
A Fun Application of Compact Data Structures

to Indexing Geographic Data⋆

Nieves R. Brisaboa1, Miguel R. Luaces1, Gonzalo Navarro2, and Diego Seco1

1 Database Laboratory, University of A Coruña
Campus de Elviña, 15071, A Coruña, Spain

{brisaboa,luaces,dseco}@udc.es
2 Department of Computer Science, University of Chile

Blanco Encalada 2120, Santiago, Chile
gnavarro@dcc.uchile.cl

Abstract. The way memory hierarchy has evolved in recent decades
has opened new challenges in the development of indexing structures in
general and spatial access methods in particular. In this paper we pro-
pose an original approach to represent geographic data based on compact
data structures used in other fields such as text or image compression. A
wavelet tree-based structure allows us to represent minimum bounding
rectangles solving geographic range queries in logarithmic time. A com-
parison with classical spatial indexes, such as the R-tree, shows that our
structure can be considered as a fun, yet seriously competitive, alterna-
tive to these classical approaches.

Key words: geographic data, MBR, range query, wavelet tree.

1 Introduction

The ever-increasing demand for services that allow users to find the geographic
location of some resources in a map has emphasized the interest in the field of
Geographic Information Systems (GIS). The huge size of geographic databases
has made the development of spatial access methods one of the most important
topics of interest in this field. Even though many classical spatial indexes [7]
provide an excellent performance, the way the memory hierarchy has evolved
in recent decades has opened new opportunities in this topic. New levels have
been added (e.g., flash storage) and the sizes at all levels have been consider-
ably increased. In addition, access times in upper levels of the hierarchy have
decreased much faster than in lower levels. Thus, reducing the size of spatial
indexes is a topic of interest because placing these indexes in upper levels of the
memory hierarchy reduces access times considerably, in some cases by several
orders of magnitude. Nowadays it is feasible to place complete spatial indexes in

⋆ This work has been partially supported by “Ministerio de Educación y Cien-
cia” (PGE y FEDER) ref. TIN2009-14560-C03-02, by “Xunta de Galicia” ref.
08SIN009CT, and by Fondecyt Grant 1-080019, Chile.

2 N. R. Brisaboa et al.

main memory. Note that spatial indexes do not contain the real geographic ob-
jects but a simplification of them. The most common simplification is the MBR
(Minimum Bounding Rectangle).

In this paper we aim at the development of compact spatial indexes that
can be placed in upper levels of the memory hierarchy. We build on previous
solutions for two-dimensional points using a structure called a wavelet tree [9],
and generalize them to an index able of answering range queries on rectangle
data. Wavelet trees are interesting because they offer a compact-space solution
to various point indexing problems. In previous work [3] we presented a spatial
index for two-dimensional points based on wavelet trees. The generalization to
support queries over MBRs, which we present here, turns out to be a rather
challenging problem not arising in other domains where wavelet trees have been
used. Our experiments, featuring GIS-like scenarios, show that our index is a
relevant and funnier alternative to classical spatial indexes, such as the R-tree
[10], and that it can take advantage of the fashionable research in compressed
data structures.

2 Related Work

A great variety of spatial indexes have been proposed supporting the different
kinds of queries that can be applied to spatial databases (exact match, adjacency,

nearest neighbor, etc.). In this paper we focus on a very common kind of query,
named range query, on collections of two-dimensional geographic objects. The
problem is formalized as follows. In the 2-dimensional Euclidean space E2, we
define the MBR of a geographic object o, MBR(o) = I1(o)×I2(o) where Ii(o) =
[li, ui](li, ui ∈ E1) is the minimum interval describing the extent of o along the
dimension i. In the same way, we define a rectangle query q = [lq1, u

q
1] × [lq2, u

q
2].

Finally, the range query to find all the objects o having at least one point in
common with q is defined as RQ(q) = {o | q ∩ MBR(o) 6= ∅}.

The R-tree [10] is one of the most popular multidimensional access meth-
ods used to solve range queries in GIS. It consists of a balanced tree “derived
from the B-tree” that decomposes the space into hierarchically nested, possibly
overlapping, MBRs. Object MBRs are associated with the leaf nodes, and each
internal node stores the MBR that contains all the nodes in its subtree. The al-
gorithm to solve range queries using this structure goes down the tree from the
root visiting those nodes whose MBR intersects the query window. Most of the
numerous variants [13] of the original Guttman’s proposal aim at improving the
performance of the R-tree both in the general case and in particular applications
(static collections). Two of these variants (the R*-tree [2] and the STR R-tree
[12]) are used in Section 4 to compare the performance of our proposal.

The problem of solving two-dimensional range queries on points has also
been tackled in other research fields. The seminal computational geometry work
by Chazelle [4] offers several space-time tradeoffs, including one that in two
dimensions requires O(N log U) bits of space and answers range queries in time
O(log N + k logǫ N), where N is the total number of points in [1, U] × [1, U], k

Compact Data Structure for Indexing Geographic Data 3

is the output size, and 0 < ǫ < 1 is a constant affecting memory consumption.
The wavelet tree [9] can be regarded as a compact version of Chazelle’s data
structure, which requires exactly N log2 U + o(N log U) bits to index N points
in the range [1, U]. Recently [3], we adapted the basic approach where the points
form a permutation to handle an arbitrary set of points in a continuous space,
following Gabow’s arguments [6].

A basic tool in compact data structures is the rank operation: given a se-
quence S of length N , drawn from an alphabet Σ of size σ, ranka counts the
occurrences of symbol a ∈ Σ in S[1, i]. The dual operation, selecta(S, i), finds
the i-th occurrence of a symbol a ∈ Σ in S. For the special case Σ = {0, 1} (S is
a bit-vector B), both rank and select operations can be implemented in constant
time and using little additional space on top of B (o(n) in theory [14,8]). For ex-
ample, given a bitmap B = 1000110, rank0(B, 5) = 3 and select1(B, 3) = 6. In
addition, the symbol a can be extended to a finite number of sequences with sim-
ilar techniques. For instance, given two bitmaps B = 1000110 and C = 0011010,
rank00(B, C, 7) = 2 and select00(B, C, 1) = 2 (00 represents occurrences of the
symbol 0 in both bitmaps simultaneously).

3 Our Fun Structure

In this section we introduce our technique for range queries on MBRs. Recall
our formal definition of the problem from the previous section. The following,
easy to verify, observation provides a basis for our next developments. It says,
essentially, that an intersection between a query q and an object o occurs when,
across each dimension, the query finishes not before the object starts, and starts
not after the object finishes.

Observation 1. o ∈ RQ(q) iff ∀i, u
q
i ≥ li ∧ l

q
i ≤ ui.

3.1 Index Construction

In the upcoming discussion, we assume that the first dimension represents the
rows of the grid (y-axis or latitudes) and the second represents the columns (x-
axis or longitudes). Assume now the set of MBRs g = {m1,. . . ,mN} does not
contain any MBR mi whose projection in the x-axis is within the projection over
the x-axis of other MBR mj in the set (i.e., ∀i, j if li2 < l

j
2 then ui

2 ≤ u
j
2). We

name g a maximal set and describe now a structure to represent a maximal set of
MBRs. If the set of MBRs is not a maximal set, the problem can be decomposed
into k independent maximal sets (see Section 3.4).

Then, let N be the number of MBRs in a maximal set, each one described
by two pairs {(l1,l2),(u1,u2)} (the coordinates of two opposite vertices). These
MBRs can be represented in a 2N × 2N grid with only one point in each row
and column. Gabow et al. [6] proved that the orthogonal nature of the problem
makes possible to work with the ranks of the coordinates instead of working with
the coordinates themselves.

4 N. R. Brisaboa et al.

A wavelet tree with ⌈log2 2N⌉ can be used to store this matrix (the permu-
tation from the order of the MBRs in the x-axis to their order in the y-axis)
with little storage cost (Figure 1). This is a binary tree where each node covers
a range of positions in the Y lY u array that represents the first half of the range
covered by its parent, in the case of a left child, and the second half in the case
of a right child. The range covered by the root node is [1,2N].

87654321

6.554.532.51.50.750.5
fgaedbhc
87654321

6.554.532.51.50.750.5
fgaedbhcXl

7.575.543.53.251.251 7.575.543.53.251.251Xu

16151413121110987654321

3.5
e

4
d

4.5
g’

5
c’

5.5
e’

6
f

6.5
h

7
d’

7.57.2532.521.751.50.5
h’f’cb’a’gba
16151413121110987654321

3.5
e

4
d

4.5
g’

5
c’

5.5
e’

6
f

6.5
h

7
d’

7.57.2532.521.751.50.5
h’f’cb’a’gba

YlYu

87654321

01111101
11011011

fgaedbhc
87654321

01111101
11011011

fgaedbhc

654321

110010
101111

gaedbc
654321

110010
101111

gaedbc
654321

111101
100110

fgedhc
654321

111101
100110

fgedhc

321

001
101

gab
321

001
101

gab
54321

00011
01101

gedbc
54321

00011
01101

gedbc
54321

01101
10100

fgedc
54321

01101
10100

fgedc
321

110
100

fdh
321

110
100

fdh

1

0
1

b
1

0
1

b
21

00
00

gb
21

00
00

gb
21

10
01

bc
21

10
01

bc
321

000
010

edc
321

000
010

edc
321

100
000

gec
321

100
000

gec
21

01
10

fe
21

01
10

fe
21

00
00

fd
21

00
00

fd
1

1
0

f
1

1
0

f

[1,8] [9,16]

[1,16]

[9,12][1,4] [5,8] [13,16]

[1,2] [3,4] [5,6] [7,8] [9,10] [11,12] [13,14] [15,16]

Fig. 1. Representing N MBRs using a wavelet tree.

Each node in the tree stores two bitmaps B1 and B2 of the same length, and
each position in these bitmaps corresponds with a MBR (in the figure, these
positions have been annotated with the identifier of the corresponding MBR).
The MBRs in each node are ordered by the x-axis. Let MBRi be the MBR
stored at the position i of a node, bB1

i the bit i in the bitmap B1, and bB2

i the bit

i in the bitmap B2. Then, bB1

i = 1 if the MBRi is processed in the left child and

bB2

i = 1 if MBRi is processed in the right child. A MBR is processed in a node
if, in the y-axis, it finishes not before the range covered by the node starts, and
starts not after the range covered by the node finishes. Let lB and uB be the
lower and upper bounds of the range covered by a node in Y lY u, then Equations
1 and 2 define the value of the bit i of this node in the first and second bitmap
respectively. Note that a MBR can be processed in both the left and right child
of a node and thus both bB1

i and bB2

i can store the value 1 simultaneously.

bB1

i =

{

1 if lMBRi

1 ≤ lB+uB
2

0 otherwise
(1) bB2

i =

{

1 if uMBRi

1 > lB+uB
2

0 otherwise
(2)

We also need to store the real coordinates of the MBRs to perform the
translation from the geographic space to the rank space. The order of the lower
(X l) and upper (Xu) coordinates in the x-axis is the same because we assume
the matrix represents a maximal set. Thus, we use two sorted arrays with the
lower (X l) and upper (Xu) x-coordinates and an array storing the identifiers of
the MBRs in the same order. Y-coordinates are stored also in an ordered array,
Y lY u, containing both lower (Y l) and upper (Y u) y-coordinates. Each position

Compact Data Structure for Indexing Geographic Data 5

in the Y lY u array of the figure has been annotated with the identifier of the
corresponding MBR for clarity, but these identifiers are not stored.

As such, this structure may require quadratic space, however. The reason is
that a MBR with a large extent in y can be represented in a linear number of
nodes at the same level. In order to solve this problem Equation 3 presents a
slight modification in the way the structure is created. When a MBRi completely
contains the range covered by the node both bitmaps store a 0 in the position i,
and thus, this MBR is not stored in the nodes of this subtree. Then each MBR
can be stored at most four times per level and we can guarantee logarithmic
bit-space per MBR.

bB1

i = bB2

i =

{

0 if (lMBRi

1 ≤ lB) and (uMBRi

1 ≥ uB)
use (1) and (2) otherwise

(3)

3.2 Solving Queries

This structure can be used to solve range queries in the rank space derived
from the translation of the original queries in the geographic space using the
ordered arrays of coordinates (X l, Xu, and Y lY u). A leftSearch(S, ti) finds
the lowest si ≥ ti in an ordered array S by means of a binary search. In a
similar way, a rightSearch(S, ti) returns the largest si ≤ ti. Thus, a query in the
geographic space q = [yl, yu]×[xl, xu] is translated into the equivalent query q′ =
[y′

l, y
′
u]× [x′

l, x
′
u] (y′

l = leftSearch(Y lY u, yl), y′
u = rightSearch(Y lY u, yu), x′

l =
leftSearch(Xu, xl), and x′

u = rightSearch(X l, xu)) in the rank space (yes, the
upper x coordinates of the MBRs are searched for the lower x coordinate of the
query, and vice versa). For example, the query q = [2.0, 2.75]×[2.0, 3.5] translates
into q′ = [4, 5]×[3, 5] (leftSearch(Y lY u, 2.0) = 4, rightSearch(Y lY u, 2.75) = 5,
leftSearch(Xu, 2.0) = 3, and rightSearch(X l, 3.5) = 5).

Algorithm 1 shows the recursive method to solve range queries once they have
been translated into the rank space. The interval [x′

l, x
′
u] determines the valid

range inside the root node of the wavelet tree and the interval [y′
l, y

′
u] determines

nodes that can be pruned (because the wavelet tree maps from the order in the
x-axis to the order in the y-axis). This algorithm recursively projects a range,
[x′

l, x
′
u] at the beginning, onto the child nodes using rank1 operations over the

two different bitmaps. The first bitmap B1 is used to project onto the left child
and the second bitmap B2 is used to project onto the right child. The recursive
traversal stops when the result of the two child nodes has been computed. Note
that the same MBR can be reported by both child nodes but no repeated results
should be reported by their parent node. Thus, the results of both siblings are
merged to compute the result of their parent node. In addition, there can be local
results in a node corresponding with MBRs that completely contain the range
covered by the node (i.e., all the MBRs in a position i where bB1

i = bB2

i = 0),
which are added to the result in the merge stage.

Figure 1 highlights the nodes visited to solve the query of the example
q = [2.0, 2.75] × [2.0, 3.5]. As we noted before, this query is translated into the

6 N. R. Brisaboa et al.

Algorithm 1 Range query algorithm in the rank space.

Require: cNode,pmin,pmax,lB,uB; current node, valid node positions [pmin,pmax],
query range [lB,uB]
result← []; leftResult← []; rightResult← []; localResult← []
if cNode.range ⊆ [lB, uB] then

for i = pmin to pmax do

add i to localResult

end for

else

if cNode.leftChild.range ∩ [lB, uB] 6= ∅ then

leftResult← recursive call with:
pmin ← rank1(cNode.B1, pmin − 1) + 1
pmax ← rank1(cNode.B1, pmax)
cNode← cNode.leftChild

end if

if cNode.rightChild.range ∩ [lB, uB] 6= ∅ then

rightResult← recursive call with:
pmin ← rank1(cNode.B2, pmin − 1) + 1
pmax ← rank1(cNode.B2, pmax)
cNode← cNode.rightChild

end if

for i = rank00(cNode.B, pmin − 1) + 1 to rank00(cNode.B, pmax) do

add select00(cNode.B, i) to localResult

end for

end if

for all lR← leftResult.next(),j ← rightResult.next(),k← localResult.next() do

merge(select1(cNode.B1, i), select1(cNode.B2, j), k)
end for

return result

ranges [3, 5] (valid positions in the root node) and [4, 5] (interval to prune the
tree traversal). The first range is projected onto the child nodes of the root
node as [rank1(B1, 3 − 1) + 1, rank1(B1, 5)] = [2, 4] and [rank1(B2, 3 − 1) +
1, rank1(B2, 5)] = [3, 4] but the second one is not accessed because it covers the
range [9,16] which does not intersect the query range [4,5]. In the same way
the range [2, 4] of the left child is projected onto its children as [rank1(B1, 2 −
1) + 1, rank1(B1, 4)] = [1, 1] and [rank1(B2, 2 − 1) + 1, rank1(B2, 4)] = [2, 4]. In
the next level, the first node accessed is the second one that covers the range
[3,4]. The result of this node comes from the local result that is computed in
this way: there is one local result (because rank00(B, 1) = 1) that is at the
position 1 (because select00(B, 1) = 1). When the recursive call returns the con-
trol to the parent of this node, its result is computed using the merge of the
left child result (an empty set), the right child result (select1(B2, 1) = 1) and
the local result (an empty set). In the parent of this node, there are no local
results and the left result ([1]) and right result ([2]) reference the same MBR
(select1(B1, 1) = select1(B2, 2) = 2). Finally, in the root node the result comes

Compact Data Structure for Indexing Geographic Data 7

from the left child and it is computed as select1(B1, 2) = 3. Note that the MBR
at position 3 is b, the result of the query.

3.3 Coordinate Encoding

We introduce a compressed storage scheme to store the ordered arrays of coor-
dinates (X l, Xu, and Y lY u). We assume that these coordinates can be repre-
sented with four bytes, which is sufficient for the finite precision used in GIS.
Geographic coordinates can be represented in degrees or meters and in most
cases it is possible to round the coordinates to integer values, after appropriate
scaling, without losing any precision. We make use of this assumption, as it holds
in most practical applications.

Let A = a1a2 . . . aN be one of the arrays of integers to encode. Then, we
encode A as a sequence of non-negative differences between consecutive values
bi+1 = ai+1 − ai and b1 = a1. Let B = b1b2 . . . bN be this sequence, so that
ai =

∑

1≤j≤i bj . The array B is a representation of A that can be compressed by
exploiting the fact that consecutive differences are smaller numbers. These small
numbers can be encoded with different coding algorithms. We compare four
different well-known coding algorithms [15]: Elias-Gamma, Elias-Delta, Rice,
and VBytes.

Given a value v, we are interested in finding the largest ai ≤ v and the
lowest ai ≥ v. These operations are the rightSearch and leftSearch described
in Section 3.2. In order to solve them efficiently we store a vector that stores the
accumulated sum at regularly sampled positions (say every hth position, thus
the vector stores all values xi·h). The search algorithm first performs a binary
search in the vector of sampled sums, and then it carries out a sequential scan
in the resulting interval of B.

3.4 Decomposition into Maximal Sets

In the general case, a maximal set is not enough to properly encompass the
dataset but k maximal sets are needed. Each such set must be queried separately.
We use a single shared Y lY u array for all of them, to reduce the number of
binary searches. Thus the query time complexity can be bounded by O(k log N).
Therefore, minimizing the number of maximal sets k is a key factor to improve
the performance of our structure.

We can in fact decompose a general set of MBRs into the optimal number k

of maximal sets, at indexing time, within O(N log N) complexity, as follows. We
first order the MBRs by the left x-axis value, and process them in that order.
We start with an empty set of maximal sets, which is kept sorted by rightmost
x value in the set. Each new segment can be inserted into any such maximal set
whose rightmost value does not exceed the rightmost x value of the new segment.
From those, we search the one with maximum rightmost value. If no candidate
exists, the new segment creates its own new maximal set.

This solution is not new. It is well known to find the longest increasing subse-
quence in a stream of numbers, and is also related to the problem of decomposing

8 N. R. Brisaboa et al.

a permutation Π over {1 . . .N} into the minimum number of Shuffled (i.e., not
consecutive) UpSequences [1] (the rightmost values of the MBRs correspond to
the permutation values). Our algorithm is equivalent to Fredman’s [5] one to
find the optimal number of Shuffled UpSequences.

4 Experiments

Our machine is an Intel Core2Duo with two processors Intel Pentium 4 CPU
3.00GHz, with 4GB of RAM. It runs GNU/Linux (kernel 2.6.27). We compiled
with gcc version 4.3.2 and option -O9. Both synthetic and real datasets were used
in our experiments. The three synthetic collections have one million MBRs each,
the first one with a uniform distribution, the second one with a Zipf distribution
(world size = 1000 × 1000, ρ = 1), and the third one with a Gauss distribution
(world size = 1000×1000, µ = 500, σ = 200). We created four query sets for each
dataset, with different selectivities that represent 0.001%, 0.01%, 0.1%, and 1%
of the area of the space where the MBRs are located. They contain 1,000 queries
with the same distribution of the original datasets and the ratio between the
horizontal and vertical extensions varies uniformly between 0.25 and 2.25. The
algorithm generating these query sets is based on the one used in the evaluation of
the R*-tree [2]. The first real collection, named Tiger dataset, contains 2,249,727
MBRs from California roads and it is available at the U.S. Census Bureau3. In
addition, six smaller real collections available at the same place were used as
query sets: Block (groups of buildings), BG (block groups), AIANNH (Ameri-
can Indian/Alaska Native/Native Hawaiian Areas), SD (elementary, secondary,
and unified school districts), COUSUB (country subdivisions), and SLDL (state
legislative districts). The second real collection, named EIEL dataset, contains
569,534 MBRs from buildings in the province of A Coruña, Spain4. Five smaller
collections available at the same place were used as query sets: URBRU (urban-
ized rural places), URBRE (urbanized residential places), CENT (population
centers), PAR (parishes), and MUN (municipalities).

4.1 Coordinate Encoding

Coordinate encoding does not have a key influence in search time performance
(these arrays are only used to translate the queries from the geographic space to
the rank space). Thus we can tolerate a small loss in performance in exchange
for better compression. We performed experiments with four coding algorithms
(Elias-Gamma, Elias-Delta, Rice, and VBytes) and five sampling rates h. Figure
2 shows the results of these experiments in the Zipf, Tiger, and EIEL datasets
respectively. Query sets contained 1,000 uniformly distributed queries in the
surface covered by each dataset with a selectivity that represents the 0.01% of
the area. The four lines correspond to the coding algorithms and each point in
these lines represents a different sampling rate (10, 50, 100, 1,000 and 10,000 are
the different h values from left to right).

3 http://www.census.gov/geo/www/tiger
4 http://www.dicoruna.es/webeiel

Compact Data Structure for Indexing Geographic Data 9

 0.0107
 0.01075

 0.0108
 0.01085

 0.0109
 0.01095

 0.011
 0.01105

 0.0111
 0.01115

 0.0112
 0.01125

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

T
im

e
(s

)

Bytes per coordinate

Gamma
Delta
Rice

VBytes

(a) Zipf

 0.00045
 0.0005

 0.00055
 0.0006

 0.00065
 0.0007

 0.00075
 0.0008

 0.00085
 0.0009

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Bytes per coordinate

Gamma
Delta
Rice

VBytes

(b) Tiger

 0
 0.0002
 0.0004
 0.0006
 0.0008

 0.001
 0.0012
 0.0014
 0.0016
 0.0018

 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7

Bytes per coordinate

Gamma
Delta
Rice

VBytes

(c) EIEL

Fig. 2. Influence of the coordinate encoding.

All the coding algorithms provide a good compression rate (the size is sig-
nificantly lower than the 4 bytes per coordinate necessary without encoding).
Elias-Gamma and Elias-Delta provide the best performance when the differ-
ences are very small (e.g., Zipf dataset), but their performance is quite worse
in the EIEL dataset where the differences are larger. VBytes coding provides
better time performance than the rest of the algorithms but its compression rate
is not competitive. Note that VBytes works at the byte level whereas the rest
work at the bit level. Hence, Rice coding can be identified as the algorithm that
offers a better space/time trade-off in the majority of the situations. In addition,
an interval of sampling rates providing an optimal space/time trade-off can be
identified around 500. In the rest of the experiments we use a sampling rate
h = 500 and a preprocessing stage to choose the best coding algorithm.

4.2 Space Comparison

We compare now our structure with two variants of the R-tree in terms of space
needed to store the structure. The space needed by an R-tree over a collection
of N MBRs can be estimated considering a certain arity (M). Dynamic versions
of this structure, such as the R*-tree, estimate that nodes are 70% full whereas
static versions, such as the STR R-tree, assume that nodes are full. Therefore,
an R*-tree needs N

0.7×M−1
nodes and an STR R-tree needs N

M−1
nodes. Each

node needs M × sizeof(entry) bytes. The size of an entry is the size of an MBR
plus a pointer to the child (or to the data if the node is a leaf). In order to
compare these variants with our structure we assume that MBRs are stored in
16 bytes (4 coordinates with numbers of 4 bytes) and the pointer in 4 bytes.
Hence, the total size of an R*-tree is N

0.7×M−1
× 20 × M whereas the size of an

STR R-tree is N
M−1

× 20×M . In our experiments the best time performance of
the R*-tree and STR R-tree is achieved with an effective M value of 30. Note
that the coordinates stored by the R-tree are not sorted, thus it is not possible
to apply our differential encoding.

On the other hand, our structure stores the encoded coordinates of the N

MBRs, their identifiers (N 4-byte numbers) and the wavelet tree bitmaps (see
grayed data in Figure 1). The wavelet tree needs ⌈log2 2N⌉ levels but the number
of times a MBR appears in each level is not constant (four times per level is a

10 N. R. Brisaboa et al.

pessimistic upper bound). In addition, in order to perform rank operations in
constant time, some auxiliary structures are needed that use an additional space.
In our experiments we use the classical two-level solution to perform rank1 and
select1 over the bitmaps B1 and B2 (37.5% in addition to the bitmaps) and a
simpler one level solution to perform rank00 and select00 over the virtual double
bitmap that is composed of B1 and B2 (an additional 5%). A description and
empirical comparison of these solutions can be found in [8]. As well as the size
of the wavelet tree the effectiveness of the coordinates compression also varies
across datasets, so we show the results for each dataset in Figure 3.

 10

 15

 20

 25

 30

Uniform Zipf Gauss Tiger EIEL

In
de

x
S

iz
e

(b
yt

es
/M

B
R

) R*-tree
STR R-tree

SW-tree

Fig. 3. Space comparison.

These results show that our structure, named SW-tree (from spatial wavelet

tree) in the graphs, can index collections of MBRs in less space than the R*-tree
in both synthetic and real scenarios, and it also needs less space than the STR
R-tree in real scenarios and a comparable space in synthetic ones. This is due
to the compressed encoding of the coordinates and the little space required by
the wavelet tree.

4.3 Time Comparison

To perform the time comparison we implemented our structure as described in
Section 3 and used the R-tree implementation provided by the Spatial index

library [11]. This library provides several implementations of R-tree variants
such as the R*-tree and the STR packing algorithm to perform bulk loading.
In addition, all these variants can run in main memory. In our experiments we
run both the R*-tree and the STR R-tree in main memory with a load factor
M = 30.

We first perform experiments with the three synthetic collections. Figures
4(a), 4(b), and 4(c) show the results obtained with uniform data, Gauss dis-
tributed data, and Zipf distributed data, respectively. The main conclusion that
can be extracted from these results is that our structure is competitive with
respect to query time efficiency. It outperforms both variants of the R-tree with
the uniform dataset. In the other two datasets the performance of the three
structures is very similar. The R-tree variants outperform our structure when
the queries are very selective and in less selective queries the results are the
opposite.

Compact Data Structure for Indexing Geographic Data 11

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

0.001% 0.01% 0.1% 1%

T
im

e
(s

)

Selectivity

R*-tree
STR R-tree

SW-tree

(a) Uniform

 0

 0.005

 0.01

 0.015

 0.02

 0.025

0.001% 0.01% 0.1% 1%

Selectivity

R*-tree
STR R-tree

SW-tree

(b) Gauss

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

0.001% 0.01% 0.1% 1%

Selectivity

R*-tree
STR R-tree

SW-tree

(c) Zipf

Fig. 4. Time comparison in three synthetic datasets with different distributions.

Finally, we present the results with the two real datasets. Figures 5(a) and
5(b) present the results with the Tiger and EIEL datasets respectively. In these
graphs the real query sets have been sorted accordingly with their selectivity
(from left to right the query selectivity is looser). Note that all of them are
meaningful queries. For example, in the EIEL dataset the query set CENT con-
tains queries of the form which buildings are contained in the population center

X. In the same way as Zipf and Gauss datasets the performance of the three
structures is quite similar. Our structure outperforms both R-tree variants in
less selective queries and it is less competitive in the more selective ones.

 1e-005

 0.0001

 0.001

 0.01

 0.1

Block BG AIANNH SD COUSUB SLDL

T
im

e
(s

).
 L

og
 s

ca
le

R*-tree
STR R-tree

SW-tree

(a) Tiger

 0.001

 0.01

 0.1

URBRU URBRE CENT PAR MUN

T
im

e
(s

).
 L

og
 s

ca
le

R*-tree
STR R-tree

SW-tree

(b) EIEL

Fig. 5. Time comparison in two real datasets.

5 Further Fun

The minimum number k of maximal sets that cover the MBRs can be thought
of the difficulty of the problem, thus our O(k log N) time query algorithm is
adaptive to this difficulty. Yet, the situation is indeed more complex (and fun).
As a simple example, the number could be different if we rotated the data. For
example, in the TIGER data set, we obtain 19 maximal sets in the x-axis and 36
in the y-axis. This difference is also reflected in the query time performance (for
example, using the Block query set, the time is almost the double in the second
option). A finer consideration is as follows. Assume N1, N2, . . . , Nk are the sizes
of the k maximal sets. Then,

∑

Ni⌈log Ni⌉ is the space necessary to store the
wavelet tree that solves the queries in

∑

⌈log Ni⌉ time. This is interesting because

12 N. R. Brisaboa et al.

the space is a convex function whereas the time is a concave function. Therefore,
balancing the number of elements in the maximal sets improves the size of the
structure whereas the opposite improves the query time performance. Hence,
we can design heuristics to create the maximal sets based on this tradeoff. For
example, the algorithm to create the maximal sets decomposition can choose
the set that, without violating the constraints, contains fewer/more elements,
minimizes Ni⌈log Ni⌉, etc. Finally, the analysis of the query time performance
can be refined by defining the complexity of the problem k as the number of
maximal sets accessed to solve a query (and not all the maximal sets necessary to
represent the dataset). In this case, heuristics that minimize the overlap between
maximal sets can improve the query time performance. This leads us to a band-
decomposition of the space very typical in some packing algorithms for spatial
indexes.

References

1. Barbay, J., Navarro, G.: Compressed representations of permutations, and appli-
cations. In: Proc. 26th STACS 2009. pp. 111–122 (2009)

2. Beckmann, N., Kriegel, H.P., Schneider, R., Seeger, B.: The R*-tree: an efficient
and robust access method for points and rectangles. SIGMOD Record 19(2), 322–
331 (1990)

3. Brisaboa, N.R., Luaces, M.R., Navarro, G., Seco, D.: A new point access method
based on wavelet trees. In: Proc. SeCoGIS’09. ER 2009 Workshops. pp. 297–306
(2009)

4. Chazelle, B.: A functional approach to data structures and its use in multidimen-
sional searching. SIAM Journal on Computing 17(3), 427–462 (1988)

5. Fredman, M.L.: On computing the length of longest increasing subsequences. Dis-
crete Mathematics 11(1), 29 – 35 (1975)

6. Gabow, H.N., Bentley, J.L., Tarjan, R.E.: Scaling and related techniques for ge-
ometry problems. In: Proc. 16th STOC. pp. 135–143 (1984)

7. Gaede, V., Gnther, O.: Multidimensional access methods. ACM Computing Sur-
veys 30(2), 170–231 (1998)

8. González, R., Grabowski, S., Mäkinen, V., Navarro, G.: Practical implementation
of rank and select queries. In: Proc. 4th WEA (Poster). pp. 27–38 (2005)

9. Grossi, R., Gupta, A., Vitter, J.: High-order entropy-compressed text indexes. In:
Proc. 14th ACM-SIAM SODA. pp. 841–850 (2003)

10. Guttman, A.: R-Trees: A Dynamic Index Structure for Spatial Searching. In: Proc.
SIGMOD. pp. 47–57. ACM Press (1984)

11. Hadjieleftheriou, M.: Spatial index library., retrieved March 2009 from
http://research.att.com/ marioh/spatialindex/

12. Leutenegger, S., Lopez, M., Edgington, J.: STR: A simple and efficient algorithm
for R-tree packing. In: Proc. 13th ICDE. pp. 497–506 (1997)

13. Manolopoulos, Y., Nanopoulos, A., Papadopoulos, A.N., Theodoridis, Y.: R-Trees:
Theory and Applications. Springer-Verlag (2005)

14. Navarro, G., Mäkinen, V.: Compressed full-text indexes. ACM Computing Surveys
39(1) (2007)

15. Salomon, D.: Data Compression: The Complete Reference. Springer-Verlag (2004)

