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Abstract12

We first review how we can store a run-length compressed suffix array (RLCSA) for a text T of13

length n over an alphabet of size σ whose Burrows-Wheeler Transform (BWT) consists of r runs in14

O
(
r log(n/r) + r log σ + σ

)
bits such that later, given character a and the suffix-array (SA) interval15

for P , we can find the SA interval for aP in O(log ra + log log n) time, where ra is the number of16

runs of copies of a in the BWT. We then show how to modify the RLCSA such that we find the SA17

interval for aP in only O(log ra) time, without increasing its asymptotic space bound. Our key idea18

is applying a result by Nishimoto and Tabei (ICALP 2021) and then replacing rank queries on sparse19

bitvectors by a constant number of select queries. We also review two-level indexing and discuss how20

our faster RLCSA may be useful in improving it. Finally, we briefly discuss how two-level indexing21

may speed up a recent heuristic for finding maximal exact matches of a pattern with respect to an22

indexed text.23
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10:2 Faster RLCSAs

1 Introduction41

Grossi and Vitter’s compressed suffix arrays (CSAs) [11] and Ferragina and Manzini’s FM-42

indexes [8] are sometimes treated as almost interchangeable, but their query-time bounds are43

quite different. With a CSA for a text T of length n over an alphabet of size σ, when given a44

character a and the suffix-array (SA) interval for a pattern P we can find the SA interval for45

aP in O(log na) time, where na is the number of occurrences of a in the text; with an FM-46

index we use O(log σ) time. This difference carries over to run-length compressed suffix arrays47

(RLCSAs) [18, 24] and run-length compressed FM-indexes (RLFM-indexes) [10, 17], with48

both taking space proportional to the number r of runs in the Burrows-Wheeler Transform49

(BWT) of the text but the former being generally faster for texts over large alphabets50

with relatively few runs of each character, and the latter being faster for texts over smaller51

alphabets.52

In Section 2 we review (with some artistic license) CSAs and RLCSAs. In Subsec-53

tion 3 we show how to use interpolative coding to build an RLCSA for T that takes54

O (r log(n/r) + r log σ + σ) bits and allows us to find the SA interval for aP from that of P55

in O(log ra + log log n) time, where ra is the number of those runs in the BWT containing56

copies of a. In Subsection 3.2 we review a result by Nishimoto and Tabei [20] about splitting57

the runs in the BWT so that we can evaluate LF in constant time, without increasing the58

number of runs by more than a constant factor. In Subsection 3.3 we present our main result:59

how to modify the RLCSA from Section 2 such that finding the SA interval for aP takes60

only O(log ra) time, without increasing the asymptotic space bound. In Section 4 we discuss61

two-level indexing, for which we build one index for the text and another for the parse of62

the text, and how our faster RLCSA may be more suitable for indexing parses than current63

options. Finally, in Section 5 we briefly discuss how two-level indexing may speed up a recent64

heuristic for finding long maximal exact matches (MEMs) of a pattern with respect to an65

indexed text.66

2 Preliminaries67

Suppose we are given a text T [0..n − 1] over an alphabet of size σ and asked to index it68

such that, given a pattern P [0..m − 1], we can quickly count the number of occurrences69

of P in T . More specifically, we want to find the interval in the suffix array (SA) of T70

containing the starting positions of occurrences of P . Consider the matrix whose rows are71

the lexicographically sorted cyclic shifts of T and let F and L be the first and last column of72

that matrix, respectively; this means F contains the characters in T in lexicographic order73

and L is the BWT of T .74

2.1 Compressed suffix arrays75

The key idea behind compressed suffix arrays (CSAs) is to store Ψ[0..n − 1] compactly76

while supporting certain searches on it quickly, where Ψ[0..n − 1] is the permutation of77

{0, . . . , n − 1} such that Ψ[i] is the position of SA entry (SA[i] + 1) mod n in SA[0..n − 1]78

or, equivalently, the position in L of F [i]. (This means Ψ is the inverse of the LF mapping79

used in FM-indexes.) By the definition, Ψ consists of at most σ increasing intervals — one80

for each distinct character that occurs in the text, corresponding to the interval of suffixes81

starting with that character — and if we can support fast binary searches on these intervals82

then we can support fast pattern matching.83
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For example, consider the text84

T = CCTGGGCGAT$CTTACACGAT$GTTACCAGCT$CTTACGCGCT$CTGACGAATT$CTTACGCGAT# ,85

for which SA, Ψ, F and L are shown on the left in Figure 1. If we know SA[22..28] is the SA86

interval for CG (in the green rectangle) and we want the SA interval for GCG, then we can87

search in the increasing interval88

Ψ[36..48] = 6, 9, 14, 15, 16, 23, 24, 28, 29, 30, 42, 46, 6389

for G (in the red rectangle, with Ψ values between 22 and 28 shown as orange arrows and90

the others shown as black arrows) for the successor Ψ[41] = 23 of 22 and the predecessor91

Ψ[43] = 28 of 28. We thus learn that the SA interval for GCG is SA[41..43] (in the blue92

rectangle). Knowing this, we can continue backward stepping.93

2.2 Run-length compressed suffix arrays revisited94

Run-length compressed suffix array (RLCSA) were introduced in [24] for indexing highly95

repetitive collections. In this section we present an alternative, but functionally equivalent,96

description of RLCSAs which is more suitable for describing our improvements.97

▶ Definition 1. For a text T [0..n−1], the array L′[0..r−1] stores the sequence of r characters98

in the runs of the run-length encoding of L.99

▶ Definition 2. For a text T [0..n − 1], the array F ′[0..r − 1] stores the r characters in L′ in100

lexicographic order.101

▶ Definition 3. For a text T [0..n−1], the array Ψ′[0..r−1] is the permutation of {0, . . . , r−1}102

such that Ψ′[i] is the position of F ′[i] in L′.103

In this paper we view a RLCSA as a data structure storing Ψ′[0..r − 1] compactly while104

supporting certain searches on it quickly. By the definition of Ψ′, it still consists of at most105

σ increasing intervals — one for each distinct character that occurs in T , corresponding to106

the interval of suffixes starting with that character — and if we can still support fast binary107

searches on these intervals then we can still support fast pattern matching.108

For example, consider109

T = CCTGGGCGAT$CTTACACGAT$GTTACCAGCT$CTTACGCGCT$CTGACGAATT$CTTACGCGAT#110

again, for which Ψ′, F ′ and L′ are shown on the right in Figure 1. If we know the SA interval111

SA[22..28] for CG starts at offset 0 in the L run of character L′[12] and ends at offset 1 in the112

L run of character L′[15] (in the green rectangle) and we want the SA interval for GCG, then113

we can search in the increasing interval114

Ψ′[25..33] = 1, 3, 7, 13, 15, 22, 25, 39115

for G (in the red rectangle, with Ψ′ values between 12 and 15 shown as orange arrows and116

the others shown as black arrows) for the successor Ψ′[28] = 13 of 12 and the predecessor117

Ψ′[29] = 15 of 15.118

Because L′ and F ′ do not have the predecessor-successor relationship of L and F , we119

cannot deduce that the SA interval for GCG starts in the L run of character L′[28] and ends120

in the L run of character L′[29] (and, in fact, in this example it does not). Instead, we store121

two n-bit SD-bitvectors [21], BL and BF , with r copies of 1 each. The 1s in BL mark the122

Grossi’s Festschrift
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i SA[i] Ψ[i] F [i] L[i]

0 65 21 #CCTGGGCGAT$CTTACACGAT$GTTACCAGCT$CTTACGCGCT$CTGACGAATT$CTTACGCGAT
1 43 31 $CTGACGAATT$CTTACGCGAT#CCTGGGCGAT$CTTACACGAT$GTTACCAGCT$CTTACGCGCT
2 10 33 $CTTACACGAT$GTTACCAGCT$CTTACGCGCT$CTGACGAATT$CTTACGCGAT#CCTGGGCGAT

3 54 34 $CTTACGCGAT#CCTGGGCGAT$CTTACACGAT$GTTACCAGCT$CTTACGCGCT$CTGACGAATT
4 32 35 $CTTACGCGCT$CTGACGAATT$CTTACGCGAT#CCTGGGCGAT$CTTACACGAT$GTTACCAGCT
5 21 48 $GTTACCAGCT$CTTACGCGCT$CTGACGAATT$CTTACGCGAT#CCTGGGCGAT$CTTACACGAT
6 50 17 AATT$CTTACGCGAT#CCTGGGCGAT$CTTACACGAT$GTTACCAGCT$CTTACGCGCT$CTGACG
7 14 18 ACACGAT$GTTACCAGCT$CTTACGCGCT$CTGACGAATT$CTTACGCGAT#CCTGGGCGAT$CTT
8 25 20 ACCAGCT$CTTACGCGCT$CTGACGAATT$CTTACGCGAT#CCTGGGCGAT$CTTACACGAT$GTT
9 47 22 ACGAATT$CTTACGCGAT#CCTGGGCGAT$CTTACACGAT$GTTACCAGCT$CTTACGCGCT$CTG
10 16 25 ACGAT$GTTACCAGCT$CTTACGCGCT$CTGACGAATT$CTTACGCGAT#CCTGGGCGAT$CTTAC
11 58 26 ACGCGAT#CCTGGGCGAT$CTTACACGAT$GTTACCAGCT$CTTACGCGCT$CTGACGAATT$CTT
12 36 27 ACGCGCT$CTGACGAATT$CTTACGCGAT#CCTGGGCGAT$CTTACACGAT$GTTACCAGCT$CTT
13 28 45 AGCT$CTTACGCGCT$CTGACGAATT$CTTACGCGAT#CCTGGGCGAT$CTTACACGAT$GTTACC
14 63 49 AT#CCTGGGCGAT$CTTACACGAT$GTTACCAGCT$CTTACGCGCT$CTGACGAATT$CTTACGCG
15 8 51 AT$CTTACACGAT$GTTACCAGCT$CTTACGCGCT$CTGACGAATT$CTTACGCGAT#CCTGGGCG

16 19 54 AT$GTTACCAGCT$CTTACGCGCT$CTGACGAATT$CTTACGCGAT#CCTGGGCGAT$CTTACACG
17 51 61 ATT$CTTACGCGAT#CCTGGGCGAT$CTTACACGAT$GTTACCAGCT$CTTACGCGCT$CTGACGA
18 15 10 CACGAT$GTTACCAGCT$CTTACGCGCT$CTGACGAATT$CTTACGCGAT#CCTGGGCGAT$CTTA
19 27 13 CAGCT$CTTACGCGCT$CTGACGAATT$CTTACGCGAT#CCTGGGCGAT$CTTACACGAT$GTTAC
20 26 19 CCAGCT$CTTACGCGCT$CTGACGAATT$CTTACGCGAT#CCTGGGCGAT$CTTACACGAT$GTTA
21 0 32 CCTGGGCGAT$CTTACACGAT$GTTACCAGCT$CTTACGCGCT$CTGACGAATT$CTTACGCGAT#
22 48 36 CGAATT$CTTACGCGAT#CCTGGGCGAT$CTTACACGAT$GTTACCAGCT$CTTACGCGCT$CTGA
23 61 38 CGAT#CCTGGGCGAT$CTTACACGAT$GTTACCAGCT$CTTACGCGCT$CTGACGAATT$CTTACG
24 6 39 CGAT$CTTACACGAT$GTTACCAGCT$CTTACGCGCT$CTGACGAATT$CTTACGCGAT#CCTGGG

25 17 40 CGAT$GTTACCAGCT$CTTACGCGCT$CTGACGAATT$CTTACGCGAT#CCTGGGCGAT$CTTACA
26 59 41 CGCGAT#CCTGGGCGAT$CTTACACGAT$GTTACCAGCT$CTTACGCGCT$CTGACGAATT$CTTA
27 37 43 CGCGCT$CTGACGAATT$CTTACGCGAT#CCTGGGCGAT$CTTACACGAT$GTTACCAGCT$CTTA
28 39 44 CGCT$CTGACGAATT$CTTACGCGAT#CCTGGGCGAT$CTTACACGAT$GTTACCAGCT$CTTACG
29 41 50 CT$CTGACGAATT$CTTACGCGAT#CCTGGGCGAT$CTTACACGAT$GTTACCAGCT$CTTACGCG
30 30 53 CT$CTTACGCGCT$CTGACGAATT$CTTACGCGAT#CCTGGGCGAT$CTTACACGAT$GTTACCAG
31 44 59 CTGACGAATT$CTTACGCGAT#CCTGGGCGAT$CTTACACGAT$GTTACCAGCT$CTTACGCGCT$
32 1 60 CTGGGCGAT$CTTACACGAT$GTTACCAGCT$CTTACGCGCT$CTGACGAATT$CTTACGCGAT#C

33 11 62 CTTACACGAT$GTTACCAGCT$CTTACGCGCT$CTGACGAATT$CTTACGCGAT#CCTGGGCGAT$
34 55 64 CTTACGCGAT#CCTGGGCGAT$CTTACACGAT$GTTACCAGCT$CTTACGCGCT$CTGACGAATT$
35 33 65 CTTACGCGCT$CTGACGAATT$CTTACGCGAT#CCTGGGCGAT$CTTACACGAT$GTTACCAGCT$
36 49 6 GAATT$CTTACGCGAT#CCTGGGCGAT$CTTACACGAT$GTTACCAGCT$CTTACGCGCT$CTGAC
37 46 9 GACGAATT$CTTACGCGAT#CCTGGGCGAT$CTTACACGAT$GTTACCAGCT$CTTACGCGCT$CT
38 62 14 GAT#CCTGGGCGAT$CTTACACGAT$GTTACCAGCT$CTTACGCGCT$CTGACGAATT$CTTACGC
39 7 15 GAT$CTTACACGAT$GTTACCAGCT$CTTACGCGCT$CTGACGAATT$CTTACGCGAT#CCTGGGC

40 18 16 GAT$GTTACCAGCT$CTTACGCGCT$CTGACGAATT$CTTACGCGAT#CCTGGGCGAT$CTTACAC
41 60 23 GCGAT#CCTGGGCGAT$CTTACACGAT$GTTACCAGCT$CTTACGCGCT$CTGACGAATT$CTTAC
42 5 24 GCGAT$CTTACACGAT$GTTACCAGCT$CTTACGCGCT$CTGACGAATT$CTTACGCGAT#CCTGG

43 38 28 GCGCT$CTGACGAATT$CTTACGCGAT#CCTGGGCGAT$CTTACACGAT$GTTACCAGCT$CTTAC
44 40 29 GCT$CTGACGAATT$CTTACGCGAT#CCTGGGCGAT$CTTACACGAT$GTTACCAGCT$CTTACGC
45 29 30 GCT$CTTACGCGCT$CTGACGAATT$CTTACGCGAT#CCTGGGCGAT$CTTACACGAT$GTTACCA
46 4 42 GGCGAT$CTTACACGAT$GTTACCAGCT$CTTACGCGCT$CTGACGAATT$CTTACGCGAT#CCTG

47 3 46 GGGCGAT$CTTACACGAT$GTTACCAGCT$CTTACGCGCT$CTGACGAATT$CTTACGCGAT#CCT

48 22 63 GTTACCAGCT$CTTACGCGCT$CTGACGAATT$CTTACGCGAT#CCTGGGCGAT$CTTACACGAT$
49 64 0 T#CCTGGGCGAT$CTTACACGAT$GTTACCAGCT$CTTACGCGCT$CTGACGAATT$CTTACGCGA
50 42 1 T$CTGACGAATT$CTTACGCGAT#CCTGGGCGAT$CTTACACGAT$GTTACCAGCT$CTTACGCGC
51 9 2 T$CTTACACGAT$GTTACCAGCT$CTTACGCGCT$CTGACGAATT$CTTACGCGAT#CCTGGGCGA

52 53 3 T$CTTACGCGAT#CCTGGGCGAT$CTTACACGAT$GTTACCAGCT$CTTACGCGCT$CTGACGAAT
53 31 4 T$CTTACGCGCT$CTGACGAATT$CTTACGCGAT#CCTGGGCGAT$CTTACACGAT$GTTACCAGC
54 20 5 T$GTTACCAGCT$CTTACGCGCT$CTGACGAATT$CTTACGCGAT#CCTGGGCGAT$CTTACACGA
55 13 7 TACACGAT$GTTACCAGCT$CTTACGCGCT$CTGACGAATT$CTTACGCGAT#CCTGGGCGAT$CT
56 24 8 TACCAGCT$CTTACGCGCT$CTGACGAATT$CTTACGCGAT#CCTGGGCGAT$CTTACACGAT$GT
57 57 11 TACGCGAT#CCTGGGCGAT$CTTACACGAT$GTTACCAGCT$CTTACGCGCT$CTGACGAATT$CT
58 35 12 TACGCGCT$CTGACGAATT$CTTACGCGAT#CCTGGGCGAT$CTTACACGAT$GTTACCAGCT$CT
59 45 37 TGACGAATT$CTTACGCGAT#CCTGGGCGAT$CTTACACGAT$GTTACCAGCT$CTTACGCGCT$C
60 2 47 TGGGCGAT$CTTACACGAT$GTTACCAGCT$CTTACGCGCT$CTGACGAATT$CTTACGCGAT#CC

61 52 52 TT$CTTACGCGAT#CCTGGGCGAT$CTTACACGAT$GTTACCAGCT$CTTACGCGCT$CTGACGAA
62 12 55 TTACACGAT$GTTACCAGCT$CTTACGCGCT$CTGACGAATT$CTTACGCGAT#CCTGGGCGAT$C
63 23 56 TTACCAGCT$CTTACGCGCT$CTGACGAATT$CTTACGCGAT#CCTGGGCGAT$CTTACACGAT$G
64 56 57 TTACGCGAT#CCTGGGCGAT$CTTACACGAT$GTTACCAGCT$CTTACGCGCT$CTGACGAATT$C
65 34 58 TTACGCGCT$CTGACGAATT$CTTACGCGAT#CCTGGGCGAT$CTTACACGAT$GTTACCAGCT$C

j Ψ′[j] F ′[j] L′[j]

0 11 # T

1 16 $ G

2 18 $ T

3 28 $ G

4 8 A C

5 10 A T

6 12 A C

7 14 A G

8 24 A A

9 29 A C

10 31 A A

11 34 A #
12 37 A A

13 4 C G

14 6 C A

15 9 C G

16 17 C $
17 19 C C

18 21 C $
19 23 C C

20 30 C T

21 33 C C

22 36 C G

23 38 C C

24 40 C A

25 1 G G

26 3 G T

27 7 G $
28 13 G A

29 15 G C

30 22 G A

31 25 G T

32 39 G C

33 0 T A

34 2 T T

35 5 T C

36 20 T A

37 27 T C

38 32 T G

39 35 T C

Figure 1 For

T = CCTGGGCGAT$CTTACACGAT$GTTACCAGCT$CTTACGCGCT$CTGACGAATT$CTTACGCGAT#

we show SA, Ψ, F and L on the left and the Ψ′, F ′ and L′ on the right. If we know SA[22..28] is
the SA interval for CG (in the green rectangle on the left) and we want the SA interval for GCG, then
we can search in the increasing interval

Ψ[36..48] = 6, 9, 14, 15, 16, 23, 24, 28, 29, 30, 42, 46, 63

for G (in the red rectangle on the left, with Ψ values between 22 and 28 shown as orange arrows and
the others shown as black arrows) for the successor Ψ[41] = 23 of 22 and the predecessor Ψ[43] = 28
of 28. We thus learn that the SA interval for GCG is SA[41..43] (in the blue rectangle on the left).
On the other hand, if we know SA[22..28] starts at offset 0 in the L run of character L′[12] — that
is, at offset 0 in the 13th run, counting from 1 — and ends at offset 1 in the L run of character
L′[15] (in the green rectangle on the right), then we can search in the increasing interval

Ψ′[25..32] = 1, 3, 7, 13, 15, 22, 25, 39

for G (in the red rectangle, with Ψ′ values between 12 and 15 shown as orange arrows and the others
shown as black arrows) for the successor Ψ′[28] = 13 of 12 and the predecessor Ψ′[29] = 15 of 15 (in
the blue rectangle on the right). We then use select and rank queries on two n-bit sparse vectors to
find the SA interval for GCG, the L runs containing that interval’s starting and ending positions, and
those positions’ offsets in those runs.
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starting positions of runs in L and the 1s in BF mark the positions in F of the marked123

characters in L. In our example124

BF = 11100110111001111111111100010111011011100 101 0011110000010101111000125

BL = 10000011011101100101111101001001110011100 011 0111111111110001011110 .126

The interval BF [41..43] in BF starting immediately before the bit with offset 0 in the block127

whose starting position is marked with the 29th copy of 1 and ending immediately before128

the bit with offset 1 in the block whose starting position is marked with the 30th copy of 1,129

is shown in blue. (We are interested in the blocks marked with the 29th and 30th copies of 1130

because we count from 0 in the j column in Figure 1, so those blocks correspond to Ψ′[28]131

and Ψ′[29].) We can find this interval with 2 select1 queries on BF , which take constant132

time.133

The corresponding interval BL[41..43] in BL is also shown in blue, starting immediately134

before the bit with offset 3 in the block whose starting position is marked with the 22nd135

copy of 1 and ending immediately before the bit with offset 1 in the block whose starting136

position is marked with the 24th copy of 1. We can find the 2 indices 22 and 24 with 2137

rank1 queries on BL, which take O(log log n) time. This means the SA interval for GCG is138

SA[41..43] and it starts at offset 3 in the L run of character L′[21] and ends at offset 1 in the139

L run of character L′[23]. Knowing this we can continue backward stepping.140

The RLCSA in Sirén’s PhD thesis [24] for a text T [0..n − 1] with r BWT runs takes141

O
(
r log(n/r) + r log σ + σ log n

)
bits. Given a character a and the SA interval for P , it can142

find the SA interval for aP in O(log n) time.143

3 Faster RLCSAs144

3.1 Searchable Interpolative coding145

Suppose we are given an increasing list ℓ1, . . . , ℓk of k integers in the range [0..n−1]. To encode146

them with interpolative coding [19], we first write ℓ⌈k/2⌉ using ⌊lg(n−1)⌋+1 bits (except that147

we write 0 using 1 bit). All the numbers ℓ1, . . . , ℓ⌈k/2⌉−1 are in the range [0..ℓ⌈k/2⌉ − 1], so we148

can encode them recursively. All the numbers ℓ⌈k/2⌉+1, . . . , ℓk are in the range [ℓ⌈k/2⌉+1..n−1],149

so we can encode them recursively as ℓ⌈k/2⌉+1 − ℓ⌈k/2⌉ − 1, . . . , ℓk − ℓ⌈k/2⌉ − 1. Each encoding150

has O(log n) bits, so we can read them in O(1) time. If we imagine the list stored as keys in151

a balanced binary search tree then we encode the keys according to a pre-order traversal:152

when we reach each key ℓi, we know ℓi lies between the numbers shown to the left and right153

of ℓi and we encode ℓi using the maximum number of bits we would need for any key in that154

range.155

For example, if n = 66, k = 13 and the list is 6, 9, 14, 15, 16, 23, 24, 28, 29, 30, 42, 46, 63156

then, as illustrated in Figure 2, we start by encoding ℓ7 = 24 using ⌊lg 65⌋ + 1 = 7 bits157

as 0011000. We then encode ℓ3 = 14 using ⌊lg 23⌋ + 1 = 5 bits as 01110. We then158

encode ℓ1, ℓ2, ℓ5, ℓ4, ℓ6 = 6, 9, 16, 15, 23 as 0110, 010, 0001, 0, 110, and ℓ10, ℓ8, ℓ9, ℓ12, ℓ11, ℓ13159

as 000101, 011, 0, 001111, 1011, 10000. When we reach 46, say, in a pre-order traversal of the160

tree in Figure 2, we know it lies between 31 and 65, so we encode it using ⌊lg(65−31)⌋+1 = 6161

bits as (46 − 31)2 = 001111.162

The binary search tree has height ⌊lg k⌋ and the bottom level contains at most k keys.163

By Jensen’s Inequality, we encode those keys using O(k log(n/k) + k) bits. Similarly, there164

at most k/2h keys at height h and we encode those keys using O
(

k
2h log n

k/2h + k
2h

)
=165

Grossi’s Festschrift
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24

14 30

46

42 63

28

29

16

2315

6

9

0 65

0 23

0 13

7 13

15 23

15 17 2315

65

29

29

31 65

31 45 47 6529

25

25

01110

0110

010 0 0

0001 001111

0011000

011

110

000101

1011 10000

110 10 1110 0 1 110 11000 11 0 1111

100 10 1000 1 1 100 10000 10 1 1000100

101 1011

1000

10000

10000

Figure 2 A balanced binary search tree storing the k = 13 keys from the increasing list
6, 9, 14, 15, 16, 23, 24, 28, 29, 30, 42, 46, 63 with each key in the range [0..n − 1 = 65]. When we reach
each key in a pre-order traversal or binary search, we know it lies between the two values shown
to its left and right, so we can encode it as the binary number shown below it, using a total of
O(k log(n/k) + k) bits. If we store a bitvector marking the start of each encoding as visited in an
in-order traversal, as shown below the tree, then we can omit the leading 0s from the encodings and
support binary search in time O(log k) without changing our asymptotic space bound.

O
(

k
2h log(n/k) + k(h+1)

2h

)
bits. Since166

⌊lg k⌋∑
h=0

k(h + 1)
2h

= O(k) ,167

we use O(k log(n/k) + k) bits in total.168

In this paper we want to perform binary search on the list — the reader may have noticed169

that our example is Ψ[36..48] from Figure 1 — so we want fast access to the encodings of the170

numbers in it in the order we check them in a binary search. We can store the encodings171

according to an in-order traversal instead of a pre-order traversal, and store an uncompressed172

bitvector with as many bits as there are in the concatenation of the encodings and 1s marking173

where the encodings start. Since the bitvector delimits the encodings, however, we can delete174

the leading 0s from each encoding before concatenating them and building the bitvector. The175

in-order encodings for our example are shown below the tree in Figure 2, with the leading 0s176

removed, and the bitvector is shown below them. Since the bitvector uses at most as many177

bits as the encodings, we still use O(k log(n/k) + k) bits in total and — although random178

access still takes O(log k) time — we can perform binary search in O(log k) total time. This179

scheme is similar to Teuhola’s [25] and Claude, Nicholson and Seco’s [5].180

To find the successor of 22 in the list, we start at the root knowing n = 66 and k = 13181

and perform select1(7) and select1(8) queries on the bitvector to find the starting and ending182

positions of the encoding 0011000 of ℓ7 = 24 in the range [0..65]. Since 22 < 24, we then183

perform select1(3) and select1(4) queries to find the starting and ending positions of the184

encoding 01110 of ℓ3 = 14 in the range [0..23]. Since 22 > 14, we then perform select1(5) and185

select1(6) queries to find the starting and ending positions of the encoding 0001 of ℓ5 = 16186

in the range [15..23]. Since 22 > 16, we then perform select1(6) and select1(7) queries to187

find the starting and ending positions of the encoding 110 of ℓ6 = 23 in the range [17..23].188

Since 22 < 23, we know the successor of 22 in L is 23. We can find the predecessor of 28 in189

O(log k) time symmetrically.190
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If we apply interpolative coding with fast binary search to the increasing interval of Ψ191

for a character a in a text T of length n, then we use O(na log(n/na) + na) bits and can192

support binary search in O(log na) time, where na is the frequency of a in T . If we do this193

for all the characters then we use O(n(H0(T ) + 1)) bits, where H is the 0th-order empirical194

entropy of T . If we encode the increasing interval of Ψ′ for a with interpolative coding, then195

we use O(r log(r/ra) + ra) bits and can support binary search in O(log ra) time, where ra is196

the number of runs of copies of a in the BWT of T (and, equivalently, in L). If we do this197

for all the characters then we use O(r(H0(L′) + 1)) bits, where L′ is again the sequence of198

r characters in the runs of the run-length encoding of T . To be able to find the increasing199

interval for a in Ψ′, we store an r-bit uncompressed bitvector with 1s marking where the200

intervals start.201

▶ Theorem 4. We can store Ψ′ for T in O(r(H0(L′) + 1)) ⊆ O(r log σ) bits and support202

binary search in the increasing interval for a character a in O(log ra) time, where ra is the203

number of runs of copies of a in the BWT of T .204

To use Theorem 4 in an RLCSA, we store205

an uncompressed bitvector marking which distinct characters occur in T , in O(σ) bits;206

the SD-vectors BF and BL in O(r log(n/r)) bits;207

an uncompressed bitvector with 1s marking where the intervals for the characters start208

in Ψ′, in O(r) bits;209

Ψ′ in O(r log σ) bits.210

If we are given a and the SA interval for P then we can find the SA interval for aP by211

using a rank query on the first uncompressed bitvector to find a’s rank among the distinct212

characters that occur in T , in O(1) time;213

using rank queries on BL to find the runs in L overlapping the SA interval for P , in214

O(log log n) time;215

using select queries on the second uncompressed bitvector to find the interval for a in Ψ′,216

in O(1) time;217

using binary search in the interval for a in Ψ′ to find the successor and predecessor of the218

ranks of the first and last runs in L overlapping the SA interval for P , in O(log ra) time;219

using select queries on BF and arithmetic to find the SA interval for aP in O(1) time.220

We store O(r log(n/r) + r log σ + σ) bits in total and find the SA interval for aP in O(log ra +221

log log n) total time. Notice that the O(log log n) term in the query time comes only from222

the rank query on BL.223

▶ Corollary 5. We can store an RLCSA for T in O
(
r log(n/r) + r log σ + σ

)
bits such224

that, given character a and the SA interval for P , we can find the SA interval for aP in225

O(log ra + log log n) time.226

3.2 Splitting Theorem for RLCSAs227

Nishimoto and Tabei [20] showed how we can split the runs in L such that no block in BF228

overlaps more than a constant number of blocks in BL without increasing the number of229

runs by more than a constant factor, and then store LF in O(r log n) bits and evaluate it in230

constant time. Brown, Gagie and Rossi [4] slightly generalized their key theorem:231

▶ Theorem 6 (Nishimoto and Tabei [20]; Brown, Gagie and Rossi [4]). Let π be a permutation
on {0, . . . , n − 1},

P = {0} ∪ {i : 0 < i ≤ n − 1, π(i) ̸= π(i − 1) + 1} ,

Grossi’s Festschrift
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and Q = {π(i) : i ∈ P}. For any integer d ≥ 2, we can construct P ′ with P ⊆ P ′ ⊆232

{0, . . . , n − 1} and Q′ = {π(i) : i ∈ P ′} such that233

if q, q′ ∈ Q′ and q is the predecessor of q′ in Q′, then |[q, q′) ∩ P ′| < 2d,234

|P ′| ≤ d|P |
d−1 .235

If L[i] = L[i − 1] then LF(i) = LF(i − 1) + 1, so236

{0} ∪ {i : 0 < i ≤ n − 1, LF(i) ̸= LF(i − 1) + 1}237

has cardinality r. If LF(i) = LF(i − 1) + 1 then, since Ψ and LF are inverse permutations,238

Ψ[j] = Ψ[j − 1] + 1 where j = LF(i). Therefore,239

{0} ∪ {j : 0 < j ≤ n − 1, Ψ[j] ̸= Ψ[j − 1] + 1}240

also has cardinality r and applying Theorem 6 with d = 2 to Ψ splits the runs in the BWT241

such that no block in BF overlaps more than 3 blocks in BL, without increasing the number242

of runs by more than a factor of 3/2. In our example, the number of runs increases by only243

1, from 40 to 41, as shown below with the split block — corresponding to the first run of 6244

copies of T in L — in red:245

BF = 111001101110011111111111000101110110111001010011110010010101111000246

BL = 100100110111011001011111010010011100111000110111111111110001011110 .247

Suppose we apply Theorem 6 with d = 2 to Ψ and then store, for 0 ≤ b < r, the index of248

the block in BL containing LF(ib) and LF(ib)’s offset in that block, where ib is the starting249

position of block b in BL. Nishimoto and Tabei called this the move table for LF (see250

also [4, 26]) and it takes a total of O(r log n) bits. If we know BL[j] is in block b in BL with251

offset j − ib then, since the block in BF to which LF maps block b in BL now overlaps at most252

the block containing BL[LF(ib)] and the next 2 blocks in BL, we can find the index of the253

block in BL containing BL[LF(j)] = BL[LF(ib)] + j − ib and BL[LF(j)]’s offset in that block254

with at most 2 constant-time select queries on BL. We could use at most 2 constant-time255

lookups instead if we have the starting positions of the blocks in BL stored explicitly in256

another O(r log n) bits.257

3.3 A faster RLCSA without rank queries258

Recall that the O(log log n) term in the query-time bound in Corollary 5 comes only from259

the use of rank queries on an SD-vector. Since rank and select queries can be combined to260

support predecessor queries and select queries on sparse bitvectors can easily be supported261

in constant time and space polynomial in the number of 1s, rank queries on compact sparse262

bitvectors inherit lower bounds from predecessor queries [3] — so they cannot be implemented263

in constant time. Therefore, to get rid of that O(log log n) term, we must somehow avoid264

rank queries.265

We could replace the rank queries with a move table, but that would result in an O(r log n)266

term in our space bound. Instead, we introduce an uncompressed 2r-bit bitvector BF L267

indicating how the starting positions of the blocks in F and L are interleaved. Specifically,268

we scan BF and BL simultaneously — assuming we have already applied Theorem 6 to them269

so that no block in F overlaps more than 3 blocks in L (so r is a constant factor larger than270

it was before the application of the theorem) — and271

if we see 0s in both bitvectors in position i then we write nothing;272

if we see a 1 in BF and a 0 in BL then we write a 1 (indicating that a block starts in F );273
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if we see a 0 in BF and a 1 in BL then we write a 0 (indicating that a block starts in L);274

if we see 1s in both bitvectors then we write a 0 and then a 1 (indicating that blocks275

start in both L and F ).276

This way, BF L.select1(j) tells us which at most 3 blocks in L — those corresponding to the277

0 preceding the jth copy of 1 in BF L and possibly to the next 2 copies of 0 — could overlap278

block j in F (counting from 1). We can then find the starting positions of those blocks in L279

using at most 3 select queries on BL.280

For our example, taking BF and BL to be as shown just after Theorem 6,281

0123456789012345678901234567890123456789012345 67890123456789012345282

BF = 1110011011100111111111110001011101101110010100 11110010010101111000283

BL = 100100110111011001011111010010011100111000110111111111110001011110284

(with the grey numbers only to show positions), we have285

0123456789012345678901234567890123456789286

BF L = 0111010101010100101110110101010101010110 . . .287

012345678901234 567890123456789012345678901288

. . . 100110101011001001010101000100011011010100 .289

In position 38 we see 1s in both BF and BL, so we write 01 in BF L (in positions 49 and 50,290

respectively); in positions 39 and 40 we see 0s in both in BF and BL, so we write nothing; in291

position 41 we see a 1 in BF and a 0 in BL, so we write a 1 in BF L; in position 42 we see a292

0 in BF and a 1 in BL, so we write a 0 in BF L; in position 43 we see 1s in both BF and BL,293

so we write 01 in BF L; in position 44 we see 0s in both BF and BL, so we write nothing;294

and in position 45 we see a 0 in BF and a 1 in BL, so we write a 0 in BF L (in position 55).295

Admittedly, when n = 66 and after applying Theorem 6 2r = 82, it seems foolish to store296

a 2r-bit uncompressed bitvector instead of simply storing BL uncompressed. This is due297

to the small size of our example, however; for massive and highly repetitive datasets, r can298

easily be hundreds of times smaller than n.299

Suppose we know the SA interval SA[41..43] for aP starts at offset 0 in block 28 in F and300

ends at offset 1 in block 29 in F and we want to find which blocks contain its starting and301

ending positions in L and the offsets of those positions. In Section 2, we performed 2 rank302

queries on BL, but now we perform queries BF L.select1(29) = 51 and BF L.select1(30) = 54303

(with arguments 29 and 30 instead of 28 and 29 because we mark with a 1 the starting of304

the first block in F , which we index with 0; the results 51 and 54 are indexed from 0 as well).305

Since the 29th and 30th copies of 1 are BF L[51] and BF L[54] (shown in red above), they are306

preceded by the 51 − 29 + 1 = 23rd and 54 − 30 + 1 = 25th copies of 0, respectively.307

Because we applied Theorem 6, this means the 29th and 30th blocks in F (shown in red308

in BF above) overlap the 23rd block in L and possibly the 24th and 25th blocks (shown in309

blue in BL), and the 25th block and possibly the 26th and 27th blocks (also shown in blue in310

BL). Notice that, because we split the 34th block in F but the first block in L for Theorem 6,311

the block numbers we find in F are the same as in Section 2 but the block numbers we find312

in L will be incremented. Although in general we need 6 select queries on BL, in this case313

we can use only 5 — BL.select1(23), . . . , BL.select1(27) — to find where these blocks begin314

in constant time, and determine which contain the starting and ending positions of the SA315

interval SA[41..43]: the 23rd and the 25th, respectively.316

In short, we replace a rank query on SD-bitvector BL by queries on uncompressed317

bitvector BF L and constant-time select queries on BL. This gives us the following theorem:318
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▶ Theorem 7. We can store an RLCSA for T in O
(
r log(n/r) + r log σ + σ

)
bits such that,319

given character a and the SA interval for P , we can find the SA interval for aP in O(log ra)320

time, where ra is the number of runs of copies of a in the BWT of T .321

Instead of viewing BF L as replacing slow rank queries while using the overall same space,322

we can also view it (and BF and BL) as replacing an O(r log n)-bit move table while using323

the same overall query time. Brown, Gagie and Rossi [4] implemented a similar approach324

to speeding up LF computations in an RLFM-index, but only alluded to it briefly in their325

paper — the path to Bitvector in their Figure 3 — and gave no analysis nor bounds. We326

conjecture that a similar approach can also be applied to reduce the size of fast move tables327

for ϕ and ϕ−1 [13], which return SA[i − 1] and SA[i + 1] when given SA[i].328

4 Two-level indexing329

Corollary 5 and Theorem 7 suggest that RLCSAs should perform well compared to FM-330

indexes and RLFM-indexes when the BWT is over a fairly large alphabet and the number of331

runs of each character is fairly small; Ordóñez, Navarro and Brisaboa [23] have confirmed332

this experimentally. When indexing a highly repetitive text over a small alphabet, we can333

make RLCSAs more practical by storing a table of k-tuples that tells us in which range of334

Ψ′ to search based on which character we are trying to match and which k − 1 characters we335

have just matched. (This table can be represented with a bitvector to save space.) The table336

for our example from Figure 1 and k = 2 is shown below:337

#C 0
$C 1..2
$G 3
AA 4
AC 4..7

AG 8
AT 9..12
CA 13..14
CC 15..16
CG 17..19

CT 20..24
GA 25..27
GC 28..29
GG 30..31
GT 32

T# 33
T$ 33
TA 34..35
TG 36..37
TT 38..39

338

This says that if we want the SA interval for GCG and we have just matched the suffix CG,339

then we should search in the range Ψ′[28..29]. On the other hand, notice that the largest340

range of Ψ′ in which we will ever search is now Ψ′[20..24] — of length 5 — when we are341

trying to match a C after just matching a T; without such a table, the largest range we search342

is Ψ′[13..24] — of length 12 — when trying to match a C.343

There are interesting cases in which we want to index highly repetitive texts over large344

alphabets, however. For example, consider indexing a minimizer digest of a pangenome345

— considering minimizers as meta-characters from a large alphabet instead of tuples of346

characters from a small alphabet [1, 2, 7, 27] — or two-level indexing such a text. For347

two-level indexing we build one index for the text and another for a parse of the text; the348

alphabet of the parse is the dictionary of distinct phrases, which is usually large, but the349

parse itself is usually much smaller than the text and its BWT is usually still run-length350

compressible (albeit less than the BWT of the text) when the text is highly repetitive.351

Something like two-level indexing was proposed by Deng, Hon, Köppl and Sadakane [6]352

but they did not use an index for the text and its absence made their implementation quite353

slow for all but very long patterns. Hong, Oliva, Köppl, Bannai, Boucher and Gagie [12]354

described another approach, which we will review here, but they used standard FM-indexes355

for the text and the parse instead of RLFM-indexes, so their two-level index was noticeably356

faster but hundreds of times larger than its competitors.357

Consider the 50 similar toy genomes of length 50 each in Figure 3. Suppose we parse their358

concatenation similarly to rsync, by inserting a phrase break whenever we see a trigger string359
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CTTCCGCGGTGATAAAGGGGGCGGTAATGTCGCGAAACAGTCTTTTCTA$
CTTACGCGGTGATACAGGGGGCCGTAATTTCGCGGAACAGTCTTTTCTA$
CTTACGCGACGATCCAGGGGGCGGTAATTTCGCGGAACAGTCTTTTCTA$
CTTATGCGATGATCCTGGGGGCGGTAATTTCGCGGAACAGTCTTTTCTA$
CTTACGCGGTGATCCAGGGGGCGGTAATTTCGCGGAACACTCTTCTCTA$
CTTACGCGATGATCCAGTGGGCGGTCTTTTCGCGGAACAGTCTTTTCGA$
CTTACGCGGTGATCCAGGGGGCGGTAATTTCGCGCAACAGTCTTTTCTA$
CTTACGCGGTGATCCAGGGGGCGGTAATTTCTCGGAACAGTCTTTTCTA$
CTTATGCGGTGATCCACGGGGCGGAAGTATCGCGGAACAGTCTTTTTTA$
CTTACGCGATGATCCAGGGGGCGGTAACTTCGCGGAACAGTCTTTTCTA$
CTTACGCGACGATCCAGGGGGCAGTAATTTCGCGGAACAGTCTTTTCTA$
CATACGCGGGGATCCAAGGGGCGGTAATTTCGCGGAACAGTCTTTGACA$
CTTTCACGGTGATCCAGGGGTGGGTAATTTCGCGGAACAGTCTTTTCTA$
CTTACGCGGTGATCCAGGGGGCGGTAATTTCGCGGAACAATCTTTTCTA$
CTTACGCGATGATCCAGGGGGCGGTAATTTCGCGGAACAGTCTTTTCTA$
CTTACGCGGTGATCCAGGGGGCGCTAATTTCGCGAAACAGTCTTTTCTA$
CTTACGTGGTGATCCAGGGGGCGGTAATTTCGAGGAACAGTCTTTAATA$
CTTACGCGGTGATCCAGGGCGCGGTAATTTCGCGGAACAATCTTTTCTA$
CTTACGCGATGATCCAGGGGGCGGTAATTTCGCGGAACAGTCTAATCTA$
CTTACGCGGTGATCCAGGGGGCGGTAATTTCGCGGAACAGTCTTTTCTA$
CTTACGCGGTGATCCAGGGGGCGGTAATTTCGCGGAACAGTCTTTTCTA$
CTTACGCGGTGATCCAGGGGGCGGTAATTTCGCGGAACAATCTTTTCTA$
CTTACGCGATGATCCAGGGGGCGGTAATTGCGCGGAACAGTCTTTTCTA$
CTTACGCGGTGATCCAGGGGGCGGTAATTTCGGGGAACAGTCTTTTCTA$
CTTACGCGATCTTCCAGGGGGCCGAAATTTCGCGTAACAGTCTTTTCTA$

CTTACGCGGTGATTCAGGGGGCGGTAATTTCGCGGATCAGTCTTTTCTA$
CTTACGCGGTTATCCAGGGGGTGGTACTTTCGGTGAACAGTCTGTTCTA$
CTTACGCGGTGATCCAGGGGGCAGTAATTTCGCGGAACAGTCTTTTCTA$
CTTACGCGATGATCCAGGGGGCGGTAATTTCGCTGAACAGTCTTTTCTA$
CTTACGCGATGATCCATTGGGCGGTAATTCCGCGGAACAGTCTTTTCTA$
CTTACGCGATGATCCATGGGGCGGTAATTTCGCGGAACAGTCTTTTCTA$
CTTACGCGATGATCCAGGGGGCTGTATTTTCGCGGAACAGTCTTTTCTA$
CTTACGCGCTGATCCAGGGGGCGGTAATTTCGCGGAACAGTCTTTTCTA$
CTTACGAGATGAGCTAGGGGGCGGTAATTTCGCGGAACAGTCTTTTCTA$
CTTACGCGATGCTCCAGGGGGCGGTGATTTCGCGGAACAGTCTTTTCTA$
CTTTCGCGATGATCCAGGGGGCGGTCATTTCGCGGAACAGTCTTTTCTA$
CTTACGCGGTGATCCAGGGGGCGGTAATTTCGCGGCACAGTCCTTTCTA$
CTTACGCGGTGATCCAGGGGGCGGTAATTTCGCGGAACAGTCTTTTCTA$
CTTACGCGGTGATCCAGGGGGCGGTAATTTCGCGGAACAGTCTTTTCTA$
CTTACTCGGTGATCCAGGGGGCGGTAATTTCGCGGAACAGTCTTTTCTT$
CTTACGCGATGATCCAGAGGGCGGTAATTTCGCGGAACAGTCTTTTCTA$
CTTACGCGGTGATCCAGGGGGCGGTAATTCCGCGGAACAGTCTTTTCTA$
CTTACGCGGGGATCCAGGGGGCGGTAATTTCGCGGAACAATCTTTTCTA$
CTTACGCGGTGATCCAGGGGTCGGTAATTTCGCGGAACAGTCTTTTCTA$
CATACGCGGTGATCCAGGGGGCGGTAATTTCGCGGAACAGTCTTTTCTA$
CTTACGCGGTGATCCAGGGGGCGGTAATTTCGCGGAACAGTCTTTTCTA$
CCTACGCGATGATGCAGGGGGCGGTAATTTCGCGGAACAGTCTTTCCTA$
CTTACGCGATGTTCCAGGGGGCGGTAATTTCGCGGAATAGTTTTTTCTA$
CTTACGCGGTGATCCAGCGGGCGGTAATTTCGCGGAATAGTCTTTTCTA$
CTTACGCGGTAATCCAGGGGGCGGTAATGTCGCGGAACAGTCTTTTCTA#

Figure 3 A set of 50 similar toy genomes of length 50 each, with the first 49 separated by copies
of $ and the last one terminated by #.

— ACA, ACG, CGC, CGG, GAC, GAG, GAT, GTG, GTT, TCG or TCT — or when we reach the TA# at360

the end of the text. (Considering # = $ = 0, A = 1, C = 2, G = 3 and T = 4 and viewing361

triples as 3-digit numbers in base 5, the trigger strings are the triples in the concatenation362

whose values are congruent to 0 modulo 6.) If we replace each phrase in the parse by its363

lexicographic rank in the dictionary of distinct phrases, counting from 1, and terminate364

the sequence with a 0, we get the 562-number sequence shown in Figure 4. With a larger365

example, of course, we obtain longer phrases on average and better compression from the366

parsing.367

Run-length compression naturally works better on the BWT of the concatenation of the368

genomes than on the BWT of the parse, as shown in Figures 5 and 6. Again, with a larger369

example we would achieve better compression, also from the run-length compressed BWT370

(RLBWT) of the parse. Even this small example, however, gives some intuition how the371

dictionary of distinct phrases in the parse is usually large, but the parse is usually much372

smaller than the text and its BWT is usually still run-length compressible. In this case there373

are 90 distinct phrases in the dictionary, the parse is less than a quarter as long as the text,374

and the average run length in its RLBWT is slightly more than 2. An FM-index based on375

the RLBWT of the parse would generally use at least about ⌈lg 90⌉ = 7 rank queries on376

bitvectors for each backward step. The most common value in the runs, 19, occurs in only377

16 runs, so we should spend at most about lg 16 = 4 steps in each binary search.378

To search for a pattern, we start by backward stepping in the index for the text until379

we reach the left end of the rightmost trigger string in the pattern. We keep count of how380

often each trigger string occurs in the text and an n-bit sparse bitvector with 1s marking the381

lexicographic ranks of the lexicographically least suffixes starting with each trigger string.382

This way, when we reach the left end of the rightmost trigger string, with a rank query on383

that bitvector we can compute the lexicographic ranks of the suffixes starting with the suffix384

of the pattern we have processed so far among all the suffixes starting with trigger strings,385

and map from the index of the text into the index for the parse. The width of the BWT386

interval stays the same and may span several lexicographically consecutive phrases in the387
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44, 55, 79, 19, 11, 70, 22, 46, 64, 88, 6, 22, 55, 79, 19, 17, 59, 22, 55, 12,
64, 88, 6, 22, 48, 45, 19, 32, 73, 22, 55, 12, 64, 88, 8, 50, 39, 73, 22, 55,
12, 64, 88, 6, 22, 55, 79, 19, 32, 73, 22, 55, 12, 43, 78, 41, 6, 622, 50, 50,
36, 58, 78, 87, 22, 55, 12, 64, 87, 6, 22, 55, 79, 19, 32, 73, 22, 51, 12, 64,
88, 6, 22, 55, 79, 19, 32, 74, 40, 45, 12, 64, 88, 9, 79, 19, 26, 45, 58, 13,
22, 55, 12, 64, 90, 22, 50, 50, 32, 68, 22, 55, 12, 64, 88, 6, 22, 48, 45, 19,
30, 22, 55, 12, 64, 88, 4, 22, 55, 57, 25, 73, 22, 55, 12, 64, 86, 2, 1, 45,
79, 19, 35, 60, 22, 55, 12, 64, 88, 6, 22, 55, 79, 19, 32, 73, 22, 55, 12, 21,
88, 6, 22, 50, 50, 32, 73, 22, 55, 12, 64, 88, 6, 22, 55, 79, 19, 31, 73, 22,
46, 64, 88, 6, 79, 65, 19, 32, 73, 18, 47, 64, 83, 22, 55, 79, 19, 29, 55, 73,
22, 55, 12, 21, 88, 6, 22, 50, 50, 32, 73, 22, 55, 12, 64, 16, 6, 22, 55, 79,
19, 32, 73, 22, 55, 12, 64, 88, 6, 22, 55, 79, 19, 32, 73, 22, 55, 12, 64, 88,
6, 22, 55, 79, 19, 32, 73, 22, 55, 12, 21, 88, 6, 22, 50, 50, 32, 72, 55, 12,

64, 88, 6, 22, 55, 79, 19, 32, 73, 45, 56, 64, 88, 6, 22, 50, 41, 77, 22, 61,
64, 88, 6, 22, 55, 79, 19, 75, 73, 22, 55, 19, 24, 88, 6, 22, 55, 82, 20, 62,
45, 79, 12, 64, 66, 41, 6, 22, 55, 79, 19, 30, 22, 55, 12, 64, 88, 6, 22, 50,
50, 32, 73, 22, 80, 64, 88, 6, 22, 50, 50, 38, 71, 55, 12, 64, 88, 6, 22, 50,
50, 37, 73, 22, 55, 12, 64, 88, 6, 22, 50, 50, 33, 22, 55, 12, 64, 88, 6, 22,
51, 81, 32, 73, 22, 55, 12, 64, 88, 6, 18, 19, 49, 42, 73, 22, 55, 12, 64, 88,
6, 22, 50, 54, 79, 19, 85, 22, 55, 12, 64, 88, 10, 22, 50, 50, 32, 76, 22, 55,

12, 64, 88, 6, 22, 55, 79, 19, 32, 73, 22, 55, 23, 63, 6, 22, 55, 79, 19, 32,
73, 22, 55, 12, 64, 88, 6, 22, 55, 79, 19, 32, 73, 22, 55, 12, 64, 88, 7, 45,
79, 19, 32, 73, 22, 55, 12, 64, 88, 67, 22, 50, 50, 27, 58, 73, 22, 55, 12, 64,
88, 6, 22, 55, 79, 19, 32, 71, 55, 12, 64, 88, 6, 22, 55, 57, 32, 73, 22, 55,
12, 21, 88, 6, 22, 55, 79, 19, 34, 45, 73, 22, 55, 12, 64, 88, 4, 22, 55, 79,
19, 32, 73, 22, 55, 12, 64, 88, 6, 22, 55, 79, 19, 32, 73, 22, 55, 12, 64, 88,
5, 22, 50, 50, 52, 73, 22, 55, 12, 64, 84, 22, 50, 66, 32, 73, 22, 55, 15, 89,
6, 22, 55, 79, 19, 28, 53, 73, 22, 55, 14, 88, 6, 22, 55, 69, 70, 22, 55, 12,

64, 88, 3, 0

Figure 4 The 563-number sequence (20 numbers per line) over the alphabet {0, . . . , 90} we get
from the concatenation of the toy genomes in Figure 3 by parsing, replacing each phrase by its rank
in the dictionary (counting from 1) and appending a 0.

A8 T1 A41 T28 G1 T18 C1 T1 G2 T1 G27 A1 G10 C1 T1 A1 G6 T1 C1

A1 G1 T1 G2 T2 C4 T39 A1 T3 G1 A5 T1 C1 A41 T1 G2 T42 C2 T2 C1

A1 T1 C1 G1 C1 G2 C1 G1 A1 C6 A1 C13 T1 C22 A1 C22 T1 C22 T1 A1

G2 C2 A2 G10 A1 G25 T1 G6 T1 A1 G1 A4 G15 T2 G1 C1 A2 G2 A3 C1

A27 C1 A2 G1 A9 T1 A1 G1 C1 A4 G1 C1 T1 A1 C6 A1 C12 G1 C11 T1

C10 G2 A35 T1 A7 C1 $2 C2 T45 G1 T3 G1 T1 $1 T3 G2 C1 G2 A1 T1

A2 G17 T2 A9 T1 A7 T1 A1 T18 C1 T2 C1 T9 G1 T9 A3 G1 C1 A22 T1

G1 T1 G35 T1 G9 T1 G2 A1 G17 T1 G23 T1 G18 T1 G4 A1 G4 C1 A1 T17

C1 T28 G1 C1 G2 T1 A1 T1 A1 G2 C1 G1 T2 $44 T1 #1 A1 T2 $1 T1

$1 A1 C1 T44 C4 G6 T1 G15 T1 G22 T1 C3 T1 C1 A1 T2 G2 T4 C1 T9

G1 T10 C1 T13 C1 A1 C13 T1 C2 T2 C1 G1 T1 G4 C16 T1 C4 T1 G2 C38

G1 C4 A1 C2 G1 C1 G8 C1 G29 C2 T1 C20 G1 C3 A1 T1 C2 G1 C6 A1

C10 G1 C26 G2 C1 G54 A1 G5 T1 G16 A1 G8 C1 G7 T1 G2 C3 G5 C1 G13

A1 G2 T1 G19 A23 T1 A18 G1 T1 G3 C25 G1 C14 T1 C1 G1 C10 T1 C18 G2

C2 G17 A1 G3 C1 A1 G21 A1 T1 G1 A1 T2 G1 A6 G1 A37 G28 A1 G2 C1

G1 T2 A1 T1 C8 T1 C15 A1 C22 A1 G2 T1 G1 C1 G6 C1 G35 A1 T14 C1

T3 A1 T14 A1 T11 G1 C1 A2 T1 G1 T2 G1 T2 A1 G1 A7 T1 A22 T1 A5

C1 A7 T4 A1 G1 T2 G1 T12 G1 T23 A1 T6 C1 T1 G1 T1 C1 T13 C1 T16

A1 T13 G1 T2 G1 T1 A1 C1 G13 A3 G20 A1 G10 C1 T1 A1 G3 A1 G4 A1

G1 A1 G5 A1 G1 C1 A1 G7 A1 G2 A2 G2 A5 G2 A2 T1 A2 T1 G1 A1

C1 G3 C1 A3 C2 T2 C42 G1 C2 T1 A1 C1 G1 A2 C1 T19 C1 T47 G1 T21

C1 T2 A2 T1 C3 T1 A2 C1 A9 T1 A8 T1 A20 C1 T28 C1 T12 A1 T1 C1

T1 C2 A1 C20 T1 C20 T2 C1 G1

Figure 5 The RLBWT of the concatenation of the toy genomes shown in Figure 3, consisting of
449 runs (20 runs per line).
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3, 2, 86, 8812, 41, 886, 89, 41, 88, 87, 884, 16, 63, 8811, 19,
555, 79, 5525, 51, 55, 45, 552, 58, 55, 64, 19, 6, 73, 79, 55,
792, 45, 792, 65, 799, 45, 795, 18, 79, 82, 123, 70, 73, 62, 67,
90, 63, 10, 63, 5, 6, 84, 73, 6, 737, 87, 70, 30, 732, 68,
59, 30, 73, 33, 732, 60, 733, 76, 73, 85, 73, 13, 733, 4, 63,
83, 68, 4, 68, 77, 73, 55, 19, 57, 19, 50, 194, 50, 19, 50,

193, 57, 19, 50, 19, 81, 50, 196, 66, 19, 50, 19, 50, 19, 503,
74, 78, 66, 50, 49, 12, 0, 40, 48, 73, 26, 34, 62, 7, 1,
22, 18, 22, 19, 5010, 8, 2212, 50, 223, 50, 28, 50, 2217, 71, 22,
71, 228, 72, 2211, 29, 44, 2221, 45, 55, 45, 27, 36, 17, 35, 22,
20, 23, 12, 47, 129, 56, 122, 80, 122, 46, 1210, 61, 46, 125, 79,
50, 64, 88, 32, 55, 11, 69, 38, 322, 31, 32, 55, 323, 52, 25,
45, 32, 37, 42, 32, 58, 32, 39, 325, 53, 32, 75, 323, 19, 32,
41, 43, 58, 45, 55, 9, 5514, 45, 553, 45, 55, 54, 6, 22, 51,
55, 64, 19, 64, 78, 647, 212, 646, 14, 6411, 21, 64, 24, 645, 15,
64

Figure 6 The RLBWT of the sequence shown in Figure 6, consisting of 226 runs (15 runs per
line).

dictionary — all those starting with the suffix of the pattern we have processed so far — but388

it is possible to start a backward search in the index for the parse with a lexicographic range389

of phrases rather than with a single phrase.390

When we reach the left end of the leftmost trigger string in the pattern, we can use391

the same bitvector to map back into the index for the text and match the remaining prefix392

of the pattern with that. While matching the pattern phrase by phrase against the index393

for the parse, we can either compare against phrases in the stored dictionary or just use394

Karp-Rabin hashes (allowing some probability of false-positive matches). We still have to395

parse the pattern, but that requires a single sequential pass, while FM-indexes in particular396

are known for poor memory locality. They key idea is that, ideally, we match most of the397

pattern phrase by phrase instead of character by character, reducing the number of cache398

misses.399

We plan to reimplement two-level indexes for collections of similar genomes with RLFM-400

indexes for the collections themselves and CSAs, standard RLCSAs and our sped-up RLCSAs401

for the parses from Theorem 7 of those collections, and compare them experimentally. We402

also plan to try indexing minimizer digests with CSAs and RLCSAs.403

5 Boyer-Moore-Li with two-level indexing404

Olbrich, Büchler and Ohlebusch [22] recently showed how working with rsync-like parses405

of genomes instead of the genomes themselves can speed up multiple alignment. More406

specfically, they find and use as anchors finding maximal substrings (call multi-MUMs) of407

the parses that occur exactly once in each parse. In this section we speculate about how408

two-level indexing may similarly speed up searches for long maximal exact matches (MEMs).409

A MEM of a pattern P [0..m − 1] with respect to a text T is a substring P [i..j] of P such that410

P [i..j] occurs in T ,411

i = 0 or P [i − 1..j] does not occur in T ,412

j = m − 1 or P [i..j + 1] does not occur in T .413

Finding long MEMs is an important task in bioinformatics and there are many tools for it.414

Li [14] gave a practical algorithm, called forward-backward, for finding all the MEMs of415

P with respect to T using FM- or RLFM-indexes for T and its reverse T rev. Assume all the416
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distinct characters in P occur in T ; otherwise, we split P into maximal substrings consisting417

only of copies of characters occurring in T and find the MEMs of those with respect to T .418

We first use the index for T rev to find the longest prefix P [0..e1] of P that occurs in T , which419

is the leftmost MEM. If e1 = m − 1 then we are done; otherwise, P [e1 + 1] is in the next420

MEM, so we use the index for T to find the longest suffix P [s2..e1 + 1] of P [0..e1 + 1] that421

occurs in T . The next MEM starts at s2, so conceptually we recurse on P [s2..m − 1]. The422

total number of backward steps in the two indexes is proportional to the total length of all423

the MEMs.424

Gagie [9] proposed a heuristic for speeding up forward-backward when we are interested425

only in MEMs of length at least L. We call this heuristic Boyer-Moore-Li, following a426

suggestion from Finlay Maguire [16]. Since any MEM of length at least L starting in427

P [0..L − 1] includes P [L − 1], we first use the index for T to find the longest suffix P [s..L − 1]428

of P [0..L − 1] that occurs in T . If s = 0 then we fall back on forward-backward to find429

the leftmost MEM and the starting position of the next MEM. Otherwise, since we know430

there are no MEMs of length at least L starting in P [0..s − 1], conceptually we recurse on431

P [s..m−1]. Li [15] tested Boyer-Moore-Li and found it practical enough that he incorporated432

it into his tool ropebwt3.433

Suppose we build an rsync-like parse of T [0..n − 1] and two-level indexes for T and434

T rev based on that parse and parse P when we get it. With a naïve two-level version of435

Boyer-Moore-Li, we would simply use the two-level indexes in place of the normal FM- or436

RLFM-indexes for T and T rev. We conjecture, however, that we can do better in practice.437

Let P [k] be the last character of the last phrase that ends strictly before P [L], let P [j]438

be the first character of the first phrase such that P [j..k] occurs in T , and let P [i] be the439

second character of the phrase preceding the one containing P [j]. Notice we can find i, j440

and k by matching phrase by phrase using only the top level (for the parse) of the two-level441

index for T . If i > 0 then we can immediately discard P [0..i − 1] and conceptually recurse442

on P [i..m − 1]; otherwise, we proceed normally.443

Of course, the value i is at most the value s found by regular Boyer-Moore-Li and could444

be much smaller, in which case discarding P [0..i − 1] benefits us much less than discarding445

P [0..s−1]. We hope this is usually not the case and we look forward to testing Boyer-Moore-Li446

with two-level indexing.447
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