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1. Introduction

A major challenge in intrusion detection is the effective detection of attacks as they are occurring, a
problem known ason-line intrusion detection. Current research trends aim to a simplified representa-
tion of the problem in order to improve efficiency and performance. Pattern matching techniques are
getting major attention as potential solutions because they have solved analog problems in domains as
computational biology and information retrieval.

We give an example to illustrate how an intrusion detection problem can be translated into a pattern
matching problem. Auditable events in the target system (such as TCP/IP packages in a network or
commands typed by users of a multi-user computer) can be seenas characters of an alphabet� and the
audit trail as a largestringof characters in�� (i.e., the text). The sequences of events representing attacks
to be detected are thensubstrings(i.e., patterns) to be located in the large string. Potential attackers may
introduce spurious events among those that represent an actual attack in order to disperse their evidence,
so a limited number of spurious characters must be allowed when searching for the pattern. We are
interested in detecting asetof possible attacks at the same time. This intrusion detection problem can be
regarded as a particular case of the multiple approximate pattern matching problem, whereinsertion in
the pattern is the only allowed edit operation.

We formalize the above problem as follows. Our text,T1::n, is a sequence ofn characters from an
alphabet� of size�. Our pattern,P1::m is a sequence ofm characters from the same alphabet. We want
to report all the text positions that match the pattern, where at mostk insertions between characters ofP
are allowed in its occurrence inT . We call� = k=m the “error level”.

A common property of audit facilities is that they generate huge amounts of audited data in a short
time, in the order of several millions of events per hour for large computing infrastructures. On the other
hand, attacks are typically short sequences of no more than 8commands. The number of known attacks to
system vulnerabilities is large, so a common request for an intrusion detection system to search for attack
sets of more than 100 elements. Under the approach of mappingevents to characters, the typical alphabet
size may vary from 60 to 80, depending on the number of different auditable events in a particular system.

With respect to the typicalk values, it is important to avoid false positives (i.e., triggering unnecessary
alarms for sequences that do not really represent an attack becausek is too large) and to avoid false
negatives (i.e., missing true attacks). Empirical values ofk are typically between 6 and 10. See [17, 14,
13] for justifications of all these values.

An extended version of this problem (namely searching allowing k differences, or allowing edit
distance at mostk) has received a lot of attention in the last decades [23], andsome of the algorithms can
be particularized to solve this problem for one pattern. However, no specially designed solutions exist
that take full advantage of the nature of this problem. It would be misleading to think that permitting just
insertions makes the problem easier. For example, several important invariants that make life easier hold
in thek differences problem and do not hold in thek insertions problem (e.g., that contiguous cells in
the matrices used to compute the distances differ at most by one). Moreover, no solutions exist for the
multipattern search problem, which is essential in this application.

In this paper we present two different solutions for multipattern searching allowing insertions, which
are especially tailored to the setup typical of intrusion detection applications: short patterns, large error
levels, large alphabets, large number of patterns. Both solutions are based on bit parallelism, a technique
to pack many values in the bits of a single computer word and manage to update all them in parallel. A
first one uses bit parallelism to simulate the behavior of a nondeterministic finite automaton that finds all
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the occurrences of one pattern allowingk insertions, and searches for many patterns by “superimposing”
their automata. A second one is a filter that discards most of the text by counting the number of pattern
characters that appear in a window, and searches for many patterns by packing many counters in a
single computer word. Both multipattern filters need, in order to work efficiently, that the lengths of
the patterns involved are not very different. Although we reuse known techniques, their application to
pattern matching allowing insertions is not trivial.

We analyze both algorithms and find the optimal way to set up their parameters, as well as their
expected case complexity and the maximum error levelk=m up to where they are useful. We also present
experimental results that confirm our analysis and measure the practical performance of the algorithms.
For typical cases our bit-parallel versions for one patternoutperform the classical dynamic programming
algorithm by a factor of 3, while the multipattern filters obtain a 25-fold speedup. The net result is a
75-fold speedup over a classical approach. We include domain specific experiments as well.

This paper is organized as follows. Section 2 puts our work and results in context, giving more
details about the complexities we obtain and how they relateto previous work and their applications.
Section 3 introduces the concept of “insertion distance” and gives a naive algorithm obtained by adapting
the classical solution for thek differences problem. Section 4 presents our first algorithmbased on bit-
parallel simulation of a nondeterministic automaton, for one pattern. Section 5 builds a filtering algorithm
for multipattern matching using that simulation. Section 6presents the counting filter, for one and for
multiple patterns. Section 7 gives all our experimental results validating the analysis and testing the
algorithms. In Section 8 we apply our algorithms in a real-life case study. Finally, Section 9 gives our
conclusions.

Earlier versions of this paper have appeared in a string matching oriented conference [15] and in an
intrusion detection oriented one [16].

2. Our Work in Context

2.1. Pattern Matching

A lot of work has been carried out on an extended version of ourproblem. This extension is calledsearch
allowing k differences, where not only insertions, but also deletions and replacements are allowed. In a
recent survey [23] four approaches are distinguished to search withk differences: dynamic programming,
automata, filtering and bit-parallelism.

However, very little has been done to search withk insertions. Not all the algorithms fork differences
can be successfully simplified for our restricted case. The most naive algorithm (which we show in
Section 3) is a simplification of the classical dynamic programming solution fork differences, and the
sameO(mn) search time is maintained. We consider this complexity as the reference point for further
improvements. Automata approaches can be adapted with similar efficiency results:O(n) search time
but impractically high preprocessing and space requirements (exponential inm or k).

Filtering approaches are very successful to search withk differences and are generally based in the
concept that some pattern substrings must match even in inexact occurrences. This is also our case: for
example, ifk insertions are allowed in the matches then at least one pattern piece of lengthbm=(k +1) must be found inside every occurrence. Hence we can search for those pieces and use a more
expensive algorithm only in the text areas surrounding suchoccurrences of pattern pieces. However, in
most applications of thek differences problem it is common thatk is much smaller thanm and therefore
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reasonably long pattern pieces have to be found. Instead, inintrusion detectionk is normally large (in
many casesk > m) and therefore filtering approaches are ineffective in general.

The most promising approach seems to be bit-parallelism (which we explain in Section 4), because
the simplicity of thek insertions model allows devising faster algorithms. In particular, we present in
Section 4 a search algorithm with time complexityO(nm log(k)=w) wherew is the length in bits of
the computer word. This isO(n) for reasonably short patterns. Moreover, it is better than previous
bit-parallel algorithms for thek differences, which wereO(nmk=w) time [28, 4], but it is worse than a
later development [20] which achievesO(mn=w). Interestingly, this last approach cannot be adapted to
our problem1, but that of [28] can be adapted at the sameO(nmk=w) time cost. A related but different
problem, called “episode matching”, is to find the pattern with the minimum number of insertions. Many
algorithms are presented in [8], where the best one needing space polynomial inm takesO(mn= logm)
time. Finally, an independently developed work obtains also O(nm log(k)=w) time for thek insertions
problem [7], yet it does not generalize to multipattern search, as explained next.

A special requirement of our application is the need for multipattern search. That is, we are givenr
patternsP 1:::P r and we have to report all their occurrences. Little work has been done on multipattern
search for thek differences problem [19, 21, 5, 22]. In Sections 5 and 6 we adapt two of those approaches
to thek insertions problem. The first one obtains a speedup of���=(1 + �)1+� (where� = k=m is
the error level) over the basic bit-parallel algorithm of Section 4. This speedup is larger than 1 for� < �=e�1. The second one obtains a speedup ofw= log2(m+k), but it works well only form+k < �,
i.e., short patterns. When the patterns have different lengths,these results still apply takingm as the
minimum pattern length.

2.2. Intrusion Detection

Research in intrusion detection has emerged in recent yearsas a major subject in the computer security
field because of the difficulty of ensuring that information systems are free from security flaws. Computer
systems suffer from security vulnerabilities regardless of their purpose, manufacturer or origin. It is both
technically hard and economically costly to ensure that systems are not susceptible to attacks. Two
approaches have been proposed to address the problem [17, 9,14].

A first approach, anomaly detection, suggests that user’s activity in the system can be characterized
so that a profile of “normal utilization” of the system is established and excursions from this profile are
tagged as potential intrusions, or attacks in a more generalsense. This approach leads to some difficulties:
a flow of alarms is generated in the case of a noticeable systems environment modification and a user can
slowly change his behavior in order to cheat the system.

We are more interested in misuse detection [10], which assumes that attacks are well-known se-
quences of actions, called scenarios or attack signatures,and that the activity of the system (in the form
of logs, network traffic, etc.) may be audited in order to determine the presence of such scenarios in the
system.

Misuse detection becomes an increasingly demanding task interms of semantics and processing,
as more sophisticated attacks are discovered every day [13](which implies an increasing number of
sophisticated scenarios to search for in audit trails). These challenges have lead to a research trend
aimed to a simplified representation of the problem in order to improve performance and efficiency of
1The reason is that it strongly relies on the fact that consecutive cells in the dynamic programming matrix differ at most by 1,
which permits representing a column using2m bits, which is not possible when only insertions are permitted.
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detection. In the short term, effective intrusion detection systems will incorporate a number of techniques
rather than a “one-strategy-fits-all” approach. The greater the variety of available tools is, the better the
intrusion detection system is.

In general terms, the misuse detection problem is to detect the existence of a priori known series of
events within the traces of activity of a system to protect. Traces widely differ in their origin, form and
content, depending on the type of potential attacks that they attempt to cover. For example, traces in
the form of network traffic collected by a firewall or a sniffermay be used to detect well-known attacks
to implementations of a TCP/IP protocol stack. Another example are the logs of commands typed by
users of a multi-user computer. In both cases, traces may be collected at a single place (e.g., an ethernet
segment, a host computer) or at multiple locations simultaneously. We consider the detection of attacks
using logs (audit trails) of commands typed by users of a distributed computer system.

A recent approach [18, 16] to the problem of handling a searchof increasing complexity and magni-
tude is to develop systems for fast detection of potential attacks rather that accurate detection of actual
attacks. The results of such a detection (i.e., filtered audit trails, in which attacks may be present) would
be used in turn as input for a more accurate (and slower) detection algorithm.

Under this approach, the misuse detection problem is modeled as a pattern matching problem in the
following way: auditable commands in the system can be seen as characters of an alphabet� and the
audit trail as a large string of characters in� (i.e., the text). The sequences of events representing attacks
to be detected are then substrings (i.e., patterns) to be located in the main string. Since attackersmay
introduce spurious commands among those that represent an actual attack in order to disperse their evi-
dence, a limited number of spurious characters must be allowed when searching for the pattern. Since the
number of known attacks to system vulnerabilities is large,we are interested in simultaneously searching
for a set of patterns. Thus, the misuse detection problem canbe regarded as a particular case of the
multiple approximate pattern matching problem, where insertion in the pattern is the only allowed edit
operation. Figure 1 illustrates our model to map the misuse detection problem as a multiple approximate
pattern matching problem.

3. The Insertion Distance and a Naive Algorithm

Our problem can be modeled using the concept ofinsertion distance. The insertion distance froma to b,
denotedid(a; b), is the number of insertions necessary to converta into b. We say thatid(a; b) = 1 if
conversion is not feasible. Clearly,id(a; b) = jbj � jaj if a is a subsequence ofb, and1 otherwise.

A related definition arises when we search for a patternP in a textT allowing insertions. At each
text positionj 2 1::n we are interested in the minimum number of insertions neededto convertP into
some suffix ofT1::j. This is defined aslid(P; T1::j) = minj021::j id(P; Tj0::j)

The search problem can therefore be formalized as follows: givenP , T andk, report all text positionsj such thatlid(P; T1::j) � k.
An immediate solution to the problem comes from adapting a dynamic programming algorithm fork differences [27]. A vector of valuesCi (i 2 0::m) is updated for each new text characterTj. The

invariant is that, after processing text positionj, Ci = lid(P1::i; T1::j). Therefore, we report all text
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Figure 1. A model for intrusion detection based on pattern matching.

positionsj satisfyingCm � k. Initially (for j = 0) we haveC0 = 0 andCi = 1 for i > 0. When
reading the text characterTj theCi values are updated to the newC 0i values using the formulaC 0i = if (Pi = Tj) then min(Ci�1; Ci + 1) else Ci + 1 (1)

which has the following rationale: if the new text characterTj does not matchPi, then we keep the
previous match ofPi in a suffix ofT1::j�1 (the cost isCi) and add an insertion to reflect that undesired
last characterTj . If, on the other hand, the new text character matchesPi then we have also the choice
of using it and matchingP1::i�1 with the best suffix ofT1::j�1 (the cost isCi�1).

This algorithm isO(mn) time andO(m) space.

4. A Bit-parallel Simulation

Bit-parallelism is a technique of common use in string matching [2], firstly proposed in [1, 3]. The
technique consists in taking advantage of the intrinsic parallelism of the bit operations inside a computer
word. By using cleverly this fact, the number of operations that an algorithm performs can be cut down by
a factor of at mostw, wherew is the number of bits in the computer word. Since in current architecturesw is 32 or 64, the speedup is very significant in practice (and improves with technological progress).

We introduce now some notation we use for bit-parallel algorithms. We denote asbs:::b1 the bits
of a mask of lengths. We use exponentiation to denote bit repetition (e.g., 031 = 0001). We use C-
like syntax for operations on the bits of computer words: “j” is the bitwise-or, “&” is the bitwise-and,
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“ b ” is the bitwise-xor and “�” complements all the bits. The shift-left operation, “<<”, moves the
bits to the left and enters zeros from the right,i.e., bsbs�1:::b2b1 << r = bs�r:::b2b10r. The shift-
right operation, “>>”, moves the bits to the right and enters zeros from the left,i.e., bsbs�1:::b2b1 <<r = 0rbsbs�1:::bs�r+1. Finally, we can perform arithmetic operations on the bits,such as addition
and subtraction, which operates the bits as if they formed a number. For instance,bs:::bx10000 � 1 =bs:::bx01111.

Many text searching algorithms can be seen as implementations of clever automata (classically, in
their deterministic form). Bit-parallelism has since its invention become a general way to simulate simple
non-deterministic automata instead of converting them to deterministic. It has the advantage of being
much simpler, in many cases faster (since it makes better usage of the computer registers), and easier to
extend to handle complex patterns than its classical counterparts. Its main disadvantage is the limitations
it imposes with regard to the size of the computer word. In many cases its adaptations to cope with
longer patterns are not so efficient. For our application, inparticular, bit-parallelism seems to be a very
promising approach.

We show now how we can pack theCi values of Section 3 in the bits of a computer word to speed up
the search. Only the values from zero tok+1 are of interest, since if aCi value is larger thank+1 then
the outcome of the search is the same if we replace it byk+1. Therefore, we usè= dlog2(k+1)e bits
to hold eachCi value, plus an extra overflow bit whose purpose is made clear shortly.

Taking minima in parallel is not impossible, but it is difficult. We show that the update formula (1)
can be modified to avoid taking minima. First note thatCi�1 � Ci + 1. That is,lid(P1::i�1; T1::j) �lid(P1::i; T1::j) + 1. This is clear, since any match ofP1::i against a suffix ofT1::j can be converted into
a match ofP1::i�1 just by removing the alignment ofPi and considering it as an extra insertion (the+1).
Hence the best alignment must be at most of that cost. Therefore, Eq. (1) is equivalent toC 0i = if (Pi = Tj) then Ci�1 else Ci + 1
which we now parallelize. We precompute a tableB : �! f0; 1gm(`+1), defined asB[℄ = 0 b(; Pm) 0 b(; Pm�1) � � � 0 b(; P2) 0 b(; P1)
whereb(; ) = 1` andb(; 0) = 0` for  6= 0. That is,B[℄ hasm chunks of zeros or ones, indicating
which pattern positions match character. The idea is to useB[℄ to implement the test(Pi = Tj),
assigningCi�1 where it has ones and leavingCi + 1 where it has zeros.

The state of the search is kept in a bit maskD, composed ofm chunks of` bits each (plus the
overflow bit), so that thei-th chunk stores the currentCi value,i.e.,D = 0 [Cm℄` 0 [Cm�1℄` � � � 0 [C2℄` 0 [C1℄`
where[x℄` is the numberx represented iǹ bits in the usual way (right-aligned). Note thatC0 is not
represented because it is always zero. In principle, the update formula could be as simple asD0 = (B[Tj ℄ & (D << (`+ 1))) j (� B[Tj℄ & (D + (0`1)m))
whereB[Tj℄ is being used to select between(D << (`+1)) (which puts the previous valueCi�1 at thei-th chunk) and(D + (0`1)m) (which adds 1 to the currentCi values). In particular, the left shift brings
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zero bits to the first chunkC1, which is adequate sinceC0 = 0. The problem with this scheme is that theCi values could surpass the barrier ofk + 1.
To overcome the problem we use the overflow bit. We let theCi values grow overk + 1 provided

they fit in ` bits. As soon as they overflow, the overflow bit will be set. At this point, we subtract one
to them. The easiest way to subtract one to all theCi values whose overflow bit is set is to isolate the
overflow bits, shift them̀ positions to the right and subtract the mask fromD.

The final problem is how to determine the text positions that match. In the dynamic programming
version we simply checkCm � k. In the bit-parallel version theCm value corresponds to the highest
bits, and therefore we can numerically compare the whole bitmaskD against[k℄`1(`+1)(m�1), which
avoids any additional bit shift or masking. We also want to report only text positions that end a genuine
match,i.e., such that the last text character matches the last pattern character. Otherwise we would be
reporting trivial extensions of previously found matches.This can be determined by looking at them-th
chunk ofB[Tj ℄. The complete algorithm is shown in Figure 2.Searh (T,n,P,m,k)/* Preproessing */1. ` dlog2(k + 1)e2. for  2 � do B[℄ 0m(`+1)3. for i 2 1::m do4. B[Pi℄ B[Pi℄ j 0(m�i)(`+1)01`0(i�1)(`+1)/* Searhing */5. for j 2 1::n6. Ds D << (`+ 1)7. D  D + (0`1)m8. D  D � ((D >> `) & (0`1)m)9. D  (B[Tj ℄ & Ds) j (� B[Tj ℄ & D)10. if (D � [k℄`1(`+1)(m�1)) and ((B[Tj ℄ & 01`0(m�1)(`+1)) 6= 0m(`+1))11. then report a math ending at j

Figure 2. The bit parallel algorithm. All the constants and repeated expressions are of course precomputed.

If the bits of the simulation do not fit in the computer word we set up as many computer words as
needed. Since each one is updated inO(1) time per text character, the total complexity isO(nm log(k)=w).
For short patterns (i.e., m log k = O(w)) this isO(n).
5. A Multipattern Filter

We show now how to search for several patterns simultaneously. We will assume that all them have the
same lengthm. If this is not the case, a solution is to truncate all to the shortest length, and if a truncated
pattern is found we must verify for its full occurrence. Thissolution works well as long as the differences
in length are not too large.
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As already noted in [5, 22], the ability of bit-parallel algorithms to allow classes of characters can be
used to build multipattern filters. Imagine that the patternis not a sequence of characters but a sequence
of classesof characters. A charactera is said to matchP at positioni if a 2 Pi, i.e., if it belongs to the
corresponding class.

If we have a pattern which is a sequence of classes of characters, the algorithm of Section 4 can still
be used, just by changing the preprocessing phase. The idea is that we can redefine theb function tob(; 0) = 1` if  2 0 and 0` otherwise
which is equivalent to changing line 4 in Figure 2 to4: for  2 Pi do B[℄ B[℄ j 0(m�i)(`+1)01`0(i�1)(`+1)
that is, we allow the value ofCi�1 to pass to positioni for any character that matches pattern positioni.

Consider now that we haver patternsP 1:::P r of the same lengthm. From them we generate a much
more relaxed pattern with classes of characters, which we call the superimpositionof P 1:::P r. This is
defined as P = fP 11 ; :::; P r1 g fP 12 ; :::; P r2 g ::: fP 1m; :::; P rmg
which necessarily matches when one of theP j matches, although the converse is not true. For instance,
if we search for"abd" and"ad" then the superimposed pattern is"fagfb,dgfgfd,g", and the
text window"add" will match withzeroinsertions, even if it is not in the set of patterns.

Therefore, the technique consists in superimposing the search patterns, search for the superimposition
with the same algorithm of Section 4 (as extended in Section 5to handle classes of characters), and then
checking the areas where the superimposition is found for the presence of any of the individual patterns.
That is, each time the algorithm finds the superimposed pattern at text positionj, we check each of the
patterns separately (with the algorithm of Section 4) in thetext areaTj�m�k+1::j. A similar idea was
proposed in [5, 22] for thek-differences problem.

To avoid re-verification due to overlapping areas, we keep track of the last position verified and the
state of the verification algorithm. If a new verification requirement starts before the last verified position,
we start the verification from the last verified position, avoiding to re-verify the preceding area.

5.1. Hierarchical Verification

Instead of checking one by one the patterns for each occurrence of the superimposed pattern, we can
build up a hierarchy of superimpositions [25, 22]. Imagine thatr = 8. Then we build, at preprocessing
time, the superimposition of the 8 patterns, calledP 1::8. We consider this the root of a binary tree, whose
two children areP 1::4 andP 5::8, i.e., they superimpose only 4 patterns. The first one has two childrenP 1::2 andP 3::4, and so on. Finally, the leaves of the tree are the actual patterns. Ifr is not a power of
two we build the tree as balanced as possible. Figure 3 illustrates.

We search forP 1::8 in the text. When it is found, we do not check immediately all the leavesP 1 toP 8, but just its two childrenP 1::4 andP 5::8. It is possible that, despite that the root was found, none
of the two children appear (and therefore no leaf can appear as well). So we can avoid performing 8
verifications at the cost of 2. Of course it is also possible that one and even both of the children appears
in the text area and then their children have to be checked in turn until the leaves are found (and these
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Figure 3. Hierarchical verification for 4 superimposed patterns.

are actually reported). In particular, if a leaf appears it will require all the path of verifications instead
of a single verification for the root node. However, as we shownext, hierarchical verification pays off
because we rarely reach the root node.

5.2. Analysis

Superimposingr patterns gives of course better search time because only onesearch is carried out instead
of r. On the other hand, however, it makes necessary to check the occurrences of the superimposed pat-
tern for the presence of the actual ones. Moreover, the probability of matching raises as we superimpose
more patterns, because up tor characters of the alphabet match each pattern position.

We start by giving an upper bound on the matching probabilityof a random pattern of lengthm at
a given text position, with up tok insertions. Consider a text positionj. The patternP appears withk
insertions at a text position ending atj if and only if the text windowTj�m�k+1::j contains them pattern
characters in order. The window positions that match the pattern characters can be chosen in

�m+km �
ways. Those characters are fixed but the otherk can take any value. Therefore the probability that the
text window matches the pattern withk insertions is at most�m+ km � �k�m+k = �m+ km � 1�m (2)

where we are overestimating because not all the selections of window positions give different windows.
For instance the pattern"abd" matches in text window"abd" with k = 1 in two ways, but only one
text window should be counted. In particular, our overestimation includes the case ofk0 < k insertions,
which is obtained by selecting the firstk�k0 characters of the text window as insertions and distributing
thek0 remaining insertions in the remaining text window of lengthm+ k0.

If we are givenr random patterns and superimpose them in groups ofr0, there are at mostr0 out
of � alphabet characters that will match each pattern position now. The net effect is that of dividing� by r0 in the formulas. If we consider that no hierarchical verification is used, then each match of the
superimposed pattern triggers a verification ofr0 original patterns in a text area of widthm+k. Therefore
the total search cost is on average at most (assuming that each pattern fits in a computer word)nrr0 �1 +�m+ km �(m+ k)r0(�=r0)m � = nr� 1r0 +�m+ km �(m+ k)r0m�m �
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Assume now that we use hierarchical verification. In this case, 2 searches withr0=2 patterns are
triggered for each occurrence of the superimposed pattern.For each occurrence of those superimpositions
of r0=2 patterns we will have to check a text window with 2 patterns superimposingr0=4 original patterns,
and so on. Abstracting from the mechanism we use to find the nodes of the tree of superimpositions, we
have that in total, in the hierarchy there are2i groups ofr0=2i patterns, fori = 0:: log2(r0)�1. Each such
group matches with probability

�m+km �=(�2i=r0)m, and each match costs the verification of a window of
lengthm+ k for other two patterns. The total verification cost is�m+ km �2(m+ k)r0m�m log2(r0)�1Xi=0 2i(2i)m = �m+ km �2(m+ k)r0m�m (1 +O(1=2m))
(assumingm � 2), which isr0=2 times cheaper than without hierarchical verification. The search cost
becomes now bounded by nr� 1r0 +�m+ km �2(m+ k)r0m�1�m �
which is minimized for r0 = ��2�m+km �(m+ k)(m� 1)�1=m
and gives a search time bound ofnr� mm� 1 ��m+ km �2(m+ k)(m� 1)�1=m

An asymptotic simplification (for largem and� = k=m considered constant) of the cost can be
obtained using Stirling’s approximation to the factorialm! = (m=e)mp2�m(1 +O(1=m)):nr� (1 + �)1+���
which monotonically worsens with�, as expected.

This shows that in the best case we may expect a speedup ofO(�) by superimposing the subpatterns.
This means that the amount of grouping permitted depends only on the alphabet size and the error level� = k=m. The larger the alphabet or the lower the error level, the more grouping is possible. The
speedup is� for k = 0 and it moves to 1 as� grows.

A natural question is: Up to which error level the speedup is larger than 1 (i.e., useful)? This is, when
it happens that��� > (1 +�)1+�, i.e., � > (1 +�)(1 + 1=�)�? A sufficient condition can be obtained
by noticing that1 � (1 + 1=�)� � e, and therefore� < �=e � 1 suffices. In general it has to hold� < �=(r0e) � 1. That means that no multipattern search is effective under this method for sufficiently
high error levels.

For longer patterns all search costs get multiplied bym log2(k)=w. On the other hand, if the patterns
are very short, we may do multipattern search by packing the states of many patterns inside the same
computer word, so that we update the states of all the searches in a single operation. The size of the
representation of each pattern, however, is nearlym log2(k), which makes the idea impractical except
for very short patterns. In the next section we present a filter that needs much less information per pattern
and therefore is suitable for this approach.
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6. A Counting Filter

A different approach to filter the search for multiple patterns is to use a “counting” filter. The filter is
based on the notion that if a pattern is found at text positionj, then all its characters must appear in the
text windowTj�m�k+1::j. The idea is to keep count at any text positionj of how many pattern characters
are present in the text window, updating this information inO(1) operations per text character. Note that
we cannot ensure that the pattern characters appear in the correct order, so we filter with a necessary
condition which is not sufficient to guarantee a match. Moreover, we show that for a multipattern search
many counters (one per pattern) can be stored in a single computer word and all can be updated inO(1)
operations per text character. Each time a counter reaches the critical valuem, it means that all its
characters are in the text window and therefore the window ischecked using the algorithm of Section 4.
A similar idea has been proposed in [12, 21, 22] for thek-differences problem and earlier [11] for thek-
mismatches problem. We now describe the algorithm and latershow how to adapt it for multiple patterns
(by combining it with bit-parallelism).

Again we will assume that the patterns have the same length, with the possibility of truncating to the
shortest pattern if this is not the case. Once more, this solution is effective only if the pattern lengths are
not that different.

6.1. One Pattern

The filter passes over the text examining an(m+k)-characters long window. It keeps track of how many
characters ofP are present in the current text window (accounting for multiplicities too). If, at a given
text positionj, them characters ofP are in the windowTj�m�k+1::j, the window area is verified with a
classical algorithm (in this paper, with the bit-parallel algorithm of Section 4).

We implement the filtering algorithm as follows: we build a table A[ ℄ where, for each character 2 �, the number of times that appears inP is initially stored. Throughout the algorithm,A[℄
indicates the difference between the number of times appears inP and the number of times it has
appeared in the current window. Only whenA[℄ is positive we count a character that enters the
window. We also keep a counterount of matching characters. To advance the window, we must include
the new characterTj+1 and exclude the last character,Tj�m�k+1. To include the new character, we
decrementA[Tj+1℄. If the entry was greater than zerobeforethe operation, it is because the character is
in P , so we increment the counterount. To exclude the old character, we incrementA[Tj�m�k+1℄. If
the entry is greater than zeroafter the operation, it is because the character was inP , so we decrementount. When the counterount reachesm we verify the preceding area.

WhenA[℄ is negative, it means that the character must leave the window�A[℄ times before we
accept it again as belonging to the pattern. For example, if we run the pattern"aba" over the text"aaaaaaaa", with k = 1 it will hold A[0a0℄ = �3, A[0b0℄ = 1, A[00℄ = 1, and the value ofount will
be 2. Figure 4 shows another example.

Figure 5 shows the pseudocode of the algorithm. As it can be seen, the algorithm is not only linear
time (excluding verifications), but the number of operations per character is very small.
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Figure 4. An example of the counting filter. The crosses represent elements whichA[ ℄ accepts, and the circles
are the elements that appeared in the window.A[℄ stores the number of crosses minus circles, andount counts
circled crosses.

CountFilter (T,n,P,m,k)/* Preproessing */1. for  2 � do A[℄ 02. for i 2 1::m do A[Pi℄ A[Pi℄ + 13. ount 0/* Searhing */4. for j 2 1::m+ k do /* fill initial window */5. if A[Tj ℄ > 0 then ount ount+ 16. A[Tj ℄ A[Tj ℄� 17. for j 2 m+ k + 1::n do /* move window */8. if ount = m then verify Tj�m�k::j�19. if A[Tj ℄ > 0 then ount ount+ 110. A[Tj ℄ A[Tj ℄� 111. A[Tj�m�k℄ A[Tj�m�k℄ + 112. if A[Tj�m�k℄ > 0 then ount ount� 1
Figure 5. The counting algorithm for one pattern.
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6.2. Multiple Patterns

The previous algorithm can search for one pattern only. However, we can extend it to handle multiple
patterns. To search forr patterns in the same text, we maintain oneA[ ℄ table andount value for each
pattern. We use bit-parallelism to keep all these elements in a single machine word, both forA[ ℄ and forount.

The values of the entries ofA[ ℄ lie in the range[�m� k::m℄, so we need exactly1 + ` bits to store
them, wherè = dlog2(m + k)e. This is also enough forount, since it is in the range[0::m℄. Hence,
we can packbw=(1 + dlog2(m+ k)e) patterns in a single search (recall thatw is the number of bits in
the computer word). If we have more patterns, we must divide the set in subsets of at most this size and
search for each subset separately. We focus our attention ona single subset now.

The algorithm simulates the simple one as follows. We have a tableMA[ ℄ that packs all theA[ ℄
tables. Each entry ofMA[ ℄ is divided in bit areas of length1 + `. In the area of the machine word
corresponding to each pattern, we store2`+A[ ℄� 1. When, in the algorithm, we have to add or subtract
1, we can easily do it in parallel without causing overflow from an area to the next. Moreover, the
correspondingA[ ℄ value is not positive if and only if the most significant bit ofthe area is zero.

We have a parallel counterMount, where the areas are aligned withMA[ ℄. It is initialized with2` � m in each area. Later, we can add or subtract 1 in parallel without causing overflow. Moreover,
the window must be verified for a pattern whenever the most significant bit of its area reaches 1. The
condition can be checked in parallel, although if some counter reaches zero we sequentially verify which
ones did it. Figure 6 illustrates.

1
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0

0

m = 5; k = 1; ` = 3 MA [a]MA [l]MA [o]MA [h]MA [e]A[℄ > 0 ?

0 0

011

1 11

1 1 1

1 01 Mount0 1 1 1

0

ount � m ?

MA[℄Mount
A[℄ount+2`�1+2`�m

Figure 6. Scheme and an example of the bit-parallel counters. The example follows that of Figure 4.

Observe that the counters that we want to selectively increment or decrement correspond exactly to
theMA[ ℄ areas that have a 1 in their most significant bit (i.e., those whoseA[ ℄ value is positive). This
yields a bit mask-shift-add mechanism to perform this operation in parallel on all the counters.

Figure 7 shows the pseudocode of the parallel algorithm. As it can be seen, the algorithm is more
complex than the simple version but the number of operationsper character is still very low.

6.3. Analysis

We want to determine the probability that the filter triggersa verification for a random pattern. Since them characters ofP can appear at any window position in any order, the probability can be bounded from



J. Kuri, G. Navarro, and L. Mé / Fast Multipattern Search Algorithms for Intrusion Detection 1015CountFilter (T,n,P 1::r,m,k)/* Preproessing */1. ` = dlog2(m+ k)e2. for  2 � do MA[℄ (01`)r3. for s 2 1::r do4. for i 2 1::m do5. MA[P si ℄ MA[P si ℄ + 10(s�1)(`+1)6. Mount (10` �m) � (0`1)r/* Searhing */7. for j 2 1::m+ k do /* fill initial window */8. Mount  Mount + ((MA[Tj ℄ >> `) & (0`1)r)9. MA[Tj ℄  MA[Tj ℄ � (0`1)r10. for j 2 m+ k + 1::n do /* move window */11. if Mount & (10`)r 6= 0r(`+1) then12. for s 2 1::r do13. if Mount & 0(r�s)(`+1)10`0(s�1)(`+1) 6= 0r(`+1) then14. verify Tj�m�k::j�1 for pattern P s15. Mount  Mount + ((MA[Tj ℄ >> `) & (0`1)r)16. MA[Tj ℄  MA[Tj ℄ � (0`1)r17. MA[Tj�m�k℄  MA[Tj�m�k℄ + (0`1)r18. Mount  Mount � ((MA[Tj�m�k℄ >> `) & (0`1)r)
Figure 7. The multiple-pattern counting algorithm. All theconstants are of course precomputed.

above by (recall Section 5.2) �m+ km �m!�m = (m+ k)!k!�m (3)

which, compared to the actual matching probability of Eq. (2), has an extram! factor. Since we pack a
pattern indlog2(m+ k)e bits, the total search cost isnr� log2(m+ k)w + (m+ k)!k!�m (m+ k)�
where, unlike the case of superimposed automata, we have to pack the maximum number of patterns
together, since the number of verifications triggered does not depend on how the packing is done. We
are interested, on the other hand, in the maximum error level� for which this filter is useful.

Applying Stirling’s approximation to the matching probability formula of Eq. (3) we get an asymp-
totic simplification for largem: �(1 + �)1+�me��� �m
which is exponentially decreasing withm as long as the base is smaller than 1. When this happens, all the
verification costs become negligible. When, on the other hand, the cost is not exponentially decreasing
with m, the verifications dominate the search cost and the filter is no longer useful.
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So the simplified condition for the filter to be useful is(1 + �)1+��� < e�m
which worsens asm or � grow. A simplified condition can be obtained by noticing again that (1 +�)1+�=�� = (1 + �)(1 + 1=�)� � e(1 + �), and therefore it suffices that� < �=m� 1
to ensure that the filter is useful. Note that the condition isequivalent tom+ k < �.

7. Experimental Results

In this section we present some experimental results about our algorithms and their analyses.

7.1. Probability of Matching

We test experimentally the probability that a random pattern matches at a random text position. We
generated a random text and 100 random patterns for each experimental value shown. Figure 8 shows
the probability of matching in a text of 3 Mb for a pattern withm = 300, where pattern and text were
randomly generated over an alphabet of size� = 68 (this value was chosen based on the number of
different events present in our real audit trails; this is typically between 60 and 90). We chose a largem
value because, as we see next, the behavior stabilizes for largem.

As can be seen, there is ak value from where the matching probability starts to grow abruptly, moving
from almost 0 to almost 1 in a short range of values. Despite that this phenomenon is not as abrupt as for
thek differences problem [4, 22], it is sharp enough to make thisk value the most important parameter
governing the behavior of the algorithm. We callk� this point, and�� = k�=m the corresponding error
level.
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Figure 8. Actual matching probability and probability thatthe counting filter triggers a verification, for increasingk values and fixedm = 300.
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Figure 8 also shows the probability that the counting filter triggers a verification. For largem, this
probability goes to 1 much before the real matching probability does.

On Figure 9 (left) we have shown this limiting�� value for increasing pattern lengths, showing
that the actual�� tends to a constant for largem (�� = �=e � 1) in the analysis, despite that it is
smaller for short patterns. On the other hand, the maximum error level��ount up to where the counting
filter does not require to verify every position quickly reduces asm grows. The (pessimistic) analysis
predicts a limit of the form��ount = �=m � 1. Least squares show an excellent fitting with the curve��ount = 13:5182 � �=m+ 1:693, with a percentual error of 12.32%.

Finally, we show in Figure 9 (right) how the alphabet size� affects the asymptotic�� and��ount
values (really form = 300). As can be seen, the curves look as straight lines, where least squares
estimation yields�� = �=1:0856 � 0:8878 and��ount = 21:5771 � �=m + 0:6931 with a percentual
error of 1.87%.

0 200 400 600 800 1000 1200 1400
0

10

20

30

40

50

60

m

α*

α* vs m

α*count

α*        

10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

σ

α∗

Figure 9. On the left, the�� limit asm grows for the number of real matches and for the counting filter. On the
right, both limits as� grows, form = 300.

All this matches our pessimistic analytical results. Thereis a clear error level�� where the matching
probability goes from almost 0 to almost 1, both for the actual matching probability and for the counting
filter. This limit depends linearly on the alphabet size� in both cases. Regarding the dependency with
respect to the pattern lengthm, the real probability tends to a constant while the countingfilter decreases
with a curve of the formO(�=m).

Since the analysis is pessimistic, the analytical and empirical constants differ. However, there is
a remarkable point regarding the real probability of matching. The analysis (� = �=e � 1) and the
empirical curve (� = �=1:09 � 0:9) match provided we use1:09 instead ofe. This means that, even
when our analysis is pessimistic, it does predict the real growth rate of the curves up to a constant factor.
This is similar to the result obtained for thek differences problem [4, 22] when relating their analytical
predictions (�� = 1�e=p�) with the experiments (�� = 1�1:09=p�) and shows a consistent behavior
of the pessimistic analytical model used in both cases.
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7.2. Filtering Efficiency

A second concern is about the ability of our algorithms to filter out text in more typical cases (i.e., short
patterns), rather than asymptotically. We are also interested in comparing the plain and hierarchical
verification methods.

We have selected three groups of 64 patterns each, of lengths4, 6 and 8. Each group is searched
for with the superimposition method in seven possible ways:one search with all the 64 patterns su-
perimposed, two searches of 32 patterns each, four searcheswith 16 patterns each, and so on until 64
searches for a single pattern (no superimposition). The same group is also searched with the counting
method (the amount of verifications triggered does not depend on the parallelization in this case). The
superimposition method is attempted both with the plain andhierarchical verification methods.

Figure 10 shows the number of verifications triggered per pattern and per text character (in the caser = 1 we count just the number of matches, so this represents the actual matching probability). This plot
is similar to Figure 8 except that we use much smallerm and show also the result of superimposition.
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Figure 10. Per character number of real matches, verifications of the counting methods, and verifications for
different superimposition schemes. We show the casesm = 4, 5 and 6.

As can be seen, hierarchical verification works better than plain verification, despite that in the worst
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case it could work up tolog2(r) more times. The plots also show that (as it should be clear) much more
verifications are triggered asr increases. The counting filter shows to be better for largerk values and
for smallerm values.

7.3. Scanning Efficiency

We now study the scanning efficiency of our algorithms. We tested with 35 Mb of random text (� = 68)
and a set of 100 random patterns of lengthsm 2 f4; 5; 6g. This is a typical setup for intrusion detection
applications, as explained in the Introduction. We use a SunEnterprise 450 server (4 x UltraSPARC-II
250MHz) running SunOS 5.6 with 512 Mb of RAM andw = 32. Each data point was obtained by
averaging the Unix’s real time over 10 trials.

Our concern now is which is the scanning efficiency of the algorithms compared to plain dynamic
programming for one pattern, independently of their filtering efficiency to deal with multiple patterns.
Figure 11 shows the scanning efficiency of the dynamic programming, the bit-parallel simulation and
the counting filter (using the bit-parallel simulation as the verification engine) for single random patterns
with m = 4. We measure the megabytes per second (Mb/s) processed by thealgorithms ask increases.
As can be seen, the bit-parallel simulation is 2.5 to 3 times faster than the classical solution even for very
largek values. The counting filter is in between.
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Figure 11. Scanning efficiency of the bit-parallel simulation and the counting filter compared to the classical
dynamic programming algorithm.

7.4. Overall Performance

Finally, we consider how the filtering and scanning efficiency combine to form the overall performance.
We compare first the impact of the number of patternsr0 in the multipattern filter based on super-

imposed automata. We takem = 4 (i.e., the length of the shortest pattern in the set) and� = 68
for our analytical estimation of optimal superimposition,which yieldsr0k=4 = 8:93, r0k=6 = 6:41 andr0k=8 = 4:94. Figure 12 (left) shows the Mb/s processed when using different values ofr0 over a set
of 100 patterns. As the analysis predicts, there is an optimal amount of superimposition that is reduced
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ask grows. The analytically estimated optima are below the practical ones, since our analysis uses a
pessimistic bound on the matching probability. We use the experimental optima in the tests that follow.
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Figure 12. On the left, Mb/s vs partition size fork = 4, k = 6 andk = 8 over a set of 100 patterns withm 2 f4; 5; 6g. On the right, ratio between parallel and sequential versions of the algorithms.

We now show the degree of parallelism achieved by the superimposition and counting filters algo-
rithms, in terms of the ratio between the parallel version and r applications of the corresponding single-
pattern algorithm. We search for the same set of randomly selected patterns (m 2 f4; 5; 6g) with k = 8.
Figure 12 (right) shows the behavior in terms ofr. We observe that the multipattern filter quickly con-
verges to a 5-fold improvement over its sequential version as r increases. The counting filter achieves a
lower degree of parallelism, taking 0.27 of its sequential counterpart. The “waves” in the superimposition
filter is due to a discretization effect when the patterns aredivided into groups.

Figure 13 shows the impact of searching allowing different numbers of insertions for both algorithms,
for pattern sets ofr = f1::100g. We observe that performance remains stable up to a limit aroundr = 25 with low k. For higherk values, however, performance drops drastically from the beginning.
The counting filter resists more this behavior, which shows its higher tolerance to insertions for short
patterns. To see this, note that the casem = 6, k = 25 and� = 68 is totally inside the scope of the
counting filter according to the analysis, while the superimposition filter can only superimpose 3 patterns
under this setup.

8. Application to a Real-Life Case

The experiments of the previous section use an idealized model where text and patterns are randomly
generated. This is useful to generate massive data and checkthe experimental performance against the
predictions. We complete the above experiments with a real-life case study.

We experimentally study how the probabilistic model of string matching allowing insertions relates
to the problem of false negatives and positives. Our goal is to determine how�� relates to the ratio
between false negatives and positives and the total number of reported attacks and, consequently, to the
filtering efficiency of the model.
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Figure 13. Mb/s processed by both algorithms for a set of patterns withm 2 f4; 5; 6g with k = 4 (left) andk = 25 (right).

The experimental input data consists of an audit trail and anattack database. The audit trail was
collected using the Gassata intrusion detection system [18] in a real environment. The log format is an
extension of the log format proposed in [6]:#S#version=suntrad5.6#system=SOLARIS#deamon=system#ahost=amstel#no=28#event=AUE_EXECVE#date=2000.3.14�14.29.41#program=/var/audit/ls#file=/var/audit/ls#euid=root#egid=other#ruid=root#rgid=other#pid=13949#error=-1#return=KO#E#I##S#version=suntrad5.6#system=SOLARIS#deamon=system#ahost=lanelot#no=29#event=AUE_EXECVE#date=2000.3.14�14.29.41#program=/usr/bin/ls#file=/usr/bin/ls#arg=ls,-als#euid=root#egid=other#ruid=root#rgid=other#pid=13949#error=0#return=OK#E#I#

The attack database consists of attacks signatures with thefollowing format:>>> Attak_loginrule1rule1rule1>>> Attak_file_reationrule2>>> Attak_ps_mdrule3rule7
The rules are defined in the following way:rule1 ::= ( (event=AUE_login)||(event=AUE_rlogin) ) && (return=KO) ;rule2 ::= (event=AUE_CREAT) && ( (file o ls)||(file o d) ) ;rule3 ::= (event=AUE_EXECVE) && (program=/usr/bin/ps) ;
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where theo operator stands for “contains”.

The audit trail and attack signatures are translated into a pattern matching representation in three
steps. First, a different character is assigned to each rule(e.g., rule1 ='a'). Attack signatures are then
translated into patterns by mapping their rules to the corresponding characters. Finally, the audit trail is
scanned and its events are matched against the rules. Eventswhich match more than one rule are assigned
the corresponding characters. Events which do not match a rule are assigned arbitrary characters. The
final string is constructed by concatenating the sequence ofcharacters corresponding to matches of rules
and the arbitrary characters.

We used an audit file of 24,847 events and studied three different series of actions:

Chained who: represented as a pattern of four events of a"who" command. The probability of the
corresponding character in our audit file is 0.004382 and there are four real attacks of this kind in
the audit file.

Sensitive commands: represented as a pattern of ten events of any command in the set f "last", "ps","who", "whois" g. The probability of the corresponding character in our audit file is 0.007187
and there are two real attacks of this kind in the audit file.

Chained whois: represented as a pattern of four events of a"whois" command. The probability of the
corresponding character in our audit file is 0.001402 and there is one real attack of this kind in the
audit file.

The audit trail and attacks described above may seem not representative enough because of their
small size. However, it must be noted that it is extremely difficult to obtain audit trails with traces of
attacks for several reasons. First of all, the owners of suchtrails are reluctant to give their logs away
because of confidentiality and security concerns. Secondly, the log generating systems are not perfect
in the sense that they do not log all the events that could appear as part of an attack. As a consequence,
detection of some attacks is impossible. Though the audit trail and attacks used in this experiment are
small, we decided to use them because they are genuine, that is, they correspond to a real case.

8.1. Effectiveness of the Filter and False Negatives

We have searched for the three patterns in our audit file allowing an increasing number of insertionsk.
Our goal is to determine the effectiveness of the proposed filtering algorithm. That is: how much text
is able to filter out in order to retrieve what fraction of the real attacks that occur in the audit file? The
text that our filter is not able to discard has to be processed by a more sophisticated algorithm in order to
determine the presence of a real attack. As those algorithmsare much slower than our pattern matching
based approach, the effectiveness of the filter is crucial.

By applying the analytical predictions of Section 5.2 to ourreal data, we computed the maximumk value for which the matching probability does not reach 1 (recall that the model is pessimistic). To
compute that maximum value, we have used the most precise formula (Eq. (2)) for the matching proba-
bility. Given that the text is biased we have replaced1=�m by pm, wherep is the relative frequency of
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Attack m Occs. Prob. char Nec.k Max. k Fract. of text

Chained who 4 4 0.004382 225 500 8.21%

Sensitive commands 10 2 0.007187 580 620 14.50%

Chained whois 4 1 0.001402 1425 1570 5.74%

Table 1. Main parameters for the three search patterns.
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Figure 14. Fraction of attacks detected versus fraction of text left for further processing.

the character that forms the pattern (all the attacks are repetitions of a single character, otherwise we can
just multiply the probabilities of the participating characters).

Together with the maximumk recommended by the model we have computed the fraction of thetext
that the filter selects (for thatk) as a candidate for further evaluation. This is simply them+k characters
preceding every match, avoiding to count multiple times theoverlapping areas.

Table 1 shows that using the maximumk recommended by the model selects just 6% to 15% of the
text to be processed by a more costly algorithm. Moreover, weshow in the column of “necessaryk” the
minimumk value that is necessary to detect all the attacks present in the audit file. This turns out to be
below (and generally close to) the maximumk recommended by the model. Therefore, the model can be
used to obtain a good estimation of thek value to use in order to detect all real attacks. Of course, itis
also possible to use specific knowledge of the application todetermine the appropriatek.

8.1.1. False negatives

Another interesting experiment is related to the evolutionof the number of attacks detected as a function
of the fraction of text not filtered out. That is: what is the percentage of text that we will need to evaluate
with a more complex algorithm in order to detect a given fraction of the real attacks?
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Figure 15. Number of matches found as a function ofk.

Regarding the false negatives, we evaluated, for our three particular patterns, the fraction of text
filtered as a function of the fraction of attacks detected (see Figure 14). As can be seen, the curve is
concave, which suggests that considering a very small fraction of the text permits to detect most of the
attacks. For example, with ak value that leaves just 2% of the text for further evaluation we get 50% of
the attacks (and thus 50% of false negatives). We have here a way to balance the false negatives rate and
the speed of detection. Of course, in many cases, no false negative is required. In that situation, the value
of k determined by the model is an upper bound of the value to be used for the corresponding pattern.

8.1.2. False positives

Regarding the false positives, we studied the evolution of the number of matches as a function ofk
for the three patterns (see Figure 15). Of course, for some patterns, the use of an excessively largek
value leads to many false positives. Let us note that these false positives may be discarded by the more
accurate detection algorithm which may analyse the output of our pattern matching mechanism (recall
that we give a part of the trail containing apotentialattack). To limit false positives without allowing
false negatives, the value ofk determined by the model appears as a near-optimum.

It is interesting to observe that some curves of Figure 15 (most notablysensitive commands) behave
much as the synthetic curve of Figure 8. We believe that the fitting would be better with a larger text,
since currently it is not large enough to obtain smooth averages.

9. Conclusions

We have presented a string matching approach to the problem of intrusion detection, which is formalized
as the problem of multipattern matching allowing insertions. Besides the classical solution for one pattern
adapted from the field of approximate pattern matching, we have presented two new search algorithms
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which we also extended to handle multiple patterns. Each of the two algorithms can be better than the
other depending on the number of insertions allowed and the pattern length.

We have presented analytical and experimental results concerning the performance of the new algo-
rithms. As an example, we illustrate the case of 4-characters patterns searched for allowing 4 insertions,
which is a case of interest in intrusion detection applications. The single pattern versions are typically
3 times faster than the classical solution. The multipattern algorithms allow searching for 100 patterns
at the same cost of 4 single pattern searches (a 25-fold speedup). As a result, our new algorithms allow
searching for 100 patterns at a rate of 4 Mb/s in our machine, while the classical algorithm can search
for just one single pattern at 5 Mb/s, a 75-fold improvement.

In the field of approximate string matching, the fastest algorithms are filters able to discard most
of the text by checking a necessary condition. In general, those filters cannot easily be applied here
because the error levels typical in intrusion detection applications are too high for the standards of the
approximate string matching problem. We have shown, however, that some filtration techniques can be
adapted to this problem to obtain a large improvement in the performance of multipattern searching.

Concerning a detailed tuning of implementation choices, a number of potential optimizations could
bring large improvements in practice. For example, in the multipattern filter algorithm, if the patterns
have different length, we just truncate them to the shortestone when superimposing the automata. We
can select cleverly the substrings to use, since having the same character at the same position in two
patterns improves the filtering mechanism. Also, we used simple heuristics to group subpatterns in
the superimposed automata. These can be improved to maximize common characters too. Finally, the
multipattern filter is limited to patterns of sizem(dlog2(k + 1)e + 1) � w. Automaton and pattern
partition techniques [4] can be incorporated to search for longer patterns. Furthermore, the combination
of techniques can be considered in order to increase the tolerance to insertions.

Related to this last point about the length of the patterns, we point out that we have concentrated in
the parameters typical of intrusion detection, where the patterns are rather short, the error level is quite
high, and the number of patterns is large. The new algorithmswe have presented are very well suited to
this setup, but other variants of the problem could be of interest in other applications and could demand
(or permit) different approaches. A weakness of our methodsthat could be addressed is the need that the
patterns have more or less the same length.

In particular, more sophisticated models of attacks may yield more complex pattern matching prob-
lems, involving for example regular expression searching allowing insertions or permitting transpositions
(swaps) of events in the pattern, as well as a limited number of missing pattern events. We remark that
the counting filter is well suited to deal with transpositions, while fast algorithms for regular expression
searching based on bit parallelism [24] could be adapted forthese more complex problems. For permit-
ting a given number of deletions as well as insertions, whereboth operations are counted and thresholded
separately, there is a dynamic programming solution in [26]applied to a different problem.
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