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Abstract

We present a new semi-external algorithm that builds the Burrows–Wheeler
transform variant of Bauer et al. (a.k.a., BCR BWT) in linear expected time.
Our method uses compression techniques to reduce computational costs when
the input is massive and repetitive. Concretely, we build on induced suffix
sorting (ISS) and resort to run-length and grammar compression to main-
tain our intermediate results in compact form. Our compression format not
only saves space but also speeds up the required computations. Our exper-
iments show important space and computation time savings when the text
is repetitive. In moderate-size collections of real human genome assemblies
(14.2 GB - 75.05 GB), our memory peak is, on average, 1.7x smaller than the
peak of the state-of-the-art BCR BWT construction algorithm (ropebwt2),
while running 5x faster. Our current implementation was also able to com-
pute the BCR BWT of 400 real human genome assemblies (1.2 TB) in 41.21
hours using 118.83 GB of working memory (around 10% of the input size).
Interestingly, the results we report in the 1.2 TB file are dominated by the
difficulties of scanning huge files under memory constraints (specifically, I/O
operations). This fact indicates we can perform much better with a more
careful implementation of our method, thus scaling to even bigger sizes effi-
ciently.

Keywords: BWT, string compression, repetitive text

1. Introduction

The Burrows–Wheeler transform (BWT) [1] is a reversible string transfor-
mation that reorders the symbols of a text T according to the lexicographical
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ranks of its suffixes. The features of this transform have turned it into a crit-
ical component for text compression and indexing [2, 3]. In addition to being
reversible, the reordering reduces the number of equal-symbol runs in T , thus
improving the compressibility. The BWT is also the main component of the
so-called FM-index [4, 5], a self-index that supports pattern matching in time
proportional to the pattern length. Briefly, the FM-index encodes T as its
BWT and then uses its combinatorial properties [6] to look for patterns in
the text efficiently. Popular bioinformatic tools [7, 8] rely on the FM-index to
process data, as collections in this area are typically massive and repetitive,
and the patterns to search for are short.

The FM-index is an important breakthrough as it dramatically reduces
space usage compared to the classical suffix tree [9] and suffix array [10].
However, it still uses space proportional to T (i.e., succinct), making it im-
practical for massive input. This problem is relevant as massive collections
are nowadays standard in many fields. A fortunate coincidence is that mas-
sive collections are usually highly repetitive too, and in that case, the number
of equal-symbol runs in the BWT (denoted r in the literature) is considerably
smaller than the text size. Gagie et al. [5] exploited this property to design
the r-index, a compressed self-index that requires O(r) bits of space and still
supports efficient pattern matching.

The r-index is a promising solution to compress and index massive col-
lections, but it lacks efficient construction algorithms that scale well with
the input size. This limitation, of course, hampers its adoption in practical
applications. One of the most important challenges (although not the only
one) is how to obtain the BWT of T . Several algorithms in the literature
produce the BWT in linear time [11, 12, 13, 14, 15]. Nevertheless, the com-
putational resources their implementations require with large inputs are still
too high. This limitation is particularly evident in Genomics, where the data
can easily reach terabytes [16].

Some authors [17, 18, 19, 20, 21] have tackled the problem of computing
big BWTs by exploiting the repetitiveness of the input. Their approach
consists of extracting a set of representative strings from the text, performing
calculations on them, and then extrapolating the results to the copies of those
strings. For instance, the methods of Boucher et al. [18, 21] based on prefix-
free parsing (PFP) use Karp–Rabin fingerprints [22] to create a dictionary of
prefix-free phrases from T . They then create a parse by replacing the phrases
in T with metasymbols, and finally construct the BWT using the dictionary
and the parse. Similarly, Kempa et al. [17] consider a subset of positions in
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T they call a string synchronizing set, from which they compute a partial
BWT they then extrapolate to the whole text.

Although these repetition-aware techniques are promising, some are at
a theoretical stage [17, 19, 20], while the rest [18, 21] have been empirically
tested only under controlled settings, and their results depend on parameters
that are not simple to tune. Thus, it is difficult to assess their performance
under real circumstances.

Recently, Nunes et al. [23] proposed a method called GCIS that adapts
the concept of induced suffix sorting (ISS) for compression. Their ideas are
closely related to the linear-time BWT algorithm of Okanohara et al. [11].
Briefly, Okanohara et al. cut the text into phrases using ISS, assigning sym-
bols to the phrases, and then replacing the phrases with their symbols. They
apply this procedure recursively until all the text symbols are unique. Then,
when they return from the recursions, they induce an intermediate BWT i for
the text of every recursion i using the previous BWT i+1. The connection be-
tween these two methods is that GCIS captures in the grammar precisely the
information that Okanohara et al. use to compute the BWT. Additionally,
Díaz-Domínguez et al. [24] recently demonstrated that ISS-based compressors
such as GCIS require much less computational resources than state-of-the-art
methods like RePair [25] to encode the data while maintaining high compres-
sion ratios. The simple construction of ISS makes it an attractive alternative
to processing high volumes of text. In particular, combining the ideas of
Okanohara et al. with ISS-based compression is a promising alternative for
computing big BWTs.

Our contribution. Induced suffix sorting (ISS) [26] has proved useful
for compression [23, 24] and for constructing the BWT [11]. In this work,
we show that compression can be incorporated into the internal stages of
the BWT computation in a way that saves both working space and time.
Okanohara et al. [11] use ISS to construct the BWT as follows: they build
the texts T 1, T 2, . . . , T h, with h = O(log n), by applying recursive rounds of
parsing that cut each T i into phrases and replace the phrases by new symbols.
Then, when they return from the recursions, they induce the BWT of every
T i from the BWT of the previous text T i+1, generating the final BWT when
they reach the first recursion level again. We use a technique similar to
grammar compression to store the sets of phrases generated in the rounds
of parsing, and run-length compression for the intermediate BWTs. This
approach is shown not only to save the space required for those intermediate
results but, importantly, the format we choose speeds up the computation
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of the final BWT as we return from the recursion because the factorizations
that help save space also save redundant computations. Unlike Okanohara
et al., we receive as input a string collection and output its BCR BWT [12],
a variant for string collections. The reason is that massive datasets usually
contain multiple strings, in which case the BCR BWT variant is simpler to
construct.

Early versions of this work appeared in Proc. DCC’21 [24] and Proc.
CPM’22 [27]. In this extended article, we explain how to produce a smaller
set of phrases in each recursion of parsing than the one we obtain by apply-
ing the regular ISS procedure. We aim to keep working memory and CPU
consumption low, even for not-so-repetitive collections. Our technique to
reduce the set of phrases is simple enough, so the extra time we spend in
this step increases the overall performance. Additionally, we explain how to
extend our ideas to compute the smallest BCR BWT (in terms of the num-
ber of runs) one can obtain by reordering the strings of the text. Finally, we
empirically assessed our techniques in massive datasets.

Our experiments show that when the input is a collection of human
genomes (a repetitive dataset), we are, on average, 5x faster than ropebwt2 [8],
one of the most efficient implementations of the BCR BWT algorithm. In
the same datasets, we also outperform the PFP-based methods pfp-ebwt [21]
and r-pfpbwt [28], being on average 2.8x faster than them while using much
less memory. We also report the construction of the BCR BWT for a col-
lection of 1.2 TB using an amount of working memory that did not exceed
10% of the input size, and a running time of less than 42 hours. Under not-
so-repetitive scenarios (short Illumina reads), we are the second fastest tool
and the second most space-efficient on average, being outperformed only by
ropebwt2 and BCR_LCP_GSA [12], respectively.

2. Related Concepts

2.1. Grammar and Run-length Compression
Grammar compression [29] consists of encoding a text T as a small

context-free grammar G that produces only T . Formally, a grammar is a
tuple (V,Σ,R,S), where V is the set of nonterminals, Σ is the set of termi-
nals, R is the set of replacement rules and S ∈ V is the start symbol. The
right-hand side of S → C ∈ R is referred to as the compressed form of T .
The size of G is usually measured in terms of the number of rules, the sum
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of the lengths of the right-hand sides of R, and the length of the compressed
string.

Run-length compression encodes the equal-symbol runs of maximal length
in T as a sequence (c1, ℓ1), (c2, ℓ2), . . . , (cn′ , ℓn′) of n′ ≤ n pairs, where every
(ci, ℓi), with i ∈ [1, n′], stores the symbol ci ∈ Σ of the ith run and its length
ℓi ≥ 1. For instance, let T [j..j ′] = cccc be a substring with four consecutive
copies of c, where T [j − 1] ̸= a and T [j ′ +1] ̸= c. Then T [j..j] compresses to
(c, 4).

2.2. The Suffix Array
The suffix array [10] of a string T [1..n] ∈ Σ∗ is a permutation SA[1..n]

that enumerates the suffixes T [j..n] of T in increasing lexicographic order,
T [SA[j]..n] < T [SA[j + 1]..n], for j ∈ [1..n− 1]. It is customary to divide SA
into σ buckets. Specifically, a bucket c ∈ Σ is a contiguous range SA[jc..jc+1−
1] storing the text positions of the suffixes of T prefixed by c.

The generalized suffix array [30] is a variant of SA that enumerate the
suffixes of a string collection T = {T1, T2, . . . , Tk} over the alphabet Σ. Let
T = T1$1T2$2 · · ·Tk$k be a string over the alphabet {$1, $2, . . . , $k}∪Σ storing
the concatenation of T such that each Tx ∈ T ends in T with a unique sentinel
$x. The values of the k distinct sentinels $1, . . . , $k /∈ Σ are chosen arbitrarily
but are smaller than any symbol in Σ. The generalized suffix array of T is
then a vector GSA[1..n = |T |] equal to the suffix array of T . Put simply,
GSA sorts the suffixes in lexicographical order, breaking ties for equal suffixes
according to the order of the strings in T that the sentinels induce. Still,
in practice, a construction algorithm for GSA does not require keeping an
explicit set of k sentinels. One can get the same result by concatenating the
elements of T in T = T1$T2$ · · ·Tk$ using the same symbol $ as a boundary
between strings, sorting the suffixes of T (substrings in T ) lexicographically,
and breaking ties for equal suffixes according to an arbitrary rule. Figure 1
shows an example of GSA.

2.3. The Burrows–Wheeler Transform
Let T [1..n] be a string over the alphabet Σ∪ {$} where $ is smaller than

any symbol in Σ and only occurs in T [n]. The Burrows–Wheeler transform
(BWT) [1] of T is a reversible string transformation that stores in BWT [j]
the symbol that precedes the jth suffix of T in lexicographical order, i.e.,
BWT [j] = T [SA[j]− 1] (assuming T [0] = T [n] = $).
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The mechanism to revert the transformation is the so-called LF mapping.
Given an input position BWT [j] that maps a symbol T [u], LF(j) = j ′ returns
the index j ′ such that BWT [j ′] = T [u − 1] maps the preceding symbol of
T [u]. Thus, spelling T reduces to continuously applying LF from BWT [1],
the symbol to the left of T [n] = $, until reaching BWT [j] = $.

The BCR BWT [12] is a reversible transformation that reorders the sym-
bols of T = {T1, T2, . . . , Tk}. Consider again T = T1$1T2$2 · · ·Tk$k, the
sequence of length n = |T | storing the concatenation of the strings in T
separated by unique sentinels $1 . . . $k /∈ Σ. Additionally, let us define the
vector GSA[1..n] for T using the order $1 < $2 . . . < $k. The BCR BWT of
T is a vector BWTbcr[1..n] storing in BWTbcr[j] the symbol T [GSA[j] − 1].
It is worth mentioning that when T [GSA[j]] = Tx[1] maps to the leftmost
symbol of a string Tx ∈ T , BWTbcr[j] = $x is (theoretically) the sentinel
at the end of Tx in T . Spelling strings in T from BWTbcr works similarly
to the procedure in the standard BWT. Successive rounds of LF operations
starting from BWTbcr[1] and finishing when the symbol in BWTbcr[j

′] is a
sentinel spells T1 from right to left. The same procedure but starting from
BWTbcr[2] spells T2, and so on. Figure 1 depicts an example of BWTbcr.

A common measure of compression for a text is the number of equal-
symbol runs in its BWT (denoted r in the literature), but when the text is
a collection, the value r associated with its BCR BWT varies depending on
the order of the special symbols $1, . . . , $k. Thus, the optimal BCR BWT
(BWTopt) is the transform built with the sentinel ordering that minimizes r.
Bentley et al. [31] proposed a linear-time procedure (referred to here as CAO1)
that receives as input BWTbcr and produces BWTopt. They consider the
partition (s1, e1), (s2, e2), . . . , (sx, ex) of BWTbcr induced by equal suffixes of
T . That is, every block BWTbcr[su..eu], with u ∈ [1..x], stores the left-context
symbols of different suffixes of T that spell the same sequence. They regard
the partition as a vector A where every uth element is a tuple collapsing the
symbols of BWTbcr[su..eu] by their values. Thus, the uth tuple is a sequence
A[u] = (c1, ℓ1), . . . , (cb, ℓb) of 1 ≤ b ≤ |Σ ∪ {$}| pairs where (cp, ℓp), with
p ∈ [1, b], groups the ℓp occurrences of symbol cp ∈ Σ within BWTbcr[su..eu].

The key observation to produce BWTopt is that reordering the symbol
within each block BWTbcr[sx..ex] only affects the order in which one spells

1The word stands for Constraint Alphabet Ordering, the original name Bentley et al.
gave to the problem they were studying.
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Figure 1: The generalized suffix array and the BCR BWT for the collection T =
{acct, acct, cact}. The string T is the concatenation of T separated by sentinel symbols.
The boxes in BWTbcr represent the partition induced by equal suffixes of T . The numbers
below A map the blocks in the partition of BWTbcr to tuples in A.

strings in T from the transform. For example, permuting symbols within
BWT [sx..ex] might produce that the string Tx the BCR BWT spells from
BWTbcr[1] via LF operations is no longer T1. However, Tx is still a member
of T . Bentley et al. noticed that one could minimize r by sorting the pairs
of every tuple A[j], maximizing the number of matches between adjacent
tuples. A match between adjacent tuples occurs when the symbol in the
rightmost pair of A[j] equals the symbol of the leftmost pair of A[j + 1].

Example 2.1. Consider the BWTbcr of Figure 1, which has r = 9 equal-
symbol runs, and its associated vector A (also in Figure 1). By rearranging
the tuple A[7] = [(c, 1), (a, 2)] to [(a, 2), (c, 1)], the symbol of (a, 2) matches
the symbol in A[6] = [(a, 1)]. On the other hand, the symbol of (c, 1) matches
the symbol in A[8] = [(c, 3)]. The collapse of A then produces the run-length-
compressed vector BWTopt = (t, 3) ($, 2) (a, 1) (c, 1) ($, 1) (a, 3) (c, 4), which
has r = 7 equal-symbol runs.

CAO finds a sorting for A that maximizes the number of adjacent matches
in linear time. Nevertheless, it does not compute A; it receives it as input. In
this regard, Bentley et al. do not give many details on how to compute this
vector efficiently. Recently, Cenzato et al. [32] pointed out that it is possible
to use the algorithm SA-IS (Section 2.4) to get a bit vector marking the blocks
in the partition of BWTbcr induced by equal suffixes (the SAP-array [33]),
from which one can easily obtain A.
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2.4. Induced Suffix Sorting
Induced suffix sorting (ISS) [26] computes the lexicographical ranks of a

subset of suffixes in T and uses the result to induce the order of the rest.
This method is the underlying procedure in several algorithms that build the
suffix array [34, 35, 36, 37] and the BWT [11, 18] in linear time. The ISS
idea introduced by the suffix array algorithm SA-IS of Nong et al. [34] is of
interest to this work. The authors give the following definitions:

Definition 2.1. A symbol T [j] is called L-type if T [j] > T [j + 1] or if
T [j] = T [j+1] and T [j+1] is also L-type. On the other hand, T [j] is said to
be S-type if T [j] < T [j + 1] or if T [j] = T [j + 1] and T [j + 1] is also S-type.
By definition, the symbol T [n], the one with the sentinel, is S-type.

Definition 2.2. A symbol T [j], with j ∈ [1..n], is called leftmost S-type, or
LMS-type, if T [j] is S-type and T [j − 1] is L-type.

Definition 2.3. An LMS substring is (i) a substring T [j..j ′] with both T [j]
and T [j ′] being LMS-type symbols, and there is no other LMS symbol in the
substring, for j ̸= j ′; or (ii) the sentinel itself.

SA-IS recursively sorts a subset of suffixes of T using ISS and then uses
the result to induce the relative order of another set of suffixes. The recursion
continues until there are no more suffixes of T to sort. When that happens, it
returns from the recursion merging the distinct subsets of suffixes it processed
before, producing the final suffix array SA of T when it reaches the first level
of the recursion again. The key idea that makes SA-IS linear-time is that
every recursion level operates over a sequence that is at most half the length
of the sequence in the previous level.

The suffixes that SA-IS processes in every level i are those prefixed by LMS
substrings. The level receives as input a string T i[1..ni] over an alphabet Σi

(when i = 1, T i = T and Σi = Σ) and initializes an empty suffix array
SAi[1..ni]. Then, it scans T i from right to left to classify the symbols as
L-type, S-type, or LMS-type. As it moves through the text, the algorithm
records the text positions of the LMS substrings in SAi. More specifically,
if T i[j] = b is the leftmost symbol of an LMS substring, it inserts j in the
rightmost empty position in the bucket b of SAi. After scanning T i, SA-IS
sorts the LMS substrings in SAi using two linear scans.
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Algorithm 1 SA-IS
Require: T i[1..ni]
1: SAi[1..ni] ← empty array
2: scan T i right to left an insert LMS-type positions in SAi

3: scan SAi twice to sort the LMS substrings with different sequences
4: if all the symbols in T i are distinct then
5: return SAi

6: end if
7: scan SAi to get the set F i sorted in LMS order
8: o ← 1
9: for F ∈ F i do

10: assign symbol o ∈ Σi+1 to F
11: o ← o+ 1
12: end for
13: T i+1 ← replace LMS substrings in T i with their assigned symbols in Σi+1

14: SAi+1 ← SA-IS(T i+1)
15: SAi ← store LMS-type positions of T i as their symbol in Σi+1 appear in SAi+1

16: scan SAi twice again to the sort the suffixes of T i

17: return SAi

Scans of the Suffix Array. SA-IS sorts the suffixes of T i prefixed by different
LMS substrings in two linear scans of SAi. The first scan traverses the array
left to right, and for each index j such that T i[SAi[j] − 1] = c is L-type, it
inserts the text position SAi[j] − 1 in the leftmost empty cell of bucket c in
SAi. The second scan traverses SAi from right to left. This time, for each
index j such that T i[SAi[j]] = c is S-type, it stores the text position SAi[j]−1
in the rightmost empty cell in the bucket c of SAi.

ISS rearranges the LMS substrings in SAi in a slightly different way from
the lexicographic order. Let Fx[1..nx] and Fy[1..ny] be two strings over Σi

labelling LMS substrings of T i, and let ≺lex be the operator that denotes
lexicographical order. LMS order (≺LMS) is defined as

Fx ≺LMS Fy ⇔
(
ny < nx and Fx[1..ny] = Fy

Fx ≺lex Fy otherwise.

For instance, it holds that actca ≺LMS actc, which differs from the
standard actc ≺lex actca. However, for two occurrences Fy = T i[j..j ′] and
Fx = T i[u..u′], the higher LMS order of Fy implies that the suffix T i[j..ni] is
lexicographically greater than the suffix T i[u..ni]. The cause of this property
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is explained in Section 2 of Ko and Aluru [26].
The idea now is to use the sorted LMS substrings to induce the order of

the suffixes in T i that are not prefixed by LMS substrings. Still, the relative
order of LMS substrings with the same sequence is unknown in SAi. Nong et
al. solve this problem by creating a new string T i+1 in which they replace the
LMS substrings with their LMS orders. Let F i be the set of strings labelling
LMS substrings in T i. If a string F ∈ F i has LMS order o in the set, then
SA-IS replaces the LMS substrings of T i labelled F by o. Notice that now
it is possible to compute the LMS orders in one scan of SAi. The resulting
sequence T i+1 is used as input for another recursive call i + 1. The base
case for the recursion is when all the suffixes in SAi are prefixed by different
symbols, in which case the algorithm returns SAi without further processing.

When the (i + 1)th recursive call ends, all the suffixes of T i prefixed by
the same LMS substrings are sorted in SAi+1, so SA-IS proceeds to complete
SAi. For doing so, it resets SAi, inserts the LMS substrings arranged as
their respective symbols appear in SAi+1, and performs the two scans of
paragraph 2.4 to reorder the unsorted suffixes of T i. Once it finishes, it
passes SAi to the previous recursion i − 1. The final array SA1 is the suffix
array for T . Algorithm 1 explains the general idea of SA-IS. We also refer
the reader to Figure 2 in Louza et al. [36] for a detailed running example of
a recursion level in SA-IS.

3. Methods

3.1. Definitions
We assume the standard string notation. For a string T [1..n] over an

arbitrary alphabet, T [1..j] is the jth prefix of T , and T [j..n] is the jth suffix.
Additionally, the operator |T | = n represents the number of symbols in T
(i.e., its length). We will refer to T [j..n] as a proper suffix if 1 < j ≤ n, and
non-proper otherwise. When T is run-length-compressed, we use the format
cℓ to denote an equal-symbol run of ℓ copies of c. We also use the alternative
notation (c, ℓ) with the same meaning. We choose one format or the other
depending on the context. Additionally, we use ε as the empty symbol.

Let S = {S1, . . . , Sz} be a string set. We consider a suffix Sx[j..nx] to
be left-maximal if there is at least one other string Sy[1..ny] ̸= Sx ∈ S with
a suffix Sy[j

′..ny] such that (i) Sy[j
′..ny] = Sx[j..nx], and (ii) either both

Sy[j
′..ny] and Sx[j..nx] are proper suffixes with Sy[j

′ − 1] ̸= Sx[j − 1], or one
of them (Sx[j..nx] or Sy[j

′..ny]) is not proper. We will use the operator |S|
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for the total number of strings in S and ||S|| to express the total number of
symbols

P
Sx∈S |Sx|.

Through the paper, we use the superscript i to denote elements of the ith
recursion level in SA-IS. Thus, the string T i[1..ni] over the alphabet Σi[1..σi]
is the input for level i. Notice that, for instance, σi does not mean σ = σ1

raised to i. The same idea applies to other elements with the i superscript.
The expressions T and T 1 are equivalent. The same holds for Σ and Σ1.

For a given position T i[j], with j ∈ [1..ni], the operator expu(T i[j]) ∈ Σi,
with u < i, denotes the string we obtain by recursively replacing the symbol
o = T i[j] ∈ Σi with its associated phrase F = o1· · ·or ∈ F i−1 over the
alphabet Σi−1. The formal recursive definition of expu is as follows:

exp(o)u ⇔





o if o ∈ Σu

expu−1(o1)· · ·expu−1(or−1) if exp1(or) does not end with $
expu−1(o1)· · ·expu−1(or) if exp1(or) ends with $

Note that expu removes the overlap between consecutive LMS substrings
of T 1. Additionally, the function mapu(T i[j]) = T u[z..z′], with u < i, returns
the substring in T u from where T i[j] was formed. Formally, the boundaries
(z, z′) in mapu(T i[j]) are

z = 1 +

j−1X

q=1

|expu(T i[q])|

z′ = z + |expu(T i[j])|− 1.

The expressions exp(T i[j]) and map(T i[j]) are equivalent to exp1(T i[j])
and map1(T i[j]), respectively.

We use the term parsing to refer to a procedure that breaks T i[1..ni] into
a sequence of (possibly overlapping) substrings. The strings labelling the
substring are the phrases of the parsing. On the other hand, we use the term
dictionary to refer to an abstract associative data structure where the keys
are strings and the associated values are integers.

Let Σ = [1..σ] be an alphabet of σ symbols and let T = {T1, . . . , Tk} be a
collection of k strings over the alphabet Σ\{1}. The input for our algorithm
is the sequence T = T1$T2 . . . Tk$ ∈ Σ∗ of total length n = |T | representing
the concatenation of T . The symbol $ is a sentinel that we use as a boundary
between consecutive strings in T . We set $ = 1 to the smallest symbol in Σ.
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3.2. Overview of Our Algorithm
We call our algorithm for computing the BCR BWT of T grlBWT. This

method relies on the ideas developed by Nong et al. in the SA-IS algorithm
(Section 2.4) but includes elements of grammar and run-length compression
(Section 2.1 to reduce the space usage of the temporary data that grlBWT
maintains in memory. Overall, this idea allows us to decrease working mem-
ory and computing time.

Similar to SA-IS, our method grlBWT is recursive. We start by pars-
ing T 1 using a mechanism that relies on the symbol types of Section 2.4
and stores the resulting parsing phrases in a set F 1. Then, we use the set
S1 with the strings labelling the suffixes of F 1 to partition SA1 such that
each block SA1[sx..ex] encodes the suffixes of T 1 prefixed by the same string
Sx ∈ S1. An important observation is that if Sx is always preceded by the
same symbol c in the parsing phrases, we can compute the associated sub-
string BWT 1

bcr[sx..ex] = cℓ, with ℓ = ex − sx + 1, directly from F 1. We use
this idea to create a sparse version of BWTbcr that only contains symbols for
blocks that meet our observation. We leave the other areas of BWTbcr empty
for the moment. We refer to the sparsely populated version of BWTbcr as
the preliminary BCR BWT of T 1 (pBWT 1). To fill the unsolved areas of
pBWT 1, we create another string T 2 by replacing the substrings in the pars-
ing of T 1 with their associated LMS orders in F 1, and then apply the same
procedure recursively over T 2. We keep recursing until we reach a base-case
level h where the input T h has k symbols (i.e., the number of strings in T ).
At this point, the BCR BWT of T h (BWT h

bcr) is T h itself (we explain this
idea in Section 3.5). We refer to the process of recursing from level 1 to level
h as the parsing phase of grlBWT.

The parsing phase produced the string BWT h
bcr, the preliminary BCR

BWTs pBWT 1, pBWT 2, . . . , pBWT h−1, and the sets F1,F2, . . . ,Fh−1. Now
we need to go back in the recursions to complete the execution of grlBWT.
When we return to level i < h, we use BWT i+1

bcr and F i to induce the symbols
in the unsolved blocks of pBWT i, thus producing BWT i

bcr (the BCR BWT
of T i). We keep BWT i+1

bcr and pBWT i in run-length-compressed format to
reduce space usage and speed up the computation of BWT i

bcr. Our induction
procedure reads a position BWT i+1

bcr [j] and uses its information to insert
symbols in multiple unsolved blocks of pBWT i. However, equal symbols of
BWT i+1

bcr yield the same information and for the same unsolved blocks of
pBWT i. Thus, if we have a run BWT i+1

bcr [j..j + ℓ − 1] = oℓ of ℓ consecutive
copies of o ∈ Σi+1, we perform the induction from o only once and copy the
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Algorithm 2 Overview of grlBWT
Require: T [1..n], k ▷ T is the concatenation of the k string in T
1: i ← 1
2: T 1 ← T
3: while length(T i) ̸= k do ▷ parsing phase
4: Build F i by parsing T i

5: Produce pBWT i from F i and satellite data
6: Encode F i using grammar compression
7: Build T i+1 using F i and T i

8: Store pBWT i and F i on disk
9: i ← i+ 1

10: end while
11: BWT i

bcr ← T i[1..k] ▷ induction phase
12: i ← i− 1
13: while i > 0 do
14: Load F i from disk to main memory
15: Build P i using BWT i+1

bcr and F i

16: Merge P i and pBWT i to produce BWT i
bcr

17: i ← i− 1
18: end while
19: return BWT 1

bcr ▷ the BCR BWT of T

result in pBWT i ℓ times. When we reach the recursion level i = 1 again,
BWT 1

bcr becomes the BCR BWT of T . We refer to the process of returning
from recursion h to recursion 1 as the induction phase of grlBWT.

Practical Considerations. We implement grlBWT as a semi-external algo-
rithm that executes the recursion levels as iterations in a loop. In every
iteration i, we perform the steps of recursion level i, keeping the information
of the other levels on disk. When we execute iteration i in the parsing phase,
we scan T i linearly from the disk to produce F i. The only elements that
are always in main memory are F i and a couple of satellite vectors that help
us to build pBWT i, which is also accessed linearly from disk during its con-
struction. Then, we compute T i+1 from F i externally and store F i on disk
to use it later. We encode F i with a scheme similar to grammar compres-
sion to reduce space usage and facilitate the remaining computations. When
we return to level i in the induction phase, we access BWT i+1

bcr and pBWT i

linearly from the disk. The only elements in main memory are F i and a run-
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length-compressed vector P i that keeps the symbols we need to introduce in
the unsolved blocks of pBWT i. We produce BWT i

bcr by merging pBWT i

and P i in a semi-external way. Algorithm 2 presents a general overview of
grlBWT.

3.3. The Parsing Phase
This section explains the steps we perform in one iteration of the parsing

phase (Lines 3-10 of Algorithm 2). The inputs for the iteration are T i and a
bit vector Bi[1..σi] that indicates with Bi[c] = 1 if and onlu if symbol c ∈ Σ
expands to a string exp(c) ∈ Σ∗ suffixed by the sentinel $. The output of
the iteration is the preliminary BCR BWT of T i (pBWT i) and a compressed
version of F i.

3.3.1. LMS parsing
We start the iteration by producing the set F i with the distinct parsing

phrases of T i (Line 4 of Algorithm 2). Our mechanism to break T i uses the
symbol types of Section 2.4, but includes some modifications to take into
consideration that T i is a (compressed) collection rather than a single string.

Definition 3.1. LMS breaks: given a string T i over the alphabet Σi[1..σi], its
sequence of LMS breaks is a set of strictly increasing integers Bi = {1 < j1 <
j2 < . . . < jz < ni < ni+1} such that each T i[jp], with p ∈ [1..z], is either (i)
an LMS-type position, (ii) a position where map(T i[jp]) = T 1[u..u′] is suffixed
by a sentinel $ = T 1[u′], or (iii) a position where map(T i[jp]) = T 1[u..u′] is
preceded by a sentinel T 1[u− 1] = $. Positions 1, ni + 1, and those meeting
condition (iii) are left-border breaks. On the other hand, ni and the positions
meeting condition (ii) are right-border breaks.

Definition 3.2. LMS parsing: the parsing of T i induced by consecutive
breaks of Bi. Let (jp, jp+1) ∈ Bi be two consecutive breaks. They form the
substring T i[jp..jp+1] in the LMS parsing if the following conditions hold: (i)
T i[jp] is a left-border break or an LMS-type position, and (ii) T i[jp+1] is a
right-border break or an LMS-type position. Additionally, (jp, jp+1) forms
the phrase T i[jp..jp+1 − 1] instead of T i[jp..jp+1] iff jp+1 = jp + 1 and both
T i[jp] and T i[jp+1] are left-border breaks. If (jp, jp+1) does not meet any of
the conditions above, it does not produce a substring in the LMS parsing.

Intuitively, our definition of LMS parsing prevents the formation of phrases
in T i that cover multiple strings of T . Specifically, the parsing will never
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T 1 = g t a c c $ g t a a t a g t a c c $

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

S L S∗ L L S L S∗ S L S∗ S L S∗ L L

T 2 = 4 2 4 1 3 2
1 2 3 4 5 6

L L S∗ L

T 3 = 3 2 1
1 2 3

L

T 4 = 2 1
1 2

Figure 2: Successive rounds of LMS parsing for the text T 1 = gtacc$gtaatagtacc$.
The symbols L, S and S∗ represent the L-type, S-type and LMS-type positions of T i,
respectively. The dashed boxes indicate the breaks in Bi (Definition 3.1). Positions 1 and
7 of T 1 are left-border breaks, while positions 6 and 18 are right-border breaks. Similarly,
positions 1 and 3 of T 2 are left-border breaks, and positions 2 and 6 are right-border breaks.
The horizontal lines indicate the substrings induced by Bi as described in Definition 3.2.
Each T i[j] is the LMS order in F i of the jth substring in the LMS parsing of T i−1. The
parsing rounds end when the number of symbols in T i equals the number of strings in T .

yield a substring T i[j..j ′] such that map(T i[j]) = T 1[u..u′] falls within the
boundaries of a string Tx ∈ T and map(T i[j′]) = T 1[o..o′] falls within the
boundaries of another string Ty ∈ T . Figure 2 depicts an example of LMS
parsing.

Our procedure to build F i works as follows: we initialize a dictionary
Di where each key F ∈ F i in Di will be associated with an integer that
indicates the number of times F occurs as a phrase in the LMS parsing of
T i. We fill the dictionary by accessing the breaks in Bi in one right-to-left
scan of T i that enumerates the LMS-type positions. We also use B i during
the scan to detect right and left border breaks. For each pair of consecutive
integers (jp, jp+1) ∈ Bi forming a valid substring in the LMS parsing (see
Definition 3.2), we record an occurrence of the phrase F = T i[jp..jp+1] in Di

(or F = T i[jp..jp+1 − 1] if both positions are left-border breaks). If F does
not exist as a key, we create a new key-value entry (F, 1) in Di. On the other
hand, if F already exists in the keys, we just increase its associated value by
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one.

3.3.2. The Generalized Suffix Array
As explained in the overview of grlBWT (Section 3.2), every recursion

level i constructs the vector BWT i
bcr of T i (besides performing LMS parsing).

This step requires us to define the generalized suffix array GSAi of T i to fit
the description of the BCR BWT.

Definition 3.3. Generalized suffix array of T i. Consider a partition over
T i[1..ni] such that each block T i[j..j ′] is a substring where (i) T i[j] is a
left-border break in Bi, (ii) T i[j′] is a right-border break in Bi, and (iii)
exp(T i[j..j ′]) = Tx$ expands to a string Tx ∈ T . GSAi[1..ni] is a vector that
enumerates the suffixes of the blocks T i[j..j ′] in lexicographical order. When
two suffixes T i[u..j′] = T i[u′..p′] from different blocks T i[j..j ′] and T i[p..p′]
spell the same sequence, the ties are broken by min(u, u′).

We remark that our algorithm never constructs GSAi, but it uses its
definition to produce BWT i

bcr. Figure 4 shows an example of GSAi.

3.3.3. Constructing the Preliminary BCR BWT
The next step in iteration i is to construct the preliminary BCR BWT of

T i from Di (Line 5 of Algorithm 2). Keep in mind that Di is an encoding
for F i that includes the frequencies in T i of the LMS parsing phrases. We
use the following observations to carry out the construction:

Lemma 3.1. Let Sx[1..nx] and Sy[1..ny] be two different strings over the
alphabet Σi. Assume both occur as suffixes in one or more phrases of F i

and meet one of the following conditions: (i) nx > 1 or (ii) nx = 1 and
the sequence exp(Sx) is suffixed by the sentinel $ (the same applies for Sy).
Let Ox be the set of positions in T i where Sx occurs as a suffix of a parsing
phrase. Specifically, each j ∈ Ox is a position such that Sx = T i[j..j+nx−1]
and T i[j− j′..j+nx− 1], with j ′ ≥ 0, is a substring in the LMS parsing. Let
us define an equivalent set Oy for Sy. If Sx ≺LMS Sy (see Section 2.4), then
all the suffixes of T i starting at positions in Ox are lexicographically smaller
than those starting at positions in Oy.

Proof. When Sx is not a prefix of Sy (and vice versa), the demonstration of
this lemma is trivial: we compare the sequences of Sx and Sy from left to right
until we find a mismatching position u (i.e., Sx[u] ̸= Sy[u]). If Sx[u] < Sy[u],
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we know that all the suffixes in Ox are lexicographically smaller than those in
Oy because this is how lexicographical sorting works. In the other scenario,
when one string is a prefix of the other, we can not use this mechanism as we
will not find a mismatching position. However, this scenario is not possible
when Sx or Sy has length 1 and expands to a string in Σ∗ suffixed by $. For
instance, if Sx were a prefix of Sy, it would imply that exp(Sy) contains a
sentinel in a position that is not the end, but Definition 3.2 (LMS parsing)
prevents that situation from happening.

When both Sx and Sy have length > 1 and one is a prefix of the other, we
resort to the symbol types of Section 2.4. We assume for this proof that Sy

is a prefix of Sx, but the other way is equivalent. We know that Sy[ny] and
Sx[ny] have different types. On the one hand, Sy[ny] is LMS-type because
Sy is a suffix of an LMS substring, and ny is the last position of Sy. On
the other hand, Sx[ny] is L-type because if it were S-type, then it would
also be LMS-type, and thus Sx[1..ny] would be an occurrence for Sy. This
observation is due to Sy[ny − 1] = Sx[ny − 1] being L-type. Given the types
of Sy[ny] and Sx[ny], the occurrences of Sy in Oy are always followed in T i

by symbols that are greater than Sx[ny + 1], meaning that the suffixes of
T i starting at positions in Oy are lexicographically greater than the suffixes
starting at positions in Ox. This observation does not hold when Sx or Sy

have length one: Sy[ny] equals Sx[1], and both are LMS-type, so there is not
enough information to decide the lexicographical order of the suffixes in Ox

and Oy. Figure 3 shows an example of this lemma.

The consequence of Lemma 3.1 is that the suffixes of length > 1 in F i

induce a partition over GSAi (Definition 3.3):

Lemma 3.2. Let S i = {S1, S2, . . . , Sn′} be the set of strings where each ele-
ment Sx[1..nx] occurs as a suffix in the phrases of F i and either (i) has length
nx > 1 or (ii) has length nx = 1 but exp(Sx) is suffixed by $. Additionally,
let O = {O1, O2, . . . , On′} be the set of occurrences in T i for the strings in
S. For every Sx ∈ S i, its associated set Ox ∈ O stores each position j such
that T i[j..j + nx − 1] is an occurrence of Sx and T i[j − j′..j + nx − 1], with
j′ ≥ 0, is a phrase in the LMS parsing. It holds that O is a partition over
GSAi as the lexicographical sorting places the elements of each Ox ∈ O in a
consecutive range of GSAi.

Proof. We demonstrate the lemma by showing that the lexicographical sort-
ing does not interleave suffixes of T i in GSAi that belong to different sets of
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a c tL gL g aS∗ c . . .
a c tL gL g aS∗ c . . .
a c tL gL g aS∗ c . . .
a c tL gS∗ t . . .
a c tL gS∗ t . . .
a c tL gS∗ t . . .

Sy[ny]

Sx[ny]

Figure 3: Example of Lemma 3.1. The figure shows a subset of suffixes for some string
T 1 sorted in lexicographical order. The upper box is the set Ox of suffixes in T i prefixed
by the string Sx = actgga that occurs as a suffix in some LMS parsing phrases of T 1.
Equivalently, the lower box is the set Oy of suffixes prefixed by Sy = actg, which also
occurs as a suffix in some LMS substrings of T 1. The L-type and LMS-type positions of T 1

are marked with the symbols L and S∗ in the figure, respectively. Because Sx ≺LMS Sy,
all the suffixes in Oy are lexicographically greater than those in Ox.

O. Assume the string Sx ∈ S i, associated with the set Ox ∈ O, is a prefix
in another string Sy ∈ S i, which in turn is associated with the set Oy ∈ O.
Even though we do not know the symbols that occur to the right of Sx in its
occurrences of Ox, we do know that both Sx and Sy are suffixes of substrings
in the LMS parsing, and by Lemma 3.1, we know that all the suffixes of
T i in Ox are lexicographically greater than the suffixes in Oy. Hence, the
interleaving of suffixes in GSAi from different sets of O is not possible, even
if S i is not a prefix-free set.

Lemma 3.2 gives us a simple way to construct the preliminary BCR BWT
of T i from F i. Our explanation requires projecting the partition of GSAi

induced by S i to BWT i
bcr (the BCR BWT of T i) such that, if GSAi[sx..ex]

is the block formed by Sx ∈ S i, then BWT i
bcr[sx..ex] is the projected block.

There are three cases to consider:

Lemma 3.3. Let Sx ∈ S i be the string with LMS order o among all the
elements of S i. If Sx is left-maximal in F i, then the oth block BWT i

bcr[sx..ex]
in the projected partition contains more than one distinct symbol. Therefore,
F i does not have enough information to compute the sequence of symbols in
BWT i

bcr[sx..ex].

Proof. Let F and F ′ be two phrases of F i where Sx occurs as a suffix. Assume
the left symbol of Sx in F is c ∈ Σi and the left symbol in F ′ is c′ ∈ Σi.
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F1 = {gta, acc$, aata, agta}

S1 = {$, aata acc$, agta, ata, c$, cc$, gta, ta}

GSA1 = 6 18 9 3 15 12 10 5 17 4 16 7 1 13 8 2 14 11
a

BWT 1
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Figure 4: Preliminary BCR BWT of T = {gtacc, gtaatagtacc} of Figure 2. GSAi is
the generalized suffix array of T built on top of T 1 = gtacc$gtaatagtacc$. The vertical
strings are the suffixes sorted in lexicographical order. The boxes in GSAi indicate the
partition induced by S i (strings labelled in grey on top of GSAi). The boxes in BWT 1

bcr

are the projected blocks in GSAi’s partition, with the dashed boxes being the blocks we
can not solve using F1. The first three dashed boxes (from left to right) of BWT i

bcr are
represented with * in pBWT 1 because their blocks meet Lemma 3.4. In contrast, the
last two dashed boxes are represented with #, indicating they meet Lemma 3.3. The final
run-length-compressed vector is pBWT 1 = (c, 2), (*, 4), (a, 1), (c, 2), (a, 2), (#, 7).

In this scenario, the relative order of c and c′ is not decided by Sx, but for
the sequences that occur to the right of F and F ′ in T i. However, those
sequences are not accessible directly from F i. Hence, it is not possible to
decide the order of c and c′ in BWT i

bcr[sx..ex].

Lemma 3.4. Consider the string Sx ∈ S i of Lemma 3.3. When Sx only
occurs as a non-proper suffix in a phrase Sx = F ∈ F i, it is not possible to
complete the sequence of symbols in BWT i

bcr[sx..ex].

Proof. The symbols that occur to the left of Sx in T i are in the substrings of
the LMS parsing that precede F in T i. However, it is not possible to know
from F i the sequences of those substrings.

We now describe the information of the preliminary BCR BWT that we
can extract from F i:

Lemma 3.5. Let Sx ∈ S i be the string of Lemma 3.3. Additionally, let
Ox ∈ O be the set of occurrences of Sx in T i as described in Lemma 3.2. If
all the suffixes of T i in Ox are preceded by the same symbol c ∈ Σi (i.e., Sx
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is not left-maximal), BWT i
bcr[sx..ex] = cℓ is an equal-symbol run of length

ℓ = |Ox|.
Proof. By Lemma 3.2, we know that Sx prefixes the suffixes of T i in Ox, and
that they form a consecutive range GSAi[sx..ex]. Additionally, the symbols
that occur to the left of the suffixes in GSAi[sx..ex] are those for the projected
block BWT i

bcr[sx..ex]. However, we still have not resolved the relative order
of the suffixes in GSAi[sx..ex], so (in theory) we do not know how to rearrange
the symbols in BWT i

bcr[sx..ex]. The suffixes of T i in Ox are preceded by the
same symbol c, so it is not necessary to further sort GSAi[sx..ex] because
the outcome for the projected block will always be an equal-symbol run cℓ of
length ℓ = |Ox| = ex − sx + 1.

Now we have all the necessary elements to describe the preliminary BCR
BWT formally:

Definition 3.4. Preliminary BCR BWT of T i: a vector pBWT i[1..ni] over
the alphabet Σi ∪ {#, *}, where # and * are special symbols out of Σi

denoting unsolved areas of BWT i
bcr for which we do not know the order

of the symbols. Let Sx ∈ S i be the string inducing the projected block
BWT i

bcr[sx..ex], with ℓ = ex−sx+1. If BWT i
bcr[sx..ex] meets Lemma 3.3, then

pBWT i[sx..ex] = #ℓ. On the other hand, if BWT i
bcr[sx..ex] meets Lemma 3.4,

then pBWT i[sx..ex] = *ℓ. Finally, if BWT i
bcr[sx..ex] meets Lemma 3.5 and

is always preceded by symbol c ∈ Σi in F i, then pBWT i[sx..ex] = cℓ. The
areas of pBWT i storing # or * symbols are its unsolved blocks.

We use two special symbols $, # /∈ Σi because the mechanism to fill the
unsolved blocks of pBWT i that meet Lemma 3.3 during the induction phase
is different from the one to fill the unsolved blocks meeting Lemma 3.4. The
difference will become clear in Section 3.5. Additionally, we keep pBWT i in
run-length-compressed format to reduce space usage. Despite our encoding,
we will keep using the notation pBWT i[sx..ex] to refer to an uncompressed
area of pBWT i. Figure 4 shows an example of the construction of pBWT i

using Lemmas 3.3,3.4, and 3.5.

Succinct Dictionary Encoding. The construction of pBWT i starts by chang-
ing the representation of Di to a more convenient data structure. First, we
concatenate all the keys of Di in one single vector Ri[1..||F i||] without chang-
ing their relative order. We mark the boundaries of consecutive phrases in
Ri with a bit vector Li[1..||F i||] in which we set Li[j] = 1 if Ri[j] is the
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first symbol of a phrase and set Li[j] = 0 otherwise. We store the values of
Di in another integer vector N i[1..|F i|]. We maintain the relative order so
that the value N i[o] is associated in Di with oth phrase we inserted into Ri.
We also augment Li with a data structure that supports rank1 queries [38]
to map each symbol Ri[j] to its corresponding phrase in Di. Thus, given
the phrase F = Ri[j..j ′] ∈ F i, we can obtain its associated value in Di as
N i[rank1(L, p)], with p ∈ [j..j ′].

Generalized Suffix Array of the Parsing Set. We will use (Ri, Li) to compute
an array SAF i [1..|Ri|] that enumerates the suffixes of F i in LMS order. This
vector serves a double purpose as we will use it to get the unsolved blocks
of pBWT i and the LMS orders of the phrases in F i. The values in SAF i

are text positions in Ri, which we sort as follows: consider two substrings
Ri[j..j ′] and Ri[p..p′] encoding suffixes of F i that are consecutive in SAF i .
That is, SAF i [u] = j, SAF i [u + 1] = p, Li[j′ + 1] = 1, and Li[p′ + 1] = 1.
If Ri[j..j ′] ̸= Ri[p..p′], then Ri[j..j ′] ≺LMS Ri[p..p′]. On the other hand, if
Ri[j..j ′] = Ri[p..p′], it implies j < p. We compute SAF i using a modified
version of the ISS method described in Section 2.4. We first create an empty
array SAF i [1..|Ri|], which we divide into Σi buckets. Then, we scan Ri from
left to right, and for each symbol Ri[j] = c with Li[j + 1] = 1 (i.e., the
rightmost symbol of a phrase), we insert j in the rightmost empty position
in the bucket c of SAF i . Then, in one left-to-right scan of SAF i , we perform
the first step of ISS: for every SAF i [u] such that Ri[SAF i [u]−1] = c is L-type,
we insert SAF i [u]− 1 in the leftmost empty cell in the bucket c of SAF i . In
the next ISS step, we perform a right-to-left scan of SAF i . This time, for
every SAF i [u] such that Ri[SAF i [u]− 1] = c is S-type, we insert SAF i [u]− 1
in the rightmost empty cell in the bucket c of SAF i . In both ISS scans, if
Li[SAF i [u]] = 1 (i.e., Ri[SAF i [u]] is the leftmost symbol of a phrase), we skip
the position as it does not induce the order of any suffix in F i.

Computing pBWT i in Compressed Space. Algorithm 3 produces pBWT i

from SAF i , Di = (Ri, Li, N i), and Bi. We consider the partition of SAF i

where every block SAF i [sx..ex] encodes the suffixes that come from different
phrases of F i but spell the same sequence Sx ∈ Σi2. For SAF i [sx..ex], we

2In practice, we compute every distinct block SAFi [sx..ex] during the construction of
SAFi . We reserve the least significant bit in the cells of SAFito mark every SAFi [sx]. We
flag these positions during the execution of our modified version of ISS (Paragraph 3.3.3).
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Algorithm 3 Computing the preliminary BCR BWT of T i

Require: SAF i , Di = (Ri, Li, N i), Bi

1: ℓ, b, f ← 0
2: sx, ex, o ← 1
3: c′, c ← ε
4: pBWT i,M, SAs ← ∅
5: for u = 1 to |SAF i | do
6: if u > 1 and SAF i [u] is the start of a new block in SAF i then
7: j ← SAF i [sx], ex ← u− 1 ▷ process block SAF i [sx..ex] for Sx

8: if Li[j + 1] ̸= 1 or Bi[Ri[j]] = 1 then ▷ Sx belongs to Si

9: if b > 1 or f = 1 then ▷ Sx produces an unsolved block in pBWT i

10: if b > 1 then ▷ Sx is a left-maximal suffix in F i

11: c ← #
12: j′ ← leftmost index j ′ ≥ j with L[j′ + 1] = 1 or j′ = |Ri|
13: Sx ← Ri[j..j′]
14: M ← M ∪ (Sx,σ

i + o)
15: mark occurrences of Sx in Ri as left-maximal
16: else ▷ Sx is a non-proper suffix in F i

17: c ← *
18: end if
19: SAs ← SAs ∪ {j} ▷ sample one occurrence of Sx

20: o ← o+ 1
21: end if
22: if c equals the symbol in the rightmost run of pBWT i then
23: increase the length of that run by ℓ
24: else
25: pBWT i ← pBWT i ∪ {(c, ℓ)} ▷ append new run
26: end if
27: end if
28: ℓ, b, f ← 0, sx ← u, c′ ← ε ▷ initialize new block’s information
29: end if
30: if L[SAF i [u]] = 1 then ▷ Sx is a phrase in F i

31: c ← @, f ← f + 1
32: else
33: c ← Ri[SAF i [u]− 1]
34: end if
35: b ← b+ c ̸= c′, ℓ ← ℓ+N i[rank(Li, j)]
36: c′ ← c
37: end for
38: process last block of SAF i as in lines 6-29
39: store pBWT i on disk
40: return (SAs,M) 22



compute the number b of left-context breaks, the number f of non-proper
suffixes, and the accumulative frequency ℓ of the phrases of F i enclosing
the occurrences of Sx in SAF i [sx..ex]. A left-context break between consec-
utive positions SAF i [u − 1] and SAF i [u], with u ∈ [sx + 1, ex], occurs when
Ri[SAF i [u − 1] − 1] differs from Ri[SAF i [u] − 1]. For technical convenience,
we compare the left context of SAF i [sx] against the empty symbol ε ̸= Σi, so
every block in SAF i has at least one left-context break. On the other hand,
a suffix SAF i [u], with u ∈ [sx, ex], is non-proper when Ri[SAF i [u]] is the left-
most symbol of a phrase. In this case, we assign a special symbol @ /∈ Σi

as its left context. Lines 30–36 describe the process of computing the values
(b, f, ℓ) for SAF i [sx..ex] on the fly as we scan SAF i . Once we reach the start of
a new block in SAF i , we process the information of the previous SAF i [sx..ex],
but only if its associated sequence Sx belongs to S i. This condition holds
when |Sx| > 1, or |Sx| = 1 and exp(Sx[1]) is suffixed by $. If b > 1 or f = 1,
Sx induces an unsolved block in pBWT i. Consequently, we append ℓ copies
of a special symbol to pBWT i. The value of this symbol depends on f and
b. If b = 1 and f = 1, Sx is always a non-proper suffix in F i (Lemma 3.4), so
we append *ℓ. On the other hand, if Sx is left-maximal (b > 1), we append
#ℓ instead (Lemma 3.3). When the symbol is #, we also store Sx associated
with an integer in a dictionary M . If SAF i [sx..ex] is the oth block producing
a special symbol in pBWT i, the integer for Sx is σi + o. After deciding the
special symbol we insert in pBWT i, we append SAF i [sx] into another array
SAs representing a sampled version of SAF i . On the other hand, when f = 0
and b = 1, Sx always occurs as a proper suffix in F i, and it is always preceded
by c ∈ Σi (Lemma 3.5). Thus, we append cℓ to pBWT i. Lines 6–29 describe
the processing of SAF i [sx..ex]. Once we finish the scan of SAF i , we store
pBWT i into the disk and return SAs and M . Figure 5 shows an example of
the computation of pBWT i in compressed space.

Example 3.1. Construction of pBWT i in Figure 5. The first run in pBWT i

is c2 because the suffix Ri[SAF i [1] = 7] = $ of the first block belongs to
R1[4..7] = acc$, that has frequency N 1[rank1(L

1, 7) = 2] = 2. In con-
trast, the second run is *4 because the suffixes 8, 4 and 12 of the next three
SAF i blocks map to the full phrases Ri[8..11] = aata, Ri[4..7] = acc$, and
Ri[12..15] = agta, respectively. The run has length 4, and not 3, because
acc$ has frequency N 1[rank1(L

1, 4) = 2] = 2. We add (gta, 9) into M be-
cause gta is left-maximal in F i, and its associated block SAF i [9..10] is the
4th block producing special symbols in pBWT i. Now, assuming σ1 = 5, we

23



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R1 = g t a a c c $ a a t a a g t a

L1 = 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0
N1 = 2 2 1 1

SAF i = 7 8 4 12 9 3 11 15 6 5 1 13 2 10 14
a

SAs = 81 42 123 14 25

pBWT i = c2 *4 a1 c2 a2 #7

a
M = a a(gta, 9)(ta, 10)

$ aa
ta

ac
c$

ag
ta

at
a

a a a c$ cc
$

gt
a

gt
a

ta ta ta

Figure 5: Construction of pBWT 1 in compressed space using the succinct dictionary
D1 = (R1, L1, N1) of the LMS parsing of Figure 2. The boxes in SAFi are the blocks
of equal suffixes in F i. We skip block 6 (dashed box) because its suffixes overlap other
phrases in F i, and hence, are redundant to build pBWT i.

have that the integer value we store in M is 4 + 5 = 9. A similar situation
occurs with (ta, 10).

Output Data Structures in the Construction of pBWT i. In addition to the
preliminary BCR BWT of T i, Algorithm 3 produces two auxiliary data struc-
tures: SAs and M . We will use these extra elements to assist in the com-
pression of F i in the next iteration step. SAs is a sampled version of SAF i

storing one occurrence in Ri for each string Sx ∈ S i whose corresponding
block pBWT i[sx..ex] is unsolved. Thus, if there are n′ ≥ |F i| blocks in SAF i

that have an unsolved projected block in pBWT i, then SAs[1..n
′] has n′ sam-

pled positions. Notice that because SAs maintains the relative order of the
elements in SAF i , the strings encoded by SAs are sorted in LMS order. On the
other hand, the dictionary M stores as a key each string Sx ∈ S i that is left-
maximal in F i. The associated value of each key is the rank of the unsolved
block that Sx produced in pBWT i. For instance, if the area SAF i [sx..ex] for
Sx is the oth block producing an unsolved segment in pBWT i, the integer in
M for Sx is o+ σi. We add σi just for technical convenience.

3.3.4. Grammar Compression
Once we finish constructing pBWT i, the next step in the parsing iteration

i is to store F i in a compact form to use it later during the induction phase
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F i
exp = {aata, acc$, agta, gta, ta}
G1 = a10 @$ a9 g10 @t

Figure 6: Example of our grammar-like encoding for the set F i
exp constructed from the

parsing set F1 of Figure 4. Each suffix in grey is the longest left-maximal suffix of its
phrase. The underlined symbol is the left context of that suffix.

(Line 6 of Algorithm 2). We first explain why we need the parsing set during
the induction phase and then describe the format we choose to encode it.

Broadly speaking, the induction process consists of scanning BWT i+1
bcr

left to right, mapping every symbol BWT i+1
bcr [j] ∈ Σi+1 back to the phrase

F [1..nf ] ∈ F i from which it originated, and then checking which of the
proper suffixes of F produced unsolved blocks in pBWT i (see Lemmas 3.3
and 3.4). Assume the suffix F [u..nf ] = Sx ∈ S i produced the unsolved block
pBWT i[sx..ex], then we insert F [u− 1] into pBWT i[sx..ex].

The process described above requires a mechanism to map left-maximal
suffixes in F i back to the unsolved block they produce in pBWT i. We
implement this feature by encoding F i with a representation that is similar
to grammar compression (Section 2.1).

We start by modifying the set to make it suitable for our encoding.
First, we insert each string Sx ∈ S i \ F i associated with the unsolved block
pBWT i[sx..ex] into F i. These strings are those meeting Lemma 3.3 and that
only appear as a proper suffix in F i, not as a full phrase. Then, we sort
the strings in F i in ≺LMS order. We refer to this new version of F i as the
expanded parsing set F i

exp.

Definition 3.5. Expanded parsing set: a string set F i
exp ⊂ S i storing each el-

ement Sx ∈ S i whose associated block pBWT i[sx..ex] either meets Lemma 3.3
or Lemma 3.4. Additionally, the strings in F i

exp are sorted in LMS order.

Notice the convenience of the expanded set: if we need to access the
string Sx associated with the oth unsolved block pBWT i[sx..ex], we visit the
oth string in F i

exp. Now, to fill pBWT i[sx..ex], we also need to know the
symbols in Σi preceding Sx. We support this functionality by compressing
F i

exp. Specifically, we replace the suffix occurrences of Sx in F i
exp with its

LMS order o in F i
exp. Thus, for instance, if we access a string F in the

compressed version of F i
exp that is suffixed by c·o, we know that c is the left

context of Sx, and that goes within the oth unsolved block pBWT i[sx..ex].
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This grammar-like encoding is lossless because there is a phrase within F i
exp

for each symbol o /∈ Σi we insert. Therefore, if we need to access the nested
left-maximal suffixes of Sx, we just visit the oth string in F i

exp. We can
further compress F i

exp by removing the suffixes that do not produce unsolved
blocks in pBWT i. The result is a lossy grammar-like encoding that gives
us access to the left-maximal suffixes of F i

exp and their left-context symbols.
This feature is enough for us to run the induction phase.

In practice, the sampled suffix array SAs that we produced with Algo-
rithm 3 is an implicit representation of F i

exp, so we do not have to compute
it. On the other hand, the dictionary M contains the information we need
to compress the suffixes of F i

exp that generate unsolved blocks in pBWT i.

Grammar-compressing the Expanded Parsing Set. Algorithm 4 shows in de-
tail the steps we perform during this procedure. We start by initializing a
new vector Gi[1..2|SAs|] to store the compressed version of F i

exp. Then, we
scan SAs from left to right, and for every position j = SAs[u] we visit, we
access its associated phrase F [1..nf ] = Ri[j..j ′] ∈ F i

exp, with j ′ ≥ j being
the leftmost index with Li[j′ + 1] = 1. First, if j = j ′ and Li[j′] = 1, then
F = Ri[j] has length one and expands to a full string exp(F [1]) = Tx$, with
Tx ∈ T . This situation is a corner case generated by the LMS parsing, so
we set F = @Ri[j] (see Line 6), where @ = |SAs| + 1 is a special symbol
that denotes an invalid element in the encoding. On the other hand, when
nf > 1, we scan the phrase from left to right to find its longest proper suffix
Sx = F [u..nf ] = Ri[p..j′], with j > p ≤ j ′, which exists in M as a key. If such
a key exists, we obtain its left context c = F [u− 1] = Ri[p− 1] and replace
F with c·o′, where o′ is the integer associated with Sx in M (Lines 10–15).
If no proper suffix of F exists in M as a key, we replace F with a sequence
of length two. The left symbol will be @, while the right symbol depends on
F ’ sequence. If F [nf ] = Ri[j′] expands to a string in Σ∗ suffixed by $, we set
the right symbol to F [nf ], or set the right symbol to F [nf − 1] = Ri[j′ − 1]
otherwise (Lines16–22). Once we update F , we append it to Gi. After we
finish the scan of SAs, we destroy Ri, Li, SAs, and M , and finally store Gi

on disk. Figure 4 depicts an example of our grammar-like encoding.

Decompressing Strings of the Expanded Parsing Set. Consider again the phrase
F , which we replaced with the string c·o′ in Gi. The symbol o′ > σi is the
integer we obtained when we performed a lookup operation of Sx = F [u..nf ]
in M during the execution of Algorithm 4, while c = F [u− 1]. Further, the
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value o′ = o+ σi is the LMS order o of Sx in F i
exp plus σi (see Algorithm 3).

The existence of Sx in M ’s keys implies that Sx is a left-maximal suffix in
F i, which in turn implies that Sx is a full phrase in F i

exp. Additionally, the
left-maximal condition of Sx implies that at least two suffix occurrences of
Sx in F i were preceded by different symbols. This is why Sx produces the
oth unsolved block pBWT i[sx..ex]. Now, recall that the phrases of F i

exp are
stored in ≺LMS order. Therefore, if we want to access the area where Sx

lies, we have to set o = o′ − σi and go to Gi[2o− 1..2o]. This substring does
not encode the full sequence of Sx, but its longest left-maximal suffix Gi[2o]
(which is also a left-maximal suffix of F ) along with the left-context symbol
for that suffix (Gi[2o−1] ∈ Σi). Recursively, the longest left-maximal symbol
of Sx is not a sequence either but a pointer to another position of Gi. We
access this nested left-maximal suffix by setting o = Gi[2o]−σi and updating
the area Gi[2o−1..2o]. We continue applying this idea until we reach a range
Gi[2o− 1..2o] where c = Gi[2o] ≤ σi, which implies that we reached the last
suffix of F . In most of the cases, c is not F [nf ], but F [nf − 1]. The reason is
that the LMS substrings overlap by one symbol in T i, so F [nf ] is redundant
as it also appears as a prefix in another phrase. The only exception to this
rule is when F expands to a suffix of a string in T . In that case, Gi[2o] is
indeed F [nf ] because F does not overlap the prefixes of other LMS parsing
phrases.

Example 3.2. Spelling the left-context symbols of the left-maximal suffix
agta (Figure 6). The string agta has LMS order 3 in F i

exp so we visit
the 3th phrase in G1[2×3 − 1..2×3] = G1[5..6] = a9, and access the left
symbol a. Then, we compute the next string using the right symbol 9 as
4 = 9−σi = 9−5, visit the 4th string Gi[2×4−1..2×4] = G1[7..8] = g10 (gta)
and output g. We repeat the same process, computing the string 5 = 10− 5
and visiting G1[9..10] = @t (ta). However, this time we have t ≤ σ1, which
means we reached the rightmost suffix of agta that does match the prefix of
other phrases in the LMS parsing of T 1 (see the phrases ending with ta in
the string T i of Figure 2). This situation does not occur, for instance, with
acc$, whose rightmost suffix in G1 is indeed $ because acc$ can not overlap.

3.4. Creating the String for the Next Iteration of Parsing
The final step of iteration i during the parsing phase is to create the

text T i+1. For this purpose, we produce a new dictionary Di containing the
strings in F i (i.e., the parsing phrases) as keys. The value associated with
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Algorithm 4 Grammar compressing F i
exp

Require: Ri, Li, Bi, SAs,M
1: Gi ← ∅ ▷ grammar-compressed F i

exp

2: for u = 1 to |SAs| do ▷ visit each F = Ri[j..j ′] ∈ F i
exp

3: j ← SAs[u]
4: j′ ← leftmost index j ′ ≥ j with L[j ′ + 1] = 1 or j′ = |Ri|
5: o′ ← ε, c ← @
6: if Li[j′] = 1 and Bi[Ri[j′]] = 1 then ▷ exp(Ri[1] = F [1]) = Tx$
7: o′ ← Ri[j]
8: else
9: p ← j + 1

10: while p ≤ j′ and Ri[p..j′] is not left-maximal do
11: p ← p+ 1
12: end while
13: if Sx = Ri[p..j′] is left-maximal then
14: c ← Ri[p− 1]
15: o′ ← value associated to Sx in M
16: else ▷ F does not have left-maximal suffixes
17: if Bi[Ri[j′]] = 1 then ▷ F expands to a suffix in T
18: o′ ← Ri[j′]
19: else ▷ F is a regular parsing phrase with overlap
20: o′ ← Ri[j′ − 1]
21: end if
22: end if
23: end if
24: F ← c·o′
25: Gi ← Gi ∪ F
26: end for
27: destroy Ri, Li, Bi, SAs and M
28: store Gi on disk

each key is its LMS order in F i
exp. We construct T i+1 by running LMS parsing

over T i again to replace the phrases with their associated values in Di. If
T i+1 has length k (the number of strings in T ), we stop the parsing phase as
all the strings in T are now compressed to one symbol.

The only caveat with this construction is that the symbols in the alphabet
Σi+1 of T i+1 are not consecutive if |F i

exp| > |F i|, but this feature does not
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change the correctness of our method. Specifically, if T i+1[j] < T i+1[j′], it
still hold that exp(T i+1[j]) ≺LMS exp(T i+1[j′]). We will use the fact that
the symbols in T i+1 are the LMS order in F i

exp and not in F i during the
induction phase.

3.5. The Induction Phase
The induction phase starts with the computation of BWT h

bcr, the BCR
BWT for the text T h of the last iteration h of the parsing phase (Line 11 of
Algorithm 2). This step is trivial as each symbol in T h encodes a full string
of T (see the ending condition of the parsing phase). Hence, the left context
of every symbol is the symbol itself. The BCR BWT maintains the relative
order of the strings in T (see Section 2.3), so BWT h

bcr is T h itself.
Before explaining our induction procedure, we describe some important

properties of BWT i+1
bcr . As a quick reminder, F i

exp is the expanded parsing
set encoding the strings in F i (see Lemma 3.2) plus the sequences that are
left-maximal suffixes in F i. The strings in F i

exp are precisely those inducing
unsolved blocks in pBWT i.

Lemma 3.6. Let BWT i+1
bcr [j] and BWT i+1

bcr [j′] be two symbols in Σi+1, with
j < j′, whose corresponding phrases in F i are F [1..nf ] and F ′[1..nf ′ ], respec-
tively. Additionally, let the proper suffixes F [u..nf ] = F ′[u′..nf ′ ] = Sx ∈ F i

exp

be left-maximal in F i. Now consider the substrings mapi(T i+1[GSAi+1[j] −
1]) = T i[p..p + nf − 1] and mapi(T i+1[GSAi+1[j′] − 1]) = T i[p′..p′ + nf ′ − 1]
with the occurrences of F and F ′ that formed the symbols BWT i+1

bcr [j] and
BWT i+1

bcr [j′] in T i+1, respectively. The suffix T i[p + u − 1..ni] prefixed by
Sx = F [u..nf ] precedes in GSAi the suffix T i[p′ + u′ − 1..ni] prefixed by
Sx = F [u′..nf ′ ].

Proof. As the prefixes T i[p + u − 1..nf ] = F [u..nf ] = Sx and T i[p′ + u′ −
1..nf ′ − 1] = F ′[u′..nf ′ ] = Sx are equal, the relative order of T i[p+ u− 1..ni]
and T i[p′ + u′ − 1..ni] is decided by the right contexts in T i+1 of the occur-
rences BWT i+1

bcr [j] and BWT i+1
bcr [j′]. By induction, we know that BWT i+1

bcr

is complete, and as BWT i+1
bcr [j] precedes BWT i+1

bcr [j′] in the BWT, the right
context of T i[p+u−1..nf ] is lexicographically smaller than the right context
of T i[p+ u′ − 1..nf ′ ].

We generalize Lemma 3.6 to compute the block pBWT i[sx..ex] = #ℓ that
meets Lemma 3.3 and whose string Sx ∈ S i \ F i only occurs as a proper
suffix in F i.
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Lemma 3.7. Let J = {j1, j2, . . . , jℓ} be a set of strictly increasing positions
of BWT i+1

bcr . Every BWT i+1
bcr [jb], with jb ∈ J , is a symbol o ∈ Σi+1 assigned

to a phrase F [1..nf ] ∈ F i where Sx = F [u..nf ] ∈ F i
exp occurs as a proper

suffix. The symbols of BWT i+1
bcr referenced by J are not necessarily equal, and

hence, their associated phrases in F i are not necessarily the same. However,
these phrases of F i are all suffixed by Sx. Assume we scan J from left to
right, and for every jb, we extract the symbol F [u− 1] ∈ Σi that precedes Sx

and append it to a vector LSx . The resulting sequence for LSx ∈ Σi∗ matches
the unsolved block pBWT i

bcr[sx..ex] = #ℓ generated by Sx.

Proof. Lemma 3.6 tells us that the suffix of T i prefixed by the occurrence
of Sx encoded by BWT i+1[jb] precedes the suffix of T i prefixed by the oc-
currence encoded by BWT i+1[jb+1]. This property holds for every jb, with
b ∈ [1, ℓ − 1]. Hence, the suffixes of T i prefixed by Sx are already sorted in
J . On the other hand, Lemma 3.2 tells us that all the occurrences of Sx as
a suffix of a parsing phrase appear consecutively in GSAi[sx..ex]. Thus, by
taking the left-context symbols of Sx’s occurrences encoded by J , we obtain
pBWT i

bcr[sx..ex].

Example 3.3. Filling the unsolved block pBWT i[15..18] = #4 of Figure 4
with Lemma 3.7. Consider the BCR BWT BWT 2

bcr = 4 4 3 1 2 2 for the
text T 2 = 4 2 4 1 3 2 of Figure 2. The expanded parsing set F i

exp from which
the symbols of BWT 2

bcr were generated is shown in Figure 6. Additionally,
consider the string ta ∈ S1 generating the block GSA1[15..18] in the partition
induced by S1 (see Figure 4). As SA1[15..18] meets Lemma 3.3, the projected
block pBWT i[15..18] = #4 is unsolved. Lemma 3.7 tells us that we can solve
pBWT 1[15..18] provided we know BWT i+1

bcr and the phrases of F1 where
ta occurs as a suffix. The prefix BWT 2

bcr[1..4] = 4 4 3 1 contains all the
symbols in Σi+1 whose associated phrases are suffixed by ta. In particular,
if we replace 4 4 3 1 with their phrases in F i

exp, we obtain gta, gta, agta,
aata. We apply Lemma 3.7 by taking the left context of ta in those strings
without changing the relative order and thus obtain Lta = pBWT 1[15..18] =
g g g a, which is precisely the substring BWTbcr[15..18] of Figure 4.

When Sx does not occur as a nested proper suffix in F i (Lemma 3.4), there
is no left-context symbol we can extract from the parsing set, so Lemma 3.7
does not work. Nevertheless, we can use BWT i

bcr in other ways to complete
the unsolved block pBWT i[sx..ex] = *ℓ that Sx generated.
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Lemma 3.8. Let pBWT i[sx..ex] = *ℓ be an unsolved block induced by a
string Sx ∈ S i that meets Lemma 3.4. Additionally, let o′ and o ∈ Σi+1

be the LMS orders of Sx in F i and F i
exp, respectively. Let GSAi[u..u′] be

the bucket o′ ≤ o storing the suffixes of T i prefixed by o. The element in
pBWT [sx + j− 1] is the rightmost symbol in expi(BWT i+1

bcr [u+ j− 1]), with
u+ j − 1 ≤ u′.

Proof. Sx is the LMS parsing phrase to which we assign the symbol o ∈ Σi+1

as a replacement for the text T i+1, o being the LMS order of Sx in F i
exp.

Recall that this construction produces the alphabet Σi+1 of T i+1 to be non-
contiguous. Therefore, the bucket GSAi[u..u′] number o′ ≤ o is the one
storing the suffixes of T i+1 prefixed by o. We know that Sx does not occur
as a nested proper suffix within F (Lemma 3.4), meaning that all its left-
context symbols (those we insert in pBWT i[sx..ex]) are captured3 by the
symbols that precede o in T i+1. By induction, BWT i+1

bcr [u..u′] already has
these preceding symbols in BWT order. Thus, the remaining step is to
decompress those symbols, take the rightmost element of their phrases, and
place them in pBWT i[sx..ex] without changing their relative order.

Example 3.4. Filling the unsolved block pBWT i[4..5] = *2 produced by
acc$ ∈ F1 of Figure 4 using Lemma 3.8. The phrase acc$ has LMS order
o = 2 ∈ Σ2 in F i

exp. Further, GSAi[2..3] is the bucket number o′ = 2 and
has the suffixes of T i+1 prefixed by o = 2 (see Figure 7). The corresponding
range in the BWT has the sequence BWT 2

bcr[2..3] = 4 3. Decompressing their
phrases gives us exp(4) = gt and exp(3) = agt (recall that exp removes the
last element in the overlapping LMS phrases of T i). If we take their rightmost
symbols, we produce pBWT 1[4..5] = t t, which matches BWTbcr[4..5] in
Figure 4.

Finally, we cover the case when Sx occurs as a phrase F = Sx ∈ F i

but also as a nested proper suffix Sx = F ′[p..nf ′ ] in another parsing phrase
F ′[1..nn′ ] ∈ F i. We solve its block pBWT i[sx..ex] = #ℓ using a hybrid
strategy that combines Lemmas 3.7 and Lemma 3.8.

Lemma 3.9. Let J be the set of Lemma 3.7 with the occurrences in BWT i+1

of the phrases suffixed by Sx. This time, these suffixes could be proper or

3That is, the symbols in pBWT i[sx..ex] occur within the phrases of F i that map to
symbols preceding o in T i+1.
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non-proper. Assume we scan J from left to right to fill LSx , but with a
small change: if expi(BWT i[jb]) = F , with jb ∈ J , we append the special
symbol * in LSx . After the scan, we replace the occurrences of * in LSx

with Lemma 3.8. The replacement of the jth special symbol in LSx is the
rightmost element of expi(BWT i+1

bcr [u+j−1]), where GSAi[u..u′] is the bucket
with the suffixes of T i+1 prefixed by the symbol o ∈ Σi+1 assigned to F = Sx.

Our lossy grammar-like representation of F i
exp (i.e., the vector Gi of Sec-

tion 3.3.4) has all the information we need to fill the unsolved blocks as
described in Lemmas 3.7, 3.8, and 3.9. The only extra information we need
to complete pBWT i, and that it is not in Gi, is the order in which we have to
rearrange the left-context symbols of Sx within pBWT i

bcr[sx..ex]. Fortunately,
we can induce this information from BWT i+1

bcr .
It is also worth mentioning that the special symbols * and # we introduced

in pBWT i indicate what lemma we should use to fill the unsolved blocks.
We will use this fact in the next section.

3.6. The Induction Algorithm
We now describe the steps we perform during iteration i < h in the

induction phase (loop in lines 13-18 of Algorithm 2). Notice that the value
of i decrements with each round as we simulate the return from a recursion
that is equivalent to that of SA-IS. In this case, we assume we receive as
input for the iteration the string (i) BWT i+1

bcr , (ii) the vector Gi with the
lossy grammar-like encoding of F i

exp, and (iii) pBWT i. We also assume a
bit vector V i[1..σi+1], with σi+1 = |F i

exp|, indicates with V i[o] = 1 if the
oth string Sx ∈ F i

exp in LMS order is left-maximal in F i. The output of
the iteration is BWT i

bcr, the BCR BWT of string T i. The details of the
procedure are shown in Algorithm 5.

Data Structures and Encoding. A central piece of our induction algorithm
is an in-memory vector P i storing the left-context symbols of the strings
Sx ∈ F i

exp occurring as left-maximal suffixes in F i (Lemmas 3.7 and 3.9).
We divide P i into rank1(V

i, σi+1) buckets. Thus, for a left-maximal suffix
Sx ∈ F i

exp whose LMS order in F i
exp is o ∈ Σi+1, we store its left-context

symbols in the bucket b = ranki(V
i, o). Put differently, the bucket b of P i is

an encoding for the sequence LSx = pBWT i[sx..ex] of the previous section.
We keep P i in run-length-compressed format to reduce working memory and
CPU time. We estimate the (run-length-compressed) area of every bucket
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G1 V 1 aaaa BWT 2
bcr P 1

aata a51 0 g5, t 4 1 3 2 (*, 2) gta

acc$ @$2 0 g5, t 4 2 (a, 1)

agta a43 0 a4, g5, t 3 2 (g, 3) ta

gta g54 1 a5, t 1 3 2 (a, 1)

ta @t5 1 $ 2 4 1 3 2

$ 2 4 2

(A) (B)

Figure 7: Construction of P 1 during the induction phase. (A) The grammar-like encoding
Gi of F i

exp in Figure 6. We subtracted σ1 = 5 to the right symbols to simplify the example.
The vector V 1 indicates which phrases of F i

exp are left-maximal suffixes in F1. (B) The
vector BWT 2

bcr for the string T 2 of Figure 2 and the vector P 1. The dashed line in P 1

marks the boundary between its buckets. The sequence to the left of each BWT 2
bcr[j] = o

stores the elements we decompress from G1 starting from symbol o, while the sequence to
the right of BWT 2

bcr[j] is its following suffix in T 2 sorted as in GSA2.

within P i before the induction starts. To simplify our explanations, we will
assume we already know this information and will describe how to compute it
later (see Paragraph 3.6). We use the notation P i[b] to denote the complete
run-length-compressed area of P i storing the symbols of bucket b. We also
define a process called RLC append : let L be a run-length-compressed string
and let (c, ℓ) be an equal-symbol run we need to append into L. If c matches
the symbol of the rightmost run in L, we increase the length of that run by
ℓ or append (c, ℓ) as a new run otherwise.

The Induction Process. This step consists in computing the unsolved blocks
pBWT i[sx..ex] = #ℓ that meet Lemmas 3.7 and 3.9. However, instead of
inserting the result right away into pBWT i, we will insert it into P i. We
visit the equal-symbol runs of BWT i+1

bcr from left to right. When we reach
the jth run (o, ℓ), with o ∈ Σi+1, we check if its corresponding4 parsing
phrase F [1..nf ] ∈ F i exists as a suffix in other phrases of F i. If that is the
case, we RLC append ℓ copies of the special symbol * /∈ Σi to the bucket
b = rank(V i, o) of P i (see Lines 4–6). Inserting * into P i is equivalent to
handling a block of pBWT i that meets Lemma 3.9. The next step is to
decompress the left-maximal suffixes of F from Gi (see Section 3.3.4). This

4The string from which we obtain the symbol o during iteration i of the parsing phase
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process begins by accessing Gi[2o − 1..2o]. If o′ = Gi[2o] > σi+1, then o′

encodes a string F [u..nf ] = Sx ∈ Fexp, with u > 1, whose sequence is a
left-maximal suffix in F i (see Lemma 3.3). We encoded o as o′ = o + σi

in Gi to differentiate it from the symbols in Σi. On the other hand, the
left-context symbol of Sx is Gi[2o − 1] ∈ Σi. With this information, we
apply Lemma 3.7 by RLC appending ℓ copies of Gi[2o − 1] to the bucket
rank1(V

i, Gi[2o] − σi) of P i. Then, we move to the next left-maximal suffix
of F by setting o = Gi[2o] − σi and updating the range Gi[2o − 1..2o]. The
decompression of F stops when Gi[2o] ≤ σi, which means we reached the last
symbol of F . For the moment, we do not know for which phrase of F i Gi[2o]
is its left context. Hence, we update the value of the jth run in BWT i+1 to
Gi[2o] ∈ Σi and leave this run on hold to process it later when we solve the
blocks of Lemma 3.8.

Example 3.5. Construction of the vector P i in Figure 7. Consider the run
BWT 2

bcr[1..2] = 42. Its phrase F = gta (the 4th string of F i
exp in LMS order)

is left-maximal in F i as V 1[4] = 1. Hence, we RLC append (*, 2) to the
bucket rank(V 1, 4) = 1 of P 1. Then, the decompression of 4 from G1 produces
g5, which means we RLC append (g, 2) into the bucket rank1(V

1, 5) = 2
of P 1. Finally, the last decompressed element t indicates we reached the
rightmost non-overlapping suffix of F . Therefore, we replace BWT 2[1..2] =
42 by BWT 2[1..2] = t2. Notice we decompressed the symbol 4 ∈ Σ2 in
BWT 2

bcr[1..2] only once but copied the information twice (i.e., the length of
the run) to each bucket in P 1.

Merging the Induced Symbols. The last step in iteration i is to compute the
blocks pBWT i[sx..ex] = *ℓ of Lemma 3.8 and solve the unfinished blocks
pBWT i[sx..ex] = #ℓ that meet Lemma 3.9 (buckets in P i containing * sym-
bols). We carry out this process by merging pBWT i, BWT i+1

bcr , and P i. This
procedure is, in practice, a merge of three sorted vectors as the symbols are
already sorted by their right contexts in T i. We use the special symbols *, #
in pBWT i and P i to change the active vector in the merge. The change is
equivalent to switching the lemma we use to build BWT i

bcr. For instance, if
we see # in pBWT i, we go to P i as this vector contains the symbols sorted
with Lemma 3.7. Further, if we see * in P i, we reached an unfinished block of
Lemma 3.9, so we need to visit BWT i+1

bcr . Finally, if we see * in pBWT i, we
go to BWT i+1

bcr as this vector has the symbols sorted with Lemma 3.8. The
merge algorithm is as follows: we scan pBWT i and RLC append its entries
to BWT i

bcr as long as the symbols we see in pBWT i are not * or # (Line 34).
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P 1 = (*, 2) (a, 1) (g, 3) (a, 1)

BWT 2
bcr = (t, 4) ($, 2)

pBWT 1 = (c, 2) (*, 4) (a, 1) (c, 2) (a, 2) (#, 7)
aaa

BWTbcr = (c, 2) (t, 4) (a, 1) (c, 2) (a, 2) ($, 2) (a, 1) (g, 3) (a, 1)

Figure 8: Merge of pBWT 1, BWT i+1 and pBWT i to produce BWTbcr for the string
T 1 = gtacc$gtaatagtacc$ of Figure 2. We constructed pBWT 1 in Figure 5, and vectors
BWT i+1

bcr and P 1 in Figure 7.

If we reach a run *ℓ, we RLC append the next ℓ symbols of BWT i+1
bcr into

BWT i
bcr. On the other hand, if we reach #ℓ, we RLC append the next ℓ

symbols from P i instead. Additionally, as we consume the ℓ elements from
P i, we might reach a run (*, ℓ′). When this happens, we change the active
list again and RLC append the next ℓ′ symbols of BWT i+1

bcr into BWT i
bcr.

If ℓ′ > ℓ, we recover ℓ symbols of BWT i+1 instead and decrease the active
run of BWT i+1

bcr by ℓ. Once we consume the ℓ′ symbols from BWT i+1
bcr , we

return to P i to consume what it remains from the ℓ symbols. Equivalently,
once we consume the ℓ symbols from P i (and possibly BWT i+1

bcr ), we return
to pBWT i. Lines 18–32 show how we process the ℓ symbols of P i.

Example 3.6. Producing BWTbcr in Figure 8. The merge starts by append-
ing pBWT 1[1..2] = (c, 2) into BWTbcr. The next run pBWT i[3..6] = (*, 4)
is flagged with the special symbol *. Therefore, we change the active vec-
tor in the merge to BWT 2

bcr, and RLC append BWT 2
bcr[1..4] = (t, 4) into

BWTbcr. Now the active merge position of BWT 2
bcr becomes BWT 2

bcr[5]. We
switch back to pBWT 1 to RLC append pBWT 1[7..11] = (a, 1)(c, 2)(a, 2) into
BWTbcr as they have symbols in Σ. However, the next run pBWT 1[12..18] =
(#, 7) is flagged with the special symbol #, indicating we need to switch the ac-
tive vector in the merge again and extract the next seven symbols of BWTbcr

from P 1[1..7]. Still, the first run P 1[1..2] = (*, 2) is, in turn, flagged with
*, which means we have to go to BWT 2

bcr[5..7] = ($, 2) (5 being the active
merge position of BWT 2

bcr) and RLC append ($, 2) into BWT 1. Finally, we
return to P 1[3..7] to obtain the remaining 7−2 = 5 symbols. Notice that the
resulting BWTbcr matches the BCR BWT of T 1 we presented in Figure 4.

Precomputing the Number of Buckets. The last aspect we address for the
construction of BWT i

bcr is how to compute the area of every bucket within P i.
We initialize a vector P ′[1, rank(V i, σi+1)] of pairs. Every pair P ′[b] = (x, y)
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is a temporal variable to count the number of runs in the bucket b of P i.
We obtain the values for P ′ with one decompression of BWT i+1

bcr from left
to right. The procedure is almost equal to what we show in Lines 2–12 of
Algorithm 5, although we do not modify BWT i+1

bcr . Recall that this procedure
yields a sequence (c1, b1), . . . , (cx, bx), where bj is a bucket we visit in P i and
cj is the left-context symbol for the phrase associated with the bucket bj. We
compare the symbol cj with the left element in P ′[bj]: if they are equal, we
do nothing. If, on the other hand, they differ, we increase the right element
in P ′[bj] by one and set the left element to cj. Once we scan BWT i+1, the
right element of every pair P ′[b] will contain the maximum number of runs
we could see in P i[b]. These values can decrease once we recover the symbols
for the unsolved areas (flagged with *) of P i.

3.7. The Complexity of Our Method
We now present the theoretical bounds of grlBWT.

Theorem 3.10. Let T = {T1, T2, . . . , Tk} be a collection with k = |T | strings
over the alphabet Σ and let T = T1$· · ·Tk$ be a string of n = |T | symbols over
the alphabet Σ∪$ storing the concatenation of T . Additionally, let m be the
length of the longest string in T . The algorithm grlBWT constructs the BCR
BWT of T in O(n+k logm) expected time and requires O((n+k logm) log n)
bits of working space.

Proof. Our algorithm grlBWT is an adaptation of the algorithm SA-IS of
Nong et al. [34]. The authors showed that this method takes linear time and
uses O(n log n) bits of space. The relevant observation is that the length
ni+1 of the string T i+1 is at most ni

2
, ni being the length of the previous T i.

Thus, the cumulative lengths of strings T 1, T 2, . . . , T h, with h = O(log n),
that SA-IS produces is no more than 2n. On the other hand, the amount of
work in every level i is proportional to ni, so the overall cost of the algorithm
is linear on the input text. We adapt this argument to our method to probe
our theoretical bounds.

Running the LMS parsing reduces each substring T i[j..j ′] of length j ′ −
j+1 > 1 representing a string exp(T i[j..j ′]) = Tx$ of T to another substring
T i+1[p..p′] that is at most half the length of T i[j..j ′]. However, it might
happen that the resulting substring T i+1[p..p′] has length p′ − p+1 = 1. We
say that T i+1[p] is uncompressible because it already covers a full string of
T , but we can not reduce its size with a new round of LMS parsing. If there
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Algorithm 5 Induction of BWT i
bcr

Require: pBWT i, Gi, BWT i+1
bcr , and V i

1: P i ← estimate size of P i’s buckets
2: for j = 1 to number of runs in BWT i+1

bcr do ▷ populate P i’s buckets
3: (o, ℓ) ← jth run in BWT i+1

bcr ▷ symbol o ∈ Σi+1 assigned to F ∈ F i

4: if V i[o] = 1 then ▷ F occurs as a left-maximal suffix in F i

5: RLC append ℓ copies of * to the bucket rank1(V
i, o) of P i

6: end if
7: while Gi[2o] > σi do ▷ visit left-maximal suffixes of F
8: RLC append ℓ copies of Gi[2o− 1] to P i[rank1(V

i, Gi[2o]− σi)]
9: o ← Gi[2o]− σi

10: end while
11: set Gi[2o] as the symbol for the jth run of BWT i+1

bcr

12: end for
13: for j = 1 to number of runs in pBWT i do ▷ assemble BWT i

bcr

14: (o, ℓ) ← jth run in pBWT i

15: if o = * then
16: RLC append next ℓ symbols of BWT i+1

bcr into BWT i
bcr

17: else if o = # then
18: while ℓ > 0 do
19: (o′, ℓ′) ← active run in P i

20: if ℓ′ > ℓ then
21: decrease length of active run in P i by ℓ′ − ℓ
22: ℓ′ ← ℓ
23: else
24: move to the next run in P i

25: end if
26: if o′ = * then
27: RLC append the next ℓ′ symbols of BWT i+1

bcr into BWT i
bcr

28: else
29: RLC append ℓ′ copies of o′ into BWT i

bcr

30: end if
31: ℓ ← ℓ− ℓ′

32: end while
33: else
34: RLC append ℓ copies of o to BWT i

bcr

35: end if
36: end for
37: return BWT i

bcr
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are substrings of T i+1 encoding elements of T that are still compressible,
then grlBWT will incur in another recursion i + 2 and carry T i+1[p] to T i+2

as another symbol. This feature implies that the length ni+2 of T i+2 is not
guaranteed to be at most ni+1

2
like in SA-IS. Instead, ni+2 is upper bounded

by O(n
i+1

2
+ k) as there are less than k uncompressible symbols T i+1[p] we

can carry from T i+1 to T i+2. Our method finishes the recursions when all
the strings of T encoded by T i are uncompressible, meaning that we can not
produce more than logm recursions. Thus, the cumulative lengths of our
strings T 1, T 2, . . . , T h, with h = O(logm), is no more than

Plogm
i=0

n
2i
+ k ≤

2n+ k logm.
We now analyse the amount of work we perform in every recursion level i.

Creating the dictionary Di from T i using a standard hash table takes O(ni)
expected time and requires O(ni log ni) bits of space. The construction of
SAF i runs in O(ni) time and space as we use ISS to build it, and the number
of symbols in the keys of Di is never greater than ni. The extra steps of the
parsing iteration only require a constant number of linear scans over SAF i .
During the induction phase, we only perform linear scans over BWT i+1

bcr and
pBWT i. We still have the cost of accessing the left-maximal suffixes of F i

when we scan BWT i+1
bcr . However, our simple grammar-like representation

Gi (Section 3.3.4) supports random access in O(1) time to the symbols, and
the number of left-maximal suffixes we visit during the scan of BWT i+1

bcr is
no more than ni. Thus, the cost of every recursion level i is O(ni) time and
O(ni log ni) bits of space. Summing up the h = O(log p) recursions levels,
the total cost of grlBWT is O(n + k logm) time and O((n + k logm) log n)
bits of space.

While the only general bound in terms of n is O(n+k logm) ⊆ O(n log n),
this bound is reached only in degenerate cases (e.g., one string of length n/2
and n/2 strings of length 1 or 2). In typical cases, where m = O(n/k),
it holds O(n + k logm) = O(n). This holds even if the largest string in
T is significantly larger than the average, for example m = O((n/k)c) for a
constant c. In practical applications, the worst case is probably that of k short
reads whose length ℓ is a few hundreds, and then still k logm = (n/ℓ) log ℓ is
an order of magnitude less than n.
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4. Refining Our Algorithm

In this section, we explain how to produce smaller temporary data struc-
tures during the parsing of T i. As before, we are interested in a lightweight
compression scheme that improves the overall performance of grlBWT, es-
pecially when T is not that repetitive. The challenge is to find a balance
between the extra compression we gain for F i and T i+1 and the computa-
tional resources we use to achieve it. A bad choice could yield good space
reductions at the cost of making grlBWT slower. On top of that, we also
need to be careful not to compromise the induction phase of grlBWT with
the changes we introduce.

Our strategy consists of merging consecutive substrings in the LMS pars-
ing of T i into one super phrase whenever the merge does not affect the
construction of BWT i

bcr. We formalize this idea as follows:

Definition 4.1. A super phrase is a substring T i[j1..jz] with the following
properties: (i) it spans a group of consecutive substrings F1 = T i[j1..j2], F2 =
T i[j2..j3], . . . , Fz = T i[jz−1..jz] in the LMS parsing whose associated phrases
F1, F2, . . . , Fz ∈ F i always appear together in T i (also as parsing phrases),
and in the same order. Thus, for each oth occurrence Fp = T i[jp,o..jp+1,o]
of Fp, it always holds that the phrase following that occurrence is Fp+1 =
T i[jp+1,o..jp+2,o], the oth occurrence of Fp+1. Additionally, (ii) any of the
phrases F1, F2, . . . , Fz−1 contain a proper suffix that is left-maximal in F i.

If F = T i[j1..jz] is a super phrase, we store F in F i instead of the internal
phrases F1, F2, . . . , Fz individually. We refer to F as a super phrase. We now
explain why super phrases do not affect the induction of BWT i

bcr.

Lemma 4.1. Let F = T i[j1..jz] ∈ F i be a super phrase of T i. The structure
of F does not affect the construction of BWT i

bcr during the induction phase.

Proof. We first prove property (i) of Definition 4.1 by contradiction. Assume
that the LMS parsing phrase Fp = T i[jp..jp+1] within the super phrase F =
T i[j1..jz] matches the sequence of another LMS parsing phrase Fp = T i[l..l′],
with (l, l′) /∈ [j1..jz]. Additionally, suppose the occurrence Fp = T i[l..l′] does
not meet the conditions to be encapsulated within a super phrase, so both
Fp and F become members of F i. In SAF i (i.e., the generalized suffix array
of F i), there will be a value that points to the suffix of F prefixed by Fp =
T i[jp..jp+1] and another value pointing to the full phrase Fp = T i[l..l′]. Both
suffix array values encode suffixes of F i labelled Fp, and hence, our algorithm
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will induce the lexicographical order of the suffixes of T i prefixed by Fp from
BWT i+1

bcr (see Lemmas 3.6 and 3.7). Now, for the induction to happen, we
need two symbols in T i+1, one encoding the occurrence Fp = T i[jp..jp+1] and
another encoding the occurrence Fp = T i[l..l′]. However, T i[jp..jp+1] will not
have a symbol in T i+1 as it is fully encapsulated within F , meaning that we
will not be able to perform the induction. This situation does not happen if
Fp always occurs in T i as a substring of F as we have enough context within
the super phrase the solve the BWT range associated with Fp.

The proof for property (ii) of Definition 4.1 is similar: assume this time
that the set of LMS parsing phrases F1, F2, . . . , Fz encapsulated by the super
phrase F meet property (i). However, one of them (say Fu, with u < z) has
a proper suffix Sx that is left-maximal. That is, Sx also occurs as a proper
suffix in, at least, one other phrase Y ∈ F i, and the symbols preceding the
occurrences of Sx in Fu and Y are different. During parsing iteration i, we
do not have enough information in F i to order the suffixes of T i prefixed by
Sx. We have the right context for the occurrence of Sx under Fu as Fu is a
substring in F (not a suffix), but we do not have the right context for the
occurrence under Y . Our method solves this problem in the next parsing
iteration i + 1 when comparing the symbols in T i+1 assigned to Fu and Y .
However, with the introduction of super phrases, we have symbols in T i+1

for F and Y , but not for Fu, and the right context of F is the right context
of Fz, not of Fu. This situation leads to an error during the induction of
BWT i

bcr when solving the occurrences of Sx.

The introduction of a super phrase F = F1, F2, . . . , Fz removes z − 1
regular phrases from F i and decreases the number of symbols in F i by z−1.
In our regular parsing scheme, the last element of every Fu, with u < z, was
a copy of the first element of Fu+1, because regular LMS parsing phrases
overlap, but now that Fu and Fu+1 belong to the same super phrase, that
copy is not in the parsing set. Also, notice that the length of T i+1 also
decreased by z − 1 symbols.

We restricted our definition of super phrases to avoid redundancy in F i.
One could, for instance, allow an LMS parsing phrase Fu to occur in different
super phrases as a substring as long as all the occurrences of Fu in T i were
covered by a super phrase. This relaxation could increase the number of
super phrases without affecting the induction of BWT i

bcr. However, it could
also create multiple copies of Fu within F i, which is undesirable.

Introducing super phrases requires a small change in the algorithm that
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constructs SAF i . In the original version we described in Section 3.3.3, we first
insert the last symbols of every phrase F ∈ F i at the end of its corresponding
bucket in SAF i . Subsequently, we perform one scan of SAF i to insert L-
type symbols and another scan to insert the S-type symbols. Now, with
the introduction of super phrases, we proceed as follows: before the suffix
induction, we visit every phrase F ∈ F i and put its last symbol at the end
of its corresponding bucket in SAF i . Additionally, if F is a super phrase, we
scan it to find all its internal LMS-type symbols and insert their positions
in F i at the end of their corresponding buckets in SAF i . Finally, we can
proceed with the induction of the L-type and S-type symbols as usual.

4.1. Practical Considerations of Super Phrases
When parsing T i, we do not know beforehand if a specific group of con-

secutive LMS parsing substrings will produce a super phrase. The naive
approach to check that information would be to construct a suffix tree of
T i, but this solution is impractical. An alternative idea would be building a
regular version of F i first, computing some satellite information about the
phrases directly from the dictionary, and then performing an extra scan of
T i to gather the super phrases, hoping that there are enough of them so that
the overhead of the extra scan produces a much smaller version of F i and
T i. Still, there is a third alternative that might not capture all the super
phrases, but it is for free. During every parsing round i− 1, we mark which
symbols in the alphabet of T i are unique. Then, when we scan T i in the
ith parsing round, we proceed as follows: every time we reach an LMS-type
symbol T i[j] (i.e., a break in the parsing), we check if T i[j − 1] is unique. If
so, we skip the break and continue extending the current phrase to the left.
We keep applying this procedure until we reach a break where the condition
does not hold.

It is easy to see that if the symbol T i[j − 1] is unique in T i, then its
enclosing LMS parsing phrase F = T i[j′..j] spells a sequence that is unique
in T i. On the other hand, T i[j − 1] is the last symbol we consider in F to
get its left-maximal suffixes (recall that the last symbol in F is redundant),
and because T [j− 1] is unique, F does not have left-maximal suffixes. These
observations allow us to append T [j ′..j] directly to a super phrase without
further preprocessing.
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5. BCR BWT with Different String Order

One can reorder the strings of T to reduce the number of runs in its BCR
BWT, thus improving the compression. This technique is useful for appli-
cations where the order of the strings is irrelevant. In this regard, Bentley
et al. [31] showed a linear-time procedure to obtain the smallest BCR BWT
(in terms of the number of runs) one can get by permuting the order of the
strings in T . This method, referred to here as CAO, requires as input the
BCR BWT BWTbcr of T and the partition A over BWTbcr that induces
equal suffixes of T . More specifically, a block BWTbcr[s..e] belongs to A if
BWTbcr[s..e] stores the left-context symbols for suffixes of T that spell the
same sequence. The output of CAO is the optimal BCR BWT BWTbcr for
T , referred to here as BWTopt (Section 2.3 describes CAO in more detail).

In this section, we address the problem of efficiently building A so that
we can apply CAO to transform BWTbcr into BWTopt. Our strategy involves
inducing the tuples of A during the execution of grlBWT. Nevertheless, we
compute a sampled version of A (denoted A′) that only considers BWT
blocks (tuples) with more than one distinct symbol. The important observa-
tion is that there is no point in keeping in main memory tuples of A with one
symbol during the execution of CAO, as they are already sorted. For instance,
the vector A of Figure 1 becomes A′ = . . . [(a, 1), (c, 1)] . . [(c, 1), (a, 2)] .,
where the dots indicate the tuples we removed.

The execution of CAO requires an encoding that regards each block
BWTbcr[s..e] ∈ A as a tuple of up to σ pairs where each element (c, ℓ) stores
a symbol c occurring in BWTbcr[s..e] and its frequency ℓ in BWTbcr[s..e].
In practice, if we know the boundaries in BWTbcr for the blocks in A, we
can compute the CAO encoding on the fly using the run-length compressed
version of BWTbcr. However, grlBWT produces the ranges for the blocks in
A′, so we need to do a small change to CAO: if for a block BWTbcr[s..e] ∈ A′

we need to visit its preceding block (respectively, the following block) to
check for adjacent matches, and this block is not in A′, we use the symbol
BWTbcr[s− 1] to do the check instead (respectively, BWTbcr[e+ 1]).

Before explaining our idea, we will briefly redefine some key concepts for
clarity. The parsing set F i stores the distinct phrases in the LMS parsing of
T i. The suffixes in F i form a string set S i that induces a partition over GSAi,
the generalized suffix array of T i. In this partition, every block GSAi[sx..ex]
stores the suffixes of T i prefixed by Sx ∈ S i, the xth string of S i in LMS
order. We say that BWT i

bcr[sx..ex] is associated with Sx because it stores its
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left-context symbols in T i. Additionally, SAF i is the generalized suffix array
of F i. We also consider a partition over SAF i , where every block SAF i [j..j ′]
encodes the different suffixes of F i spelling the same sequence Sx ∈ S i. We
use S i to define an expanded parsing set F i

exp that contains the elements of
F i plus the strings in S i \ F i that only occur as left-maximal suffixes in F i.
The elements in the expanded parsing set are kept in LMS order.

5.1. Partitioning the BCR BWT
We will produce the sequence Ai = (s1, e1), . . . , (sz, ez) with the blocks

in BWT i
bcr induced by the substrings of T i that expand to equal suffixes of

T . Specifically, each jth pair (sx, ex) ∈ Ai is the jth block BWT i
bcr[sx..ex]

whose string Sx ∈ S i expands to a string exp(Sx) ∈ Σ∗ suffixed by $ (i.e.,
exp(Sx) is a suffix in T ). As before, we will construct a preliminary version
of Ai, called pAi, during the parsing iteration i, and then we will combine
Ai+1 and pAi to produce Ai during iteration i of induction. The final list A1

stores the ranges of A′ that we will use to run CAO.

Encoding. We will update Algorithms 3 and 5 to implement the ideas in the
paragraph above. Still, modifying these methods requires a bit of extra work
as they operate over run-length-compressed data, and the ranges in Ai are
indexes in the plain version of BWT i

bcr. This difference in the encoding means
that a range in Ai might not exist explicitly in the run-length-compressed
version of BWT i

bcr. From now on, we consider the arrays involved in the
construction of Ai to be in plain format unless we state otherwise. For
example, when we say that u is the uncompressed position of BWT i+1

bcr , we
mean that u is an index within the plain version of BWT i+1

bcr . The same idea
applies to the other vectors. This plain encoding is only logical and intended
to simplify our explanations. We omit the details on how to implement the
construction of Ai using run-length-compressed data structures.

5.1.1. Parsing Phase
Our algorithm to construct pAi is a modification of Algorithm 3. During

the execution of Line 6, when we start to consume a new range in the partition
of SAF i , we check if the previous range SAF i [sx..ex] is associated with a phrase
Sx ∈ S i such that exp(Sx) is a suffix in T . If this condition holds, and Sx

is a left-maximal suffix in F i (Line 10) that does not occur as a full phrase,
we append a new pair into pAi: let sx be the uncompressed position in
pBWT i where we inserted the leftmost symbol # in pBWT i associated with
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Sx, and let ex be the uncompressed position in pBWT i where we inserted
the rightmost copy of #. We append the pair (sx, ex) into pAi.

The left-maximal condition of Sx implies that its range (sx, ex) ∈ pAi will
contain more than one distinct symbol in Σi. This is the kind of entries CAO
needs to sort to produce BWTopt. On the other hand, by not storing (sx, ex)
when Sx is a full phrase in F i, we avoid redundancy: assume Sx is assigned
the symbol o ∈ Σi+1 in the parsing iteration i. The pair (sx, ex) ∈ pAi of
Sx will be equivalent to the pair (sx′ , ex′) ∈ pAi+1 obtained from the string
S ′
x = o ∈ S i+1.

Notice that pAi stores each block BWT i
bcr[sx..ex] that later will become

the range in BWT 1
bcr associated with exp(Sx). CAO will use this block to

produce BWTopt.

5.1.2. Induction Phase
We now explain how to modify Algorithm 5 (the induction iteration) to

compute Ai. Our method has three main steps. First, it produces a new
sequence Ai

P with the pairs of Ai that we will induce from P i (i.e., the vector
of Algorithm 5 storing the sorted left-context symbols of the left-maximal
suffixes in F i). Then, it updates the pairs in Ai+1 and Ai

P so they reference
positions in BWT i

bcr. Finally, it merges Ai+1, Ai
P , and pAi into one single

sequence Ai.
We start with the construction of Ai

P during the execution of Lines 2-12,
when we populate P i in one scan of BWT i+1

bcr . We logically divide Ai
P into

buckets so that each bucket c stores the pairs induced from the bucket c of
P i. As we previously did with P i, we use the notation Ai

P [c] to refer to the
area within Ai

P that contains the ranges of bucket c.
Before the scan of BWT i+1

bcr , we set Ai+1[1] = (s, e) as the active pair
we use to fill Ai

P . We also initialize a set H that will store the different
buckets of P we visit during the scan of BWT i+1

bcr [s..e]. Subsequently, when
we visit the symbols of BWT i+1

bcr , we proceed as follows. Assume we are
in the uncompressed position u of BWT i+1

bcr , where BWT i+1
bcr [u] ∈ Σi+1 is

the symbol assigned to F ∈ F i. Also, assume that u = s matches the left
element of (s, e). If F occurs as a proper suffix in F i, we compute its bucket
b in P i, record b in H, and append a new pair (u′, u′) in Ai

P [b], where u′

is the uncompressed position within P i[b] where we store the left-context
of F (Lines 4-6). Then, when we visit every left-maximal suffix Sx ∈ S i

of F (Lines 7-10), we apply the same procedure: we compute the bucket b
in P i associated with Sx, record b in H, and append a new pair (u′, u′) in
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Ai
P [b], where u′ is the uncompressed position within P i[b] where we store

the left-context of Sx. Later in the scan of BWT i+1
bcr , when s < u ≤ e, we

proceed slightly differently: for every new bucket b of P i we visit during the
decompression of F , we check first if b exists in H. If that is the case, we
increase the right value in the rightmost pair of Ai

P [b] by one. On the other
hand, if b is not in H, we record b in H and append a new pair (u′, u′) in the
bucket Ai

P [b]. Additionally, when u = e, we flush the content in H and set
the next pair in Ai+1 as the active element we will use from now on to fill
Ai

P .
Once we finish the traversal of BWT i+1

bcr , we transform the pairs in Ai
P

to absolute values. Concretely, a pair (s, e) in the bucket Ai
P [b] becomes

(s+ s′, e+ s′), where s′ is the cumulative number of symbols in the buckets
b′ < b of P i.

The next step in the induction iteration is to update the pairs in Ai+1 and
Ai

P so they reference ranges within BWT i
bcr. We carry out this process during

the merge of BWT i+1
bcr , pBWT i, and P i (Lines 13-36). Recall that we change

the active list of the merge depending on the special symbols we access in
the vectors. Similarly, here we change the active list we are updating from
Ai+1 to Ai

P (or vice-versa) depending on whether the active list in the merge
is BWT i+1

bcr or P i, respectively.
Assume that, at a given point of the loop in Lines 13-36, BWT i+1

bcr becomes
the active list (Line 15), and that the next pair to update in Ai+1 is Ai+1[ua] =
(s, e). We first check if the current uncompressed position BWT i+1

bcr [u] (i.e.,
the one that we are consuming in the merge) falls within (s, e). If u = s,
we set s = s′, where s′ is the uncompressed position in BWT i

bcr where we
store BWT i+1

bcr [u]. Then, when u equals e, we update e accordingly, increase
ua = ua + 1, and set Ai+1[ua] as the next pair to update in Ai+1. Now
assume the active symbol in the merge in the xth uncompressed position of P i

(Line 17), and that the next pair we need to update in Ai
P is Ai

P [ub] = (s, e).
In this case, we check if x = s and update the left value s = s′, where s′ is
the uncompressed position in BWT i

bcr where we store the active symbol of
P i. On the other hand, if x = e, we update e, increase the index ub = ub+1,
and set Ai

P [ub] as the next pair to update in Ai
P .

After we finish updating the values, we merge Ai+1, pAi, and Ai
P in an

orderly way to produce Ai. As mentioned, this step only requires a simulta-
neous scan of the vectors.
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6. Experiments

We implemented grlBWT as a C++ tool, also called grlBWT. This software
uses the SDSL-lite library [39] to operate with bit vectors and rank data
structures. This implementation includes the improvements we described in
Section 4 to reduce the size of the dictionary, but it does not contain the
procedure to compute the optimal BWT (Section 5). Our source code is
available at https://github.com/ddiazdom/grlBWT.

6.1. Implementation Details
Our algorithm constructs a dictionary of phrases in every text T i and then

replaces the occurrences of those phrases with their corresponding symbols in
T i+1. These two steps can be challenging to implement in massive inputs as
they are linear-time. Using a hash table is a simple alternative to computing
the dictionary, but it can impose a considerable overhead (in terms of time
and space) if the text is not so repetitive (the less repetitiveness, the bigger
the dictionary).

We implement a simple parallel hashing strategy to compute the dictio-
naries in a more efficient way. In every parsing round i (Section 3.3), we
proceed as follows: we first set a buffer size b and the number p of parallel
processes we will run. Both b and p are input parameters. Subsequently,
we allocate b/p bits (assume for simplicity b is divisible by p) to store a
semi-external hash table Hj, with j ∈ [1, p], for every parallel process. It
is semi-external in the sense that every time Hj has to grow beyond b/p
bits (either because it exceeds the maximum load factor or because of the
insertion of a new pair), it dumps all its content to disk and resets its state
to empty. We implement Hj using Robing Hood probing to operate at high
load factors.

Once we initialize the hash tables Hi, . . . , Hp, we divide the input text
T i[1..ni] of the parsing round into p chunks of ⌈ni/p⌉ symbols each. Every
jth parallel process will consume the jth chuck of T i and store its phrases
in its corresponding hash table Hj. When the parallel processes finish, we
merge the dumps of the hash tables H1, . . . , Hp into one single hash table H
that contains all the phrases of T i.

The reason why this approach is efficient is simple: in the first parsing
round, the dictionary is, in most cases, small compared to T 1, so it is likely
that the hash tables H1, . . . , Hp contain near-identical copies of the same
small string set and performed almost no data dumps. This observation
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means that the construction of the final hash table (the merge) is fast in
practice.

The dictionary size increases considerably in the next parsing rounds,
but so does the number of unique phrases (those with frequency one in T i).
Thus, the chances of a phrase appearing in different hash tables decrease as
the parsing rounds move forward.

Effects of Page Caching. We remark that our semi-external parsing strategy
is efficient only if T i fits the page cache. That is, the free area of the main
memory where the operative system’s kernel keeps the recently-accessed file
pages. Reading different areas of T i simultaneously from the disk is costly
in standard hard drives as it requires the disk to spin back and forward to
reach the sectors where the requested file pages reside. If we have never
accessed T i before, the kernel will inevitably perform these expensive I/O
operations. However, grlBWT needs three parallel scans of T i, first when it
produces it from T i−1, then when it gets Di, and finally when it builds T i+1.
Thus, if T i fits the page cache, we will perform the disk operations in the
first scan, and the rest will mostly use the pages of T i in the cache. On the
other hand, when T i does not fit the page cache, the number of page faults5

increases considerably, but not just that, the operations become slower due
to the non-linear disk access pattern of our method. This problem implies
that the parallel processes will remain idle most of the time, waiting for the
kernel to complete previous page requests, making thus the whole parsing
phase slow. This phenomenon of constant paging and page faults is known
as cache trashing.

6.2. Datasets
We consider two classes of Genomics collections for our experiments:

reads and pangenomes. The BWT plays a key role in processing this kind of
data, but constricting the transform is challenging in practice as reads and
pangenomes are usually massive. It is worth mentioning that grlBWT works
with any kind of byte alphabet, not just DNA.

Reads are overlapping strings that represent random and redundant frag-
ments of a genome. The level of redundancy depends on the length of the
reads and the coverage: the average number of times each position of the

5When an process asks for a file page, but that page is not in the cache and the kernel
has to access the disk to retrieve it.
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genome was sequenced. The more coverage the sequencing experiment has,
the more repetitive the read collection is. The number of DNA samples also
affects the repetitiveness. It is common in Genomics to concatenate reads
of closely-related individuals into one dataset. These individuals are geneti-
cally almost identical, so their reads should yield nearly identical sequences.
A common problem with reads, however, is that they are short and con-
tain sequencing errors. These limitations make the repetitive patterns of the
underlying genome more difficult to capture and compress.

A genome (from a Bioinformatics point of view) is a string collection
resulting from the assembly6 of a group of reads. A pangenome, on the
other hand, is a collection that can contain several assembled genomes of
closely-related individuals. A pangenome is massive and highly repetitive,
but problems in the assembly process and sequencing errors can break the
repetitive patterns, making the collection less compressible.

We now briefly describe our datasets. Table 1 presents basic statistics
about these files.

• Illumina (illx): five collections of Illumina reads7 generated from dif-
ferent human genomes. The name of each collection has the format
illx, where x indicates the number of individuals in the collection.
For instance, the file ill5 encodes reads from five humans. We ob-
tained the raw reads from the International Genome Project 8.

• PacBio HiFi (pbhf): one read collection from one human genome se-
quenced at deep coverage (40x) using the PacBio HiFi technology9.
HiFi reads are longer than Illumina reads; hence, they are more repet-
itive.

• Human Pangenomes (hgx): 400 different human assemblies from NCBI10

grouped into different files to simulate six different pangenomes. Ev-
ery pangenome file has the format hgx, indicating that this collection
contains x assemblies. The sources of this data are varied: some are
different assemblies of the same genome, while others are assemblies of

6Merging the reads by computing suffix-prefix overlaps
7https://www.illumina.com
8https://www.internationalgenome.org/data-portal/data-collection/hgdp
9https://www.pacb.com/technology/hifi-sequencing

10https://www.ncbi.nlm.nih.gov/data-hub/genome/?taxon=9606
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Dataset σ Number of Max. str. Avg. str. Number of n/r
strings length length symbols (n)

ill1 5 8.4×107 151 151 1.3×1010 3.18
ill2 5 1.6×108 151 151 2.4×1010 4.07
ill3 5 2.4×108 151 151 3.6×1010 4.67
ill4 5 3.1×108 151 151 4.7×1010 5.03
ill5 5 3.8×108 151 151 5.7×1010 5.33
pbhf 5 6.2×106 5.0×104 2.0×104 1.2×1011 19.27

hg05 16 3.3×105 2.5×108 4.3×104 1.4×1010 4.82
hg10 16 7.6×105 2.5×108 3.9×104 3.0×1010 8.76
hg15 16 8.4×105 2.5×108 5.4×104 4.5×1010 12.02
hg20 16 8.7×105 2.5×108 6.9×104 6.0×1010 15.67
hg25 16 9.0×105 2.5×108 8.3×104 7.5×1010 19.42
hg400 16 1.0×107 2.5×108 1.2×105 1.2×1012 224.40
ecg31k 16 6.7×105 5.7×106 2.8×104 1.9×1010 140.02

Table 1: Datasets. The rightmost column shows the ratio between n and the number of
runs (r) in the BCR BWT obtained without changing the order of the strings.

different genomes (different humans and/or cell lines). The quality of
the assemblies is also heterogeneous. Some are high quality, while oth-
ers are poor or intermediate reconstructions. The file hg400 encodes
400 assemblies, and it is the largest input in our experiments (1.2 TB).
This file is the one that most closely resembles a real-life pangenome,
given its massiveness and the variability in the strings it contains.

• Escherichia Coli Pangenome (ecg31k): 31,733 different assemblies of
the Escherichia coli (E. coli) genome downloaded from NCBI11. As
with humans, these assemblies come from different sources, and their
qualities are variable. This file is highly repetitive but much smaller
than our artificial pangenome hg400 as the E. coli genome is small.

6.3. Competitor Tools and Experimental Setup
We compared the performance of grlBWT against other tools that compute

BWTs for string collections:

11https://www.ncbi.nlm.nih.gov/data-hub/genome/?taxon=562
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• ropebwt212: a variation of the original BCR algorithm of Bauer et
al. [12] that uses rope data structures [40]. This method is described
in Heng Lee [41].

• pfp-eBWT13: the eBWT algorithm of Boucher et al. [21] that builds on
PFP and ISS.

• r-pfpbwt14: implementation of the method of Oliva et al. [28] that
applies recursive rounds of PFP.

• BCR_LCP_GSA15 : the current implementation of the semi-external BCR
algorithm [12].

• egap16: a semi-external algorithm of Edigi et al. [14] that builds the
BCR BWT.

• gsufsort17: an in-memory method proposed by Louza et al. [13] that
computes the BCR BWT and (optionally) other data structures.

We also considered the tool bwt-lcp-em [15] for the experiments. Still, by
default, it builds both the BWT and the LCP array, and there is no option
to turn off the LCP array, so we discarded it. We compiled all the tools
according to their authors’ descriptions. For grlBWT, we used the compiler
flags -O3 -msse4.2 -funroll-loops -march=native.

Experiments on Reads. We ran grlBWT, ropebwt2, egap, gsufsort, BCR_LCP_GSA,
and pfp-bwt on Illumina data. We did not use r-pfpbwt as it is unsuitable
for short reads. We limited the RAM usage of egap to three times the input
size. For BCR_LCP_GSA, we turned off the construction of the data structures
other than the BCR BWT and left the memory parameters by default. In
the case of gsufsort, we used the flag –bwt to build only the BWT. For
ropebwt2, we set the flag -L to indicate that the data was in one-sequence-
per-line format, and the flag -R to avoid considering the DNA reverse strands

12https://github.com/lh3/ropebwt2
13https://github.com/davidecenzato/PFP-eBWT
14https://github.com/marco-oliva/r-pfbwt
15https://github.com/giovannarosone/BCR_LCP_GSA
16https://github.com/felipelouza/egap
17https://github.com/felipelouza/gsufsort
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in the BWT. We ran the experiments on the Illumina reads using one thread
in all programs because not all support multi-threading. For this purpose,
we set the extra flag -P to ropebwt2 to indicate single-thread execution. Fig-
ure 9 summarises the results of our experiment on Illumina data. We only
tested grlBWT and ropebwt2 with the pbhf dataset (HiFi reads) as egap,
BCR_LCP_GSA, and gsufsort are unsuitable for long strings. We did not use
r-pfpbwt with pbhf either because we assumed it would exceed our avail-
able resources. We based our conclusions on the results we obtained with
r-pfpbwt on the human pangenomes. Both grlBWT and ropebwt2 support
multi-threading, so we used four threads in both.

Experiments on Small Human Pangenomes. We assessed the performance of
ropebwt2, grlBWT, pfp-ebwt, and r-pfpbwt in the small human pangenomes
(files hg5-25). As with pbhf, we did not report experiments on the tools tai-
lored for short strings18 By default, ropebwt2 uses four working threads, so
we set the same number of threads for grlBWT, pfp-ebwt, and r-pfpbwt.
The tool r-pfp has three steps, each requiring a different set of parameters.
In the first step (pfp++), we used -w 10 -p 71. In the second one (recursive
pfp++), we used -w 5 -p 11. Finally, we used rpfpbwt64 with the param-
eter –bwt-only to produce the BWT. The input parameters for ropebwt2
were the same as with Illumina data, except for the flag -P. We ran pfp-ebwt
with default parameters. We did not report experiments with pfp-ebwt and
ill25 as their execution crashed. Our results on small human pangenomes
are shown in Figure 10.

Experiments on the E. coli Pangenome. The file ecg31k (i.e., the E. coli
pangenome) is particularly repetitive and not so big (see Table 1), so we
used it to assess the performance improvement one could obtain in the BWT
construction under highly-repetitive scenarios. We also used it to evaluate
the impact of our parallel method (Section 6.1) as this file fits the page
cache of our machine. Thus, we limited our experiments on ecg31k to the
tools ropebwt2, pfp-ebwt, r-pfpbwt, and grlBWT. We included ropebwt2
as a baseline because it is the non-repetition-aware tool (i.e., it does not
exploit repetitions) with the best performance. We ran each software twice,
one execution with one thread and the other with four threads. Figure 11

18We tried to test them, but they either crushed or their resource consumption was too
high to compare against the other tools.
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presents the results on the E. coli pangenome.

Experiments on the Big Human Pangenome. We evaluated the performance
of grlBWT in the big human pangenome (hg400). We measured the running
time and memory consumption of every round of grlBWT to look for potential
problems that are not evident in small and repetitive instances (like ecg31k).
We used 10 threads and a buffer for the parallel hash tables (Section 6.1)
whose size in RAM is 10% of the input (near 120 GBs). The selection of
10% for the buffer was arbitrary, and it is an input parameter. We did not
perform experiments on hg400 with the other competitor tools because of
the high computational resources they would require. Figures 14, 12, and 13
show the running time and memory usage of grlBWT with hg400.

Experiments on Super Phrases. We assessed the impact of super phrases
in the LMS parsing. First, we ran our current implementation of grlBWT,
which computes super phrases as described in Section 4.1, and then we ran
our CPM’22 version19 of grlBWT , which does not include super phrases. We
ran both implementations with the inputs hg10 (repetitive) and ill1 (not so
repetitive), recording the number of phrases in each F i as well as its number
of symbols ||F i||. The results are shown in Figure 15.

Machine. We carried out the experiments on a machine with Debian 4.9,
736 GB of RAM, and processor Intel(R) Xeon(R) Silver @ 2.10GHz, with 32
cores.

7. Results and Discussion

7.1. Illumina and HiFi Reads
The fastest method in Illumina reads was ropebwt2, with a mean elapsed

time of 4.14 hours. It is then followed by grlBWT, gsufsort, BCR_LCP_GSA,
pfp-bwt, and egap, with mean elapsed times of 6.08, 9.43, 9.58, 13.08, and
27.30 hours, respectively (Figure 9B). Regarding the working space, the most
efficient was BCR_LCP_GSA, with an average memory peak of 5.73 GB. It
is then followed by grlBWT and ropebwt2, with average memory peaks of
23.95 and 26.64 GBs, respectively. In both cases, the memory consump-
tion increases slowly with the input size (see Figure 9A). In contrast, egap,

19Pre-release v1.0.0-alpha in our GitHub repository.
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Figure 9: Memory peak usage (GBs) and elapsed time (in hours) for the Illumina collec-
tions.

gsufsort, and pfp-ebwt are far more expensive, and their memory con-
sumption grows fast. The tool egap uses 110.94 GBs on average. On the
other hand, pfp-ebwt and gsufsort have similar average memory peaks:
331.98 and 372.68 GBs, respectively. We notice grlBWT is the tool with the
second-best overall performance, only outperformed in time by ropebwt2 and
in space by BCR_LCP_GSA. We consider this result remarkable as grlBWT does
not perform any optimization on short reads. Besides, the repetitive patterns
(the main feature grlBWT uses to reduce CPU time and space consumption)
are highly fragmented in short reads.

One possible explanation for why we outperformed even the in-memory
tool gsufsort is because grlBWT is less likely to have cache misses as it
operates over small data structures. In particular, gsufsort resembles SA-
IS, so it runs ISS over each T i. The problem is that the cache misses triggered
by the induction of distant suffix array buckets affect the running time, and
the longer T i is, the more cache misses we trigger. Our method, in contrast,
performs ISS over the parsing set F i, which is considerably smaller than T i,
making cache misses far less likely.

Our results on HiFi reads (pbhf) differ from what we obtained with Il-
lumina. The elapsed time for grlBWT was 8.48 hours, almost half the time
spent by ropebwt2 (16.02 hours). Still, they performed similarly in terms of
memory peak: 25.15 GB of grlBWT versus 27.20 GB of ropebwt2.

We believe there are two reasons for our results on reads. The first reason
is that ropebwt2 is highly optimized for short reads, but not for long strings.
The second reason is that HiFi reads are longer than Illumina reads, so
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Figure 10: Memory peak usage (GBs) and elapsed time (in hours) for the small human
pangenomes.

grlBWT can capture repetitive patterns more efficiently.

7.2. Small Human Pangenomes
Our tool grlBWT was the fastest software in small human pangenomes,

with an average elapsed time of 3.94 hours versus 9.55, 20.95, and 11.26
hours for pfp-ebwt, ropebwt2, and r-pfpbwt, respectively. The time for
grlBWT, pfp-ebwt, and r-pfpbwt grows smoothly with the input size, while
the time for ropeBWT grows fast (see Figure 10B). These patterns of growth
are because grlBWT, pfp-ebwt, r-pfpbwt exploit the text repetitions, while
ropeBWT2 does not.

Regarding memory peak, grlBWT is also the most efficient tool, with
a mean of 10.52 GB versus 18.05, 204.62, and 587.05 GBs for ropebwt2,
pfp-ebwt and r-pfpbwt, respectively. Although grlBWT outperforms ropebwt2
on average, their memory functions have the same pattern: both grow smoothly
with the input size. In contrast, the memory consumption of pfp-ebwt and
r-pfpbwt is considerable, although they still have a smooth pattern of growth
(see Figure 10A). We did not expect pfp-ebwt and r-pfpbwt to have a high
memory consumption as they also exploit the text repetitions. Still, we
acknowledge this result could be because we did not choose suitable input
parameters or because the implementations of pfp-ebwt and r-pfpbwt are
still incomplete. It might also be possible that the parsing scheme of grlBWT
is better than PFP at capturing text repetitions.
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Figure 11: Time-space tradeoffs for constructing the BWT of ecg31k (E. coli pangenome).
Time is given in microseconds per symbol and space in bits per symbol. The transparent
points represent the instances using four threads (-4t suffix in the legend).

7.3. E. coli Pangenome
The performance of grlBWT is considerably better than that of ropebwt2,

pfp-ebwt, and r-pfpbwt in highly-repetitive inputs (ecg31k). Using one
thread, the elapsed time of grlBWT with ecg31k was 0.93 hours, while the
elapsed times of ropebwt2, pfp-ebwt, and r-pfpbwt were 5.56, 1.08, and
1.19 hours, respectively. Thus, the average speed of grlBWT was 0.18 µsecs
per symbol, while the average speed of the other tools was 1.06, 0.21, and
0.23 µsecs per symbol (respectively). We were also the most space-efficient
method, with a memory peak of 0.82 GB (0.35 bits per symbol) for grlBWT
versus memory peaks of 10.57, 9.95, and 17.30 GBs for ropeBWT2, pfp-ebwt,
and r-pfpbwt, respectively. Our experiments on ecg31k also showed we
could greatly improve our running time if we use parallelization. Four threads
were enough to reduce grlBWT’s running time by more than half, from 0.93
hours to 0.34 hours (around 20 minutes). This improvement in the speed had
a negligible impact on the memory peak as it increased from 0.82 GB to 0.99
GB. The only other tool that improved its performance significantly with
parallelism was ropebwt2. It decreased its running time from 5.56 hours to
2.75 hours without changing its memory peak. However, its results were far
from what we obtained with grlBWT. See Figure 11 for more details on the
E. coli experiments.
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Figure 12: Elapsed time breakdown of grlBWT using the file hg400. (A) Breakdown of the
phases. The bottom box is the parsing phase, and the upper box is the induction phase.
The y-axis denotes the fraction of the total running time. (B) Breakdown of the rounds.
Each box denotes one round in a phase. The y-axis, in this case, is the fraction of the
total phase’s running time. The rounds in the parsing phase (left bar) are read bottom-up,
while the rounds in the induction phase (right bar) are read top-bottom. The numbers in
grey to the right of the bars highlight the three most time-consuming rounds.

7.4. Big Human Pangenome
The complete execution of grlBWT with the big human pangenome (file

hg400) took 41.21 hours and had a memory peak of 118.83 GB. Further
inspection of this execution showed that the parsing phase of our algorithm
(Section 3.3) contributed to 96.1% of the total running time of grlBWT, while
the induction phase (Section 3.5) contributed to the remaining 3.94% (see
Figure 12A). Additionally, the first three parsing rounds contributed 93.2%
of the total running time of the parsing phase, with the first parsing round
contributing more than 50% (see Figure 12B). These results indicate the
bottleneck of the execution was in these rounds. A closer examination of
the steps of the parsing rounds one, two, and three shows that transforming
T 1 into T 2 is the most expensive step in the whole execution of grlBWT (see
Figure 13).

We believe this problem arises due to poor management of the page
caches. Our tool grlBWT keeps T 1 and T 2 mostly on disk, loading small
chunks of them (pages) into main memory to produce T 2 in a semi-external
way. As explained in Section 6.1, the Linux kernel speeds up disk accesses to
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Figure 13: Elapsed time breakdown of the parsing phase of grlBWT when executed with
the input hg400 (i.e., the big human pangenome). Each ith bar (x-axis) represents the
time breakdown of the ith round of parsing. “Hashing” (black box) refers to scanning
T i and inserting its LMS phrases into a hash table. “CA ops.” (grey box) denotes the
time spent performing compression-aware operations. That is, producing the dictionary’s
suffix array and the preliminary BCR BWT, compressing the dictionary, and assigning
symbols to the dictionary phrases. Finally, “Parsing” (light grey box) is the time spent
transforming T i into T i+1.

these files by keeping recently-accessed pages cached in free RAM sections so
they are available for future disk accessions. However, the problem in hg400
arises because T 1 and T 2 do not fit the page cache, so grlBWT triggers disk
operation frequently due to page faults, making the parallel semi-external
scans of T 1 and T 2 extremely slow. Despite the problem with T 1 and T 2, we
note that the steps of grlBWT that operate over compressed data are remark-
ably efficient in terms of both time and space (see Figures 12 and 13). At
the end of this section, we propose an alternative solution to parse T i under
page cache constraints.

The memory peak in the execution of grlBWT is dominated by the buffer
of the parallel hash tables we use to construct the dictionary from the text
(Section 6.1). Notice the peak is 118.83 GB because we defined a buffer
for these hash tables that uses at most 10% of hg400 (about 120 GB). Put
another way, the memory peak of grlBWT is a user-defined parameter when
we process a large file in parallel.

In practice, however, we are interested in the real memory peak of our

57



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
0

2

4

6

8

10

12

14

16

18

20 Parsing phase Induction phase

Round

M
em

or
y
in

G
B
s

0

0.16

0.32

0.48

0.64

0.8

0.96

1.12

1.28

1.44

1.6

P
ercentage

of
th
e
in
p
u
t
size

Figure 14: Heap memory usage for the intermediate data structures when running grlBWT
with hg400. The x-axes are the iterations of grlBWT. The vertical dashed line marks the
transition from the parsing phase to the induction phase. The left y-axis is the usage in
GBs, while the right y-axis is the usage as a percentage of hg400 in plain format. That is,
the total bytes of the intermediate data structures divided by the bytes of the input (one
byte per input symbol). The induction iterations are numbered backwards to match the
way in which grlBWT works. The heap usage of every parsing iteration i considers SAFi ,
V i, and Di = (Ri, Li, N i) (Section 3.3) plus other minor data structures. The heap usage
of every induction iteration i considers V i, P i, and Gi (Section 3.6).

implementation. That is, the memory footprint produced by the data struc-
tures we keep in the heap (except for the aforementioned buffer, whose sole
purpose is to enable a parallel execution). In every parsing round i, these
data structures are the dictionary Di and its suffix SAF i (plus some other
minor data structures). On the other hand, during every induction phase
i, the most relevant structures are P i, the vector where we insert the sym-
bols of BWT i

bcr that we induce from BWT i+1
bcr (see Section 3.6), and Gi, the

grammar-like encoding of the expanded parsing set F i
exp.

A close inspection of the memory footprint of the compressed data struc-
tures showed that the real memory peak of grlBWT is remarkably low com-
pared to the input size: 21.05 GB (1.7% of hg400’s size) during the first
parsing round, and then another smaller peak of 14.09 GB (1.1% of hg400’s
size) during the construction of BWT 1

bcr from BWT 2
bcr in the last induction

round (see Figure 14 for more details).

Parsing the Text Under Page Cache Constraints. We could tackle the prob-
lem of parsing a string T i that does not fit the page cache using a parallel
procedure that implements a producer-consumer pattern. As before, assume
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we are allowed to use p processes. We first initialize in main memory a set
of b > p buffers of d bits each (b and d being parameters). Then, we create
a producer process tp that reads chunks of T i semi-externally (and linearly)
and puts them in the available buffers. After tp fills a buffer, it appends
it into a queue I flagged as “ready to be processed”. On the other hand,
we create a set of consumer processes tc,1, . . . , tc,p−1 that actively check the
state of I to see if there are available chunks. When a consumer process tc,j
pops a buffer from I, it parses its text using LMS parsing and then appends
the consumed buffer into another queue O that keeps the already processed
data. Thus, once tp uses all the available buffers, it pops elements of O to
recycle buffers for new chunks of T i, which appends into I and the cycle
begins again. As the consumer processes parse T i in parallel, they insert
the phrases into one hash table H that uses lock-free CPU instructions to
support concurrent queries. We have to choose b and d carefully so tp is
always reading from disk, while the processes tc,1, . . . , tc,p−1 constantly con-
sume chunks of T i. This idea is more efficient than the scheme we presented
in Section 6.1 as it almost removes the need for a page cache. No matter how
many disk accesses the producer process performs, the consumer processes
do not remain idle.

7.5. Effect of Super Phrases
Our heuristic of super phrases (Section 4.1) has a notorious impact be-

tween parsing iterations three and five. In hg10, the number of phrases in
F3, F4, and F5 reduced by 14.4%, 28.2%, and 36.7% (respectively) when
using our heuristic (top-left plot in Figure 15). In ill1, the reductions in
those iterations were 17.8%, 32.8%, and 6.6%, respectively (top-right plot in
Figure 15). However, our heuristic fails in iteration two (the one produc-
ing the largest F i) as it achieves a negligible reduction in both inputs. The
reason could be that T 2 still has several repeated symbols, so our simple
method, which relies on symbol frequencies to capture super phrases, does
not work. Text T 3 is more likely to have unique symbols, so our heuristic
probably works better than in T 2. This result is relevant as F 3 is the second-
largest parsing set in both hg10 and ill1. Additionally, we noticed that the
reduction of F3 is better in ill1 than in hg10 (17.8% versus 14.4%). A
possible explanation is that ill1 is less repetitive than hg10, so our heuris-
tic becomes more efficient. Regarding the number of symbols in each F i

(second row of Figure 15), super phrases do not have a relevant impact. In
hg10, the number of symbols in F 3,F4, and F5 reduced by 2.4%, 13.3%, and
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Figure 15: Effect of super phrases in the first seven iterations of LMS parsing. The left
column shows the results for hg10 and the right column shows the results for ill1. In all
the plots, the x-axis is the parsing iteration (e.g., the information of F 3 is in x = 3). The
y-axes in the first row show the number of phrases in F i, with 1 ≤ i ≤ 7. The plots in the
second row show the total number of symbols ||F i||. The dashed line with star shapes is
LMS parsing without super phrases (LMS par), and the grey line with triangle shapes is
the LMS parsing with super phrases (LMS par+sup phr).

21.9%, respectively. In contrast, in ill1, the reductions were 3.6%, 22.8%,
and 34.6%, respectively (slightly better than in hg10). The compression of
F5 seems remarkable (21.9% and 34.6%), but keep in mind that this parsing
set is considerably smaller than F 2 and F3 in both inputs, so the overall
space reduction is not big after all. We expected these results, as we remove
p symbols from F i for each sequence of p consecutive parsing phrases we
merge into one single super phrase, which is not much.

8. Concluding Remarks

We introduced a method for building the BCR BWT that maintains the
data of intermediate stages in compressed form. The representation we chose
reduces not only working memory but also computation time. Our exper-
imental results showed that our algorithm is competitive with the state-of-
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the-art tools under not-so-repetitive scenarios and greatly reduces the com-
putational requirements when the input becomes more repetitive. This last
feature proved an efficient solution for processing terabytes of redundant data
under limited computational resources. For now, the hard drive is the main
aspect that degrades our performance in large inputs and prevents us from
running even more significant collections. However, we are confident we can
solve these problems with a more careful implementation of our algorithm.

An important observation is that our framework enables the construction
of the r-index [5] for large collections in practice, as it is possible to obtain
this data structure in O(r) bits using the BWT as input. This idea certainly
facilitates the indexation of large-scale pangenomes. However, more is needed
to make the r-index a practical solution for pangenomes as it does not support
all the relevant queries necessary for Genomics analyses.

We believe it is possible to use our repetition-aware strategy for other
operations. For instance, update and merge multiple BWTs. The intuition
to merge BWTs is that if we have several texts, we first run the parsing round
of grlBWT independently in each of them to produce a list of dictionaries
(one dictionary set for each text). Then, we combine the dictionaries in one
set, and finally, we run the induction phase of grlBWT over the combined
dictionary set. Our experiments showed that manipulating dictionary sets
and running the induction phase of grlBWT is fast, even in terabytes of
data. Thus, the merge of the BWTs should be fast too. The update of a
BWT should work similarly. We first produce an initial BWT by running
grlBWT over a text collection and save its dictionary set. Then, if we need to
append more sequences to this BWT, we run the parsing phase of grlBWT
on the new sequences to produce a new dictionary set, which we combine
with the one we previously saved. As before, we run the induction phase
over the combined dictionary set to produce the updated BWT. We can
keep the combined dictionary set again if we need to append more sequences
in the future. These ideas (merge and update) could enable the efficient
construction of huge BWTs in distributed systems.

There are also other applications for our compression-aware technique
we would like to explore, not just BWT-related topics. For instance, com-
puting all-vs-all maximal exact matches in string collections, grammar or
Lempel-Ziv compression, self-indexes, and approximate or multiple align-
ments, among other things.
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