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Abstract. We present an algorithm that minimizes the expected cost
of indirect binary search for data with non-constant access costs, such as
disk data. Indirect binary search means that sorted access to the data is
obtained through an array of pointers to the raw data. One immediate
application of this algorithm is to improve the retrieval performance of
disk databases that are indexed using the suffix array model (also called
PAT array). We consider the cost model of magnetic and optical disks
and the anticipated knowledge of the expected size of the subproblem
produced by reading each disk track. This information is used to de-
vise a modified binary searching algorithm to decrease overall retrieval
costs. Both an optimal and a practical algorithm are presented, together
with analytical and experimental results. For 100 megabytes of text the
practical algorithm costs 60% of the standard binary search cost for the
magnetic disk and 65% for the optical disk.
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1 Introduction

To provide efficient information retrieval in large textual databases it 1s worth-
while to preprocess the database and build an index to decrease search time.
One important type of index is the PAT array [Gon87, GBY91] or suffix array
[MM90], which is a compact representation of a digital tree called a PAT tree,
reducing space requirements by only storing the external nodes of the tree. A
PAT tree or suffix tree [Knu73] is a Patricia tree [Mor68] built on the positions of
interest in the text database. Each position of interest (or index point) is called
a semi-infinite string or suffix, defined by its starting position and extending
to the right as far as needed to guarantee uniqueness. In a PAT array the data
access 18 provided through an indirect sorted array of pointers to the data. This
array allows fast retrieval using an indirect binary search on the text.
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When all data elements have constant access time, then binary search min-
imizes the number of accesses needed to search sorted data and also minimizes
the total search time. However, some applications do not have data with constan-
t access costs, including applications that have data distributed across a disk,
where data near to the current disk head position costs less to access than data
further away. For these applications we show that it is possible to improve the
total search cost, which is equivalent to the number of data accesses multiplied
by the average access cost.

The full inverted file is the most common type of index used in information
retrieval systems. It is composed of a table and a list of occurrences, where an en-
try in the table consists of a word and a list of addresses in the text corresponding
to that word. In general, inverted files need a storage overhead between 30% and
100%, depending on the data structure and the use of stopwords, and the search
time is logarithmic. Similar space and time complexity can be achieved by PAT
arrays. The great advantage of PAT arrays is its potential use in other kind of
searches that are difficult or inefficient over inverted files. That is the case when
searching for a long sequence of words, some types of boolean queries, regular
expression searching, longest repetitions and most frequent searching [GBY91].
Consequently, PAT arrays should be considered seriously when designing a text
searching method for text databases that are not updated frequently.

Due to the high non-constant retrieval costs inherent to the disk technology,
a naive implementation of PAT arrays for large textual databases may result in
a poor performance. A solution to improve the performance of text retrieval
from disk was proposed in [BYBZ94], using two models of hierarchy of indices.
They consist of a two-level hierarchy model that uses the main memory and one
level of external storage (magnetic or optical devices) and a three-level hierarchy
model that uses the main memory and two levels of external storage (magnetic
and optical devices). Performance improvement is achieved in both models by
storing most of higher index levels in faster memories, so that only a reduced
interval of the PAT array is left on the disk, thus decreasing the number of accesses
in the slowest device of the hierarchy.

The main goal of this paper is to present an algorithm that improves the
expected retrieval time of the indirect binary search in an interval of a PAT
array. For both magnetic and optical disks, we are interested in reducing the
time complexity of the search in the last level, because optical disks have poor
random access performance, more than a magnitude slower than magnetic disks,
and magnetic disks are more than a magnitude slower than main memory. As
magnetic and optical disks have non-uniform data access times depending on
the current head position, our algorithm optimizes the total retrieval time, not
the total number of disk accesses. The algorithm takes into account both the
expected partition produced by reading each track and the cost of accessing
that track.



2 Searching in a PAT Array on Disks

A PAT array 1s an array of pointers to suffixes, providing sorted accesses to all
suffixes of interest in the text. With a PAT array it is possible to obtain all the
occurrences of a string prefix in a text in logarithmic time using binary search.
The binary search is indirect since it is necessary to access both the index and
the text to compare a search key with a suffix. Figure 1 illustrates an example
of a text database with nine index points and the corresponding PAT array.

28 | 14 | 38 | 17 | 11 | 25 6 30 1

This text is an example of a textual database
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Fig. 1. PAT array or suffix array

To search for the prefix fex in the PAT array presented in Figure 1 we perform
an indirect binary search over the array and obtain [7, 8] as the result (position
7 of the PAT array points to the suffix beginning at the position 6 in the text,
and position 8 of the PAT array points to the suffix beginning at position 30 in
the text). The size of the answer in this case is 2, which is the size of the array
interval. Searching in a PAT array takes at most 2mlogn character comparisons
and at most 4 log n disk accesses, where n is the number of indexing points and m
is the length of a given query. Building a PAT array is similar to sorting variable
length records, at a cost of O(nlogn) accesses on average. The extra space used
by a PAT array is only one pointer per index point.

When the hierarchy model is used, the last phase of the search is performed
by an indirect binary search in which a reduced interval of the PAT array is
stored in main memory, as a PAT block with b elements. The hierarchy model
[BYBZ94] divides the PAT array into equal-sized blocks with & elements and
moves one element of each block to main memory together with a fixed amount
of characters from the text related to the element selected from each block.
Using this information, a preliminary binary search can be performed directly
in the upper level. At the end of this search we know that the desired answer
is inside the b elements of the PAT block. This small PAT block is transferred to
main memory and the exact answer is found through an indirect binary search
between the PAT block in main memory and text suffixes in disk. This way, the
cost 1s no more than 2log, b disk accesses. This is the part of the search that we
intend to improve.

The entries of the PAT block are pointers to random positions in the text file
stored on disk. Consequently, the sequence of disk positions to be visited during
a binary search produces random displacements of the disk access mechanism.



Our strategy to reduce the overall binary search time looks for pivots that need
little disk head movement and that bisect the PAT block as closely as possible.
Each disk head movement produced by accessing a pivot changes the costs of
accessing the remaining potential pivots, changing the problem with each search
iteration. This problem seems closely related to a binary search over nodes with
different access probabilities, for which an optimal binary search tree can be con-
structed by moving the nodes with higher access probability to the root[Knu73].
A solution for searching in a non-uniform access cost memory is also closely
related[AACS87, Kni88]. However, these solutions do not directly apply, since
in our problem the costs vary dynamically, depending on the current position of
the disk reading mechanism.

The following definitions are used in the presentation of the optimal and the
practical algorithms:

1. Let b be the size of the current PAT block (a reduced interval of the PAT array
initially transferred from disk to main memory). Note that b is reduced at
each iteration in the optimal and the practical algorithms.

2. Let Cost(h,t,ns) (cost function) be the time needed to read n, sectors from
track ¢, with the reading mechanism being currently on track h. Thus

Cost(h,t,ns) = Seek(|h —t|) + Latency + n; x Transfer (1)

Although the costs vary between magnetic and optical disks, in both cases
there are three components: seek time, latency time, and transfer time. Seek
time is the time needed to move the disk head to the desired disk track and
therefore depends on the current head position. Latency time (or rotation
time) is the time needed to wait for the desired sector to pass under the disk
head. The average latency time is constant for magnetic disks and variable
for ¢D-ROMs, which rotate faster reading inner tracks than when reading
outer tracks. In our analysis, we use an average CD-ROM latency. Transfer
time is the time needed to transfer the desired data from the disk head to
main memory.
We ignore some details in this definition. For example, because we assume a
constant latency for each access, reading two sectors in the same cylinder and
rotational position (but different surfaces) of a multidisk drive will cost two
constant latency times. It is clear that defining the access cost as function
of sector is more accurate, however we have chosen to define it as a function
of track (seek time plus a constant latency time) for simplicity.

3. Let an useful sector be a sector that contains a piece of text with at least
one related pointer present in the current PAT block.

4. Let size(t) be the number of useful sectors in a track ¢.

5. Let newsize(t) (reduction function) be the expected number of useful sectors
of the next iteration after reading track ¢.
Assuming that the search for a pointer can occur anywhere in the PAT block
with equal probability, then the probability that a given segment is selected
for the next iteration is proportional to its size. More formally, suppose the
positions of a PAT block of size b are numbered 1..5, and that track ¢ “owns”



positions p1, p2, ...px of the PAT block. Figure 2 shows an instantiation of a
partition of the PAT block containing 8 segments generated by the text keys
of a track t. After reading track ¢ we can compare the search key with the
text keys and only one of the segments becomes the next subproblem.
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Fig.2. A paT block partition generated by all text keys of a track

Thus
b1
newsize(t) = Z (Length of segment i) x (Prob of i being selected)
i=1
that is
(s (pi — pi1 — 1)°
. t — 2 11— 2
newsize(t) ZZ:; — (2)

where po = 0 and pr41 = b.
Assuming that all positions have the same probability, if one only knows
that a track owns k positions without knowing which positions, then, the
expected size of the next iteration (by counting over all possible values for
pi) is
. (b—Fk)(2b—k) 2
newsize(k) = Wkt ) el b (3)

where the approximation holds for k << b. An important improvement that
an optimal algorithm can make is to search for tracks owning two or more PAT
block positions, since it would drastically reduce the new size at a negligible
additional cost. The optimal and practical algorithms that we present take
full advantage of this idea.

6. Let C'(h,1..0) be the cost of the optimal algorithm when the reading mecha-
nism is currently on track A and 1..b is the current portion of the PAT block
where we are searching.

3 An Optimal Algorithm

First, we present an optimal algorithm, using the definitions above, and show its
impracticability. Second, using some simplifying assumptions, a feasible optimal
algorithm is presented, still too costly for most uses, but useful for comparative
purposes.



From Eq. (1) the track ¢ to be read next is the one that minimizes
Cost(h,t, size(t)) + C(t, from..to)

where from..to is the selected segment from the comparisons made possible by
reading track ¢.
Thus, the optimal algorithm satisfies the recurrence equation

C(h,1..6) = miny(Cost(h,t, size(t)) + C(t, from.1o) (4)

Unfortunately, it is not possible to know in advance which segment from..to
will be selected after reading ¢, so it is not possible to recursively compute the
C' function of the right side of Eq. (4).

However, we can develop an algorithm that optimizes the ezpected cost by
replacing C' with the ezpected C'. In this case, our recurrence is converted to

O(h, 1..b) = min,(Cost(h,t, size(t)) + > w Ct,picy+1,p; — 1))
i=1

It is then possible to take each candidate segment and recursively compute
the cost of the algorithm provided this segment is selected and the search starts
from ¢, and then sum up the costs for all segments weighted by the probability for
each segment to be selected. With a naive implementation, this strategy requires
O(3%) time. The time can be reduced to O(b*) (with O(b3) space) by using
dynamic programming. The time cost makes it impractical for use in situations
where b is large, since calculations could demand more time than the savings
produced by the smart search strategy. We do not include the pseudocode of
this algorithm for lack of space.

We develop a simpler heuristic strategy by weakening the definition of ez-
pected C', interpreting 1t as if no information about the contents of the PAT block
is available (of course we use it for the C'ost function in Eq. (1), but not for the
C' of the right side). That means to use a C' averaged over all possible PAT array
block contents, and to use some weighting strategy to favor those tracks whose
neighborhood 1s “good”, in the sense of owning a large number of positions of
the current PAT block. More formally,

C(h,b) = miny(Cost(h,t,size(t)) + weight(t) x C'(newsize(t)))

where C’() is an average estimate of the cost of the algorithm with a PAT block
of size x (see the next section).
In the next section we present a practical algorithm which follows this idea.

4 A Practical Algorithm

To design a practical algorithm from the general heuristic principle stated in
the previous section, we need the following: a suitable weighting function, and



an estimation of the average cost of the algorithm, which is part of the of the
definition of the very same algorithm.

The simplest weighting function is a uniform one, that is weight(t) = 1 for all
tracks. This is equivalent to not taking into account the neighborhood of tracks,
but only their contents and distance from current position. We show that this
simple strategy 1s quite close to optimal, so the effort of making a more complex
analysis at each iteration i1s not worth doing. Figure 3 presents the practical
algorithm.

Search (bPAT, head)

while (size of bPAT > 0)

{ compute S = set of useful tracks (which own a position of bPAT)
compute newsize(s), for each s in S (recall Eq. (2))
t = s in S which minimizes Cost(head,s,size(s)) + C’(newsize(s))
move to t and read all useful sectors
bPAT = appropriate new partition (after search key comparison

with keys read)

head = t

Fig. 3. Practical algorithm

Note that the better candidates for selection are those tracks that either
are near to the current head position or generate a good partition of the PAT
block. A track near to the current position may avoid an expensive seek cost
and, on the other hand, a candidate track that owns many positions increases
the probability of making the next partition (newsize) much smaller than b/2.

The next section presents an approximate analysis of this algorithm for mag-
netic and optical disks. By using these formulas to estimate the cost of smaller
instances of the problem, we are able to complete the definition of the algorithm,
thus eliminating its self-reference.

Note that it is possible to apply the practical algorithm until obtaining a
PAT block size small enough to be tractable with the optimal strategy that uses
the O(b*) time dynamic programming mentioned in the previous section. It has
to be experimentally determined whether this improvement is worth doing for
small sizes.

Observe that we can traverse the PAT block from left to right, and keep the
set of useful tracks. At the same time we can compute the sum of squares of
the segments of the partition that each track produces in the PAT block (recall
Eq. (2)), since it determines the average size of the subproblem that that track
generates (newsize). Note that if the PAT block is traversed from one side to
another, it is easy to accumulate the sum of squares, by recording the previous
node owned by each track, together with the current sum of squares. This way,
both S and newsize can be computed in one pass, that is, O(b) time.

In the average case, this algorithm is O(b) in each iteration (note that &



decreases at each step), since at most b tracks may be useful and they may be
stored in a hash table to achieve constant search cost (when searching for a track
in 5). Of course it is O(blogd) in the worst case. The space requirement is O(b).
In the next section we show that this algorithm makes; on average, less than
log%(b + 1) iterations, where % <w < 1 1s the expected reduction in the size of
the PAT block (i.e. the size of the PAT block at iteration i is bw’). Comparing
this with classical binary search, we note that more iterations are required. The

total average CPU cost is
log 1 (b4+1)—1

b WZ W = 7172 R b
b+ 11l -w) 1—w

i=0

which is linear. The worst case occurs when the search for each candidate takes
log b, making each iteration O(blogb):
loga (b4+1)—1
v . . b
> bw'logy(hw') & ——loga b

—w w
i=0

5 Analytical Results

In this section we evaluate the practical algorithm, both for magnetic and optical
disks. In each case, an analytical cost model is presented and analytical bounds
for the algorithm under this cost model are obtained.

5.1 Magnetic Disks

The following definitions are used in the analysis of the practical algorithm for
magnetic disks:

1. Let C(b) be the the retrieval cost for magnetic disks when retrieving from a
PAT block with b elements.

2. Let ¢ be the sum of the latency and transfer time (which really depends on
the number of sectors to read) and let & be the seek time per track.

3. Let T" be the number of tracks occupied by the text file and let AT be the
distance that separates any two disk tracks.

4. Let 6 be a small number of central positions in the current PAT block.

A Seek Cost Model for Magnetic Disks The cost function of magnetic
disks may be modeled by a function of the form

FIAT) = o + 0AT

According to [HP90], typical disks have 500-2000 tracks by surface, each of
them divided in 32 sectors. Sectors hold 512-2048 bytes. The typical value for



latency 1s 8.3 ms, while transfer rates vary from 1 to 4MB per second. Average
seek times range from 12 ms to 20 ms. Disks have from 1 to 20 plates, that 1s, 2
to 40 surfaces. The set of tracks from all surfaces which are at the same distance
to the center is called a cylinder. For practical purposes, one can treat a disk
with k surfaces and 32 sectors as if it had only one surface, but whose tracks
held 32 x k sectors, with the same latency (8.3 ms). So the following discussion
assumes only one surface, although the number of surfaces must be taken into
account when calculating the number of tracks (cylinders) required by a file of
a specified size.

Average seek time means the sum of all possible head displacements, divided
by the number of possible displacements. This is

2 G T2 —1 T
EZZ(Z_J) = 37 F 3 (5)

i=1 j=1
From the above discussion, we get the following values (in milliseconds):

o = 83+4n, x(0.125..2.0)
6 = 0.018..0.12

For our purposes it is better for the file to be contiguously allocated on the
disk, to reduce seek time. That also means that it should use as least cylinders
as possible, so it should fill cylinders as completely as possible.

In many environments the sectors composing a file may be scattered on the
disk. This obviously degrades the performance of any algorithm, although our
algorithms are also optimal (in their own sense) under this situation. Another
problem is that under different operating system policies; the cost model may
vary. For example, some disk administrators do not serve requests that would
make the disk head switch to the opposite direction of movement until the last
request in the current direction is served. Under this scheme, those tracks that
are following the current direction are much cheaper than the others. Both algo-
rithms are able to handle all of these complications provided the cost function is
appropriately defined. However, in the analysis we assume contiguous allocation
and the simple cost model, which is optimistic if the file is scattered on the disk.

Analysis of the Algorithm It is useful to compare the performance of our
practical algorithm with that of the standard binary search. The cost of each
binary search step includes one seek, one rotational latency, and one transfer.
Since the seek is random, we may use Eq. (5) to show that on average, 1/3 of
the disk surface is traversed. The number of steps needed to complete the search
is log, (b + 1), where b is the initial PAT block size. Thus we have

T
Binary Search Magnetic Cost (b) = (0’ + 59) log,(b+ 1) (6)



Now we turn our attention to our algorithm. Since we are not able to analyze
the real algorithm, we use a simplified model, whose predictions are to be exper-
imentally tested against the real algorithm, to show 1its precision. It is important
to note that this model 1s an upper bound for the expected case of the algorithm,
so 1ts predictions are always pessimistic.

The model 1s as follows. Suppose there are no tracks with more than one
useful sector (this is worse than reality). At each step, we select the é central
positions of our PAT block, and read the nearest track which owns some of those
central positions. The process continues until the PAT block size 1s < 6. At this
point, we traverse the disk from one end to the other, in one pass, reading
any useful track, until the PAT block becomes empty. Since the real algorithm
considers all (useful) tracks and selects the best one taking into account just seek
cost and the generated partition, this model can never make a better decision
than the real algorithm.

We first obtain the expected size of the new PAT block. This is (by using the
same idea of Eq. (2))

b
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and the bound is obtained by considering b > 6. Note that the bound is of the
form Xb+ Y, with X =1/2and ¥ =§/6 4+ 4/3.

The next step 1s to obtain the average seek cost needed to access the nearest
of the é tracks, from a total of 7. By summing over all possible positions at this
track we can prove that the seek cost is approximately T'/26.

Thus, a bound of the cost for size b (until obtaining a block of size < §) is

c) = a—l—H%—I—C(Xb—I—Y) (b > 6)

By unfolding the right side of this recurrence, we get its closed expression

T 6 36+ 16
("Jrg%)logz (36—8b_ 36—8) + @)

<a + 9%) log, (366——8 b) + C) (1)

The value of C'(8) corresponds to solve the PAT block of size §, which consists
of linearly traversing the disk surface and reading any useful track. On average,
half of the § tracks are read, and half of the surface is traversed. Thus,
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which gives us the final cost expression

T 6 ) T



It is possible to prove that the optimal value for §é is:

0T
§=1/—logy b+ O(1)
o

For example, for a 160 megabytes file, & = 1000, 7" = 5000, ¢ = 10.3, § =
0.045, we have 6 = 15, and C'(b) = 320 milliseconds, a 37% of the cost of the
standard binary search (Eq. (6) gives 850 milliseconds). The result obtained by
numerically finding the optimal é differs by less than one. For an actual disk
with a track capacity of 32 sectors and 4 recording surfaces, simulations for the
practical algorithm yield 34% of the cost of the standard algorithm.

5.2 CD-ROM Disks

The following definitions are used in the analysis of the practical algorithm for
CD-ROM disks:

1. Let C'(b) be the the retrieval cost for cp-ROM disks when retrieving from a
PAT block with b elements.

2. Let ¢ be the sum of the latency and transfer time by sector read and let ¢
be the seek time.

3. Let T" be the number of tracks occupied by the text file. Let AT be the
distance that separates any two disk tracks.

4. Let @ be the span size, the capability of accessing nearby tracks from the
current position with no displacement of the reading mechanism.

5. Let a be the growing rate of the seek time as a function of the displacement
of the access mechanism (in tracks) inside the span.

6. Let 2 be the growing rate of the seek time as a function of the displacement
of the access mechanism (in tracks) outside the span.

A Seek Cost Model for CD-ROM Disks The cost function of the cD-roM
drive is highly dependent on disk position and the amount of the displacement
of the access mechanism. An important feature to be considered is the span size
capability @, since inside the span, the seek costs are negligible. In actual ¢D-
ROM drives the span size is up to 60 tracks, depending on the type of the drive.
The data access located within span boundaries requires a seek time of only 1
millisecond per additional track, while the access of tracks outside the span size
may require 200 to 600 milliseconds.

The set of tracks covered by a span in a ¢CD-ROM might be compared to the
set of tracks belonging to a cylinder in a magnetic disk. In [BZ92] the set of
tracks inside a span is considered as an optical cylinder. Thus, the data access
in cp-ROM disks has two modes: (i) prozimal access, for tracks inside the optical
cylinder, and (ii) non-prozimal access, for tracks outside the optical cylinder
boundaries. These two modes are also known as short seeks and long seeks,
respectively.



Other components of the access time to a given sector are the rotational
latency and the transfer time from disk to main memory. The rotational latency
is directly proportional to the position of the data on the disk, due to the constant
linear velocity (cLv) physical format, costing from 65 milliseconds (inner track)
to 153 milliseconds (outer track) to locate a sector. The transfer time is directly
proportional to the amount of data transferred from disk to main memory, at
the constant rate of 150 kilobytes per second (300 or 600 kilobytes per second in
some drives). Any data in the CD-ROM is accessed by giving the physical address
of the corresponding sector, and the sector size i1s always 2048 bytes. So, the sum
of latency and transfer time by sector read is

¢ = (65..153) + 13

The seek time may be linearized, considering a slope between 0.02 and 0.04
milliseconds per track for non-proximal accesses and 1 millisecond per track for
proximal accesses. The expression for t; is:

ts = f(AT)Y = a x AT for AT < Q (prozimal access)
ts = f(AT) =to 4+ BAT  for AT > Q (non — prozimal access)

where tg represents the seek time for the first track outside the boundaries of
the current optical cylinder, therefore requiring a seek. Some typical values for
a, 3 and @ are: o & 1 millisecond/track, 0.02 < @ < 0.04 milliseconds/track,
200 < tp < 600 milliseconds and 1 < ) < 60 tracks.

We have also to consider that the optical head adjusts itself every time a new
access is done, centering the anchor point on the track it has just moved to.

Analysis of the Algorithm We begin this section with the analysis of binary
search on this cost model. Since the probability for a random track to be within
the span size 1s negligible, we have

Binary Search Optical Cost (b) = (c +to + gﬁ) log,(b+1) (8)

We use a different model to approximately analyze the behavior of our algo-
rithm on the optical cost model, since the one used for the magnetic case is far
from optimal here. The idea is as follows: at any time, if there is a text key within
the span size, we read it; else we read the track owning the middle position of
the PAT block. Again, this model cannot perform better than our algorithm, on
average, since we include both situations in the practical algorithm.

Assuming that we read any sector within the span size, this sector is at
random, so using Eq. (3) with & = 1, the expected size of the new PAT block
after reading that sector is bounded by 2/3 b, while of course the non-proximal
access cuts the PAT block by half.

Since the disk head is in the middle of the span size, the expected cost for
the proximal access is

A = c+a—-
c 1



while for the non-proximal access, since the track to read is at random but surely
outside the span, we have the expected cost

B = c+to+ﬁ<%+¥)

Finally, the probability for the nearest track to be outside of the span size is

b
(-8) - s

where A, B and p are used as shorthands.
Then, the cost expression satisfies the following recurrence

Cb) = (1-p <A+C<§ b))—i—pb (B—l—(](% b)) (9)

with the border condition C(0) = 0. Note that A < B.

Although this recurrence is hard to solve, i1t 1s possible to numerically com-
pute any desired value. In order to provide a deeper insight on the complexity
of this algorithm, we first prove a bound for C'(b) and then present an approxi-
mation, useful to compare the algorithm against the standard binary search. By
using induction and bounding summations with integrals, we can prove that:

1
Cb) < Alogab + B+ (B—Alogg?) (p—I—loggl )
2 2 2 _p

In order to be able to compare with binary search, it is mandatory to find a
tight value for the constant term, although it may not be a formal bound. The
idea is to replace the sum of the costs for all traversed values of b by an integral,
thus we have to use a logarithmic scale. By using this technique, we can prove
that an approximate solution for this recurrence is:

c—|—0z%

b
o) log, 3 —1

T c+a¥ 1
log,(b+1) + (c+t0—|—ﬁ§_ ; 4)log21_p

This final formula does give us a good understanding of the performance of
the algorithm, and although it is not formally an upper bound, it is tight enough
to extract percentages to compare it against the standard binary search. For
example, for & = 1000, 7" = 5000 (equivalent to approximately 120 megabytes),
c =125, a = 1, f = 0.03, t; = 400 and ¢ = 50, this final approximation
gives us C'(b) = 4601, 80.2% of the cost of the binary search (Eq. (8) gives 5726
milliseconds). By computing directly from the recurrence (9), we get C(b) =
4491 (78.4%). Simulations for the practical algorithm yield 70% of the cost of
the standard binary search.



6 Experimental Results

We developed a simulation program to perform the actions of the practical al-
gorithm. The simulator maps the text file on the disk sectors and tracks, either
magnetic or optical, and computes the exact time needed to access and read any
disk position. For a text with n index points and a PAT block with b elements, the
simulator generates b random pointers in the range 1..n. These pointers represent
a set of random disk text positions which are stored in a table with & entries.
The track number corresponding to each entry is also computed and stored in
the table. By definition, all text index points associated to PAT array entries are
in lexicographic order. We use this property to associate an integer (in ascending
order from left to right) to each PAT block entry as a text representation.

The parameters of interest in the simulation are: the text size (in our exper-
iments we used texts ranging from 1 to 245 Megabytes), the PAT block size, b
(usually ranging from 256 to 2048 elements), and the access time function for
the disk and reading device, either magnetic or optical. We consider an average
word length of W = 6 characters. Thus, given a text size with A bytes, the
number of index points of the corresponding PAT array is given by n = M/W.
We assume that all files are contiguously stored in the disk starting at track 1.

For each iteration of the practical algorithm the simulator scans the current
PAT block and sort the tracks in ascending order, so that we can compute the
sum of squares as described in Eq. (2). Then, a next track is selected according
to the cost minimization criteria of the practical algorithm and a new partition
in the current PAT block is obtained, until the search key is found. We run a set of
400 successful random searches for each text and PAT block size, both for optical
and magnetic disks. For comparison purposes, the same set of random pointers
and search key for each simulation run is used by the practical algorithm and
by the standard binary search algorithm.

Table 1 presents the results for magnetic disks and Table 2 presents the re-
sults for cD-ROM disks. The values in both tables represent the gain (Practical-
Cost |/ StandardBinaryCost) in percentage terms (StardardBinaryCost = 1). All
values are within 95% confidence interval.

Sector Length = 512 bytes; TrackCapacity = 64 sectors;
Sur faces =8; o =8.3ms; 6 =0.045; (BinaryCost=1.00);

PAT Block|Text Text Text Text Text Text
Size (b) 1.0MB 15.4MB (30.7MB |61.4MB |122.9MB |245.8MB
256 0.2240.08|0.654+0.14|0.71+£0.2 [0.67£0.1 [0.604+0.14|0.524+0.12
512 0.19+0.06{0.624+0.1 [0.6840.16|0.72+0.1 |0.68+0.18|0.564+0.1
1024 0.1840.04|0.56+0.16|0.65+£0.1 [0.70£0.18[0.654+0.12|0.5540.08
2048 0.15+0.04{0.504+0.08(0.594+0.1 |0.62+0.1 |0.60+£0.1 |0.5440.1

Table 1. Performance gain (PracticalCost/BinaryCost) for magnetic disks



Q=30; a=1; t =300; [=0.03; (BinaryCost=1.00);

PAT Block|Text Text Text Text Text Text
Size (b) 1.0MB 15.4MB (30.7MB |61.4MB |122.9MB |245.8MB

256 0.484+0.1 |0.51+0.1 |0.6040.16(0.7240.15|0.7840.14|0.80£0.2

512 0.4140.14{0.50+£0.12{0.5840.12]0.7040.2 [0.7840.16(0.7840.14
1024 0.35+£0.1 {0.44+0.1 |0.554+0.12]0.6540.18/0.7040.1 [0.7640.14
2048 0.3240.08{0.42+0.06{0.5010.08]0.614+0.12{0.634-0.08(0.7040.14

Table 2. Performance gain (PracticalCost/BinaryCost) for cD-RoOM disks

Some comments can be derived from the experimental results, as follows:

1. We observe that this process presents an intrinsically large variance. Howev-
er, this is not a restriction since the probability of the standard binary search
to perform better than the practical algorithm is very small. For example, if
the desired answer is exactly at the root of the binary search process, then
the standard algorithm is faster than ours. However, considering the values
of b we are using, the probability of the answer to be at the root level of a
subtree corresponding to a PAT block is very small. We observed that the
practical algorithm performs better than the standard binary search in more
than 95% of the cases, for all the parameters used in our experiments.

2. The results for magnetic disks have shown a non-monotonic variation of the
gain. We found that the disk parameters in the cost function have different
weights in the overall retrieval cost, depending on how much the file is spread
on the disk tracks. Small files occupy few tracks in the disk and each track
owns many positions of the PAT block, which makes the savings on latency
larger than the savings on seek costs. Large files, distributed in many tracks
on the disk, gives more margin for savings on seek costs. We verified exper-
imentally this conclusion, by cancelling separately the influence of the seek
costs and latency costs in the simulator. The gain is monotonic on both file
size and b when we consider only the latency cost (with seek cost null), and
non-monotonic on file size and constant on b when we consider only seek
cost (with latency cost null).

3. The experimental average head displacement, in tracks, using the standard
binary search 1s 0.317 < AverageHeadDisp < 0.37T, which matches quite
closely the assumption of T/3 used in our analysis. The same measure for
the practical algorithm presents no significant difference for small files: for
instance, a 1 megabyte file has an experimental average head displacement
of 0.357". However, for large files the practical algorithm beats the standard
binary search: for instance, for files ranging from 100 to 245 megabytes we
obtained an average head displacement of only 0.17". This result confirms
that the savings on seek costs have more weight for larger files.

4. Finally, we compared the cost reduction in terms of the time needed to



search for a given key. For example, a text file of 30.7 megabytes, stored in a
magnetic disk, with a PAT block of 1024 elements, has an average cost of 100
milliseconds using the standard binary search and 60 milliseconds using the
practical algorithm. The same file stored in a ¢D-ROM disk has an average
cost of 3.5 seconds using the stardard binary search and 1.8 seconds using
the practical algorithm.
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