

Asymptotically Optimal Encodings for Range Selection *

Gonzalo Navarro¹, Rajeev Raman², and Srinivasa Rao Satti³

1 Department of Computer Science, University of Chile, Chile

gnavarro@dcc.uchile.cl

2 Department of Computer Science, University of Leicester, UK

r.raman@leicester.ac.uk

3 School of Computer Science & Engg, Seoul National University, S. Korea

ssrao@cse.snu.ac.kr

Abstract

We consider the problem of preprocessing an array $A[1..n]$ to answer *range selection* and *range top- k* queries. Given a query interval $[i..j]$ and a value k , the former query asks for the position of the k th largest value in $A[i..j]$, whereas the latter asks for the positions of all the k largest values in $A[i..j]$. We consider the *encoding* version of the problem, where A is not available at query time, and an upper bound κ on k , the rank that is to be selected, is given at construction time. We obtain data structures with asymptotically optimal size and query time on a RAM model with word size $\Theta(\lg n)$: our structures use $O(n \lg \kappa)$ bits and answer range selection queries in time $O(1 + \lg k / \lg \lg n)$ and range top- k queries in time $O(k)$, for any $k \leq \kappa$.

1998 ACM Subject Classification F.2.2. Nonnumerical Algorithms and Problems, E.2 Data Storage Representations, E.4 Coding and Information Theory

Keywords and phrases Data Structures, Order Statistics, Succinct Data Structures, Space-efficient Data Structures

Digital Object Identifier 10.4230/LIPIcs.xxx.yyy.p

1 Introduction

We consider the problem of preprocessing an array $A[1..n]$ over a totally ordered universe, so that the following queries can be efficiently answered:

- Range selection: $\text{select}(i, j, k)$ returns the position of the k th largest element in $A[i..j]$.
- Range top- k : $\text{top}(i, j, k)$ returns the positions of the k largest elements in $A[i..j]$.

We can assume that A is a permutation of $[n]$, since replacing each element $A[i]$ by its rank in A yields correct answers to those queries. The range selection problem has received a lot of interest in recent years [4, 3, 13, 5]. Following a series of earlier papers, Brodal and Jørgensen [4] presented a structure using linear space and $O(\lg n / \lg \lg n)$ time, for any k given at query time. The model used for this result, as well as the other results in this paper, is the *word RAM* model with word size $w = \Theta(\log n)$ bits. Jørgensen and Larsen [13] improved the time to $O(\lg k / \lg \lg n + \lg \lg n)$, still within linear space, and proved that

* Navarro funded in part by Millennium Nucleus Information and Coordination in Networks ICM/FIC P10-024F; Satti partly supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (Grant number 2012-0008241).

$\Omega(\lg k / \lg \lg n)$ time is needed when using $n \lg^{O(1)} n$ space. Finally, Chan and Wilkinson [5] matched this lower bound, obtaining $O(1 + \lg k / \lg \lg n)$ time using linear space¹. This result implies, via a reduction first observed in [4], an optimal $O(k)$ -time solution to the range top- k problem as well.

In this paper, we are interested in the *encoding model*, where the array A is not available at query time, and therefore the data structure must contain enough information to answer queries by itself. One can always use a non-encoding data structure such as that of Chan and Wilkinson [5], on a copy A' of A , and thus trivially avoid access to A at query time. This yields an encoding that uses $O(n)$ words, or $O(n \log n)$ bits, and has time equal to that of the best non-encoding data structure. We aim to find non-trivial encodings of size $o(n \log n)$ bits (from which, of course, it is not possible to recover the sorted permutation, but one can still answer any `select` query).

Existing non-trivial solutions for this problem in the encoding model are as follows. In the case $k = 1$, both queries boil down to the well-known *range maximum query (RMQ)*, which can be answered in constant time and $2n + o(n)$ bits, matching the lower bound of $2n - O(\lg n)$ bits to within lower-order terms [9]. Note that the space usage is $O(n / \lg n)$ words, or sublinear. The case $k = 2$ was recently considered by Davoodi et al. [7]. Grossi et al. [11] considered encodings for general k , showing that $\Omega(n \lg k)$ bits are needed to encode answers to either selection or top- k queries. Therefore, interesting encodings can only exist if an upper bound κ on k is given at construction time—the so-called κ -*bounded rank* variant of this problem [13]. For general k , Grossi et al. [11] gave an asymptotically optimal-space and $O(1)$ time solution for the (much simpler) case where k is fixed at construction time and furthermore, only *one-sided* queries (i.e. query intervals of the form $A[1..j]$) are supported. Optimal-space encodings for the two-sided range selection problem can be obtained via encodings of the range top- k problem given by Grossi et al. [11] described below; these however have poor running times. Chan and Wilkinson gave a (bounded-rank) range selection encoding for general k that answers `select` queries in $O(1 + \lg k / \lg \lg n)$ time. Its space usage, however, is $O(n(\lg \kappa + \lg \lg n + (\lg n) / \kappa))$ bits, which is non-optimal.

In this paper we show that the same optimal time can be obtained in the encoding model, using asymptotically optimal space.

► **Theorem 1.** *Given an array $A[1..n]$ and a value κ , there is an encoding of A that uses $O(n \lg \kappa)$ bits and supports the query `select`(i, j, k) in $O(1 + \lg k / \lg \lg n)$ time for any $k \leq \kappa$.*

Furthermore, our development allows us to obtain asymptotically optimal time and space for the encoding range top- k problem.

► **Theorem 2.** *Given an array $A[1..n]$ and a value κ , there is an encoding of A that uses $O(n \lg \kappa)$ bits and supports the query `top`(i, j, k) in time $O(k)$, for any $k \leq \kappa$.*

Grossi et al. [11] gave a range top- k encoding using $O(n \lg \kappa)$ bits that answers top- k queries in $O(\kappa)$ time, for any $k \leq \kappa$. To achieve the optimal $O(k)$ time, they require $O(n \lg^2 \kappa)$ bits. Note that Grossi et al.’s result implies an optimal-space (bounded-rank) range selection encoding with running time $O(\kappa)$.

In general, the low space usage of encoding data structures is useful when the values in A themselves are uninteresting, and one just wants to query about their relative magnitudes.

¹ Chan and Wilkinson claim a bound of $O(1 + \log_w k)$ for the “trans-dichotomous” model where the word size $w = \Omega(\log n)$; this is, however, based on an incorrect application [17] of a result of Grossi et al. [12], and the proof presented in [5] only yields a time bound of $O(1 + \log k / \log \log n)$.

An example of range top- k queries used for autocompletion search is given by Grossi et al. [11]; the problem arises frequently in data and log mining applications as well. In addition, our result for range selection allows, for example, delivering the top- k results in sorted order. It is also useful for interfaces where, say, the top- k results are displayed and then, upon user request, the $(k+1)$ th to $2k$ th results are displayed, and so on. Even when A is needed, the sub-linear space usage of encoding data structures means that multiple copies of range selection data structures can be built over one copy of A , and still take less space than A (this trick is used already in the non-encoding result of [5]).

The next section gives some basic concepts and the roadmap of the paper.

2 Preliminaries

Grossi et al. [11] build their results on top of the *shallow cutting* technique [13, 5]. We revisit (a slight variant of) this construction, as we also build on it.

Let $A[1..n]$ be a permutation on $[n]$. Furthermore, consider each entry $A[i]$ as a point $(x, y) = (i, A[i])$, and set a parameter κ . A horizontal line sweeps the space $[1, n] \times [1, n]$ from $y = n$ to $y = 1$. The points hit are included in a single *root cell*, which spans a three-sided area called a *slab*, of the form $[1, n] \times [y, n]$, including all the points of the cell. Once we reach a point (x^*, y^*) that makes the root cell contain 2κ points, we *close* the cell and leave its final slab as $[1, n] \times [y^*, n]$. Then we create two *children cells* of κ points as follows. Let x_{split} be the κ th x -coordinate in the root cell. This is called the *split point*. Then the new cells contain the points whose x -coordinates are $\leq x_{\text{split}}$ and $> x_{\text{split}}$, respectively, and their initial slabs are thus $[1, x_{\text{split}}] \times [y^*, n]$ and $[x_{\text{split}} + 1, n] \times [y^*, n]$ (these will grow downwards as we continue with the sweeping process, independently on each cell). When those cells reach size 2κ , they are split again, and so on. A binary tree T_C is created to reflect the cell refinement process. The root cell is associated with the root node of T_C , the first two children cells to the left and right children of the root, and so on. The leaves of T_C are associated with the final cells, which have not been split and contain κ to $2\kappa - 1$ points (unless $n < \kappa$).

At any moment of the sweeping process, there is a sequence of split points x_1, x_2, \dots , which grows as further cells are split. The current leaves of T_C cover an interval of x -coordinates $[x_i + 1, x_{i+1}]$ (we implicitly assume split points 0 and n at the extremes). When the next split occurs, within the cell covering interval $[x_i + 1, x_{i+1}]$, we split the cell into two new cells covering the x -coordinate intervals $[x_i + 1, x_{\text{split}}]$ and $[x_{\text{split}} + 1, x_{i+1}]$. We associate the *keys* $[x_i + 1, x_{\text{split}}]$ and $[x_{\text{split}} + 1, x_{i+1}]$ and the *extents* $[x_{i-1} + 1, x_{i+1}]$ and $[x_i + 1, x_{i+2}]$, respectively, with the two new cells. After the sweep finishes, the sequence of split points is of the form $0 = x_0 < x_1 < x_2 < \dots < x_{n'} = n$. In the following, we will use x_i to refer to this final sequence of split points. Then we add n' further *keyless* cells with extents $[x_{i-1} + 1, x_{i+1}]$ for all $1 \leq i \leq n'$. Note that $\kappa \leq x_{i+1} - x_i \leq 2\kappa$ for all i (if $n \geq \kappa$).

This construction has useful properties [13]: (i) it creates $O(n') = O(n/\kappa)$ cells, each containing κ to 2κ points (if $n \geq \kappa$); (ii) if c is the cell of the highest (closest to the root) node $v \in T_C$ whose key is contained in a query range $[i..j]$, then $[i..j]$ is contained in the extent of c ; and (iii) the top- κ values in $[i..j]$ belong to the union of the points in the 3 cells comprising the extent of c .

With these properties, Chan and Wilkinson [5] reduce the $O(\lg n / \lg \lg n)$ time of Brodal and Jørgensen [4] as follows. At each node $v \in T_C$, they store the structure of Brodal and Jørgensen for the array $A_v[1..O(\kappa)]$ of the y -coordinates of the points in the extent of v . Actually, they store in A_v the local permutation in $[O(\kappa)]$ induced by the relative ordering in A , thus A_v requires $O(\kappa \lg \kappa)$ bits in each v and $O(n \lg \kappa)$ bits in total. The structure for

range selection also uses $O(\kappa \lg \kappa)$ bits and answers queries in time $O(1 + \lg_w \kappa)$. They also store an array $P_v[1..O(\kappa)]$, so that $P_v[i]$ is the position in $A[1..n]$ of the value stored in $A_v[i]$.

Property (iii) above implies that the k th largest element of $A[i..j]$, for any $k \leq \kappa$, is also the k th largest value in $A_v[l, r]$, where v is the node that corresponds to interval $[i..j]$ by property (ii) and $P_v[l-1] < i \leq j < P_v[r+1]$ are the elements in the extent of node v enclosing $[i..j]$ most tightly. Thus query $\text{select}(i, j, k)$ on A is mapped to query $p = \text{select}(l, r, k)$ on A_v . Once the local answer is found in $A_v[0]$, the global answer is $P_v[0]$. Chan and Wilkinson [5] manage to store all the P_v arrays in $O(n \lg(\kappa \lg n) + (n/\kappa) \lg n)$ bits, which gives $O(n \lg n)$ bits when added over a set of suitable κ values. This is linear space, but too large for an encoding.

Grossi et al. [11] use an $O(n')$ -bit representation of the topology of T_C [16] that carries out a number of operations in constant time, plus a bit-vector of length n to mark the x_i values. With these and some additional structures of total size $O(n)$ bits, they show how to find the appropriate node $v \in T_C$, as well as the cell and extent limits, corresponding to a range $A[i..j]$, in constant time. They can also map between i and x_i , and compute the interval $[x_l, x_r]$ of splitting points contained in any node v , all in constant time.

In the sequel we build a space- and time-optimal encoding for range selection:

1. In Section 3 we provide constant-time access to any P_v using only $O(n \lg \kappa)$ bits in the encoding model. This yields an $O(\lg \kappa)$ time algorithm for range selection, as we can first find the node v in constant time, then binary search for l and r in P_v , then run the range selection query on A_v in time $O(1 + \lg \kappa / \lg \lg n)$, to finally return $P_v[0]$ in $O(1)$ time. This is obtained by a hierarchical marking of nodes plus a color-based encoding of the inheritance of points along cells of unmarked nodes in T_C .
2. In Section 4 we address the bottleneck of the previous solution: we replace the binary search by fast predecessor queries on P_v , so as to obtain $O(1 + \lg \kappa / \lg \lg n)$ time. This is obtained by storing *succinct string B-trees* (succinct SB-trees) [12] on some nodes, which enable a denser marking, and searches on the color information along (now shorter) paths of unmarked nodes, using global precomputed tables.
3. In Section 5 we wrap up the results in order to prove Theorem 1. Then we show how to answer top- k queries by first finding the k th element in A_v and then using existing techniques [15] to collect all the values larger than the k th. This proves Theorem 2.

3 Constant-time Access to P_v

We describe a data structure that gives constant-time access to the values $P_v[1..O(\kappa)]$ in any node v .

3.1 Marking Nodes

Let $s(v)$ be the number of descendants of v in T_C . We define a decreasing sequence of sizes as follows: $t_0 = n'$ and $t_{\ell+1} = \lceil \lg t_\ell \rceil$, until reaching a z such that $t_z = 1$. Node v will be of *level* ℓ if $t_\ell^2 \leq s(v) < t_{\ell-1}^2$. For any $\ell \geq 1$, we mark a node $v \in T_C$ if it is of level ℓ and:

- C1. it is a leaf or both its children are of level $> \ell$; or
- C2. both its children are of level ℓ ; or
- C3. it is the root or its parent is of level $< \ell$.

► **Lemma 3.** *The number of marked nodes of level ℓ is $O(n'/t_\ell^2)$.*

Proof. The key property is that the descendants of v are of the same level of v or less. So nodes marked by C1 above cannot descend from each other, thus each such marked node has at least t_ℓ^2 descendants not shared with another. As T_C has at most $2n'$ nodes, there cannot be more than $2n'/t_\ell^2$ nodes marked by this condition. By the same key property, nodes marked by C2 form a binary tree whose leaves are those marked by C1, thus there are at most other $2n'/t_\ell^2$ nodes marked by C2. For C3, note that all unmarked nodes of level ℓ are in disjoint paths (otherwise the parent of two nodes of level ℓ would be marked by C2), and the path terminates in a node already marked by C1 or C2 (contrarily, a node of level ℓ marked by C3 must be a child of a node of level $< \ell$, and thus cannot descend from nodes of level ℓ , by the key property). Therefore, C3 marks the highest node of each such isolated path leading to a node marked by C1 or C2, and thus the number of nodes marked this way is limited by those marked by C1 or C2. \blacktriangleleft

3.2 Handling Marked Nodes

Marked nodes, across all the levels, are few enough to admit an essentially naive storage of the array P_v . If a marked node v represents a slab with left boundary $x_l + 1$, we store all its $P_v[o]$ values as the integers $P_v[o] - x_l$. As explained, from v we can determine x_l , and thus obtain $P_v[o]$ in constant time. Since a node of level ℓ contains less than $t_{\ell-1}^2$ descendants (leaves, in particular), its slab spans $O(t_{\ell-1}^2)$ consecutive split points x_i , and thus $O(\kappa t_{\ell-1}^2)$ positions in A . Thus, each such integer $P_v[o] - x_l$ can be represented using $\lg O(\kappa t_{\ell-1}^2) = O(t_\ell + \lg \kappa)$ bits. The second term adds up to $O(\kappa \lg \kappa)$ bits per node and $O(n \lg \kappa)$ overall. Since, by Lemma 3, there are $O(n'/t_\ell^2)$ marked nodes of level ℓ , the first term, $O(t_\ell)$, adds up to $O((n'/t_\ell^2) \cdot (\kappa t_\ell)) = O(n/t_\ell)$ bits over all marked nodes of level ℓ . Adding over all the levels ℓ we have $O(n) \sum_{\ell=0}^z 1/t_\ell$. Since $t_z = 1$ and $t_{\ell-1} > 2^{t_\ell-1}$, it holds $t_{z-s} > 2^s$ for $s \geq 4$, and thus $O(n) \sum_{\ell=0}^z 1/t_\ell \leq O(n)(O(1) + \sum_{s \geq 0} 1/2^s) = O(n)$ bits overall.

3.3 Handling Unmarked Nodes

While the problem of supporting constant-time access to P_v is solved for marked nodes, T_C may have $\Theta(n')$ unmarked nodes. To deal with unmarked nodes, we first observe that an unmarked node v at level ℓ has exactly one level ℓ child and one child x at level $> \ell$ (otherwise v would be marked by C2). Furthermore, x is marked by C3. Finally, the marked parent of an unmarked level ℓ node must be the root or at level ℓ itself. Thus, as already observed, level ℓ unmarked nodes form disjoint paths in T_C , and all nodes adjacent to such a path are marked.

Now consider the points in slabs corresponding to unmarked nodes. When a cell is closed and split into two, the leftmost (rightmost) κ points in its slab become part of its left (right) child slab. Thus, each child slab starts out with κ *inherited* points which are in common with its parent slab and κ further *original* points will be added to it before it is itself closed and split. For each point of node v , in x -coordinate order, we use a bit to specify if the point is inherited or original. Let $o_v[1..2\kappa]$ be this bit-vector.

Let π be a path of unmarked nodes of level ℓ , let u be the marked parent of the topmost unmarked node, and let v be an unmarked node in π . Each original point p of v must be an inherited point of some marked descendant v' that is adjacent to π (recall that v' represents all its points explicitly). Thus the coordinate of each such original point p can be specified by recording which marked descendant v' contains it, and the rank of p among the points of v' . Suppose that the j -th original point in v is in v' 's marked descendant at distance d_j along π . Then we write down the bit-string $b_v = \mathbf{1}^{d_1-1} \mathbf{0} \mathbf{1}^{d_2-1} \mathbf{0} \dots \mathbf{1}^{d_\kappa-1} \mathbf{0}$. We claim that,

summed across all nodes v in the path π , this adds $2|\pi|\kappa$ bits: there are $|\pi|\kappa$ **0** bits, each **1** bit represents an inherited point in a slab on the path π , and there are $|\pi|\kappa$ inherited points in π . Thus, $\sum_{v \in T_C} |b_v| = O(n'\kappa) = O(n)$ bits. As explained, we also store $O(\lg \kappa)$ bits for each original point in v telling which rank to pick in the marked node, in an array r_v . This adds $O(n'\kappa \lg \kappa) = O(n \lg \kappa)$ bits, which completes the information necessary to identify any original point. Section 3.4 has the details of how to obtain the point value in $O(1)$ time.

Unfortunately, we cannot apply the same approach to the inherited points in v , as we cannot bound the size of the bit-strings as we did for b_v . For any inherited point p in v , we instead specify which ancestor of v on π has p as an original point (we specify u if this ancestor is outside π), and then retrieve the point as an original point in the ancestor. This is done by coding points using 4κ *colors*. Of these colors, 2κ are *original* colors and 2κ are *inherited* colors. For each original color g there is a corresponding inherited color g' . All the points in u are given arbitrary distinct original colors. Then we traverse the nodes v in π top to bottom. If point p in v is inherited (from its parent v'), we look at the color of p in v' . If p has an original color g in v' , we give p color g' in v . Otherwise, if p is also inherited in v' , having color g' , it will also have color g' in v . On the other hand, if point p is original in v , we give it one of the currently unused original colors. Note that no colors g and g' can be present simultaneously in any v' , thus writing g' in v unambiguously determines which color is inherited from v' . Then any other color g such that g' is not among the κ inherited colors of v can be used as an original color for v .

This scheme gives sufficient information to track the inheritance of points across π : when a new, original, point p appears in v , it is given an original color g . Then the point is inherited along the descendants of v as long as color g' exists below v . Thus, to find the appropriate ancestor of v that contains a given inherited point p of color g' , as an original point, we concatenate all the colors on π into a string, and ask for the nearest preceding occurrence of color g . The path can be encoded in $O(|\pi|\kappa \lg \kappa)$ bits, which adds up to $O(n \lg \kappa)$ bits overall. The position of g in the nearest ancestor also tells which of the original points does p correspond to.

3.4 Technicalities

Let us fix a representation for T_C using $O(n')$ bits and supporting a large number of operations in constant time [16], in particular the preorder rank $r(v)$ of any node v . We also use structures that support two operations on bit-vectors and sequences X : $rank_a(X, i)$ is the number of occurrences of symbol a in $X[1..i]$, and $select_a(X, j)$ is the position of the j th occurrence of letter a in X .

We store a bit-vector $M[1..O(n')]$ in the same preorder of the nodes, where $M[r(v)] = \mathbf{1}$ iff node v is marked. Further, we store a string $S[1..O(n')]$ where we write down the level of each marked node, that is, $S[rank_1(M, r(v))] = \ell$ iff v is marked and of level ℓ . Operations *rank* and *select* on M can be supported in constant time and $o(|M|)$ further bits [6, 14]. Since there are $\lg^* n'$ distinct values of ℓ , the alphabet of S is small and S can be represented within $|S|H_0(S) + o(n')$ bits so that operations *rank* and *select* on S can be carried out in constant time [8]. Here $H_0(S)$ is the *zeroth-order empirical entropy* of S , defined as $|S|H_0(S) = \sum_{\ell} n_{\ell} \lg(|S|/n_{\ell})$, where n_{ℓ} is the number of occurrences of symbol ℓ in S . Since $n_{\ell} \lg(|S|/n_{\ell})$ is increasing² with n_{ℓ} and $n_{\ell} = O(n'/t_{\ell}^2)$ by Lemma 3, we have

² At least for $n_{\ell} \leq |S|/e$. When n_{ℓ} is larger we can simply bound $n_{\ell} \lg(|S|/n_{\ell}) = O(n_{\ell})$, thus we can remove all those large n_{ℓ} terms from the sum and add an extra $O(n')$ term to absorb them all.

$$|S|H_0(S) = O(n') \sum_{\ell} \lg(t_{\ell}^2)/t_{\ell}^2 = O(n') \sum_{\ell} \lg(t_{\ell})/t_{\ell}^2 \leq O(n') \sum_{\ell} 1/t_{\ell} = O(n').$$

With M and S we can create separate storage areas per level for the explicit P_v arrays of marked nodes, each of which uses the same space for nodes of the same level: if a node v is marked (i.e., $M[r(v)] = \mathbf{1}$) and is of level $\ell = S[\text{rank}_1(M, r(v))]$, then we store its array P_v as the r th one in a separate sequence for level ℓ , where $r = \text{rank}_{\ell}(S, \ell)$.

Now consider unmarked nodes. The vectors o_v , r_v and b_v are concatenated in the same preorder of the nodes. While vectors o_v and r_v are of fixed size, vectors b_v are not. Their starting positions are thus indicated with $\mathbf{1}$ s in a second bit-vector $B[1..O(n)]$. Given any original point $o_v[i] = \mathbf{1}$, it is the j th original point for $j = \text{rank}_1(o_v, i)$; recall that j is used to find d_j in b_v . Now b_v starts at position $\text{select}_1(B, r(v))$ in the concatenation of all the b_v 's. Finally, we recover d_j as $\text{select}_0(b_v, j) - \text{select}_0(b_v, j - 1)$.

Now we have to find the marked node v' leaving π at distance d_j from v . The strategy is to find the node u' that is “at the end” of π . More precisely, u' is a child of the lowest node of π and is the only node leaving π that is of the same level ℓ of v . Indeed, u' is the highest marked node of level ℓ in the subtree of v . Since we can compute node depth and level ancestors in constant time [16], we can compute the ancestor a of u' that is at depth $\text{depth}(v) + d_j - 1$, and find v' as the child of a that is not in π , that is, is not an ancestor of u' .

Now, to find u' , we calculate the subtree size of v (in constant time [16]) and hence its level ℓ .³ If the nodes are arranged in preorder, u' is the first node appearing after $r(v)$, $r(u') > r(v)$, which is marked $M[r(u')] = \mathbf{1}$ and whose level is $S[\text{rank}_1(M, r(u'))] = \ell$. This corresponds to the first occurrence of ℓ in S after position $\text{rank}_1(M, r(v))$. This is found in constant time with rank and select operations on S , and then $r(u')$ is found with select on M . Finally, the tree representation gives us u' from its rank $r(u')$ in constant time as well.

The sequence of colors c_{π} of path π is also associated with the last node u' of π , and all are concatenated in preorder of those nodes u' . As before, a bitmap is used to mark the starting position of each sequence c_{π} , and another bitmap is used to mark the preorders of the involved nodes u' .

Now let c_{π} be the sequence of $2|\pi|\kappa$ colors for path π , writing from highest to lowest node the 2κ colors of each node. The subarray corresponding to each v is easily found in c_{π} by knowing the depth of v and of u' . In order to find, given a position $c_{\pi}[i] = g'$, the largest $i' < i$ such that $c_{\pi}[i'] = g$, we build a monotone minimum perfect hash function (MMPHF) [1] for each original color g , recording the set of positions where either g or g' occur in c_{π} . A MMPHF can be regarded as a support for the limited operation $\text{rank}_{g,g'}(c_{\pi}, i)$ that counts the number of occurrences of g or g' in $c_{\pi}[1..i]$, provided $c_{\pi}[i] \in \{g, g'\}$. This is answered in constant time and using $O(|\pi|\kappa \lg \lg \kappa)$ bits. In addition, for each g we store a bit-vector c_{π}^g so that $c_{\pi}^g[\text{rank}_{g,g'}(c_{\pi}, i)] = \mathbf{1}$ iff $c_{\pi}[i] = g$. Then, after computing $r = \text{rank}_{g,g'}(c_{\pi}, i)$, we use rank and select on c_{π}^g to find the latest $\mathbf{1}$ in $c_{\pi}^g[1..r]$. This corresponds to the last occurrence of g preceding $c_{\pi}[i] = g'$. The position is mapped back from $c_{\pi}^g[o]$ to c_{π} using a sequence c'_{π} that identifies g' with g , so that the answer is $\text{select}_g(c'_{\pi}, o)$. We use a representation for c'_{π} that requires $O(|\pi|\kappa \lg \kappa)$ bits and gives constant select time [10]. Thus the structures representing paths π use space $O(|\pi|\kappa \lg \kappa)$, which is independent of the path level ℓ .

³ To find the level in constant time from the subtree size, we can check directly for the case $\ell = 0$, and store the other answers in a small table of $\lg n'$ cells.

Extending access from cells to extents

We have shown how to provide constant-time access to the points in a cell. In order to extend this to the extent of a node v , we use the technique of [11] to find in constant time the 3 cells that form the extent of v , and simulate the concatenation of the 3 arrays P .

4 Predecessor Queries on P_v

Having constant-time access to P_v enables binary searching for the desired limits of the array A_v where the selection query is to be run. However the binary search time becomes the bottleneck. In this section we obtain fast predecessor searches that replace the binary search.

A classical predecessor structure uses $O(\kappa \lg n)$ bits, as the universe is the set of positions in A , and this adds up to $O(n \lg n)$ bits (note that this structure is needed in all the $O(n')$ nodes of T_C , not only the marked ones). A low-space predecessor structure when one has independent access to the sequence is the succinct SB-tree [12, Lem. 3.3]. For κ elements over a universe of size m , this structure supports predecessor queries in time $O(1 + \lg \kappa / \lg \lg m)$ using $O(\kappa \lg \lg m)$ bits, and a precomputed table of size $o(m)$ that depends only on m .

On a node v of level ℓ , the universe of positions is of size $O(\kappa s(v)) = O(\kappa t_{\ell-1}^2)$, thus the succinct SB-tree would use $O(\kappa \lg \lg(\kappa t_{\ell-1})) = O(\kappa \lg t_{\ell-1} + \kappa \lg \lg \kappa)$ bits. The first term is still too large, as just considering the nodes with $\ell = 1$ we add up to $O(n \lg \lg n)$ bits.

To improve on this, we will use a marking that is denser than that used in Section 3 (this marking is only used for the predecessor structures). We will further mark every $(t_{\ell-1} / \lg^2 t_{\ell-1})$ th node in the paths π of unmarked nodes of level ℓ . All marked nodes will store a succinct SB-tree. The number of marked nodes of level ℓ is now $O(n' \lg^2 t_{\ell-1} / t_{\ell-1})$, so storing a succinct SB-tree in each marked node of level ℓ adds up to $O(n \lg^3 t_{\ell-1} / t_{\ell-1})$ bits. Adding up over all the levels ℓ we have $O(n) \sum_{\ell} \lg^3 t_{\ell-1} / t_{\ell-1} \leq O(n)(O(1) + \sum_{s \geq 0} s^3 / 2^s) = O(n)$ bits. The second term of the succinct SB-tree space, $O(\kappa \lg \lg \kappa)$, adds up to $O(n \lg \lg \kappa)$ bits.

As a result, the paths of unmarked nodes of level ℓ have length $O(t_{\ell-1} / \lg^2 t_{\ell-1}) = O(t_{\ell-1})$. Consider one such path. The nodes leaving the path are of level $> \ell$, except the node u' leaving π at the bottom, which is of level ℓ . Therefore, we can divide the range of $s(v)$ split points covered by v into three areas: (1) the area covered by the subtrees that leave π to the left, (2) the area covered by the subtrees that leave π to the right, and (3) the area covered by u' . Each of those areas is contiguous, (1) preceding (3) preceding (2). Since there are $O(t_{\ell-1})$ nodes of type (1) and each is of level at least $\ell + 1$, the total area covered by those is of size $O(t_{\ell-1} \cdot \kappa t_{\ell-1}^2) = O(\kappa t_{\ell-1}^3)$. The case of (2) is analogous. Therefore, for the (unmarked) nodes on π we store a succinct SB-tree for the values in area (1) and another for the values in area (2), both using $O(\kappa \lg \lg(\kappa t_{\ell-1}^3)) = O(\kappa \lg \lg(\kappa t_{\ell-1}))$ bits. Given a predecessor request, we first find the node u' below π as in Section 3, and determine in constant time whether the query falls in the area (1), (2), or (3) (by obtaining the limits $[x_l + 1, x_r]$ of u' , as explained). If it falls in areas (1) or (2) we use the corresponding succinct SB-tree of v , otherwise we use the succinct SB-tree of u' (which is marked and hence stores a regular succinct SB-tree). We use the same techniques as in Section 3 to store and access the (variable-sized) representations of the succinct SB-trees.

With this twist, the space over a node of level ℓ is $O(\kappa \lg \lg(\kappa t_{\ell-1}))$ bits, adding up to at most $O(n \lg \lg \lg n + n \lg \lg \kappa)$ bits, again dominated by the nodes of level $\ell = 1$. This gives a total space of $O(n(\lg \kappa + \lg \lg \lg n))$ and a time of $O(\lg \kappa / \lg \lg n)$. Note that the time is improved from $O(\lg \kappa / \lg \lg t_{\ell-1})$ to $O(\lg \kappa / \lg \lg n)$ by using the same precomputed table over a universe of size n for all the nodes, and this table requires $o(n)$ further bits. This result is already as desired if $\lg \kappa = \Omega(\lg \lg \lg n)$. In the sequel we address the case $\kappa = O(\lg \lg n)$.

4.1 Handling Small κ Values

When $\kappa = O(\lg \lg n)$ we will not use the mechanism of storing succinct SB-trees for areas (1) and (2) of unmarked nodes as before, but a different mechanism. Let π be a path of unmarked nodes of level ℓ . Let u_1, u_2, \dots be the nodes that leave π from the left, reading their areas in left-to-right order (i.e., top-down in π), and v_1, v_2, \dots be the nodes that leave π from the right, also reading them in left-to-right order (i.e., bottom-up in π). Then the area of A covered by π can be partitioned into the $|\pi|$ consecutive areas covered by $u_1, u_2, \dots, u', v_1, v_2, \dots$. All those nodes are marked and thus store their own succinct SB-tree.

Our problem is to determine, given a node v in π , which is the predecessor in P_v of a given position p . A first predecessor structure, associated with π , determines in which of those $|\pi|$ areas p belongs (the node containing that area will descend from v). Let ℓ_i be the level of node u_i . Then the area covered by u_i is of length $O(\kappa t_{\ell_i-1}^2)$. Thus we can encode those lengths with, say, γ -codes [2], within $O(\sum_i \lg(\kappa t_{\ell_i-1}^2)) = O(|\pi| \lg \kappa + \sum_i t_{\ell_i})$ bits.

From a space accounting point of view, this space can be afforded because we can charge $O(\lg \kappa + t_{\ell_i})$ bits to the storage of u_i . As u_i 's level is larger than p , it is a marked node (see Section 3). Thus there are $O(n'/t_{\ell_i}^2)$ such nodes overall, each of which will be charged $O(t_{\ell_i})$ bits only once, from the path π it leaves, for a total of $O(n'/t_{\ell_i})$ bits, adding up to $O(n')$ bits overall. For the other term, note that we can always afford $\lg \kappa$ bits of space per node.

On the other hand, we note that, since $\ell_i > \ell$, it holds $O(|\pi| \lg \kappa + \sum_i t_{\ell_i}) = O(|\pi| \lg \kappa + |\pi| \lg t_{\ell})$. Since $|\pi| = O(t_{\ell} / \lg^2 t_{\ell})$, $t_{\ell} = O(\lg n)$ even for $\ell = 1$, and $\kappa = O(\lg \lg n)$, the space is $O(\lg n / \lg \lg n) = o(\lg n)$, and thus the whole description of the u_i areas fits in a single computer word, and a global precomputed table of $o(n)$ bits can be used to answer any predecessor query in constant time.

We proceed analogously with the areas of v_1, v_2, \dots . Now, a predecessor query for the areas $u_1, u_2, \dots, u', v_1, v_2, \dots$ can be answered as before: We first determine whether the answer is u' with a constant number of comparisons, and if not, we use the global precomputed table with the description of the lengths of the areas of the u_i or the v_i nodes. This takes $O(1)$ time. Once we know the area where the answer lies, we use the succinct SB-tree of the corresponding node v' (which we remind it is marked) to find the position of the predecessor in its $P_{v'}$ array. Node v' is found by first computing its parent v'' with level ancestor queries from u' (found as in Section 3) and then v' is the child of v'' not in π .

Once we have that the predecessor of p in v' is $P_{v'}[o']$, the final challenge is to map that position in v' to the corresponding position in v . We will reuse the encoding of 4κ colors described in Section 3. Note that, in the string of $2|\pi|\kappa$ colors associated with the path π , we have sufficient information to determine which of the points in v are inherited in v' : if the color of the point is g or g' , we track g' downwards in π until it does not appear in some node v'' , then the point is inherited in the sibling v' of v'' not in π . Note that all the points of v that are inherited in v' are contiguous in P_v .

In addition to the color information c_v , we store associated with v a sequence of numbers $n_v[1..2\kappa]$, so that $n_v[i]$ is the rank of the i th point of v among the points stored in v' , where v' is the first node leaving π that inherits the i th point of v . With the information of c_v and n_v , and given the predecessor of a point in $P_{v'}$, we have sufficient information to determine the predecessor of the point in P_v : only some of the points of $P_{v'}$ are inherited from P_v .

The set of all c_v and n_v arrays in π add up to $O(|\pi|\kappa \lg \kappa)$ bits, and since $|\pi| = O(t_{\ell} / \lg^2 t_{\ell})$, $t_{\ell} = O(\lg n)$, and $\kappa = O(\lg \lg n)$, this is $O(\lg n \lg \lg \lg n / \lg \lg n) = o(\lg n)$. Thus a global precomputed table of $o(n)$ bits can precompute all the process of determining the predecessor in any v given that the answer is at any position in any descendant v' .

Predecessors on extents

Once again, P_v refers to the extent of v , not only to its cell, whereas we support predecessors only on the points of the cell. With a couple of comparisons we determine whether the predecessor query must be run on the cell of v or on the cell of a neighboring node.

5 Wrapping Up

We can now describe a structure that, given a value κ , uses $O(n \lg \kappa)$ bits and answers a query $\text{select}(i, j, k)$ for any $k \leq \kappa$ in time $O(1 + \lg \kappa / \lg \lg n)$, as follows:

1. We find the maximal interval $[l, r]$ such that $i \leq x_l + 1 \leq x_r \leq j$, using *rank/select* on a bit-vector that marks the split points x_s [11].
2. If the interval is empty, then $A[i..j]$ is contained in a leaf of T_C , which covers $O(\kappa)$ consecutive values of A . Then the query can be directly run on plain range selection structures [4] associated with each leaf (these structures add up to $O(n \lg \kappa)$ bits).
3. Otherwise, we find the highest node $v \in T_C$ containing $[x_l + 1, x_r]$, as well as the other two neighbor nodes that span the extent of v , all in constant time [11].
4. Using the structures of Section 4, we find the predecessor $P_v[r]$ of j , and the successor $P_v[l]$ of i (the successor needs structures analogous to the predecessor), in time $O(1 + \lg \kappa / \lg \lg n)$.
5. We use the range selection structure [4] associated with P_v to run the query $o = \text{select}(l, r, k)$. The time is $O(1 + \lg_w \kappa)$.
6. We use the structures of Section 3 to compute the final answer $P_v[o]$, in $O(1)$ time, adding to it the starting offset of node v .

In order to reduce the time to $O(1 + \lg k / \lg \lg n)$, we build our data structures for values $\kappa_t = 2^{2^t}$, for $t = 0, 1, \dots, \tau$, where τ is such that $2^{2^{\tau-1}} < \kappa \leq 2^{2^\tau}$. The space for those structures is $O(n) \sum_{t=0}^{\tau} \lg \kappa_t = O(n) \sum_{t=0}^{\tau} 2^t = O(n 2^\tau) = O(n \lg \kappa)$. A query $\text{select}(i, j, k)$ is run on the structure for κ_t such that $\kappa_{t-1} < k \leq \kappa_t$, that is, $2^{t-1} < \lg k \leq 2^t$,⁴ and thus its query time is $O(1 + \lg \kappa_t / \lg \lg n) = O(1 + 2^t / \lg \lg n) = O(1 + \lg k / \lg \lg n)$. This proves Theorem 1.

Answering the query $\text{top}(i, j, k)$

We proceed as for query $\text{select}(i, j, k)$ until we find the k th largest element in $A_v[l..r]$, let it be $A_v[o]$. Now we must find all the elements $A_v[s]$ in $A_v[l..r]$ where $A_v[s] \geq A_v[o]$. With an RMQ structure over A_v , we can do this using Muthukrishnan's algorithm [15]: find the maximum in $A_v[l..r]$, let it be $A_v[m_1]$, then continue recursively with $A_v[l..m_1 - 1]$ and $A_v[m_1 + 1..r]$ stopping the recursion when the maximum found at $A_v[m]$ satisfies $A_v[m] < A_v[o]$. Recall that A_v is a permutation on $O(\kappa)$ symbols and thus we can afford storing it directly. Finally, when we have the positions m_1, \dots, m_k of the top- k elements, we return $P_v[m_1], \dots, P_v[m_k]$. The overall time is $O(\lg k / \lg \lg n + k) = O(k)$. This proves Theorem 2.

Note that we deliver the top- k elements in unsorted order. On the other hand, after $O(1 + \lg k / \lg \lg n)$ time, each new result is delivered in $O(1)$ time.

⁴ The search for the right t can be done in constant time by computing $\lg \lg k$ and consulting a small precomputed table of $\lg \lg K \leq \lg \lg n$ entries.

6 Conclusions

We have shown how to build an encoding data structure that uses asymptotically optimal space of $O(n \lg \kappa)$ bits that answers κ -bounded rank range selection queries in time $O(1 + \lg k / \lg \lg n)$, and range top- k queries in $O(k)$ time for any $k \leq \kappa$. It would be interesting to obtain exactly optimal space (to within lower-order terms), but the precise lower bound is unknown even for $k = 2$ [7]. It would also be interesting to obtain optimal time bounds for the general case $w = \Omega(\lg n)$.

References

- 1 D. Belazzougui, P. Boldi, R. Pagh, and S. Vigna. Monotone minimal perfect hashing: searching a sorted table with $o(1)$ accesses. In *Proc. 20th SODA*, pages 785–794, 2009.
- 2 T. Bell, J. Cleary, and I. Witten. *Text compression*. Prentice Hall, 1990.
- 3 G.S. Brodal, B. Gfeller, A.G. Jørgensen, and P. Sanders. Towards optimal range medians. *Theor. Comp. Sci.*, 412(24):2588–2601, 2011.
- 4 G.S. Brodal and A.G. Jørgensen. Data structures for range median queries. In *Proc. 20th ISAAC*, LNCS 5878, pages 822–831, 2009.
- 5 T. Chan and B.T. Wilkinson. Adaptive and approximate orthogonal range counting. In *Proc. 24th SODA*, pages 241–251, 2013.
- 6 D. Clark. *Compact Pat Trees*. PhD thesis, University of Waterloo, Canada, 1996.
- 7 P. Davoodi, G. Navarro, R. Raman, and S. Srinivasa Rao. Encoding range minima and range top-2 queries. *Philosophical Transactions of the Royal Society A*, 372:20130131, 2014.
- 8 P. Ferragina, G. Manzini, V. Mäkinen, and G. Navarro. Compressed representations of sequences and full-text indexes. *ACM Trans. Alg.*, 3(2):article 20, 2007.
- 9 J. Fischer and V. Heun. Space-efficient preprocessing schemes for range minimum queries on static arrays. *SIAM J. Comp.*, 40(2):465–492, 2011.
- 10 A. Golynski, I. Munro, and S. Rao. Rank/select operations on large alphabets: a tool for text indexing. In *Proc. 17th SODA*, pages 368–373, 2006.
- 11 R. Grossi, J. Iacono, G. Navarro, R. Raman, and S. Srinivasa Rao. Encodings for range selection and top- k queries. In *Proc. 21st ESA*, LNCS 8125, pages 553–564, 2013.
- 12 R. Grossi, A. Orlandi, R. Raman, and S. Srinivasa Rao. More haste, less waste: Lowering the redundancy in fully indexable dictionaries. In *Proc. 26th STACS*, pages 517–528, 2009.
- 13 A.G. Jørgensen and K.G. Larsen. Range selection and median: Tight cell probe lower bounds and adaptive data structures. In *Proc. 22nd SODA*, pages 805–813, 2011.
- 14 I. Munro. Tables. In *Proc. 16th FSTTCS*, LNCS 1180, pages 37–42, 1996.
- 15 S. Muthukrishnan. Efficient algorithms for document retrieval problems. In *Proc 13th SODA*, pages 657–666, 2002.
- 16 K. Sadakane and G. Navarro. Fully-functional succinct trees. In *Proc. 21st SODA*, pages 134–149, 2010.
- 17 B. T. Wilkinson. Personal Communication, 2014.