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1. Introduction

A major challenge in intrusion detection is the effectiveéeddon of attacks as they are occurring, a
problem known a®n-line intrusion detection. Current research trends aim to a #iegblrepresenta-
tion of the problem in order to improve efficiency and perfamoe. Pattern matching techniques are
getting major attention as potential solutions becausg hlage solved analog problems in domains as
computational biology and information retrieval.

We give an example to illustrate how an intrusion detectimblem can be translated into a pattern
matching problem. Auditable events in the target systeroh(sas TCP/IP packages in a network or
commands typed by users of a multi-user computer) can beaseeimaracters of an alphabe&and the
audit trail as a largstring of characters irt* (i.e., the text). The sequences of events representing attacks
to be detected are thexubstringg(i.e., patterns) to be located in the large string. Potentiatkéis may
introduce spurious events among those that represent @l atttack in order to disperse their evidence,
so a limited number of spurious characters must be alloweehvgearching for the pattern. We are
interested in detectingsetof possible attacks at the same time. This intrusion detegiroblem can be
regarded as a particular case of the multiple approximaterpamatching problem, wheiasertionin
the pattern is the only allowed edit operation.

We formalize the above problem as follows. Our tékt,,,, is a sequence of characters from an
alphabet of sizes. Our patternP; ,, is a sequence of. characters from the same alphabet. We want
to report all the text positions that match the pattern, wlamost: insertions between charactersf
are allowed in its occurrence iR. We callae = k/m the “error level”.

A common property of audit facilities is that they generatgdramounts of audited data in a short
time, in the order of several millions of events per hour foge computing infrastructures. On the other
hand, attacks are typically short sequences of no more thaméands. The number of known attacks to
system vulnerabilities is large, so a common request fontandion detection system to search for attack
sets of more than 100 elements. Under the approach of mappamgs to characters, the typical alphabet
size may vary from 60 to 80, depending on the number of diffieaeditable events in a particular system.

With respect to the typicdl values, it is important to avoid false positivé®( triggering unnecessary
alarms for sequences that do not really represent an atexdubek is too large) and to avoid false
negativesi(e., missing true attacks). Empirical valuesioére typically between 6 and 10. See [17, 14,
13] for justifications of all these values.

An extended version of this problem (namely searching afigwk differences, or allowing edit
distance at most) has received a lot of attention in the last decades [23]santk of the algorithms can
be particularized to solve this problem for one pattern. kv, no specially designed solutions exist
that take full advantage of the nature of this problem. Itlddae misleading to think that permitting just
insertions makes the problem easier. For example, sevepalrtant invariants that make life easier hold
in the & differences problem and do not hold in thénsertions problemd.g, that contiguous cells in
the matrices used to compute the distances differ at moshe): dMoreover, no solutions exist for the
multipattern search problem, which is essential in thidiaaton.

In this paper we present two different solutions for multipan searching allowing insertions, which
are especially tailored to the setup typical of intrusiotedgon applications: short patterns, large error
levels, large alphabets, large number of patterns. Botltisak are based on bit parallelism, a technigue
to pack many values in the bits of a single computer word andage to update all them in parallel. A
first one uses bit parallelism to simulate the behavior ofradeterministic finite automaton that finds all
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the occurrences of one pattern allowihgsertions, and searches for many patterns by “superimgbsi
their automata. A second one is a filter that discards mogteofext by counting the number of pattern
characters that appear in a window, and searches for matgrmaty packing many counters in a
single computer word. Both multipattern filters need, inesrtb work efficiently, that the lengths of
the patterns involved are not very different. Although wease known techniques, their application to
pattern matching allowing insertions is not trivial.

We analyze both algorithms and find the optimal way to set @i fparameters, as well as their
expected case complexity and the maximum error leyel up to where they are useful. We also present
experimental results that confirm our analysis and meakerpractical performance of the algorithms.
For typical cases our bit-parallel versions for one pattenperform the classical dynamic programming
algorithm by a factor of 3, while the multipattern filters aiot a 25-fold speedup. The net result is a
75-fold speedup over a classical approach. We include dospecific experiments as well.

This paper is organized as follows. Section 2 puts our wokk @sults in context, giving more
details about the complexities we obtain and how they rafajgrevious work and their applications.
Section 3 introduces the concept of “insertion distancel’ gimes a naive algorithm obtained by adapting
the classical solution for the differences problem. Section 4 presents our first algoritiaged on bit-
parallel simulation of a nondeterministic automaton, foe pattern. Section 5 builds a filtering algorithm
for multipattern matching using that simulation. Sectioprésents the counting filter, for one and for
multiple patterns. Section 7 gives all our experimentalitssvalidating the analysis and testing the
algorithms. In Section 8 we apply our algorithms in a refd-tiase study. Finally, Section 9 gives our
conclusions.

Earlier versions of this paper have appeared in a stringhimegoriented conference [15] and in an
intrusion detection oriented one [16].

2. Our Work in Context

2.1. Pattern Matching

A lot of work has been carried out on an extended version opaalslem. This extension is callegarch
allowing k differenceswhere not only insertions, but also deletions and replacgsnare allowed. In a
recent survey [23] four approaches are distinguished teledth i differences: dynamic programming,
automata, filtering and bit-parallelism.

However, very little has been done to search withsertions. Not all the algorithms fardifferences
can be successfully simplified for our restricted case. Thstmaive algorithm (which we show in
Section 3) is a simplification of the classical dynamic pemgming solution fork differences, and the
sameO(mn) search time is maintained. We consider this complexity ageference point for further
improvements. Automata approaches can be adapted witlasiefliciency resultsO(n) search time
but impractically high preprocessing and space requirésn@xponential inn or k).

Filtering approaches are very successful to search avitliferences and are generally based in the
concept that some pattern substrings must match even inghexcurrences. This is also our case: for
example, ifk insertions are allowed in the matches then at least onerpgtiece of length m/(k +
1)] must be found inside every occurrence. Hence we can seardhdse pieces and use a more
expensive algorithm only in the text areas surrounding suchurrences of pattern pieces. However, in
most applications of thi differences problem it is common thais much smaller tham and therefore
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reasonably long pattern pieces have to be found. Insteadtrusion detectiork is normally large (in
many caseg > m) and therefore filtering approaches are ineffective in gne

The most promising approach seems to be bit-parallelisnicbwilze explain in Section 4), because
the simplicity of thek insertions model allows devising faster algorithms. Intipatar, we present in
Section 4 a search algorithm with time complexitynm log(k)/w) wherew is the length in bits of
the computer word. This i©(n) for reasonably short patterns. Moreover, it is better thaavipus
bit-parallel algorithms for thé differences, which wer®(nmk/w) time [28, 4], but it is worse than a
later development [20] which achievé¥mn/w). Interestingly, this last approach cannot be adapted to
our problent, but that of [28] can be adapted at the sat@mk /w) time cost. A related but different
problem, called “episode matching”, is to find the patterthwihe minimum number of insertions. Many
algorithms are presented in [8], where the best one neegaxgegpolynomial inn takesO (mn/ logm)
time. Finally, an independently developed work obtains élénm log(k)/w) time for thek insertions
problem [7], yet it does not generalize to multipattern ekaas explained next.

A special requirement of our application is the need for ipattern search. That is, we are given
patternsP!...P" and we have to report all their occurrences. Little work hesrnbdone on multipattern
search for theé differences problem [19, 21, 5, 22]. In Sections 5 and 6 wetite of those approaches
to thek insertions problem. The first one obtains a speedupcdf/(1 + a)'*t* (wherea = k/m is
the error level) over the basic bit-parallel algorithm ofct@n 4. This speedup is larger than 1 for
a < o/e—1. The second one obtains a speedup pfog, (m+ k), but it works well only form+& < o,
i.e,, short patterns. When the patterns have different lendfiese results still apply taking: as the
minimum pattern length.

2.2. Intrusion Detection

Research in intrusion detection has emerged in recent ggaasmajor subject in the computer security
field because of the difficulty of ensuring that informatigstems are free from security flaws. Computer
systems suffer from security vulnerabilities regardlegh@r purpose, manufacturer or origin. Itis both
technically hard and economically costly to ensure thatesys are not susceptible to attacks. Two
approaches have been proposed to address the problem 41, 9,

A first approach, anomaly detection, suggests that usergtgan the system can be characterized
so that a profile of “normal utilization” of the system is ddtshed and excursions from this profile are
tagged as potential intrusions, or attacks in a more gesenske. This approach leads to some difficulties:
a flow of alarms is generated in the case of a noticeable sgstamironment modification and a user can
slowly change his behavior in order to cheat the system.

We are more interested in misuse detection [10], which assuimat attacks are well-known se-
guences of actions, called scenarios or attack signatanelsthat the activity of the system (in the form
of logs, network traffic, etc.) may be audited in order to deiee the presence of such scenarios in the
system.

Misuse detection becomes an increasingly demanding tasknms of semantics and processing,
as more sophisticated attacks are discovered every day(\8¢h implies an increasing number of
sophisticated scenarios to search for in audit trails). s€hehallenges have lead to a research trend
aimed to a simplified representation of the problem in orddamiprove performance and efficiency of

1The reason is that it strongly relies on the fact that cortbezgells in the dynamic programming matrix differ at mogtl
which permits representing a column usihg bits, which is not possible when only insertions are peeditt
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detection. In the short term, effective intrusion detatggstems will incorporate a number of techniques
rather than a “one-strategy-fits-all” approach. The grethie variety of available tools is, the better the
intrusion detection system is.

In general terms, the misuse detection problem is to deteoxistence of a priori known series of
events within the traces of activity of a system to protecac&s widely differ in their origin, form and
content, depending on the type of potential attacks that #tiempt to cover. For example, traces in
the form of network traffic collected by a firewall or a sniffeay be used to detect well-known attacks
to implementations of a TCP/IP protocol stack. Another gxagnare the logs of commands typed by
users of a multi-user computer. In both cases, traces maglleeted at a single place.q, an ethernet
segment, a host computer) or at multiple locations simattasly. We consider the detection of attacks
using logs (audit trails) of commands typed by users of aidiged computer system.

A recent approach [18, 16] to the problem of handling a seafafcreasing complexity and magni-
tude is to develop systems for fast detection of potentialcks rather that accurate detection of actual
attacks. The results of such a detectioa.(filtered audit trails, in which attacks may be present) woul
be used in turn as input for a more accurate (and slower) tittesigorithm.

Under this approach, the misuse detection problem is mddel@ pattern matching problem in the
following way: auditable commands in the system can be ssaharacters of an alphahgtand the
audit trail as a large string of charactersiri.e., the text). The sequences of events representing attacks
to be detected are then substrings.(patterns) to be located in the main string. Since attackerg
introduce spurious commands among those that represetuai attack in order to disperse their evi-
dence, a limited number of spurious characters must be eflavhen searching for the pattern. Since the
number of known attacks to system vulnerabilities is lavgeare interested in simultaneously searching
for a set of patterns. Thus, the misuse detection problenbearegarded as a particular case of the
multiple approximate pattern matching problem, whereriim® in the pattern is the only allowed edit
operation. Figure 1 illustrates our model to map the misgseation problem as a multiple approximate
pattern matching problem.

3. The Insertion Distance and a Naive Algorithm

Our problem can be modeled using the concephgédrtion distanceThe insertion distance fromto b,
denotedid(a, b), is the number of insertions necessary to conwerto b. We say thatd(a,b) = oo if
conversion is not feasible. Clearlyj(a,b) = |b| — |a| if a is a subsequence bf andoo otherwise.

A related definition arises when we search for a patferim a textT" allowing insertions. At each
text position;j € 1..n we are interested in the minimum number of insertions ne¢adednvertP into
some suffix ofl’; ;. This is defined as

]7(](P7T13) = min id(Pvle__j)
j'el.g o

The search problem can therefore be formalized as followvend?, T andk, report all text positions
j suchthatid(P, Ty ;) < k.

An immediate solution to the problem comes from adapting raadyic programming algorithm for
k differences [27]. A vector of valueS; (i € 0..m) is updated for each new text characi§r The
invariant is that, after processing text positipnC; = lid(P; ;,T1. ;). Therefore, we report all text



1006 J. Kuri, G. Navarro, and L. Mé/ Fast Multipattern Search étighms for Intrusion Detection

Audit
Trail

: chnod
I'n
cp |
mai ;
chnod
I'n
touch

L nv

0:rm

.

!
|
|
|
|
!
!
! H
i
3
Attack 1 ‘ (r:r:/) = ? :
nknod !touch = g attack 1: cdeb | @
xterm 'mail > h attack 2: faghi :
i > :
i . 1
o : i
! - - H

Multiple
Approximate

1ch-m)d > a Audit trail:

Hln > b ... abf hdabgei . . . Pattern Matching

Algorithm

BoNeoRObME

e rm Reported
Un ) : matches
Attack 2 e e :

b [ cdeb ][ 65 ]
chnod [ cdeb ][ 163 ]
t ouch [ faghi ][ 32 ]
mai | [ cdeb ][ 115 ]
umo [ faghi 1[ 99 ]

Figure 1. A model for intrusion detection based on pattertching.

positions; satisfyingC,,, < k. Initially (for j = 0) we haveCy = 0 andC; = oo for i > 0. When
reading the text charact@¥; the C; values are updated to the néW values using the formula

Ci = if (P, =1}) then min(C;_1,C; + 1) else C; + 1 @

which has the following rationale: if the new text charactgrdoes not matchP;, then we keep the
previous match of; in a suffix of 7' ;_; (the cost isC;) and add an insertion to reflect that undesired
last charactef’;. If, on the other hand, the new text character matohethen we have also the choice
of using it and matching? ;_; with the best suffix ofl} ;_; (the costisC;_).

This algorithm isO(mn) time andO(m) space.

4. A Bit-parallel Simulation

Bit-parallelism is a techniqgue of common use in string mistgH2], firstly proposed in [1, 3]. The
technique consists in taking advantage of the intrinsialpgism of the bit operations inside a computer
word. By using cleverly this fact, the number of operatidret an algorithm performs can be cut down by
a factor of at mostv, wherew is the number of bits in the computer word. Since in currechiéectures

w is 32 or 64, the speedup is very significant in practice (arqt@aves with technological progress).

We introduce now some notation we use for bit-parallel afgors. We denote ak;...b; the bits

of a mask of lengths. We use exponentiation to denote bit repetitierg( 021 = 0001). We use C-
like syntax for operations on the bits of computer word$:i$ the bitwise-or, “&” is the bitwise-and,
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“w~n wn

is the bitwise-xor and ~” complements all the bits. The shift-left operatior; £”, moves the
bits to the left and enters zeros from the rigitg,, bsbs_1...bob1 << r = bs_,...b2b10". The shift-
right operation, *>>", moves the bits to the right and enters zeros from the il&ft,b;b, 1...b2b7 <<
r = 0"bsbs_1...bs_r11. Finally, we can perform arithmetic operations on the kitszh as addition
and subtraction, which operates the bits as if they formednaber. For instance,...b,, 10000 — 1 =
bs...by,01111.

Many text searching algorithms can be seen as implemensatibclever automata (classically, in
their deterministic form). Bit-parallelism has since itgéntion become a general way to simulate simple
non-deterministic automata instead of converting themetemininistic. It has the advantage of being
much simpler, in many cases faster (since it makes bettgeusfathe computer registers), and easier to
extend to handle complex patterns than its classical coparts. Its main disadvantage is the limitations
it imposes with regard to the size of the computer word. Inyneases its adaptations to cope with
longer patterns are not so efficient. For our applicatiomairticular, bit-parallelism seems to be a very
promising approach.

We show now how we can pack tlig values of Section 3 in the bits of a computer word to speed up
the search. Only the values from zerdite- 1 are of interest, since if @; value is larger thas + 1 then
the outcome of the search is the same if we replace itbyl. Therefore, we usé = [log,(k + 1)] bits
to hold eachC; value, plus an extra overflow bit whose purpose is made cleatly.

Taking minima in parallel is not impossible, but it is diffituWe show that the update formula (1)
can be modified to avoid taking minima. First note that, < C; + 1. Thatis,lid(P; ;—1,Ty ;) <
lid(Py_;, Ty ;) + 1. This is clear, since any match 6 ; against a suffix off;_; can be converted into
a match ofP; ; ; just by removing the alignment @, and considering it as an extra insertion (thg).
Hence the best alignment must be at most of that cost. Thereéfqg,. (1) is equivalent to

C; = if (P, =T;) then C;_; else C; + 1
which we now parallelize. We precompute a table: ¥ — {0, 1}’"(“1), defined as
B[C} = Ob(C,Pm) Ob(C,Pm,]) Ob(C,PQ) Ob(C,P])

whereb(c, ¢) = 1“ andb(c, ') = 0° for ¢ # ¢'. That is,B[c¢] hasm chunks of zeros or ones, indicating
which pattern positions match character The idea is to usé3|c] to implement the testP;, = Tj),
assigningC; 1 where it has ones and leavidg + 1 where it has zeros.

The state of the search is kept in a bit mdgk composed ofn chunks of?¢ bits each (plus the
overflow bit), so that the-th chunk stores the curreat; value,i.e.,

D = 0[Cnle 0[Cra]e -+ 0[Ca]e 0[C1]

where([z], is the number: represented iff bits in the usual way (right-aligned). Note th@g is not
represented because it is always zero. In principle, thategddrmula could be as simple as

D' = (BT & (D << ((+1)) | (~ BT} & (D + (0')™)

whereB|[T}] is being used to select betwegh << (¢4 1)) (which puts the previous valug; ; at the
i-th chunk) and D + (0°1)™) (which adds 1 to the currext; values). In particular, the left shift brings
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zero bits to the first chunk’;, which is adequate singg, = 0. The problem with this scheme is that the
C; values could surpass the barrierkof- 1.

To overcome the problem we use the overflow bit. We let@healues grow ovek + 1 provided
they fit in ¢ bits. As soon as they overflow, the overflow bit will be set. Wstpoint, we subtract one
to them. The easiest way to subtract one to all@heralues whose overflow bit is set is to isolate the
overflow bits, shift thent positions to the right and subtract the mask from

The final problem is how to determine the text positions thatam. In the dynamic programming
version we simply check’,,, < k. In the bit-parallel version th€’,, value corresponds to the highest
bits, and therefore we can numerically compare the wholenbigk D against{k],1(¢+1)(m=1) which
avoids any additional bit shift or masking. We also want fgoré only text positions that end a genuine
match,i.e., such that the last text character matches the last pattemacter. Otherwise we would be
reporting trivial extensions of previously found match&kis can be determined by looking at theth
chunk of B[Tj;]. The complete algorithm is shown in Figure 2.

Search (T',n,P,m,k)

/* Preprocessing */

1. 0 Tlogy(k +1)]

2. for c€ X do B[c] « 0™+

3. for 1 € 1.m do

4. B[Pj] « B[P;] | 0m=E+1)g1toli=1(E+1)
/* Searching */

5. for jel.n

6. Ds+ D << ({+1)

7. D« D+ (0'1)™

8. D+ D—((D>>10 & (0‘1)™)

9. D « (B[T}] & Ds) | (~ B[Tj] & D)

10. if (D < [k]1HDm=1) and ((B[T;] & 01¢00m=DEFL) o gm(t+D)

11. then report a match ending at j

Figure 2. The bit parallel algorithm. All the constants aadeated expressions are of course precomputed.

If the bits of the simulation do not fit in the computer word vet 8p as many computer words as
needed. Since each one is update@ i) time per text character, the total complexityisnm log(k) /w).
For short patternd.g., mlog k = O(w)) thisisO(n).

5. A Multipattern Filter

We show now how to search for several patterns simultangowg will assume that all them have the
same lengthn. If this is not the case, a solution is to truncate all to ther&st length, and if a truncated

pattern is found we must verify for its full occurrence. Teaution works well as long as the differences
in length are not too large.
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As already noted in [5, 22], the ability of bit-parallel atgbms to allow classes of characters can be
used to build multipattern filters. Imagine that the patismot a sequence of characters but a sequence
of classesf characters. A characteris said to matchP at position: if « € P;, i.e, if it belongs to the
corresponding class.

If we have a pattern which is a sequence of classes of chesatite algorithm of Section 4 can still
be used, just by changing the preprocessing phase. Thesitleat we can redefine tligunction to

ble,d) = 1%if ¢ € ¢ and 0° otherwise
which is equivalent to changing line 4 in Figure 2 to
4. for ¢ € P, do Blc] « B[c] | 0m= )+ g1fpli=1)(¢+1)

that is, we allow the value af; ; to pass to positiom for any character that matches pattern position
i
Consider now that we havepatternsP!... P" of the same length:.. From them we generate a much
more relaxed pattern with classes of characters, which Weheasuperimpositiorof P'...P". This is
defined as
P = {P,..P[}{P),...Py}..{P} . P}

which necessarily matches when one of ffematches, although the converse is not true. For instance,
if we search for'abcd" and"adcc" then the superimposed pattern'i&}{b,d}{c}{d,c}", and the
text window"adcd" will match with zeroinsertions, even if it is not in the set of patterns.

Therefore, the technique consists in superimposing thelsgatterns, search for the superimposition
with the same algorithm of Section 4 (as extended in Sectimnhandle classes of characters), and then
checking the areas where the superimposition is found topthsence of any of the individual patterns.
That is, each time the algorithm finds the superimposed mpadtietext position;, we check each of the
patterns separately (with the algorithm of Section 4) intthe areal’;_,, ;1. ;. A similar idea was
proposed in [5, 22] for thé-differences problem.

To avoid re-verification due to overlapping areas, we keagktof the last position verified and the
state of the verification algorithm. If a new verification uirg@ment starts before the last verified position,
we start the verification from the last verified position, igutg to re-verify the preceding area.

5.1. Hierarchical Verification

Instead of checking one by one the patterns for each ocaarehthe superimposed pattern, we can
build up a hierarchy of superimpositions [25, 22]. Imaginatt- = 8. Then we build, at preprocessing
time, the superimposition of the 8 patterns, caliéd®. We consider this the root of a binary tree, whose
two children areP'* and P° 8, i.e., they superimpose only 4 patterns. The first one has tworemild
P2 and P34, and so on. Finally, the leaves of the tree are the actuarpatt If is not a power of
two we build the tree as balanced as possible. Figure 3riitest.

We search for?!-# in the text. When it is found, we do not check immediately ladl teavesP! to
P8, but just its two childrenP!4 and P>, It is possible that, despite that the root was found, none
of the two children appear (and therefore no leaf can appearell). So we can avoid performing 8
verifications at the cost of 2. Of course it is also possibé tme and even both of the children appears
in the text area and then their children have to be checkedriuntil the leaves are found (and these
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Figure 3. Hierarchical verification for 4 superimposed gats.
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are actually reported). In particular, if a leaf appearsiit quire all the path of verifications instead
of a single verification for the root node. However, as we shewxt, hierarchical verification pays off
because we rarely reach the root node.

5.2. Analysis

Superimposing patterns gives of course better search time because onkeaneh is carried out instead
of . On the other hand, however, it makes necessary to checlctiuerences of the superimposed pat-
tern for the presence of the actual ones. Moreover, the pilitlgaof matching raises as we superimpose
more patterns, because uprtcharacters of the alphabet match each pattern position.

We start by giving an upper bound on the matching probabilftg random pattern of lengthv at
a given text position, with up té insertions. Consider a text positign The pattern” appears withk
insertions at a text position endinggaif and only if the text windowZ’; _,,, ;1. ; contains then pattern
characters in order. The window positions that match theepatharacters can be chosen(ify")
ways. Those characters are fixed but the othean take any value. Therefore the probability that the
text window matches the pattern withinsertions is at most

m+k\ of m+k\ 1
( m >0m+k - ( m >(r_m 2)

where we are overestimating because not all the selectionsxdow positions give different windows.
For instance the patterrabcd" matches in text windowabccd" with £ = 1 in two ways, but only one
text window should be counted. In particular, our overeation includes the case &f < k insertions,
which is obtained by selecting the fifst- £’ characters of the text window as insertions and distrilgutin
the &’ remaining insertions in the remaining text window of lengtht £'.

If we are givenr random patterns and superimpose them in groups,dhere are at most’ out
of o alphabet characters that will match each pattern positamm rirhe net effect is that of dividing
o by 7’ in the formulas. If we consider that no hierarchical verifima is used, then each match of the
superimposed pattern triggers a verificatiom’adriginal patterns in a text area of width+ 4. Therefore
the total search cost is on average at most (assuming tHapa#ern fits in a computer word)

(25 (e ()2
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Assume now that we use hierarchical verification. In thisec@searches with’/2 patterns are
triggered for each occurrence of the superimposed paft@mreach occurrence of those superimpositions
of r' /2 patterns we will have to check a text window with 2 patterngesimposing-’/4 original patterns,
and so on. Abstracting from the mechanism we use to find thesofithe tree of superimpositions, we
have that in total, in the hierarchy there atgroups of’ /2! patterns, for = 0..log,(r’') — 1. Each such
group matches with probabilitg/”;’“)/(02’7/r’)m, and each match costs the verification of a window of
lengthm + & for other two patterns. The total verification cost is

(m+k>2(m;rmk)r’m A (;;m _ (m+k>72(m+k)r’m (1+0(1/2™))

om
=0

m m

(assumingn > 2), which isr’/2 times cheaper than without hierarchical verification. Téarsh cost

becomes now bounded by
<1 <m+k> 2(m+k)r’m]>
nr|—+ P —
r! m o™

which is minimized for

and gives a search time bound of

nr_m_ ((m - k>2(m T ) (m — 1)>l/m

ocom—1 m

An asymptotic simplification (for largen anda = k/m considered constant) of the cost can be
obtained using Stirling’s approximation to the factorial = (m/e)™v2mm(1 + O(1/m)):

nr (1+a)'te

o a®

which monotonically worsens with, as expected.

This shows that in the best case we may expect a speedufroty superimposing the subpatterns.
This means that the amount of grouping permitted depengsammthe alphabet size and the error level
a = k/m. The larger the alphabet or the lower the error level, theengouping is possible. The
speedup i for k = 0 and it moves to 1 as grows.

A natural question is: Up to which error level the speeduprigdr than li(e., useful)? This is, when
it happens thata® > (1 +a)'*?,i.e, o > (14 a)(1 + 1/a)*? A sufficient condition can be obtained
by noticing thatl < (1 + 1/a)® < ¢, and thereforex < o/e — 1 suffices. In general it has to hold
a < o/(r'e) — 1. That means that no multipattern search is effective uridemtethod for sufficiently
high error levels.

For longer patterns all search costs get multipliedrblyg, (k) /w. On the other hand, if the patterns
are very short, we may do multipattern search by packing ttes of many patterns inside the same
computer word, so that we update the states of all the sesainhe single operation. The size of the
representation of each pattern, however, is nearlyg, (%), which makes the idea impractical except
for very short patterns. In the next section we present & fiisg needs much less information per pattern
and therefore is suitable for this approach.
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6. A Counting Filter

A different approach to filter the search for multiple patters to use a “counting” filter. The filter is
based on the notion that if a pattern is found at text posifighen all its characters must appear in the
text windowT);_,,, ;1. ;. The idea is to keep count at any text positjosf how many pattern characters
are present in the text window, updating this informatio®ifi) operations per text character. Note that
we cannot ensure that the pattern characters appear in tteetcorder, so we filter with a necessary
condition which is not sufficient to guarantee a match. Meeeowe show that for a multipattern search
many counters (one per pattern) can be stored in a singlewdemword and all can be updateddr{1)
operations per text character. Each time a counter reableesritical valuem, it means that all its
characters are in the text window and therefore the windahésked using the algorithm of Section 4.
A similar idea has been proposed in [12, 21, 22] forkhdifferences problem and earlier [11] for the
mismatches problem. We now describe the algorithm andsatax how to adapt it for multiple patterns
(by combining it with bit-parallelism).

Again we will assume that the patterns have the same lengthtlve possibility of truncating to the
shortest pattern if this is not the case. Once more, thigiealis effective only if the pattern lengths are
not that different.

6.1. One Pattern

The filter passes over the text examining(arn+ k)-characters long window. It keeps track of how many
characters of are present in the current text window (accounting for mlidtities too). If, at a given
text positionj, them characters of” are in the windowZ’; _,,, ;1. ;, the window area is verified with a
classical algorithm (in this paper, with the bit-parallijaithm of Section 4).

We implement the filtering algorithm as follows: we build dl&A[] where, for each character
¢ € X, the number of times that appears inP is initially stored. Throughout the algorithm|c]
indicates the difference between the number of timeppears inP and the number of times it has
appeared in the current window. Only whelic] is positive we count a characterthat enters the
window. We also keep a countesunt of matching characters. To advance the window, we mustdieclu
the new charactef’;,; and exclude the last charactér;_,, ;1. To include the new character, we
decrementd[T},]. If the entry was greater than zebeforethe operation, it is because the character is
in P, so we increment the countesunt. To exclude the old character, we incremet’;_,, _;41]. If
the entry is greater than zeafter the operation, it is because the character waB,iso we decrement
count. When the countefount reachesn we verify the preceding area.

When A[¢] is negative, it means that the charactenust leave the window- A[c] times before we
accept it again as belonging to the pattern. For examplegifum the patterntabca" over the text
"aaaaaaaa", with & = 1 itwill hold A['a’] = —3, A['b'] = 1, A['c'] = 1, and the value ofount will
be 2. Figure 4 shows another example.

Figure 5 shows the pseudocode of the algorithm. As it can &e, ske algorithm is not only linear
time (excluding verifications), but the number of operasiger character is very small.
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ihelloa |
— x ®|al 1
= O ® | 1
Searching for 'aloha’ L . ® o 5
(k=1) _ @ hl o
L . Q e | -1
c | Alc]

Figure 4. An example of the counting filter. The crosses rgmeelements whicH|[] accepts, and the circles
are the elements that appeared in the winddye] stores the number of crosses minus circles, @aad.t counts
circled crosses.

CountFilter (T,n,P,m,k)

/* Preprocessing */

1. for c€ ¥ do Alc] «+ 0
2. for i € 1.m do A[P] + A[P;]+1
3. count < 0

/* Searching */
for jel.m+k do /* £ill initial window */
if A[T}] > 0 then count < count + 1
A[T]} — A[T]] -1
for jem+k+1.n do /* move window */
if count =m then verify T; ,, . j 1
if A[T}] > 0 then count < count + 1
10. A[T]} — A[T]] -1
11. A[Tj*mfk} — A[Tj*mfk] +1
12. if A[Tj_,,—x] >0 then count < count —1

O 00 N O O b

Figure 5. The counting algorithm for one pattern.
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6.2. Multiple Patterns

The previous algorithm can search for one pattern only. Heweve can extend it to handle multiple
patterns. To search forpatterns in the same text, we maintain otjé table and-ount value for each
pattern. We use bit-parallelism to keep all these elemerassingle machine word, both fet| | and for
count.

The values of the entries of|] lie in the ranggd—m — k..m], so we need exactly+ ¢ bits to store
them, where = [log,(m + k)|. This is also enough fafount, since it is in the rang@..m]. Hence,
we can pacKw/(1 + [logy(m + k)])| patterns in a single search (recall thats the number of bits in
the computer word). If we have more patterns, we must dinéeset in subsets of at most this size and
search for each subset separately. We focus our attentiarsimgle subset now.

The algorithm simulates the simple one as follows. We hawebket\/A[] that packs all thed[]
tables. Each entry ail/A[] is divided in bit areas of length + ¢. In the area of the machine word
corresponding to each pattern, we stdre- A[] — 1. When, in the algorithm, we have to add or subtract
1, we can easily do it in parallel without causing overflownfran area to the next. Moreover, the
corresponding4[ ] value is not positive if and only if the most significant bittbe area is zero.

We have a parallel countédl count, where the areas are aligned withA[]. It is initialized with
2¢ — m in each area. Later, we can add or subtract 1 in parallel witbausing overflow. Moreover,
the window must be verified for a pattern whenever the mositifadgnt bit of its area reaches 1. The
condition can be checked in parallel, although if some caurgaches zero we sequentially verify which
ones did it. Figure 6 illustrates.

m=5k=1,0=3

y Al 10 0 0 MAIa]

| [ +2—1 ] | MA[g 0110 MAT]

o111 M A o]

y~ count oL 11 MAT]

| [ +2—m | |  Mcount 0110 MA[e]
Al >07?

| [ To[1 1]2 | Mcount

count > m?

Figure 6. Scheme and an example of the bit-parallel countdis example follows that of Figure 4.

Observe that the counters that we want to selectively inergrar decrement correspond exactly to
the M A[] areas that have a 1 in their most significant bé.(those whosel[] value is positive). This
yields a bit mask-shift-add mechanism to perform this djp@man parallel on all the counters.

Figure 7 shows the pseudocode of the parallel algorithm.t &ari be seen, the algorithm is more
complex than the simple version but the number of operapensharacter is still very low.

6.3. Analysis

We want to determine the probability that the filter triggengerification for a random pattern. Since the
m characters of? can appear at any window position in any order, the prolghiin be bounded from
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CountFilter (T,n,PY",m,k)

/* Preprocessing */

1. 0= [logy(m + k)]
2. for c € X do MA[c] « (01%)"
3. for s€l.r do
4. for i € 1.m do
5. MA[P?] « MA[P?] + 106~ D+
6. Mcount < (10 —m) x (0°1)"
/* Searching */
7. for jel.m+k do /* £fill initial window */
8. Mecount <« Mecount + ((MA[T;] >> () & (0°1)")
9. MA[T}] < MA[T;] — (0°1)
10. for jem+k+1.n do /* move window */
11. if Mcount & (109)" # 0"(“*1) then
12. for se€l.r do
13. if Mcount & 00—9)(t+)10006=E+D) £ gr(t+1) then
14. verify 1;_,,_y. ;j—1 for pattern P°
15. Mecount <« Mecount + ((MA[T;] >> () & (0°1)")
16. MA[T}] + MA[T;] — (0°1)
17. MA[T;_p—y]  MA[T; ] + (0°1)
18. Mcount < Mecount — ((MA[Tj k] >>0) & (0°1)")

Figure 7. The multiple-pattern counting algorithm. All tbenstants are of course precomputed.

above by (recall Section 5.2)
m—+k\ m! m+k)!
< )‘m _'%gﬁl )
m o 0

which, compared to the actual matching probability of E, &s an extran! factor. Since we pack a

pattern in[log, (m + k)| bits, the total search cost is
C%ﬂm+k) (m +k)!

nr +

w klom

m+5)

where, unlike the case of superimposed automata, we havactothe maximum number of patterns
together, since the number of verifications triggered dagglapend on how the packing is done. We
are interested, on the other hand, in the maximum error te¥et which this filter is useful.

Applying Stirling’s approximation to the matching problityi formula of Eq. (3) we get an asymp-

totic simplification for largen:
(1+a)tom\"™
eoa?

which is exponentially decreasing with as long as the base is smaller than 1. When this happens all th
verification costs become negligible. When, on the othedhtre cost is not exponentially decreasing
with m, the verifications dominate the search cost and the filteo ismger useful.
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So the simplified condition for the filter to be useful is

(1+ a)'te

aQ

€o

m
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which worsens as: or o grow. A simplified condition can be obtained by noticing ag#iat (1 +
a)lT/a® = (1 4+ a)(1 + 1/a)* < e(1 + ), and therefore it suffices that

a<o/m-—1

to ensure that the filter is useful. Note that the conditioegsivalent ton + k£ < o.

7. Experimental Results

In this section we present some experimental results ahowlgorithms and their analyses.

7.1. Probability of Matching

We test experimentally the probability that a random patieatches at a random text position. We

generated a random text and 100 random patterns for eachiragpéal value shown. Figure 8 shows
the probability of matching in a text of 3 Mb for a pattern with= 300, where pattern and text were
randomly generated over an alphabet of size- 68 (this value was chosen based on the number of
different events present in our real audit trails; this @dglly between 60 and 90). We chose a lange
value because, as we see next, the behavior stabilizesdenia

As can be seen, there i¢aalue from where the matching probability starts to growughtly, moving
from almost O to almost 1 in a short range of values. Despéttttis phenomenon is not as abrupt as for
the k differences problem [4, 22], it is sharp enough to make thislue the most important parameter

governing the behavior of the algorithm. We dallthis point, andx* = k* /m the corresponding error

level.

Probability of verification with counting filter and matching for a random pattern (m=300)
T T

)
>

matching probability
°
&

T
—-—--  verification

matching

1

10°

Figure 8. Actual matching probability and probability tifa¢ counting filter triggers a verification, for increasing

k values and fixedn = 300.
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Figure 8 also shows the probability that the counting filteygers a verification. For large:, this
probability goes to 1 much before the real matching proiiglubes.

On Figure 9 (left) we have shown this limiting* value for increasing pattern lengths, showing
that the actuah* tends to a constant for large (o* = o/e — 1) in the analysis, despite that it is
smaller for short patterns. On the other hand, the maximuor &vela;,,,, up to where the counting
filter does not require to verify every position quickly rees asn grows. The (pessimistic) analysis
predicts a limit of the form,,,,,, = o/m — 1. Least squares show an excellent fitting with the curve
o oune = 13.5182 x o /m + 1.693, with a percentual error of 12.32%.

Finally, we show in Figure 9 (right) how the alphabet sizaffects the asymptotia* and«,,,,.;
values (really form = 300). As can be seen, the curves look as straight lines, whest $epares
estimation yieldsy* = ¢/1.0856 — 0.8878 and o} = 21.5771 x o/m + 0.6931 with a percentual

count
error of 1.87%.

a*vsm

30

20!

I i i i ; ; 0 1 1 I 1 I
0 200 400 600 800 1000 1200 1400 10 20 30 40 50 60 70
m o

Figure 9. On the left, the* limit as m grows for the number of real matches and for the counting.fi®a the
right, both limits asr grows, form = 300.

All this matches our pessimistic analytical results. Thig@clear error levek* where the matching
probability goes from almost 0 to almost 1, both for the alctu@tching probability and for the counting
filter. This limit depends linearly on the alphabet sizén both cases. Regarding the dependency with

respect to the pattern lengih, the real probability tends to a constant while the countfiligy decreases
with a curve of the fornO (o /m).

Since the analysis is pessimistic, the analytical and ecapiconstants differ. However, there is
a remarkable point regarding the real probability of matghi The analysisq{ = o/e — 1) and the
empirical curve ¢ = o/1.09 — 0.9) match provided we us&.09 instead ofe. This means that, even
when our analysis is pessimistic, it does predict the reaktr rate of the curves up to a constant factor.
This is similar to the result obtained for thedifferences problem [4, 22] when relating their analytical

predictions {* = 1 —e¢/+/o) with the experiments(* = 1—1.09/,/0) and shows a consistent behavior
of the pessimistic analytical model used in both cases.
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7.2. Filtering Efficiency

A second concern is about the ability of our algorithms tefitiut text in more typical casesd|, short
patterns), rather than asymptotically. We are also intedes1 comparing the plain and hierarchical
verification methods.

We have selected three groups of 64 patterns each, of ledgtheind 8. Each group is searched
for with the superimposition method in seven possible wayse search with all the 64 patterns su-
perimposed, two searches of 32 patterns each, four seanstie$6 patterns each, and so on until 64
searches for a single pattern (no superimposition). Theesgnoup is also searched with the counting
method (the amount of verifications triggered does not démenthe parallelization in this case). The
superimposition method is attempted both with the plaintd@adarchical verification methods.

Figure 10 shows the number of verifications triggered petepataind per text character (in the case
r = 1 we count just the number of matches, so this represents thal acatching probability). This plot
is similar to Figure 8 except that we use much smahesind show also the result of superimposition.

m=4 m=5

o
10° v v v v v v 4

v v _v<_v-—~g**§;
IN A
iy ¥
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B

107 F =X & -
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=
S

H
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——  real matches
counting
v—< r=4plain

¥ — -v  r=16 plain

v v r=64 plain v v r=64 plain
107k &——A =4 hierarchical | 7 A——A  r=4 hierarchical | |
& — —A =16 hierarchical A& — —A r=16 hierarchical

A A r=64 hierarchical o A r=64 hierarchical

——  real matches
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I

# of verifications per character in input text

# of verifications per character in input text
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——  real matches
o—o  counting
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2| | —-v r=16 plain
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A——4A =4 hierarchical
& — -4 =16 hierarchical
A A r=64 hierarchical

# of verifications per character in input text

.
2
k

Figure 10. Per character number of real matches, verifitatid the counting methods, and verifications for
different superimposition schemes. We show the cases4, 5 and 6.

As can be seen, hierarchical verification works better thaim perification, despite that in the worst
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case it could work up téog, () more times. The plots also show that (as it should be cleachrmore
verifications are triggered asincreases. The counting filter shows to be better for lakgeslues and
for smallerm values.

7.3. Scanning Efficiency

We now study the scanning efficiency of our algorithms. Weetksvith 35 Mb of random texio( = 68)
and a set of 100 random patterns of lengthg {4,5,6}. This is a typical setup for intrusion detection
applications, as explained in the Introduction. We use aBuerprise 450 server (4 x UltraSPARC-II
250MH2z) running SunOS 5.6 with 512 Mb of RAM and = 32. Each data point was obtained by
averaging the Unix’s real time over 10 trials.

Our concern now is which is the scanning efficiency of the @ilgms compared to plain dynamic
programming for one pattern, independently of their filigrifficiency to deal with multiple patterns.
Figure 11 shows the scanning efficiency of the dynamic progrmg, the bit-parallel simulation and
the counting filter (using the bit-parallel simulation as tterification engine) for single random patterns
with m = 4. We measure the megabytes per second (Mb/s) processed algdnghms as: increases.
As can be seen, the bit-parallel simulation is 2.5 to 3 tinastef than the classical solution even for very
largek values. The counting filter is in between.

——  Dynamic Prog
16l ---  Bit-parallel Simulation | |
~~~~~ SN Counting Filter

Figure 11. Scanning efficiency of the bit-parallel simwatiand the counting filter compared to the classical
dynamic programming algorithm.

7.4. Overall Performance

Finally, we consider how the filtering and scanning efficieaembine to form the overall performance.
We compare first the impact of the number of patterng the multipattern filter based on super-
imposed automata. We take = 4 (i.e, the length of the shortest pattern in the set) ane= 68
for our analytical estimation of optimal superimpositiavhich yieldsr;_, = 8.93, r,_, = 6.41 and
r._g = 4.94. Figure 12 (left) shows the Mb/s processed when using diffevalues of’ over a set
of 100 patterns. As the analysis predicts, there is an opaimaunt of superimposition that is reduced
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ask grows. The analytically estimated optima are below thetmalcones, since our analysis uses a
pessimistic bound on the matching probability. We use tipegmental optima in the tests that follow.

09t ——  Superimposition Filter | |
---  Counting Filter

e
3
T

1)
>
T

parallel/sequential

)
w
T

Figure 12. On the left, Mb/s vs partition size fbr= 4, k = 6 andk = 8 over a set of 100 patterns with
m € {4,5,6}. On the right, ratio between parallel and sequential vessad the algorithms.

We now show the degree of parallelism achieved by the supesition and counting filters algo-
rithms, in terms of the ratio between the parallel versioth:aapplications of the corresponding single-
pattern algorithm. We search for the same set of randoméctel patternsif € {4,5,6}) with &£ = 8.
Figure 12 (right) shows the behavior in termsrofWe observe that the multipattern filter quickly con-
verges to a 5-fold improvement over its sequential versgniacreases. The counting filter achieves a
lower degree of parallelism, taking 0.27 of its sequentiarterpart. The “waves” in the superimposition
filter is due to a discretization effect when the patternsdareled into groups.

Figure 13 shows the impact of searching allowing differamhbers of insertions for both algorithms,
for pattern sets of = {1..100}. We observe that performance remains stable up to a liminaro
r = 25 with low k. For higherk values, however, performance drops drastically from trginméng.
The counting filter resists more this behavior, which shawsigher tolerance to insertions for short
patterns. To see this, note that the case= 6, k = 25 ando = 68 is totally inside the scope of the
counting filter according to the analysis, while the supgosition filter can only superimpose 3 patterns
under this setup.

8. Application to a Real-Life Case

The experiments of the previous section use an idealizecchwadere text and patterns are randomly
generated. This is useful to generate massive data and theekperimental performance against the
predictions. We complete the above experiments with alifeatase study.

We experimentally study how the probabilistic model ofregrmatching allowing insertions relates
to the problem of false negatives and positives. Our goab idetermine howy* relates to the ratio
between false negatives and positives and the total nunilseported attacks and, consequently, to the
filtering efficiency of the model.
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Counting Filter

Superimposition Filter | |

1021
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Superimposition Filter | |
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Figure 13. Mb/s processed by both algorithms for a set okpadtwithm € {4,5,6} with £ = 4 (left) and
k = 25 (right).

The experimental input data consists of an audit trail andttack database. The audit trail was
collected using the Gassata intrusion detection systeinifls8real environment. The log format is an
extension of the log format proposed in [6]:

#S#version=suntradb.6#system=SO0LARIS#deamon=system#ahost=amstel#no=28#
event=AUE_EXECVE#date=2000.3.14014.29.41#program=/var/audit/1ls#
file=/var/audit/ls#euid=root#egid=other#ruid=root#rgid=other#pid=13949#
error=-1#return=KO0#E#I#

#S#version=suntradb.6#system=SO0LARIS#deamon=system#ahost=lancelot#no=29#
event=AUE_EXECVE#date=2000.3.14014.29.41#program=/usr/bin/ls#
file=/usr/bin/ls#arg=1s,-als#euid=root#egid=other#ruid=root#rgid=other#
pid=13949#error=0#return=0K#E#I#

The attack database consists of attacks signatures witblibe@ing format:

>>> Attack_login

rulel

rulel

rulel

>>> Attack_file_creation
rule?2

>>> Attack_ps_cmd

rule3

rule7

The rules are defined in the following way:

rulel ::= ( (event=AUE_login) || (event=AUE_rlogin) ) && (return=K0) ;
rule?2 ::= (event=AUE_CREAT) && ( (file co 1s)||(file co cd) ) ;
rule3 ::= (event=AUE_EXECVE) && (program=/usr/bin/ps) ;
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rule4 ::= (event=AUE_EXECVE) && (program co crack) ;

(event=AUE_su);

ruleb ::

where theco operator stands forcbntains”.

The audit trail and attack signatures are translated intateeqm matching representation in three
steps. First, a different character is assigned to each(@uderulel =’a’). Attack signatures are then
translated into patterns by mapping their rules to the spoading characters. Finally, the audit trail is
scanned and its events are matched against the rules. Ex@oksmatch more than one rule are assigned
the corresponding characters. Events which do not matcleara assigned arbitrary characters. The
final string is constructed by concatenating the sequenckarfcters corresponding to matches of rules
and the arbitrary characters.

We used an audit file of 24,847 events and studied three eliffeseries of actions:

Chained who: represented as a pattern of four events ofiao" command. The probability of the
corresponding character in our audit file is 0.004382 andethee four real attacks of this kind in
the audit file.

Sensitive commands. represented as a pattern of ten events of any command intthe sest", "ps",
"who", "whois" }. The probability of the corresponding character in our &fildi is 0.007187
and there are two real attacks of this kind in the audit file.

Chained whois. represented as a pattern of four events bfois" command. The probability of the
corresponding character in our audit file is 0.001402 anktlseone real attack of this kind in the
audit file.

The audit trail and attacks described above may seem natsemiative enough because of their
small size. However, it must be noted that it is extremeljidift to obtain audit trails with traces of
attacks for several reasons. First of all, the owners of $tals are reluctant to give their logs away
because of confidentiality and security concerns. Secptitylog generating systems are not perfect
in the sense that they do not log all the events that couldaapgepart of an attack. As a consequence,
detection of some attacks is impossible. Though the awaitand attacks used in this experiment are
small, we decided to use them because they are genuines tkiady correspond to a real case.

8.1. Effectiveness of the Filter and False Negatives

We have searched for the three patterns in our audit file allpan increasing number of insertiohs
Our goal is to determine the effectiveness of the propostatifiy algorithm. That is: how much text
is able to filter out in order to retrieve what fraction of tleak attacks that occur in the audit file? The
text that our filter is not able to discard has to be procesgeadrhore sophisticated algorithm in order to
determine the presence of a real attack. As those algorigiiensiuch slower than our pattern matching
based approach, the effectiveness of the filter is crucial.

By applying the analytical predictions of Section 5.2 to cesl data, we computed the maximum
k value for which the matching probability does not reach tdliethat the model is pessimistic). To
compute that maximum value, we have used the most precisaife(Eq. (2)) for the matching proba-
bility. Given that the text is biased we have replad¢d™ by p™, wherep is the relative frequency of
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Attack m | Occs. | Prob. char| Nec.k | Max.k | Fract. of text
Chained who 4 4 0.004382 225 500 8.21%
Sensitive commands 10 2 0.007187 580 620 14.50%
Chained whois 4 1 0.001402 1425 1570 5.74%

Table 1. Main parameters for the three search patterns.
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Figure 14. Fraction of attacks detected versus fractioexifleft for further processing.

the character that forms the pattern (all the attacks aetitems of a single character, otherwise we can
just multiply the probabilities of the participating chearars).

Together with the maximurh recommended by the model we have computed the fraction oéxthe
that the filter selects (for thaf) as a candidate for further evaluation. This is simplysthe k characters
preceding every match, avoiding to count multiple timesderlapping areas.

Table 1 shows that using the maximunmmecommended by the model selects just 6% to 15% of the
text to be processed by a more costly algorithm. Moreovehasy in the column of “necessaky the
minimum & value that is necessary to detect all the attacks preseheiaudit file. This turns out to be
below (and generally close to) the maximémecommended by the model. Therefore, the model can be
used to obtain a good estimation of thealue to use in order to detect all real attacks. Of courgs, it
also possible to use specific knowledge of the applicatiatetermine the appropriate

8.1.1. False negatives

Another interesting experiment is related to the evolutbthe number of attacks detected as a function
of the fraction of text not filtered out. That is: what is theqantage of text that we will need to evaluate
with a more complex algorithm in order to detect a given faacbf the real attacks?
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Figure 15. Number of matches found as a functiok.of

Regarding the false negatives, we evaluated, for our thagtcplar patterns, the fraction of text
filtered as a function of the fraction of attacks detecte@ (Sigure 14). As can be seen, the curve is
concave, which suggests that considering a very smallidract the text permits to detect most of the
attacks. For example, with/avalue that leaves just 2% of the text for further evaluatianget 50% of
the attacks (and thus 50% of false negatives). We have heay tovbbalance the false negatives rate and
the speed of detection. Of course, in many cases, no falsgiveds required. In that situation, the value
of k determined by the model is an upper bound of the value to ki fos¢he corresponding pattern.

8.1.2. [False positives

Regarding the false positives, we studied the evolutiorheftumber of matches as a function of
for the three patterns (see Figure 15). Of course, for sortterpg, the use of an excessively larfge
value leads to many false positives. Let us note that thése fesitives may be discarded by the more
accurate detection algorithm which may analyse the outpatiopattern matching mechanism (recall
that we give a part of the trail containingpatential attack). To limit false positives without allowing
false negatives, the value bfdetermined by the model appears as a near-optimum.

It is interesting to observe that some curves of Figure 15s{motablysensitive commanyibehave
much as the synthetic curve of Figure 8. We believe that tlinditvould be better with a larger text,
since currently it is not large enough to obtain smooth gyesa

9. Conclusions

We have presented a string matching approach to the protlenmusion detection, which is formalized
as the problem of multipattern matching allowing insersioBesides the classical solution for one pattern
adapted from the field of approximate pattern matching, we Ipgesented two new search algorithms
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which we also extended to handle multiple patterns. Eachefwo algorithms can be better than the
other depending on the number of insertions allowed anddttenm length.

We have presented analytical and experimental resultsecoing the performance of the new algo-
rithms. As an example, we illustrate the case of 4-charagatterns searched for allowing 4 insertions,
which is a case of interest in intrusion detection apploreti The single pattern versions are typically
3 times faster than the classical solution. The multipattdgorithms allow searching for 100 patterns
at the same cost of 4 single pattern searches (a 25-fold gpeedls a result, our new algorithms allow
searching for 100 patterns at a rate of 4 Mb/s in our machiméewhe classical algorithm can search
for just one single pattern at 5 Mb/s, a 75-fold improvement.

In the field of approximate string matching, the fastest mllgms are filters able to discard most
of the text by checking a necessary condition. In generalsdHilters cannot easily be applied here
because the error levels typical in intrusion detectionliegions are too high for the standards of the
approximate string matching problem. We have shown, horyéivat some filtration techniques can be
adapted to this problem to obtain a large improvement in @ropmance of multipattern searching.

Concerning a detailed tuning of implementation choicesyralver of potential optimizations could
bring large improvements in practice. For example, in thdtipaitern filter algorithm, if the patterns
have different length, we just truncate them to the shodestwhen superimposing the automata. We
can select cleverly the substrings to use, since havingahee <haracter at the same position in two
patterns improves the filtering mechanism. Also, we usedglsirheuristics to group subpatterns in
the superimposed automata. These can be improved to maxacoimmon characters too. Finally, the
multipattern filter is limited to patterns of size([log,(k + 1)] + 1) < w. Automaton and pattern
partition techniques [4] can be incorporated to searchdiogér patterns. Furthermore, the combination
of techniques can be considered in order to increase thautale to insertions.

Related to this last point about the length of the pattermspeint out that we have concentrated in
the parameters typical of intrusion detection, where thtepss are rather short, the error level is quite
high, and the number of patterns is large. The new algoritlvmbave presented are very well suited to
this setup, but other variants of the problem could be of@#ein other applications and could demand
(or permit) different approaches. A weakness of our metlioaiscould be addressed is the need that the
patterns have more or less the same length.

In particular, more sophisticated models of attacks malgyigore complex pattern matching prob-
lems, involving for example regular expression searchilogving insertions or permitting transpositions
(swaps) of events in the pattern, as well as a limited numberissing pattern events. We remark that
the counting filter is well suited to deal with transposispmwhile fast algorithms for regular expression
searching based on bit parallelism [24] could be adaptethfsse more complex problems. For permit-
ting a given number of deletions as well as insertions, whetk operations are counted and thresholded
separately, there is a dynamic programming solution in §gllied to a different problem.
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