granularity may not cover the whole spatial domain.

Partitions have been an important notion to model the spatial domain [6]
25, 26]. Concepts of maps, resolution, spatial objects and topological reasoning
build on partitions and their properties. [27] proposed a formalization based
on the theory of rough sets [28] to deal with resolution and multi-resolutions in
geographic spaces and vague spatial objects. In this work, a resolution is a finite
partition of a set .S of locations on a plane. Partitions can be organized in terms
of a partial order relation; in this sense, the notion of resolution is equivalent to

the notion of granularity.

[29] propose a taxonomy of granular partitions. This taxonomy classifies
partitions in terms of: i) degree of structural fit, which refers to the concept of
mereological structure; ii) degree of completeness and exhaustiveness of projec-
tion, where projection refers to the notion that objects are located at particular
cells or granules of a partition; iii) degree of redundancy, in which cells may

belong to different partitions.

As seen, multi-granular topological hierarchies, or restricted versions thereof
such as spatial partitions, have been studied in the past from different commu-

nities, which emphasizes the importance of this model and its implementation.

2.2. Multi-granular spatial hierarchy

Given a geographic connected region RE| the formalization of a multi-granular

spatial hierarchy is as follows. A partition L = {ry,...r,} is a granularity com-

n Section @ we extend our proposal for regions that are not necessarily connected (e.g.,

islands).
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posed of regions r; (called granules), such that (i) Vr;,r; € Ly, Nr; =0 (ie.,
regions are disjoint or touch each other, but they do not internally intersect)
and (ii) R = |J] 7; (i.e., the geometric union of regions makes the whole R). We
will say that regions in L are neighbors if they share common boundaries. A
partition can be seen as a planar graph, where nodes represent regions and an
edge between two nodes indicates that the corresponding regions are neighbors.

Partitions can be organized into hierarchical structures by inclusion rela-
tions. Let Ly = {r11,...71n,} and Ly = {r21,...72n,} be two partitions,
with n; < ng being the number of regions per partition. Let contains(r, ') be a
function that returns true if region r contains region r’. Then, L; is a coarser
level of granularity than Lo, denoted by Ly < Lo, if (i) Vre; € Lo, 3r1; € Ly
such that contains(ry j,72,;) holds (i.e., every region in L, is within a region in
Lqi)and (ii) Vri1; € Ly, 3S C Loy, = Urwes ro,; (i.e., each 71 ; is made of the
union of regions in Ly). We can generalize to several partitions (granularities)
L1 < Ly < -+ < Ly, with L; being the coarsest or lowest granularity and Ly
the finest or highest level of granularity. Figure [I] shows a spatial hierarchy
composed of three granularity levels: Ly is the region level (Figure [I|c)), Lo
is the state level (Figure [I{b)), and Lj is the county level (Figure [I[a)), so
Ly < Ly < Ls.

Based on this definition of a partition and of the multi-granular hierarchy,

the following properties hold.

o Let L, < L;, with ¢ < j, then for each r’ € L;, there is only one r € L;
such that contains(r,r’). Conversely, for each r € L;, there must be at

least one 7’ € L; such that contains(r, ).

e Because a partition L; can be represented as a planar graph, with n; = |L;|
nodes and m; edges (the number of pairs of neighboring regions in L;), it

holds n; < m; < 3n; — 6.
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Figure 1: Example of a geographic division with aggregation levels Region, State, and County.

o Let rj,r;- € L; be regions of a partition, if there is an L; such that
L; < Lj, then there exist r;,r; € L;, not necessarily different, such that
contains(r;, ;) and contains(r;, ;). Further, if r; and 7 are neighbors
(i.e., they share a boundary) and r; # 7}, then r; and r; must be neigh-

,,

bors. Further, when r; and r;

are neighbors, contains(r;, ;) holds and

contains(r;, T;) does not hold, we say that r; and ré- are neighbors as well.

2.3. Topological queries

As in the work of [I7], we restrict our scope to pure topological queries and to
the static version of the model. We then leave out the queries that use geometric
information such as, given the coordinates of a point, find the granule it belongs

to. A simple information-theoretic argument shows that basic queries that refer
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Operation Complexity

Do regions r1 and ro share a boundary? any in w(1)

Is boundary e on the border of region r1? o(1)

Regions separated by boundary edge e o(1)
Boundary edges of region rq O(1) per boundary edge
Regions adjacent to region 71 O(1) per region
Number of regions adjacent to region r1 any in w(1)

Table 1: Topological operations considered in [I7,[30]. Let r1 and r2 be two regions and e be

a boundary edge.

to geometry cannot be answered without using a linear number of integers per
granule. Several well-known spatial data structures fitting in this space, like R-
trees [9] and Quadtrees [10], can efficiently answer geometry queries like spatial
range, spatial join, and nearest neighbor queries. These indexes were especially
designed to answer spatial point or range queries, but they are inefficient to solve
pure topological queries such as overlapping, touching, and inclusion. If we re-
strict the queries to the topological domain, instead, it is possible to represent
the data within a linear number of bits, and furthermore, efficiently solve many
queries; see Table [ Those queries, however, do not consider multi-granular

models, just a single space partition.

In this work we explore the space and time complexities that can be achieved
on pure topological queries over multi-granular models. The set of queries we
consider is based on the international standard ISO/IEC 13249-3:2016 [31].
Most of those operations are also implemented in flagship spatial databases,
such as PostgreSQLEl In addition to those already considered in Table
we handle operations that relate regions (i.e., granules) of different level of
granularity. In particular, contains(ry,r2) (i.e., do region 71 contains region

ro?), touches(rq,73) (i.e., do regions r; and ry share a common boundary?),

%http://postgis.net/docs/Topology.html
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Partition into top-level regions
h Number of levels in the hierarchy, 1 to h
L;  Set of regions of level i, Ly corresponds to R
n;  Number of regions at level i, n; = |L;|
m;  Number of pairs of neighboring regions of level i, m; = ©(n;)
dr  Number of neighbors of region r at its same level
n  Total regions of all levels, n = Zé‘zl n;
m  Total neighboring pairs at all levels, m = Z?:1 m; = 0O(n)

Si;  Representation of the planar embedding of level ¢

Table 2: Notations.

and contained(L;,r) (i.e., list all regions at granularity level L, that are con-
tained in region r). As example, consider again Figure Then, relation

contains(state H, county n) is true, whereas relation contains(state C, county o)

is false. Further, contained(Ls, region «) returns the counties {m,n,r,q, u,t, s,p,1}.

Using the notation summarized in Table [2| Table |3| lists the operations we
consider and the complexities we obtain. We analyze the space in general and
also under the realistic exponential growing assumption, that there is a constant
¢ > 1 such that n; > c¢-n;_1 for all i. This assumption implies that the
number of regions grows exponentially with the level and thus h = O(lgny,).
The assumption holds, for example, if every region is split into at least two

regions in the next level (thus ¢ = 2).

2.4. Compact data structures

With the main purpose of manipulating huge amounts of data, compact data
structures [I2] aim to represent data in space close to its information-theoretic
lower bound. Unlike compression techniques, where decompression is needed to
support operations, compact data structures allow us to implement operations
directly over the compact representation. Through this work we use compact

data structures for sequences and ordinal trees.
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Operation Complexities

Approach 1 Approach 2 Approach 3
contains(r1,72) O(1) O(lgnlgh) O(1)
touches(ri,ra) O(min(dr,,dr,)) O(min(dr,,dr,)Ignlgh) O(min(dr,,dry))
contained(L;,r1) 0(1) O(lgnlgh) 0o(1)
Space in bits O(nlgh) + o(hny,) O(nlgh) O(nlgn)
Space w/exponential growing O(n) O(n) O(nlgn)

Table 3: Multi-granular operations considered in this article, where 71 and r2 are regions at
levels i < j, respectively, and dr; and dr, are their respective number of neighboring regions.
The complexity of the contained query is per returned element. We present three solutions

(one per column) with different complexities.

Bitmaps. A bitmap B[l..n] is an array of bits supporting three operations:
access(B, i) (the bit in B at position i), ranky(B, i) (the number of occurrences
of bit b € {0,1} in B up to position 7), and selecty (B, 7) (the position of the i-th
appearance of bit b in B). One can support all those operations in O(1) time
using n + o(n) bits [32]. When B has m < n 1s, it can be represented within
mlg 2 4 O(m + n/lg°n) bits, for any constant c, still solving the operations

O(c) time [33].

Compact sequences. Compact sequences are well-known compact data struc-
tures with a myriad of applications, ranging from text indexing to planar maps.
Given a sequence A[l..n], where A[i] € ¥, interesting operations are the same
access(A, 1), rank,(A,7), and select,(A4,7), which extend those of bitmaps for
any ¢ € Y. The sequence can be represented in nHy + o(nlgolglgn/lgn)
bits, supporting the operations in time O(lgo/lglgn) [34]. Here, Hy is the
zero-order empirical entropy of A, Hy = > .y % lg n%, where a appears n,
times in A. Note the time is constant if ¢ € O(polylog n). Using the basic

operations, more complex ones can be implemented, such as rightmost,(A,i) =

select, (A4, rank, (A, 7)), the position of the rightmost symbol a up to position

10
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i, and leftmost, (A, i) = select, (A4, rank,(A,7) + 1), the position of the leftmost

symbol a after position i.

Generalizations of rank and select, rank<,(A,¢) (the number of occurrences
of symbols less than or equal to a in A up to position ), select<,(A,7) (the
position of the i-th symbol less than or equal to a in A), and leftmost<, (A, )
(the position of the leftmost symbol less than or equal to a after position i),
can be supported in time O(lgo), O(lgnlgo) and O(lgo), respectively, using

wavelet trees [35].

Compact trees. The topology of a tree with n nodes can be represented by a
balanced parenthesis sequence of length 2n. The sequence is obtained by per-
forming a DFS traversal of the tree, writing an open parenthesis every time
an edge is visited for the first time, and a close parenthesis when an edge is
visited for the second time. Given a balanced parentheses sequence B[1..2n],
the operation find_close(B, i) returns the position of the matching closing paren-
thesis of the opening parenthesis BJi], and find_open(B, i) returns the position
of the matching opening parenthesis of B[i]. Operation enclose(B,i) returns
the position of the opening parenthesis that, together with its matching closing
parenthesis, most tightly contains i. Those operations are supported in constant

time using 2n + o(n) bits [36].

The most practical compact representation for ordinal trees is the range
min-max tree (RMMT) [36]. The RMMT is a complete binary tree that stores
some statistics about the number of opening and closing parentheses of the
balanced parenthesis sequence B. The compact tree is built upon a basic op-
eration called excess, defined as excess(i) = excess(i — 1) + 1 if B[i] = ‘(’, or
excess(i) = excess(i — 1) — 1 if B[i] = ‘). The sequence B is virtually di-
vided into blocks of length I, where each block is represented by a leaf of the

RMMT. For the leaf v associated with a block B(s..e], the whole excess, defined as

11
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v.e = excess(e) —excess(s—1), and the minimum excess value of the leaf, defined
as v.Mmin = min;e[, j{excess(i) —excess(s — 1)}, are stored. For an internal node
u with left child u; and right child w,., the whole and minimum excess values are
also stored, defined as u.e = u;.e+u,.e and u.min = min{u;.min, u;.e+u,.min},
respectively. Once those values are stored in the RMMT, the operations find_open,
find_close and enclose are reduced to the primitive operations fwd_search(B, i, d)
(the leftmost position j > 4 in B, such that excess(i) + d = excess(j), with
d < 0) and bwd_search(B,i,d) (the rigthmost position j < 7 in B, such that
excess(i) + d = excess(j), with d < 0). Both primitive operations scan sequen-
tially a constant number of blocks of B and move up and down in the RMMT
looking for the answer, spending O(l + lg 7) time. We assume [ = O(Ign) in
this paper, so the time is O(lgn) and the space is O(n) bits. These complexities

can be reduced to O(1) and o(n) by means of more complex data structures [36].

Within the same time and space complexities, the RMMT can also support
rank((B, 1) and select((B, i) by storing a new field n’ on each node of the RMMT.
For each leaf v of the RMMT, v.n’ stores the number of opening parentheses in
the block Bls..e| associated with v, and for each internal node u with left and

right children u; and u,, we store u.n’ = u;.n' + u,.n’.

All previous operations can be applied to a sequence S[1..n] composed by
two intertwined balanced parenthesis sequences, B and B*. For convenience,
B is represented with parentheses, B* with brackets (for the remainder of the
paper, parentheses refers to round brackets (), while brackets refers to square
brackets []), and the intertwine is represented with a bitmap A[l..n], such that
Ali] = 1iff S[i] = ¢ or S[i] =¢)’, and A[i] = 0, otherwise. Thus, the operation
rank(y(S,4) (the number of opening or closing parentheses in S up to position
i) is supported in constant time by rank; (A, ). Similarly, select()(S,4) (the po-
sition of the i-th opening or closing parenthesis in S) is supported in constant
time by select; (4, %). In the same way, for S[i| = ¢)’, find_open(S, ) is mapped to

select; (A, find_open(B, rank;(A,))). Operations find_close and enclose are sup-

12
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Figure 2: Planar graph representations of the aggregation levels of Figure Spanning trees

are represented with thick edges.

ported similarly.

2.5. Compact representation of topology data

We focus on the planar graph embedding representation of a geographic area
divided into regions whose interiors do not overlap. The embedding is composed
by nodes representing the geographic regions and edges connecting two regions
that share a geographic boundary. Figure [2| shows the induced planar embed-
ding of the geographic area of Figure

Although there exist various compact representations of planar graph em-
beddings [37) [12], the representation of [I8] is one of the simplest. It consists
of a sequence S of length 2m, where m is the number of edges of the planar

embedding. For its construction, Turdn’s representation performs a depth-first

13
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search (DFS) traversal over an arbitrary spanning of the planar embedding, ap-
pending to S a ‘(’ or a ‘)’ depending on whether it is the first or second time
that an edge of the spanning tree is visited. For edges that do not belong to the
spanning tree, a ‘[’ or a ‘]’ is appended following the same conditions. By using
two bits per symbol of S, the representation uses 4m bits of space. For exam-

ple, the embedding of Figure 2(a)|can be represented by sequence S3 in Figure[3]

Although Turan’s representation does not provide primitives to navigate the
graph, [38] augmented it using compact representations of trees and bitmaps
that add up o(m) extra bits, and enable navigation operations. The extended
representation lists the incident edges of a vertex and the edges bounding a face
both in O(1) time per edge, computes the vertex degree in any time in w(1),
and checks whether two vertices are neighbors in any time in w(lgm). Later,
[17, B0] improved the time bounds and extended the representation to support
the topological model (without multi-granularity) using 4m + o(m) bits and
offering relevant time guarantees; recall Table [I| Hereinafter, we refer to their

work as PEMB.

In this work, we generalize PEMB in order to support multi-granular hierar-
chies of spatial objects. A map with several levels of granularity can be seen as a
set of planar embeddings, one per level, plus the information about containment
relationships among levels. The embedding of level ¢ has n; nodes and m; edges.
A straightforward representation consists of using PEMB to represent each pla-
nar embedding of the collection (using 4m; + o(m;) bits per level i), plus h — 1
integer vectors to store the region of the preceding level that contains each re-
gion. This arrangement, for example, supports the query contains in O(h) time.
Its main drawback is the space consumption of the vectors, [n;lgn;_1] bits at
each level ¢ > 1. In what follows, we introduce three approaches to represent a

multi-granular map in less space while efficiently supporting the queries.

14
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3. Approach 1: Mapping via bitmaps

This section summarizes the results of [I], which we complement with a
new proof of correctness of the construction method, and a tighter time/space
complexity analysis for the construction algorithm and for the contained oper-
ation (see Table . Instead of building PEMB independently for each planar
embedding of the collection, they proposed an approach to synchronize the con-
struction of the compact representation of the embeddings, which allows to im-
plicitly encode the mapping among consecutive granularity levels in less space.
The synchronization is made by the spanning trees of the different aggregation
levels. In Section we present an algorithm to compute a spanning tree at
level h, from which we can induce valid spanning trees for the other aggregation

levels as follows (we prove later than this construction is correct).

Definition 1. Given a spanning tree T of the planar embedding of Ly, we in-
duce spanning trees for the planar embeddings of Ly, Lo,...,Ly_1 using the

following rules:

o Let (u,v) be an edge of T, and let u' and v* be the regions containing
regions u and v at level L;, respectively. Then, the edge (u®,v®) belongs to

the spanning tree of level L;.
o Multiple edges and self-loops are deleted.

Figure [2| shows an example of spanning trees following Definition [1] From

the spanning tree of Figure we can induce the spanning trees of Figures
and

3.1. Structure

Each granularity level L; is stored in two components (see Figure [3): 1)
The planar graph embedding is stored using PEMB, generating a sequence S; of
parentheses and brackets, where parentheses represent the spanning tree of the

planar embedding and brackets represent the edges not in the spanning tree. In

15
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Figure 3: Compact representation of the geographic division of Figure

Section [3:2] we show how to construct the sequence S;. The space consumption
for the h granularity levels is 4 Z?:l m; +O(Z?:1 m;) = 4m+o(m) bits; 2) The
mapping among granularity levels is stored as a bitmap B; of length 2n; with
support for rank and select operations. Following Definition [T} the edges of the
spanning tree of L;, induced from the spanning tree of Lj, are marked in the
bitmap B;. Precisely, let e be an edge of the spanning tree of L;, then we set
B;[p] = 1 and B;[q] = 1, where p and ¢ are the positions in S}, of the opening
and closing parentheses of the edge in Lj that induced e. Notice that for level h
we do not need to store a bitmap Bj,. Since B; has only 2n; 1s, its compressed

representation requires 2n; lg 7 + O(n;) + o(ny,) bits; recall Section

Overall, the space of this representation is 4m + o(m) + 23, n;lg 7& +
O(n)+o(hng) =237, n;1g 22+ O(n) + o(hny) bits. Since lg > < lg ;* and, by

Jensen’s inequality, D, n;lg = < nlgh, the total space is in O(nlgh) + o(hny,)
bits. Further, the space is O(n) under the exponential growing assumption:

since n; < np /e Y g lg 2 < S ny(h—i) /i lge = O(ny). In turn, the

uz

o(hnp) term can be O(hny/lgng) = O(ny) [33).

16
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3.2. Construction

The compact representation is built by performing a DFS traversal on the
planar graph of the highest granularity level, h. During the traversal, when we
mark a vertex as visited, we also mark as visited the h — 1 regions that contain
it in coarser granularity levels. Thus, an edge (u,v) is traversed when the target
vertex v has not been visited before and one of the following conditions holds:
a) u and v are contained by the same region at level h — 1; b) at least one of

the regions containing vertex v has not been visited before.

In the traversal, each edge of the planar embedding of Ly, is processed twiceﬂ
and only the edges of the spanning tree are traversed. Let us focus on the gen-
eration of S; and B;, where, by default, all values of B; are 0s. Assume that we
are processing the j-th edge e = (r1,r3) of Ly, where regions r} # r} contain

regions r; and 7o at level i, respectively. The following conditions are checked:

1. If it is the first time that e is processed and the edge (r],r5) belongs to
the spanning tree of level ¢, then B;[j] = 1 and a symbol ‘(" is appended
to Si-

2. If it is the first time that e is processed and the edge (r],r5) does not

belong to the spanning tree of level 4, then a symbol ‘[ is appended to S;.

3. If it is the second time that e is processed and the edge (1], r5) belongs to
the spanning tree of level 4, then B;[j] = 1 and a symbol ‘)" is appended
to Sz

4. Finally, if it is the second time that e is processed and the edge (r,75)

3We assume that the input graph is undirected, and hence each edge is processed twice.
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does not belong to the spanning tree of level i, then a symbol ']' is ap-

pended to S;.

Observe that B;[j] = 1 indicates that we are entering to or exiting from a
region at granularity level i, depending on whether it is the first or second time
that such edge has been processed. In particular, exiting from a region means

that all its regions contained at finer granularity levels have been processed.

By using an auxiliary bitmap to mark the processed edges at each i < h,
all sequences S; and bitmaps B; can be computed at the same time during the
traversal, obtaining a final time complexity of O(np + hmyp) € O(hn), domi-
nated by the at most h comparisons per edge. We now prove the correctness of

the construction algorithm.

Lemma 1. The algorithm described above computes a valid spanning tree.

Proor. We show by contradiction that there are no cycles and that all regions
of Lj, belong to the produced subgraph. On the one hand, a cycle means that
during the construction an edge (u,v), where both u and v and/or their con-
taining regions are marked as visited, was added to the set. However, that
contradicts the rule that only edges leading to a non-visited target regions are

added at any level i. Therefore, the produced subgraph is acyclic.

Note that, when we leave a region by an edge to another, we do not reenter
the region, to avoid cycles. We resume the traversal of the region only once we
return from the outgoing edge. This makes the traversal of a region reach all
of its nodes, exactly as if the outgoing edges were ignored. This is the key to
show that all the regions are reached by the tree, which makes it a spanning
tree. Assume the opposite, and let r be a region that is not reached and that

touches a reached region r’. Such a region must exist because there is a path
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of regions between every non-reached region and the region where we start the
traversal, which is reached by definition. When the algorithm traversed r’, it
reached all of its nodes, in particular the one with an edge towards r, which
exists because r and 7’ are neighbors. At that point, r was not reached and the

traversal should have entered it; a contradiction.

3.3. Operations

In order to support the operations of Table[3] we provide the following primi-
tive operations to navigate the compact representation, based on the operations

described in Section Bl

Basic primitives. Hereinafter, we consider that each region, represented by a
vertex in the planar embedding of L;, is identified by its pre-order rank in the

traversal of the spanning tree of level i.

e go_up_Ly(z,4): This operation allows us to map the z-th region of granu-
larity level ¢ to a region at level h. To do that, we must find the position
of the z-th region in S; with z = select((S;,z), to then map such posi-
tion into the bitmap B;, with y = select; (B, rank(y(S;, 2)). Finally, the
position of the output region corresponds to the position of the y-th open
parenthesis in Sy, which can be obtained with select(y(Sp,y). The time
complexity is O(1), since it depends on constant time operations rank and

select.

e go_down_L(z,d): This operation is complementary to go_up_L,, mapping
the z-th region of Lj into a region at level h —d. We start as for go_up_Ly,
finding the position of the z-th region in Sj with z = select((Sp,z), to
then map it to the bitmap Bj_4 with p = rank(y(Sp,z). The final an-
swer corresponds to the position in Sp_4 of the nearest ancestor y of =
in the spanning tree of level L;_4 that is marked in By_4. To do that,

we compute g = select()(Sh—_a,ranki(By_a,p)). If Sp_qlq] = ‘(, then ¢
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is the answer, otherwise it is ¢’ = enclose(S},—_q, find_open(Sp_g4,q)). This

operation takes constant time.

region_id(.S;, «): This operation returns the id of the region represented by
the open parenthesis S;[x] = ‘(’. It can be solved in constant time with

rank((Ss, x).

go_level(z,4,7): This operation is a generalization of operations go_up_Ly,
and go_down_L,, mapping the z-th region of L; into a region at level j.
It can be solved in O(1) time by mapping the z-th region of L; into
a region of Ly, to then map such region of L; into a region of L;, as
go_down_Ly(go_up_Ln(z,7),h — j). Notice that when j < ¢, we are going

down in the hierarchy, whereas when j > i we are going up.

Main operations.. We now focus on the operations of Table[3] Let ry € L; and

ro € L; be two regions such that i < j:

e contains(ry,72): Does region 1 contain region ro? First, if 1 and ro
belong to the same level (i.e., i = j), we just return whether r; =
ro. Otherwise, we compute the region r, € L; that contains rq, 15, =
region_id(.S;, go_level(rs, 7,4)), and return whether ry = r}. The time com-

plexity of this query is O(1).

e touches(ry,r9): Does region r1 share a boundary with region ro ¢ We dis-
tinguish two cases: 1) If ro is not contained in r; (contains(ry, r9) = false),
we must find a neighbor of o that is contained in region r1; and 2) if ro
is contained in 1 (contains(rq, ro)=true), then we must find a neighbor of
ro that is not contained in ry. For each neighbor w of ry, we compute its
containing region at level ¢ as z = region_id(S;, go_level(w, j,4)). For the
first case, if we cannot find a neighbor of ro such that ;1 = z, then we

return false; otherwise we return true. Similarly, for the second case, if we
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cannot find a neighbor of o such that r; # z, then we return false; oth-
erwise we return true. The time complexity is O(d,,), depending directly

on the number of neighbors of rs.

contained(L;,r1): List all regions at level j contained in region r1. To sup-
port this operation, we report all regions in the range S;[a..b] that are con-
tained by the region r1, where a = go_level(r1,1, j) and b = find_close(S;, a).
To report the regions, we traverse the range left-to-right reporting every
region region_id(S;,a’), where initially ' = a and then it is redefined
as the position of the next open parenthesis, a’ = leftmost((S;,a’), until
a’ > b. It is possible, however, that each such position a’ is marked as
the beginning of a new region, in which case we have to skip the subtree
with a’ = leftmost (S}, find_close(S}, a’)). An opening parenthesis at posi-
tion p is marked if B;[c] = 1, where ¢ = select; (B;, rank()(S;,p)). Thus,
this operation can be answered in O(n;) time. Despite its high worst-case
complexity, we implement this solution with competitive practical results,
see Section [} We can, however, improve the theoretical result so as to
spend O(1) time per output region, by limiting the number of skipped
subtrees between consecutive output regions. This can be done by adding
dummy vertices that work as the root of consecutive subtrees that must
be skipped. By marking the dummy vertices in the bitmap B, we can skip
them during the left-to-right traversal. Thus, skipping a dummy vertex is
equivalent to skip its descendant subtrees. The dummy vertices skipped
then amortize to the number of the vertices that belong to the output, be-
cause there is at least one useful node between every two dummy nodes.
The extra space is O(n;) bits in the level j, since we can add up to one
dummy vertex per edge of the planar embedding. Additionally, to distin-

guish the dummy vertices, we can mark them in a bitmap of O(n;) bits.

Theorem [2] summarizes the results of this first approach:
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Theorem 2. A geographic connected region organized as a multi-granular hi-
erarchy with n regions in total and h granularity levels can be represented in
O(nlgh)+o(hny,) bits, where ny, is the number of regions at granularity level Ly,.
The same representation supports operations contains(rq,r2) in constant time,
touches(ry,r2) in O(min(dy,,dr,)) time, and contained(L;,r) in constant time
per returned element, where 1 and ro represent a region at granularity levels L;
and L;, respectively, and d,, and d,, are their respective number of neighboring

regions. Under the exponential growing assumption, the space consumption is

O(n) bits.

Sections [4] and [] introduce two new approaches that provide trade-offs for
the work of [I]. In particular, the approach of Section [4] improves the space
consumption, both in practice (as we show in Section[7)) and in theory by a sub-
linear term, at the cost of increasing the running time by a factor of O(Ignlgh),
meanwhile the approach of Section [5|reduces in practice the running time of the

operations at the cost of increasing space consumption.
4. Approach 2: Mapping sequence

The data structures of the first approach have two sources of redundancy:

o If B;[k] = 1, then Bj[k] = 1 for all j > i, that is, the mapping bitmaps

are contained in the next ones.

e Following Definition from S; we can derive the sequences S;, i <
h. In particular, the k-th parenthesis of sequence S; corresponds to

Shselect(y(Sh, select1(B;, k))].

Our second approach removes both sources of redundancy, in exchange for

higher time complexities.
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Figure 4: Sequences sV sl

3’ S3, B() and By for the sequence S3 of Figure

The first source of redundancy implies that the mapping bitmaps B; can be
replaced by a single sequence that tells the lowest level j a position of .S;, belongs
to. In turn, the bitmap B; defines the sequence S;, so in principle storing the
sequence of lowest levels plus Sp, should be sufficient. We need, however, to
navigate the sequence of parentheses and brackets of S;. Although we do not

represent S; explicitly, we will represent the needed RMMTs.

4.1. Structure

Let S,S) be the sequence composed of only the parentheses of S;,. We define
the sequence B()[1..2n;,], which stores the lowest level each parenthesis of S,(l)
belongs to. Formally, B(y[k] = j iff the k-th parenthesis of S}(L) is present at
the sequence S; but not at S;_;. Thus, the i-th parenthesis of S,(L) is present
at S; iff B(y[i] < j, and the position in S,S) of the i-th parenthesis of S; can
be computed as select<;(By,i). Analogously, we define the sequences SE and
Bp[1..2(mp —ny + 2)], associated with the dual graph of the planar embedding
of level h. Figure |4| shows the sequences S:g), Sg, By, and Bjj corresponding to
the sequence S3 of Figure

The representation is then composed by:

e The planar graph embedding of L, represented with PEMB. It uses

4dmy, 4+ o(my,) bits.

e The RMMTs of the balanced parenthesis sequences Sp,Sé), .. .,S;L), and
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Figure 5: RMMTs of balanced parenthesis sequences Sg), Sé) and Sé). A node of the RMMT

covering the block Si() [i..7] stores: the last excess value of the block (e;), the minimum excess

value of block (m;), and the number of opening parentheses in the block(n}). The values and

parentheses in gray are not explicitly stored.

SQ, 597 cee SE. Summing up the 2h RMMTs, the space usage is O(m) bits.
See Figure [5| for an example of the RMMTs of Figure

560 e The sequences B(y and B with support for rank< and select< operations,

using 2(my, + 2)[lg k] + o(mplgh) = 2mp lg h + o(nlg h) bits.

Since mp = O(m) and m = O(n), the total space is O(nlgh) bits. In
fact, the sequences B() and By can be represented to within their zero-order
s entropy. The sequence By has n; —n;—1 — ... —n1 < n; occurrences of the

symbol i, and therefore its entropy Ho(B()) is at most Zze[l ks ~lg . Sim-

ilarly, the entropy Ho(By) of By is at most Zie[l_h] g 2. Under the ex-

h=i and, since m; = O(n;), there

ponential growing assumption, n; < np/c
exists a constant d such that m; < m;,/dh’i. As shown in the end of Sec-
570 tion both entropies are O(1). Both B(y and By can then be stored in space
O(m(Ho(Bgy)) + Ho(By)) + o(nxlgh) + O(hlgn) = O(n) + o(nlgh) bits [39],

and the space o(nlgh) can be O(nlgh/lgn) = O(n) [33]. Thus, the total space
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is O(n) bits.

We can traverse the implicit sequences Sg), Y é)—l by performing select<;
and rank<; operations over the sequence B(). The i-th parenthesis of S; is ob-
tained in O(lgny, 1g h) time as select<;(B(y, 1), and the number of parentheses of
S; in the range S,(L)[l..i] is obtained in O(Igh) time as rank<;(B(), ). Similarly,
operations find,open(S](-),z'), find,close(SJO,i) and encIose(Sjo,i) are supported
in O(lgnplgh + 1gn,) = O(lgnylgh) time, where the term lgny,lgh corre-
sponds to the traversal of a block in the RMMT of SJ(-), performing an operation
Ieftmostgj(S,(l),i) for each parenthesis of the block, and the term lgn; comes

from the up/down traversal of the RMMT.

4.2. Operations

As before, we introduce the implementation of basic primitives upon which
the main operations are constructed. The time complexities of all the operations

become O(lgnylgh).

e go_up_Ly(z,i): To support this operation we use the RMMT of the se-
quence Si() to find the z-th open parenthesis, z = select((Si(),m). Then,
we map the position of the parenthesis to the sequence B() by computing
y = select<;(B(), z). Finally, the position of the sought region in Sj, is
select(y(Sh,y)-

e go_down_Ly(z,d) : The answer is the parenthesis position ¢ in S; so
that (q,find,close(S,(l),q)) most tightly encloses the z-th parenthesis of
Sp and B(y[q] < h —d. We find the position of the opening parenthe-
sis representing the x-th region of L; with p = select((Sf(L),x). Then,
q = rank<p_q(B(y, p) is the number of parentheses in S’,(l) [1..p] that belong
to S}(z)fw If the g-th parenthesis is opening (i.e., S,(L) [select<;,—a(By),q)] =
("), the answer is ¢. Otherwise, the answer is its closest ancestor, at po-

sition ¢ = enclose(S,(l)_d, find,open(S}(L)_d, q))-
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e region_id(S;, z): We map the position of x to S}(L) with p = select<;(B, ),
and then count the number of opening parentheses up to position p that

belong to S; using its RMMT, rank((SlQ,p).

The operation go_level is implemented just as in Section [3| go_level(z,,j) =

go_down_Ly(go-up_Ln(z, ), h — j), with time complexity O(lgnylgh).

The implementation of the main operations contains, touches, and contained
follows the same steps of their counterparts in Section [3] reaching complexities
O(lgnplgh), O(dr, lgnylgh), and O(lgnylgh) per element, respectively. In
particular, for the operation touches, the traversal of the neighbors of a region
is performed using the RMMT primitives fwd_search and bwd_search.

The following theorem summarizes the results of this approach:

Theorem 3. A geographic connected region organized as a multi-granular hi-
erarchy with n regions in total and h granularity levels can be represented in

O(nlgh) bits. The same representation supports operations contains(ry,rs) in

O(Ignlgh) time, touches(r1,72) in O(min(d,,, dy,)lgnlgh) time, and contained(L;, 1)

in O(lgnlgh) time per returned element, where 11 and ro represent a region at
granularity levels L; and Lj, respectively, and dy,, and d,, are their respective
number of neighboring regions. Under the exponential growing assumption, the

space consumption is O(n) bits.

Note that our asymptotic space complexity does not change if we represent
the sequences S; in explicit form. In this case we can operate them directly and,
although the complexities do not change, we expect them to be much faster in
practice (the structure, in turn, becomes larger in practice). This approach is
much more direct, as we only have to change the operations on bitmaps B; by

operations on the sequences B() and Bj.
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(a) Hierarchy tree H representing the topological hierarchy of Figure The root of the tree is

a dummy node.
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(b) Balanced parenthesis sequence TH  sequence M and offsets O of the tree H of Figure

Figure 6: Components to store the topological hierarchy in the third representation.

e 5. Approach 3: Hierarchy tree

Our third approach aims to offer better running times in practice, though
using more space, compared to the representation of Section [3] As in our first
representation, the planar embeddings representing the topology of each ag-
gregation level are stored independently using PEMB. However, the topological

e3s hierarchy is stored in a different manner. Instead of using the A bitmaps B;,
we represent a tree H associated with the relation contains, called the hierarchy
tree. For every pair of regions r; and rg such that r; € L; and ro € L;41, and
contains(ry, r2) is true, region 7o is added to the tree H as a child of region
r1. Additionally, a dummy root is added connecting the nodes that represent

so regions of L. Thus, all nodes at depth ¢ in H represent regions at aggregation

level i. Figure shows the tree H for the topological hierarchy of Figure
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Once the tree H is computed, we store its topology as a balanced parenthe-
sis sequence TH. During the traversal, we additionally store in a permutation
M the pre-order rank in 77 of the opening parenthesis representing each node
of H. The values stored in M are laid level by level (1 to h), in the order the
PEMB representation of each L; represents the corresponding nodes. Notice that
such an indexing allows us to map the regions between the topological hierar-
chy and the planar embeddings, and vice-versa. Further, the position of the
leftmost value of each level 7 in M is stored in an array of offsets O[1..h]. For
instance, if the region r € L; is the j-th visited region of that level during DFS
traversal of L;, and is also the k-th region visited in the traversal of T then,

MIO[i] + j — 1] = k. Figure shows an example of T#, M and O.

This representation uses 4m + o(m) bits for the h planar embeddings. The
balanced parenthesis sequence T, supporting navigational operations, uses
2n 4 o(n) bits. The permutation M uses (1 + €)nlgn + O(n) bits, with a
representation that also computes M ~!(j), that is, where in M is the value j,

in time O(1/¢€) [40]. The total space is then O(nlgn) bits.

5.1. Operations

We now describe how the operations are computed with this representation.

e contains(ry,72): We map both regions to TH and check if 1, € L; is an
ancestor of ro € L;. Let r} = M[O[i] + 1 — 1] and ry = M[O[j] + 2 — 1]
be the mappings in TH of vy and 9. Then the answer is true iff ) <rh <

find_close(r}). The operation contains then takes O(1) time.

e touches(ry,9): This is built on top of operation contains as in Section

The time complexity is then O(d,,).

e contained(L;, r1): The regions to report correspond to all the descendants

of 11 € L; at depth j > i in TH. The node representing 1 in TH is r| =
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M[Oli] +r1 —1]. Let p = select (T, r}) and ¢ = find_close(T*, p) be the
positions of the opening and closing parentheses of 7| in T#. We then re-
port the regions of all the opening parentheses at depth j—i from p up to q.
To do that, we go down in O(1) time from 7} up to its leftmost descendant
u at depth j —1i, reporting the position p’ = fwd_search(T# p, j—i). Then,
we keep reporting the region to the right of p’ with its same depth, up
to p’ > ¢, by computing p’ = level_next(p’) = fwd_search(T*, close(p'), 1)
[12, p. 270]. For every position p’ to report, we return its region id with
M~ (rank((T*#,p’)) — Olj]. The time complexity of operation contained is

then O(1/€) (i.e., any desired constant) per element reported.

The following theorem summarizes the results of this section:

Theorem 4. A geographic connected region organized as a multi-granular hi-
erarchy with n regions in total and h granularity levels can be represented in
O(nlgh) bits. The same representation supports operations contains(ry,r2) in
O(1) time, touches(ri,r2) in O(min(d,,,d,,) time, and contained(L;,r1) in
O(1) time per returned element, where r1 and ro represent a region at granular-
ity levels L; and Lj, respectively, and d,, and d,, are their respective number of

neighboring regions.

6. Storing multiple connected components

The approaches proposed above support only hierarchies and maps that form
a single connected component. However, in some scenarios, maps can be com-
posed by more than one connected component. An example of this would be
partitions that include islands. In this section, we present a strategy to support
multiple connected components. The strategy is independent of the approaches

proposed above and can be implemented as an extension of any of them.

Given a region r at level L;, composed by ¢ > 1 connected components, we

treat the connected components as independent regions r1, ra, ..., 7., increasing
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After partitioning region A and C

Before partitioning region Aand C

MD=0011
C=[A.D,E,F.C.G]

Figure 7: Example partitioning a region

the total number of regions at level L;. To store the information that regions
r1, T2, ..., T actually conform only one region r, we store two bitmaps, D;
and M D;, and an integer array C;. The entry D;[r] = 1 indicates that region
r is conformed by multiple connected components; otherwise, D;[r] = 0. The
bitmap M D; stores in unary the number of connected components of region r
and the array C; stores the regions rq, ra, ..., 7., when ¢ > 1. The construction

of the representation is performed as follows:

1. We perform a traversal of the planar embedding of level L; detecting the
set R of regions composed by multiple connected components with respect

to the level L;11.

2. For each region r € R, r is partitioned into its ¢ > 1 connected components
r1, T2, ..., Te. The entry D;[r] is set to 1, the sequence 0°~21 is appended
to the bitmap M D;, and the regions 71, ra, ..., 7. are appended to the
array Cj.

3. The embedding of level L; is updated with the new regions r1, ra, ..., 7¢.

4. We repeat steps for level L;_1.

Figure [7] shows an example of how regions are partitioned.
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Under this setting, operation contains(r’,r), with " € L;, r € L; and
L; < Lj, refers to whether every connected component of r is contained in
some connected component of r’. To support it, we first recover all the con-
nected components of v’ and mark them in a bitmap B. Then we check if
D;[r] = 1, to determine if the region r is partitioned. If needed, we ob-
tain its connected components by traversing the range C;[p,q], where p =
select; (M Dj,ranki(D;,7) — 1) + 1 and g = selecty (M Dj, ranki(D;,r)). We
map each connected component 7, of 7 to its containing region r at level i, an
check if r, is marked in B. We return whether every component 7} was marked
in B. The time complexity is O(w;jc + ¢’), where ¢’ and ¢ are the number of
connected components of r’ and r, respectively, and w;; is the cost of mapping
regions from level j to level 4, which can be done with any of the solutions dis-

cussed in Sections BHEL

Similarly, operation touches(r’,7) checks whether some connected compo-
nent of 7’ shares a boundary with some connected component of r. To solve
it, for each connected component of r we map its neighbors, at level j, to their
containing regions at level i, marking them in a bitmap B. Finally, we com-
pare the connected components of ' with the marked regions in B, and return
whether a coincidence is found. The time complexity is O(cZTwij + ), where d,
is the number of neighbors of r at level j, computed as the sum of the neighbors

of each connected component that conforms r.

Operation contained(L;, ), with r € L; and L; < L;, lists all the regions at
granularity level L; that are contained in some connected component of r. To
implement it, we recover all ¢ connected components at level ¢ of r, and map
each of them to its descendants at level j. Notice that the resulting regions at
level j may be grouped into ¢’ > 1 connected components, which must be recov-
ered as for the basic case. Thus, the time complexity is O(w;;c+toc’), where to
is the cost of traversing the regions contained in the ¢’ connected components

at level j.
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The additional space consumption for arrays C;, M D;, and D;, is O(n+clgc)
bits, where ¢ is the number of components across all levels. Note that the
connected regions involve only 1 bit of extra space, used in D; to indicate they
have only one connected component. In practical datasets, ¢ is much smaller

than n (see the next section, for example).

7. Experimental evaluation

7.1. Experimental setup

All the experiments were carried out on a computer equipped with an Intel
Core i7 (3820) processor, clocked at 3.6 GHz; 32 GB DDR3 RAM memory,
clocked at 1,334 MHz; 4 physical cores each one with L1i, L1d and L2 caches
of size 32 KB, 32 KB and 256 KB, respectively; and a shared L3 cache of
size 10 MB. The computer runs Linux 3.13.0-86-generic, in 64-bit mode. All
our algorithms and the baseline were implemented in C++, using the library
SDSL [41], and compiled with GCC version 4.8.4 and -O3 optimization flag. For
the compact planar embeddings, we directly use the code of [38]. We measured

running times using the clock_gettime function.

7.1.1. Datasets

The datasets used to evaluate our approaches are based on the TIGER
datasetﬁ provided by the U.S. Census Bureau, which corresponds to geographic
and cartographic data of the administrative divisions in the United States. The
dataset is organized as a hierarchy of granularities with levels L; to Lg being
State, County, Census tract, Census block group, Census block, and Face, re-
spectively (see Table. With this base information, we generated four datasets,

tiger_8s, tiger_usa, whole_usa, and tiger_usa™.

4TIGER dataset, version 2019. https://www2.census.gov/geo/tiger/TIGER2019/
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The first dataset, tiger_8s, contains the information of eight neighboring
states (Nevada, Utah, Arizona, Colorado, New Mexico, Kansas, Oklahoma and
Texas), while tiger_usa includes the information of the whole continental part
of the country. During the construction of both datasets, we found cases where
a region was composed of disconnected subregions (e.g., Santa Catalina Island
is a disconnected region of the State of California). In such cases, we only con-
sidered the largest subregion. Additionally, both datasets are conformed by one

connected component.

On the other hand, the dataset whole_usa corresponds to the tiger_usa
dataset, but including the disconnected subregions, and Alaska, Hawaii and
overseas U.S. islands, being conformed by 98 connected components. Finally, we
generated the synthetic dataset tiger_usa™, which corresponds to the dataset
tiger_usa with a different (fictitious) grouping of regions. By choosing random
starting regions at level Lg, a BFS traversal was performed to group from 1 up
to 10 contiguous regions into one. The BFS traversals were performed until all
regions of level Lg were grouped. The procedure was repeated for all levels Ls
up to Lo. We use this dataset to evaluate situations where the ratio of grouping

is smaller than in the original dataset.

7.2. Fvaluated implementations

Based on the approaches described in Sections [3] to [f] for the representation

of the multi-granular maps, we developed the following implementations:

Approach 1 (T). Implementation based on the approach described in Section
Bl which uses compact planar embeddings to represent each level of granularity,
as well as h — 1 bitmaps, where we use a plain bitmap for level h and bitmaps
of type T for the rest of levels, to store hierarchy-related information, where T
can be: i) PLAIN (a plain bitvector), it) SD (the sparse bitmap SD-array [42]),
iii) RRR (an Hp-compressed bitvector [39]).
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Dataset  Level Vertices (n) Edges (m)  Dataset Level Vertices (n) Edges (m)

Ly 9 20 Ly 50 140
Lo 595 1,730 Lo 3,110 9,095
tiger 8s L3 11,626 31,412 tiger.usa L3 72,512 201,631
(1 comp.) Lg 33,804 91,891 (1 comp.) Ly 216,243 597,784
Ls 2,233,031 5,429,483 Ly 11,004,160 26,732,935
Le 4,761,354 10,326,904 Le 19,735,874 43,837,150
Ly 57 140 Ly 3,852,017 6,392,483
Lo 3,235 9,102 Lo 4,518,394 8,364,881
whole_usa L3 74,135 201,824 tiger.usat L3 5,686,152 11,767,903
(98 comp.) L4 220,743 598,245 (1 comp.) Ly 7,821,874 17,711,491
Ls 11,166,337 26,746,322 Ls 11,846,172 27,868,766
Lg 20,037,199 44,503,624 Le 19,735,874 43,837,150

Table 4: Datasets used in our experiments. Each level includes one node representing the

external face of the embedding.

Approach 2 (RMMT). Implementation based on the approach described in Sec-
tion [4 which uses a compact planar embedding for the highest level of detail,
and range min-max trees (RMMT) for the sequences By and By, to represent

the mapping among aggregation levels.

Approach 2 (PLAIN-S). A variant of the previous one that uses compact planar
embeddings to represent each level of granularity, and range min-max trees over
integer vectors (stored as a plain vector) to store the hierarchical information
represented in the sequence B(). Although storing the hierarchical information
implies an increase in the space usage compared to what was proposed in Sec-
tion [4] it drastically improves the query time of the proposed operations. For
the scanning of the RMMT blocks, two strategies S are evaluated: linear search
(L) and binary search (BS), where binary search can be done by computing

rank<; on each comparison.
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Approach 2 (WT-S). Another variant of the approach described in Section
similar to APPROACH 2 (RMMT). This implementation uses compact planar
embeddings to represent each level of granularity and range min-max trees, with
the difference that it uses a wavelet tree to store the hierarchical information
represented in the sequence B(y. This represents a saving in terms of space us-
age when compared with Approach 2 (PLAIN-S), at the cost of a slower access
time to the elements in B(y. Again, for the scanning of the RMMT blocks, two

strategies S are evaluated: linear search (L) and binary search (BS).

Approach 3. Implementation based on the approach described in Section []
which uses compact planar embeddings to represent each level of granularity in
combination with a balanced parenthesis sequence representing the hierarchy
tree and a compact permutation data structure representing M, for the map-

ping between planar embeddings and the hierarchy tree.

Baseline. As a baseline, we developed a data structure that also uses the com-
pact planar embeddings of [38] to represent each level, but the hierarchy is stored
in non-compact form. Specifically, each level ¢ € {0..h — 1} of the hierarchy is
stored in a vector in which position j, representing a region r’, stores the index
of the region r at level i — 1 that contains /. In addition, for a region r at level
i, the data structure stores pointers to all the regions at level ¢ + 1 contained
in 7. In this data structure, the operation go_level(z, 1, j) is supported in O(h)
time, because all the levels of the hierarchy are traversed in the worst case. All
the main operations were implemented in a similar fashion to our approaches,
hence providing running times of O(h), O(min(d,,, dr,)h) and O( i:i ny), for
contains(r1,r2), touches(ry,r2), and contained(L;, ), respectively, where 7 is

a region at level L; and rp a region at level L.

35



850

855

860

865

870

875

7.8. Performance on connected regions

We first consider the basic case of connected regions. The performance of
APPROACH 2 variants is mainly dependent on the use of the RMMT, and this
in turn depends on the length [ of the RMMT blocks. We considered values

124 .. 219).

Regarding the evaluation of operations contains and touches, we executed
200 random operations for each pair of aggregation levelsﬂ As for operation
contained, we executed the queries between all possible pairs of aggregation lev-
els. For contains and contained, there are 15 valid pairs ((L;, L;),? € [1,5],j €
[i +1,6]), whereas for touches there are 21 valid pairs ((L;, L;),7 € [1,6],5 €
[i,6]). This gives a total of 3,000 operations of the first type, 4,200 operations
of the second type, and 11,666,872 operations of third type. In the results, for

each experiment we show the average time of 30 repetitions.

Figure [§| shows the space-time tradeoffs obtained on the datasets tiger_usa
and tiger usa® (we omit dataset tiger 8s because it performed similarly to

tiger_usa), with the three operations.

The first observation is that, as expected, APPROACH 2 (RMMT) uses by far
the least amount of space, using as little as 812 bits per region. In exchange,
however, it is one and even two orders of magnitude slower than other ap-

proaches, because of the need to navigate over simulated parenthesis sequences.

The second observation is that APPROACH 1 (SD) essentially dominates all
the other approaches in the space-time tradeoff map of tiger_usa, using 15-16
bits per region and taking 0.4-10 nanoseconds per operation. The only excep-

tion is the baseline, which sometimes outperforms APPROACH 1 (SD) in time,

5The outer face is omitted from the pool of candidates because of its very large number of

neighbors, which may impact the results.
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yet at the cost of using 80-135 bits per region, that is, about 58 times more

space.

On the synthetic dataset tiger_usa™, we use APPROACH 1 (RRR) instead
of APPROACH 1 (SD), because it saves more space. In this dataset, the least-
space variant of APPROACH 2 (WT-BS) is equally fast and uses slightly less
space (indeed, the sweet points of several other variants are pretty close). In
this dataset, APPROACH 3 offers considerably better times using about twice

the space, around 34 bits per region.

The only considerably worse variant is APPROACH 2 (PLAIN-BS), followed

by APPROACH 2 (PLAIN-L) in the dataset tiger_usa.

Figures [0] and [10] show the results grouped by distance level, where all valid
pairs (L;, Lj), i € [1,6 —c|, j =i+ c are grouped into the distance level c¢. For
APPROACH 2 we only maintain the variants APPROACH 2 (RMMT) with block
length I = 2% and ApProACH 2 (WT-BS) with [ = 2!, For the contained

operation, the running time was normalized by the number of regions returned.

In general, the distance ¢ does not significantly affect the time performance
of the operations, except for the operation contained, where times tend to im-
prove with larger distances. This is because more regions are reported as the
distance grows, and this decreases the time per reported region due to cache
effects. In general, the baseline is the fastest implementation on all the oper-
ations. It is, however, closely followed in almost all cases by some variant of

APPROACH 1, which uses many times less space.

Similar results can be observed for the dataset tiger_ usa™, except that
APPROACH 3 becomes the second fastest on the operation contained. This owes
to the way this dataset was constructed: its hierarchy tree is wider and has more

nodes than the hierarchy tree of tiger_usa. APPROACH 3 is more cache-friendly
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Figure 8: Running time in nanoseconds using the datasets tiger_usa and tiger_usa®.

when reporting many nearby regions.
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Time (ns)

‘Approach 1(Plain)
14 Approach 1(SD)

Approach 2 (Rmmt) ~ —&—
12 Approach 2(WT-BS) —&—
Approach 3 -
10 Baseline —
—a—8s — 5 o
8
6
4
——e——a o
2
IR
o L=

Distance level

(a) Operation contains.

‘Approach 1(Plain)
Approach 1(SD)
Approach 2 (Rmmt)
Approach 2(WT-BS)
Approach 3

Baseline

pedd

Distance level

(b) Operation touches.

‘Approach 1(Plain)

14 Approach 1(SD)

Approach 2 (Rmmt) ~ —&—
Approach 2(WT-BS)  —&—
Approach 3 -
Baseline —_

Distance level

(c) Operation contained.

Figure 10: Running time in nanoseconds using the dataset tiger_usa™.

7.4. Performance with non-connected components

A final experimental evaluation was performed using the dataset whole_usa
in order to measure the impact of the proposed strategy for dealing with more
than one connected component. Since the number of connected components
is low regarding to the total number of regions (98 connected components and
around 20 million regions at level Lg), the expected overhead of the proposed
strategy is very limited. Thus, to represent non-connected components, we ex-

tended the approach with the most interesting time-space trade-off, APPROACH
1 (SD).

Regarding space consumption, the baseline uses 325.2 MB, while APPROACH
1 (SD) uses 60.1 MB, where 0.5 MB correspond to space consumption of
bitmaps D, M D and C. The proposed strategy of Section [6] adds 43,009 new

regions obtained from the partition of regions with more than one connected
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Figure 11: Running time in nanoseconds using the dataset whole_usa.

component, which induces less than 1% of extra space.

Figure[TI]shows the average running time for the three operations. From the
figure, we can conclude that the proposed strategy to deal with multiple con-
nected components impacts the execution time in a negligible way, maintaining

running times similar to those of Figure [9]

8. Conclusions and Future Work

We have focused on the problem of compactly representing a hierarchical
partitioning of the space, so that basic queries regarding containment and ad-
jacency of regions of arbitrary levels can be computed efficiently. It is known
that a set of n regions without a hierarchy can be efficiently manipulated within
4n + o(n) bits. On a hierarchy of height h, our representation requires as little
as O(nlgh) bits, which becomes O(n) if the number of regions increases by a
multiplicative constant from each level to the next. Within this asymptotically
optimal space, we design various representations that efficiently determine (1)
whether a region contains another, (2) whether a region touches another, and

(3) all the regions of some level contained by a given region.

Our experimental results show that we can represent the partitioning and
hierarchical information within as little as 8 bits per region in practice, which

is about twice the space required to represent a partition without hierarchies.
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Further, with about 16 bits per region (i.e., roughly 4 times the space without
hierarchies) our data structures answer all queries within 10 nanoseconds per

retrieved elements, and in some cases less than half a nanosecond.

A challenge for future work is to obtain better theoretical complexities for the
operations. Despite the good times obtained in practice, operation (2) requires
time proportional to the number of neighbors of one of the regions, for example.
Another line of future work is to expand the set of operations. Postgresql, for
example, implements eight named spatial relationship predicates defined in the
standard OGC SFS, and three non-standard relationship predicates. Some of
them do not apply in our domain given the restrictions of a spatial partition, in
which the interior of the granules cannot intersect (see Section . This is the
case of overlaps, for example. Some others, such as equals and disjoint can be
easily implemented with the operations provided in our work. In some domains,
the contains predicate has a variant named containsProperly or includes, which
returns true when a region contains another and there is no intersection in the

boundary of such regions.
Data and codes availability statement

The data and codes that support the findings of this study are available at
https://figshare.com/s/2d0d3£0825666c9c595cl
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