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Abstract

We address the problem of representing dynamic graphs using k2-trees. The
k2-tree data structure is one of the succinct data structures proposed for rep-
resenting static graphs, and binary relations in general. It relies on compact
representations of bit vectors. Hence, by relying on compact representations
of dynamic bit vectors, we can also represent dynamic graphs. However, this
approach suffers of a well known bottleneck in compressed dynamic indexing.
In this paper we present a k2-tree based implementation which follows in-
stead the ideas by Munro et al. (PODS 2015) to circumvent this bottleneck.
We present two dynamic graph k2-tree implementations, one as a standalone
implementation and another as a C++ library. The library includes efficient
edge and neighbourhood iterators, as well as some illustrative algorithms.
Our experimental results show that these implementations are competitive
in practice.
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(Alexandre P. Francisco), luis.russo@tecnico.ulisboa.pt (Lúıs M. S. Russo),
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1. Introduction

Graphs are ubiquitous among many complex systems, where we find large
and dynamic complex networks. It is therefore important to be able not only
to store such graphs in compact form, but also to update and query them
efficiently. Reusable graph libraries are then also indispensable to make these
approaches and techniques readily available.

Most succinct data structures for representing graphs are however static [1,
2]. We focus on one such static succinct graph representation, called k2-tree.
The k2-tree [2] was originally proposed for representing Web graphs, but
was later proven efficient for representing other kinds of graphs and binary
relations [3]. It consists of a succinct representation of the adjacency ma-
trix of the graph that exploits large empty areas of the matrix, and obtains
very compact representations while efficiently supporting neighbour queries,
forward and backward navigation, and range searches.

A dynamic version of k2-trees already exists [4]. Like many dynamization
approaches of compact data structures, however, this introduces a significant
slowdown, by an almost logarithmic factor, for all the queries.

In this paper we adopt the ideas proposed by Munro et al. [5] to repre-
sent dynamic graphs through collections of static and compact graph rep-
resentations, and apply them to the static k2-tree data structure, so that it
supports edge insertions and removals. A good aspect of this dynamization
is that query times are slowed down by a constant factor only. Further, the
edge insertion time is almost the same as the average construction time per
edge of static k2-trees, and edge deletion time is even lower. In exchange,
insertion and deletion times are amortized, not worst-case, as the structure
undergoes periodic reconstructions.

We present a standalone implementation of these ideas, sdk2tree1, as
well a reusable one, sdk2sdsl2, that is based on the sdsl-lite data structure
library3.

We briefly describe the original static k2-trees in Section 2. In Section 3,
we explain the technique [5] employed to implement dynamic graphs using
collections of static k2-trees and the details of our library implementation
sdk2sdsl. We present extensive experimental analysis in Section 4 and final

1https://github.com/aplf/sdk2tree
2https://github.com/joo95h/dynamic_k2tree
3https://github.com/simongog/sdsl-lite
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remarks in Section 5.
This paper is an extended version of a paper presented in the Data Com-

pression Conference (DCC) [6]. It includes not only more details concern-
ing the proposed construction, but also a graph library, including efficient
edge and neighbourhood iterators. The experimental evaluation was also
extended.

2. The static k2-tree

Let G = (V,E) be a graph where V is the set of vertices, of size n,
and E ⊆ V × V is the set of edges, of size m. The k2-tree data structure
provides a static succinct representation of G [2]. At a high level, this data
structure corresponds to an adjacency matrix representation, where a bit set
to 1 indicates the existence of an edge and a bit set to 0 its absence. To reduce
the space requirements for sparse graphs, a hierarchical decomposition of the
matrix is used, where a sub-division consisting only of zeros is represented
by a single 0 bit.

More concretely, the k2-tree can be conceptually defined as a non-balanced
k2-ary tree that represents the recursive partition of the adjacency matrix
into k × k submatrices. The root node contains k2 children, each of them
corresponding to one submatrix and sorted following a Z-order. The nodes
of the tree store just one bit telling if the submatrix is non-empty (1) or it is
all zeroes (0). Then, the non-empty submatrices are subdivided again until
reaching an empty submatrix, or until no more subdivision is possible; thus,
bits at last level of the tree correspond to cell values of the original adjacency
matrix. The resulting tree is thus of height dlogk2 n

2e = dlogk ne.
An example of this tree-shaped representation is shown in Figure 1. This

conceptual tree is stored in one single bitmap following a level-wise traversal
of the tree (i.e., concatenating the 4 bitmaps of the figure). Queries over the
graph can be solved efficiently by performing top-down traversals over the
tree representation. Those traversals are efficiently implemented thanks to
the use of fast rank operations [3] over the bitmap.

The maximum length of this bitmap is k2m(logk2
n2

m
+O(1)). A sub-linear

number of extra bits are needed to enable constant-time rank operations on
the bitmaps. Testing the existence of an edge is done in O(logk n) time by
traversing the k2 down to the desired matrix cell, until an empty submatrix
(a 0) is found or we reach the 1 of the cell in the last level. Obtaining the
neighbours of a node is done in O(n) worst-case time by reaching all the
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Figure 1: Example of adjacency matrix (left) and its corresponding k2-tree with k = 2
(right).

cells in the corresponding matrix row, via entering all the children of each
node that intersect the row; the reverse neighbours are obtained similarly by
extracting the corresponding matrix column. In this paper, k is a fixed value
across the trees and remains constant along time.

3. From static k2-trees to dynamic graphs

The main idea to represent G dynamically, supporting edge insertions
and deletions, as well as listing the neighbours of a given vertex v, is to use a
collection of static edge sets C = {E0, . . . , Er}. Each static edge set Ei is then
represented using a static k2-tree, except E0 which is represented through a
dynamic and uncompressed adjacency list. Figure 2 depicts a link query over
the different Ei sets of the data structure.

Let mi be the number of edges in each set Ei. As discussed by Munro
et al. [5], we must control both the number of edges mi in each set Ei and
the number r of such sets to achieve the optimal amortized cost for each
operation. The first set (E0) contains at most m/ log2 n elements. In general
we require that mi is at most m/ log2−iε n, for some constant ε > 0. We must
also have that r ≤ 2/ε, so when ε is a fixed constant so is r. For example
when ε = 1/4 we get that r is at most 2/(1/4) = 8. Hence the maximum
number of edges per static set follows a geometric progression. Each set Ei is
static (except for E0) and has a maximum allowed size m/ log2−iε. Whenever
we reach the maximum size for E0 (overflow), we find a set Ej, with i < j ≤ r
such that

∑j
`=0 m` ≤ m/ log2−jε n and (re)build Ej with all edges in it and in

the previous sets, and reset all previous sets to empty. By construction, Ej
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Figure 2: check link query going through Ei sets to find an edge (noted in black).

has a maximum capacity enabling it to store the content of sets E0 through
Ej−1. We detail this process below.

3.1. Space

Let us analyze the required space to represent the data structure. The
set E0 is represented in an uncompressed adjacency list coupled with a hash
table to allow answering queries on edge existence in constant expected time.
This requires O(m0 log n) bits, where m0 ≤ m/ log2 n is the number of edges
in E0. Each set Ei, for 1 ≤ i ≤ r, is represented with a static k2-tree requir-
ing k2mi (logk2(n

2/mi) +O(1)) bits (plus sublinear-order terms to support
rank), where mi ≤ m/ log2−iε n. Hence, overall, the space required is

O(m0 log n) +
r∑

i=1

k2mi

(
logk2(n

2/mi) +O(1)
)

(1 + o(1)) (1)

bits. The first term in Equation 1 is sublinear, O
(
(m/ log2 n) log n

)
=

O (m/ log n). We now bound the main part of second term as follows, ex-
ploiting the fact that the formula is monotonic on every mi:

r∑
i=1

k2mi logk2
n2

mi

≤ k2

r∑
i=1

m

log2−iε n
logk2

(
n2

m
log2−iε n

)

=
k2m

log2 n

r∑
i=1

logiε n

(
logk2

n2

m
+ (2− iε) logk2 log n

)
. (2)
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We can set r = 2/ε because the sum is monotonic on r. Then, because

r∑
i=1

logiε n = logrε n
(
1 +O(log−ε n)

)
= log2 n

(
1 +O(log−ε n)

)
, and

r∑
i=1

i logiε n = r logrε n
(
1 +O(log−ε n)

)
= r log2 n

(
1 +O(log−ε n)

)
,

Equation (2) is

k2m

(
logk2

n2

m

(
1 +O(log−ε n)

)
+ (2− rε +O(log−ε n)) logk2 log n

)
= k2m logk2(n

2/m)(1 + o(1)).

The whole Equation (1), since
∑r

i=1 mi ≤ m, is then upper bounded by

k2m(logk2(n
2/m) +O(1))(1 + o(1)),

which asymptotically coincides with the space of the static k2-tree represen-
tation, even considering the sublinear extra space to support rank operations.

3.2. Insertion, deletion and queries

We rely on efficient set operations over k2-trees [7]. Given C and C ′

represented as two k2-trees, we are able to compute k2-trees representing
C ∪ C ′, C ∩ C ′ and C \ C ′ in linear time on the size |C| and |C ′| of the
representations. Moreover these operations are done without decompressing
C and C ′, with only some negligible extra space being used.

Insertion works as follows. Given an edge (u, v), we check if it occurs in
all sets in the collection in O(logk n) time, as described in Section 2. We only
insert it if it does not exist in any set. While checking for the existence of
(u, v) in sets E1, . . . , Er, if we reach a leaf of a k2-tree at depth dlogk ne and
the bit is set to 0, then we set it to 1 and we are done. We note that this
departs from the construction by Munro et al. [5], opportunistically inserting
(u, v) in our data structure in O(logk n) time. Otherwise, if (u, v) does not
exist in the collection and opportunistic insertion is not possible (i.e., we
never reached a leaf while checking for (u, v) in the collection): if |E0| < m0,
then just insert (u, v) in E0 and we are done; otherwise, build a k2-tree for
E0, find 0 < j ≤ r such that

∑j
i=0mi ≤ m/ log2−jε n, and rebuild Ej with
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Figure 3: add link searching for j such that Ej has enough space to hold all edges of sets
Ei, i < j because E0 was full.

all edges in E0, . . . , Ej by successive unions of k2-trees. Figure 3 illustrates
the process.

If opportunistic insertion occurs, then it takes O((logk n)/ε). If not and
|E0| < m0, then insertion takes constant expected time since we are relying
on an adjacency list coupled with a hash table to maintain adjacencies, as
described before. Otherwise, we need to build a k2-tree for E0 and find
some Ej to accommodate all previous collections Ei, for 0 ≤ i ≤ j. Note
that the construction of the k2-tree for E0 takes O(m0 logk n) time [2], and
the pairwise union of at most j k2-trees representing collections E0 . . . Ej−1
takes O(mj logk n) time, using only the required space to store a k2-tree
representing Ej. The amortized analysis of the insertion cost follows the
argument presented by Munro et al. [5] for the general case. Either Ej is new
and m has at least doubled, in which case the amortized cost is O(logk n)
per edge insertion, or Ej is not new and we are adding to it all edges in
collections E0, . . . , Ej−1. In this last case the building cost can be charged

to the new edges added to Ej, which are at least m/ log2−(j−1)ε ≥ mj/ logε n.
Therefore, the amortized cost of inserting an edge in Ej is O(logk n logε n)
and, since each edge can be moved once to each Ej, with 0 < j ≤ r = b2/εc,
the amortized cost of inserting an edge is O((1/ε) logk n logε n). This is then
the overall amortized cost of inserting an edge.

Deletion works as follows. Given an edge (u, v) ∈ E, if (u, v) ∈ E0,
then just remove it and we are done; otherwise, find 0 < j ≤ r such that
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(u, v) ∈ Ej and, if there is such j, set to zero the bit corresponding to its
leaf in Ej k

2-tree. Note that there is a bit set to 1 for each edge in a k2-tree.
While the bits of edges leading to internal nodes are used to navigate toward
other nodes, the bits of edges leading to leaves do not affect the navigation.
We exploit that fact by setting to zero that final edge, without having to
restructure the k2-tree in any way. This is somehow similar to how Munro
et al. [5] mark deleted bits, but we do not need to allocate extra bits for
marking the deleted nodes; we are able to mark them as deleted within the
same data structure.

Deleting an edge in E0 takes constant expected time. Checking and delet-
ing an edge in our collections takes O((logk n)/ε), since checking if an edge
exists in a given k2-tree takes O(logk n) [2], and we might have to look in
each collection Ei, with 0 < i ≤ r = d2/εe. Once an edge is found, setting
the corresponding bit to 0 in the static k2-tree takes constant time. We must
rebuild the structure periodically in order to maintain the time and space
bounds with respect to the actual number of edges in the graph. When-
ever we delete an edge, we increase the number m′ of deleted edges, and if
m′ > m/ log log n, we rebuild C. The full rebuild after m/ log log n edges are
deleted costs O(m logk n), i.e., it has an amortized cost of O(logk n log log n)
per deleted edge. Overall, deleting an edge has then an amortized cost of
O((1/ε + log log n) logk n).

Querying (checking) for the presence of an edge works just as in k2-trees
with the difference that we need to query all sets in the collection. Therefore,
the querying cost increases by a factor of O(1/ε).

3.3. Graph library

The library proposed in this paper exposes an API supporting also edge
and neighbourhood iterators. This API was built having in mind an easy and
familiar interface, compared to other libraries such as: SNAP4, igraph [8],
among others. And the library was built after the sdk2tree project, but
the underlying k2-tree implementation is based on the sdsl-lite k2-tree
implementation, which uses static bit vectors, in C++.

The two types of iterators present a similar interface: edge begin, edge-
end for edges and neighbour begin(x), neighbour end() for neighbours.

The neighbour iterator receives the node whose neighbourhood is desired.

4http://snap.stanford.edu
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The iterators may be used as other iterators in C++ and follow its iterator
pattern. If there are no edges to iterate then edge begin()=edge end().
The iterators do not return edges in any particular order, since they first
iterate over the E0 container and then over each Ei k

2-tree.

3.3.1. Edge iterator

As previously mentioned, the edge iterator iterates over the container E0

and then over the k2-tree for each Ei. In the uncompressed container E0, it
takes linear time to retrieve all its edges. However, for each k2-tree, it relies
on a k2-tree edge iterator and it takes time proportional to the size of the
k2-tree. This iterator is implemented by saving in a queue all states where
the search was still not finished in a depth-first approach over the k2-tree.
Thus, this queue has at most size O(blog(V )/ log(k)c) which is the maximum
level of the k2-tree. Iterating over edges in a k2-tree is performed then by
visiting internal nodes and, if there are any children, then we check in all the
k2 children of that node; otherwise we backtrack. When we reach the last
level, we check if the bit position is 1, which means we have found an edge
and we return it.

3.3.2. Neighbourhood iterator

The neighbourhood iterator is very similar to the edge iterator in the sense
that we keep a queue of the states from where we last evaluated each node of
the tree. If there are neighbours of node x in the first container E0, it iterates
over them first. Once the uncompressed container is iterated, it goes to the
k2-tree collections. Similarly to the edge iterator, it follows a depth-first
search keeping a queue with the incomplete searched states. The neighbour
iterator follows the same algorithm from the neighbour-listing operation from
the k2-tree, however it saves the state from all the incomplete searched states.
The running time for listing all neighbours of a given vertex is the same of
the neighbour-listing operation.

3.4. Comparison with other constructions

Given a graph G, for a fixed ε, the presented data structure uses es-
sentially the same space as a static k2-tree, and supports insertions and
deletions in O(logk n logε n) and O(logk n log log n) amortized time, respec-
tively. The implementation of dynamic k2-trees using dynamic bit vectors [4]
requires a small space overhead, and it supports insertions and deletions in
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O(logk n log n) time, which implies a slowdown factor of Θ(log1−ε n) with
respect to the proposed data structure.

Edge queries over the proposed data structure take the same time as in
static k2-trees. Although dynamic k2-trees using dynamic bit vectors [4] work
similarly to static k2-trees, they run on dynamic bit vectors, thereby having
a slowdown of Ω(log n/ log log n) [3, Chapter 12].

We also compare our approach with a new representation, k2-tries, pro-
posed recently [9]. This data structure uses O(m log(n2/m) + m log k) bits,
and supports edge queries in O(logk n) time and updates in O(logk n) amor-
tized time. The implementation provided by the k2-tries authors supports
only edge additions and queries, with slightly worse time complexities.

4. Experimental analysis

In the conference version of this work [6], we presented sdk2tree, our
dynamic k2-tree C implementation based on the techniques proposed by
Ian Munro et al. [5]. We now also introduce a C++ library version named
sdk2sdsl which is based on the sdsl-lite data structure library. We
present an experimental analysis comparing different implementations: our
new sdk2sdsl library version; our previous dynamic graph sdk2tree imple-
mentation [6]; the dynamic graph dk2tree based on dynamic bit vectors [4];
two dynamic graph implementations (differing only on the parametrization
to trading compression for speed) k2trie{1,2} based on dynamic tries [9];
the original static bit vector implementation k2tree [2]. We make avail-
able the source code for all implementations as well as usage instructions at
https://github.com/aplf/sdk2tree. Our new sdk2sdsl implementation
was written in C++ and the others are in C, with every implementation single-
threaded and compiled with gcc 7.5.0 using the -O3 optimization flag. Ex-
periments were performed on an 8-core AMD Ryzen 7 2700X Eight-Core Pro-
cessor @ 2.04GHz machine with 32K L1d cache, 64K L1i cache, 512KB L2
cache, 8192K L3 cache and system memory of 64 GB RAM. We implemented
a common interface to test each implementation. All dynamic data struc-
tures dk2tree, sdk2tree, sdk2sdsl and k2trie{1,2} are initialized empty.
The static k2tree is initialized by reading the whole graph from secondary
storage. Once initialized, the interface starts a main loop which reads instruc-
tions from stdin representing all supported edge operations, with additions
and deletions not available in k2tree, and k2trie{1,2} supporting only
edge additions and queries. We also implemented and tested known graph
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algorithms on our sdk2sdsl implementation: breadth-first search (BFS),
depth-first search (DFS), global clustering coefficient and variants of triangle
counting.

4.1. Datasets and methodology

We use both real and synthetic datasets. In Table 1 we identify the
datasets and their properties. For each dataset, we present its vertex and
edge counts written as |V | and |E|, respectively, and bits per edge (after
serialization) for each implementation.

Real-world graphs were obtained from the Laboratory of Web Algorith-
mics5 [1, 10]. Synthetic datasets were generated from the partial duplication
model [11]. Although the abstraction of real networks captured by the par-
tial duplication model, and other generalizations, is rather simple, the global
statistical properties of, for instance, biological networks and their topologies
can be well represented by this kind of model [12]. We generated random
graphs with selection probability p = 0.5, which is within the range of inter-
esting selection probabilities [11]. The number of edges for those graphs is
approximately 25 times the number of vertices.

We should note that bits per edge for real datasets in Table 1 are affected
by the natural order of vertices, given in that case by URL lexicographic or-
der, which favours Web graph compressibility. If ids were randomly assigned
to vertices, then the bits per edge would be similar to those observed for
random synthetic graphs.

We consider four major operations: edge additions, removals, query-
ing/checking and vertex neighbourhood listing. Elapsed time was measured
using the clock() function6. Each time and memory result is the average of
5 individual executions. Although the k2tree implementation does not sup-
port additions, we include it in the comparison. For that we build a k2tree

for each dataset and divide the time it takes by the number of edges, obtain-
ing the average construction time per edge. This allowed us to evaluate the
overhead introduced by dynamic data structures. The removal operation is
compared between sdk2tree, sdk2sdsl and dk2tree. This operation was
evaluated by adding all edges and removing a sample of 50% of them. All im-
plementations except the one based on dynamic tries were directly compared

5http://law.di.unimi.it/datasets.php
6http://man7.org/linux/man-pages/man3/clock.3.html
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Table 1: Bit/edge ratio (post-serialization) is presented for each data structure. First four
datasets were synthetically generated using a duplication model. Last four datasets are
real-world Web graphs made available by the Laboratory for Web Algorithmics (LAW) [1,
10] (uk-2007-05 is actually uk-2007-05-100000 in the LAW website).

Dataset
|V |
(M)

|E|
(M)

k2tree

(bit⁄edge)
dk2tree

(bit⁄edge)
sdk2tree

(bit⁄edge)
sdk2sdsl

(bit⁄edge)
k2trie1

(bit⁄edge)
k2trie2

(bit⁄edge)

dm50K 0.05 1.11 21.10 23.64 21.26 25.26 43.16 298.99
dm100K 0.10 2.59 22.66 25.27 22.76 27.16 47.31 257.61
dm500K 0.50 11.98 27.87 30.85 27.97 33.31 57.92 187.91
dm1M 1.00 27.42 29.48 32.63 29.49 35.33 58.78 132.92
uk-2007-05 0.10 3.05 2.98 3.39 3.16 3.63 5.62 11.11
in-2004 1.38 16.92 2.99 3.40 3.14 3.64 3.90 6.97
uk-2014-host 4.77 50.83 9.47 10.55 9.58 11.42 13.07 21.88
indochina-2004 7.42 194.11 2.46 2.79 2.59 3.00 2.88 4.91
eu-2015-host 11.26 386.92 5.61 6.26 5.71 6.74 7.02 11.64

for the listing operation. After adding all edges, we evaluated this operation
by asking for the neighbourhoods of a sample of 50% of the vertices. We
measure for each implementation the average time per individual operation,
the maximum resident set size (memory peak was obtained with GNU time7),
and the disk space taken by the serialization of data structures.

4.2. Cost analysis

Let us analyze the cost of each operation over the different datasets and
for the different implementations. Figure 4 shows the average running time
for adding an edge. As mentioned before, we include k2tree in this com-
parison to observe the slowdown introduced by dynamic data structures. As
expected, dynamic implementations take in general more time per add oper-
ation than k2tree. As expected also from the theoretical analysis, the add
operation on sdk2tree is faster than on dk2tree, in particular for real Web
graphs. The library version sdk2sdsl is faster or as fast as sdk2tree for this
operation.

Figure 5 shows the average running time for removing an edge. For both
dataset types, dk2tree was slower than others. The sdk2tree and sdk2sdsl

implementations achieved close execution times and similar behavior among
datasets, with the library implementation sdk2sdsl being faster. We note
that costs seem to correlate well with the predicted bounds.

7https://www.gnu.org/software/time/
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Figure 4: Average time taken for adding an edge in real Web graphs and in synthetic
graphs (generated from a duplication model), respectively.
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Figure 5: Average time taken for deleting an edge in real Web graphs and in synthetic
graphs (generated from a duplication model), respectively.

Figures 6 and 7 show the average running time for listing vertex neigh-
bourhoods and querying/checking edges. Across all datasets, sdk2tree was
faster than dk2tree and on-par with k2tree and k2trie{1,2}. In the case
of listing, we are plotting against O(

√
m). The results on the duplication

model show good correlation with previous average-case analyses [2]. We
note that, in the worst case, it takes O(n) time to obtain the neighbours of
a vertex with the k2-tree, even if there are none to report. Those average
and worst-case bounds are also valid for sdk2tree and dk2tree as discussed
previously in the theoretical analysis. dk2tree (dynamic bit vectors) was
slower than sdk2tree, which matched the static k2tree implementation.
Our sdk2sdsl library version was consistently the fastest for the listing op-
eration. For the edge query operation, dk2tree was consistently the slowest
implementation, with the others coming very close.

Let us now analyze how much memory is used by each implementation.
In this analysis we consider resident memory while we are performing op-
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Figure 6: Average time taken for listing neighbours of random vertices in real Web graphs
and in synthetic graphs (generated from a duplication model), respectively.
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Figure 7: Average time taken for querying edges in real Web graphs and in synthetic
graphs (generated from a duplication model), respectively.

erations. For the space that each data structure takes once serialized on
secondary storage (i.e., the tree stored on disk as a sequence of nodes), we
refer the reader to Table 1. We note that our sdk2sdsl library implemen-
tation serialized format has a higher (≈ 20%) bits/edge ratio compared to
sdk2tree. This seems to be related to using a 64-bit index for the data
structures.

Figure 8 shows the maximum resident memory while adding edges in dy-
namic implementations. We can observe that sdk2tree requires more mem-
ory than dk2tree, although the growth rate is similar. This can look unex-
pected given the theoretical bounds derived previously, but we must recall
that we are periodically merging together static collections in the sdk2tree

implementation. The sdk2sdsl implementation followed the same pattern
as sdk2tree, albeit consuming more memory than sdk2tree. Note that we
use 64 bit integers in sdk2sdsl and 32 bit integers in sdk2tree.

Figure 9 shows the maximum resident memory while removing edges.
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Figure 8: Maximum resident memory while adding edges in real Web graphs and in
synthetic graphs (generated from a duplication model), respectively.
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Figure 9: Maximum resident memory while deleting edges in real Web graphs and in
synthetic graphs (generated from a duplication model), respectively.

Since we are adding all edges before removing about 50% of them, the mem-
ory requirements for sdk2tree are exactly the same as in Figure 8. This
also means that the edge removal operation does not increase the space re-
quirements in this implementation. sdk2sdsl consumed more memory than
sdk2tree, with the memory requirements for dk2tree being the lowest on
this operation.

Figure 10 shows the maximum resident memory while adding edges and
listing vertex neighbourhoods. Since we are adding all edges as before, the
memory requirements for sdk2tree, sdk2sdsl and dk2tree are identical to
those observed in Figures 8 and 9. We include now also the static k2tree

in our analysis. We should note however that once constructed, k2tree

requires much less space as shown in Table 1. For instance, for the dataset
dm100K, k2tree had a peak resident memory footprint of around 503.11 MB
during construction, while its k2-tree structure stored on disk uses 22.66 bits
per edge, i.e, a total of 7.01 MB. Although we are using the exact same
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Figure 10: Maximum resident memory while listing neighbours of random vertices in real
Web graphs and in synthetic graphs (generated from a duplication model), respectively.

implementation of k2-trees for representing the static collections within our
sdk2tree and sdk2sdsl implementations, we do not observe such a high
memory footprint while adding edges in our implementations. This highlights
the fact that we are merging those collections without decompressing them
as mentioned before.

4.3. Graph library performance

We implemented some well known graph algorithms over sdk2sdsl, for
which we compare consumed memory and execution time against expected
theoretical results. For each algorithm, we present in Table 2 the running
time and peak resident memory usage. Each cell holds the ratio of ob-
served value to corresponding theoretical complexity. For example, the value
of the cell of the first row and first column on the top represents the ex-
ecution time (nanoseconds) of the sdk2sdsl breadth-first search algorithm
(applied to dataset dm50K) divided by its theoretical temporal complexity of
O(n
√
m + m). We omit dataset indochina-2004 from the graph algorithm

tests for sdk2sdsl as its topology does not allow for an adequate assessment
of algorithms expected efficiency.

The first column of Table 2 shows the behavior of breadth-first search
(BFS). For the time ratio, the implementation is such that the observed
execution times increase by small amounts compared to the growing dataset
sizes, with the peak resident memory values being more intimately connected
to the topology of the datasets. Note the

√
m due to the cost of listing of

neighbourhoods.
The second column of Table 2 shows the behavior of depth-first search

(DFS). It has a behavior similar to BFS for all dataset graph types (for both
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Table 2: Ratios between observed values and corresponding theoretical graph algorithm
complexities. The top part is the execution time ratio (nanoseconds) and the bottom part
is the peak resident memory ratio (bytes).

Time ratio
(ns)

BFS

n
√
m + m

DFS

n
√
m + m

CC

m
√
m

CT (hash)

m
√

m

CT (neighbour)

m
√
m logk n logm

dm50K 66.2884 67.3630 6.4365 0.0474 0.4566
dm100K 74.2812 73.8288 5.5574 0.0386 0.4350
dm500K 82.8276 84.9108 5.7892 0.0214 0.3033
dm1M 88.1807 91.0187 5.2030 0.0203 0.2773

uk-2007-05 5.0637 5.0362 0.8456 0.0173 N/A
in-2004 2.7018 2.6811 0.7807 0.0039 N/A
uk-2014-host 13.5329 13.2120 2.3418 0.0745 N/A
eu-2015-host 10.3745 10.1891 0.4817 0.0007 N/A

Memory ratio
(B)

BFS

n + m

DFS

n + m

CC

n + m

CT (hash)

n + m

CT (neighbour)

n + m

dm50K 16.465 16.526 78.771 75.848 14.581
dm100K 11.015 11.017 74.837 72.110 9.231
dm500K 12.744 12.748 72.662 70.569 10.561
dm1M 11.112 11.113 70.923 68.940 10.813
uk-2007-05 4.715 4.149 69.023 67.497 N/A
in-2004 6.119 4.970 74.324 70.670 N/A
uk-2014-host 7.686 6.596 72.019 67.283 N/A
eu-2015-host 3.174 2.625 13.585 12.442 N/A

time and memory), as expected.
For the (global) clustering coefficient (CC), the observed time ratios high-

light the influence of graph density. This is shown with dataset uk-2014-host,
whose ratio of 2.3418 (ns) is around 3x greater than the time ratio of the
smaller dataset in-2004 and close to 5x greater than the time ratio of the
bigger eu-2015-host. The peak resident memory ratios for CC are more
closely related to graph structure, with eu-2015-host (biggest of the tested
web graphs) achieving a memory ratio 5x lower than uk-2007-05 (smallest
of the tested web graphs).

Note that we use a classic algorithm for computing both the clustering
coefficient and counting triangles. This algorithm iterates over all edges
(u, v) and, without loss of generality, it iterates over the neighbourhood of
u, checking if each neighbour w of u is such that an edge (w, v) exists in the
graph, where edge existence is checked against a hash table with all edges.
Neglecting heavy hitters, i.e. vertices with more than

√
m, neighbours which

are uncommon for large scale-free networks, the expected running time is
O(m

√
m). We can observe in Table 2 the third (CC) and fourth (CT hash)

columns of the memory ratio section. Their memory ratio values are similar.

17



Since we can answer queries on edge existence with our proposed data
structures in O(log n logm) time, we implemented an algorithm for count-
ing triangles using edge queries directly against the data structure, without
relying on a hash table. Note that the expected running time becomes now
O(m

√
m log n logm) since we can no longer have edge queries in expected

constant time. But now we need much less memory since we do not need
a hash table to track edges, with memory usage essentially being the space
required by the compact graph data structure. As observed in Table 2, the
time ratio for this implementation (fifth column, CT neighbour) is around
an order of magnitude greater than the the time ratio for CT hash.

4.4. Memory allocation analysis

Our implementation of the dynamic k2-tree is based on the technique pre-
sented in [5], whose authors claim additional space is necessary to perform a
union of two collections (which would be decompressed before the union op-
eration taking place). The implementation we present is able to perform the
union operation without decompressing the collections, effectively avoiding
this pitfall. We show for dataset uk-2007-05, in Figure 11, a detailed analysis
of heap memory usage. The analysis was performed using valgrind, with pa-
rameters --tool=massif --max-snapshots=200 --detailed-freq=5, and
the visualizations using the massif-visualizer8.

It can be observed that during execution where edges are continuously
added, there are memory peaks associated with the union operation, tem-
porarily increasing the heap usage by a factor of at most 2. This explains also
the difference in maximum resident memory between sdk2tree and dk2tree

observed before in Figures 8 and 9. The number of rebuilds/unions per-
formed for dataset uk-2007-05, and for each static set in {E1, . . . , E8}, is
respectively 508, 127, 63, 32, 17, 9, 4 and 1.

5. Final remarks

We presented the sdk2tree implementation for representing dynamic
graphs, based on the k2-tree graph representation and relying on a collection
of static k2-trees. It is a dynamic data structure that supports edge additions
and removals with competitive performance, showing faster execution times

8https://github.com/KDE/massif-visualizer
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Figure 11: valgrind heap allocation profile for dataset uk-2007-05. The label time in

i in the x axis denotes the number of instructions executed.

than the dk2tree implementation, a dynamic version of k2-trees based on
dynamic bit vectors, and on par with k2-tries with respect to additions and
queries.

We also present a C++ implementation sdk2sdsl, a modular version which
makes use of the succinct data structure library sdsl-lite. It achieves
competitive performance compared to the other implementations analyzed in
this document. sdk2sdsl also provides efficient implementations of edge and
neighbourhood iterators, and of elementary graph algorithms, with empirical
time and space complexity in tune with theoretical bounds.

Implementations like those analyzed in this paper, when implemented
carefully, are of crucial importance for the efficient analysis and storage of
evolving graphs, while drastically reducing the requirements of secondary
storage compared to traditional dynamic graph representations. Hence, as fu-
ture work, we envision further refinements to these data structures to achieve
greater efficiency, namely in what concerns listing vertex neighbourhoods.
sdk2sdsl is first step towards a reusable library for the analyses of large
evolving graphs.

We are also aiming to research how these representations may be used
within distributed graph processing systems in order to reduce the memory
pressure observed often in these systems.
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