
Optimized Binary Search and Text Retrieval1Eduardo Fernandes Barbosa2 Gonzalo Navarro3Ricardo Baeza-Yates3 Chris Perleberg3 Nivio Ziviani2Abstract. We present an algorithm that minimizes the expected costof indirect binary search for data with non-constant access costs, such asdisk data. Indirect binary search means that sorted access to the data isobtained through an array of pointers to the raw data. One immediateapplication of this algorithm is to improve the retrieval performance ofdisk databases that are indexed using the su�x array model (also calledpat array). We consider the cost model of magnetic and optical disksand the anticipated knowledge of the expected size of the subproblemproduced by reading each disk track. This information is used to de-vise a modi�ed binary searching algorithm to decrease overall retrievalcosts. Both an optimal and a practical algorithm are presented, togetherwith analytical and experimental results. For 100 megabytes of text thepractical algorithm costs 60% of the standard binary search cost for themagnetic disk and 65% for the optical disk.key-words: Optimized binary search, text retrieval, pat arrays, su�xarrays, magnetic disks, read-only optical disks, cd-rom disks.1 IntroductionTo provide e�cient information retrieval in large textual databases it is worth-while to preprocess the database and build an index to decrease search time.One important type of index is the pat array [Gon87, GBY91] or su�x array[MM90], which is a compact representation of a digital tree called a pat tree,reducing space requirements by only storing the external nodes of the tree. Apat tree or su�x tree [Knu73] is a Patricia tree [Mor68] built on the positions ofinterest in the text database. Each position of interest (or index point) is calleda semi-in�nite string or su�x, de�ned by its starting position and extendingto the right as far as needed to guarantee uniqueness. In a pat array the dataaccess is provided through an indirect sorted array of pointers to the data. Thisarray allows fast retrieval using an indirect binary search on the text.1 The authors wish to acknowledge the �nancial support from the Brazilian CNPq- Conselho Nacional de Desenvolvimento Cient���co e Tecnol�ogico, Fondecyt GrantNo. 1930765, IBM do Brasil, Programa de Cooperaci�on Cient���ca Chile-Brasil deFundaci�on Andes, and Project RITOS/CYTED.2 Departamento de Ciência da Computa�c~ao, Universidade Federal de Minas Gerais,Belo Horizonte, Brazil3 Departamento de Ciencias de la Computaci�on, Universidad de Chile, Santiago, Chile

When all data elements have constant access time, then binary search min-imizes the number of accesses needed to search sorted data and also minimizesthe total search time. However, some applications do not have data with constan-t access costs, including applications that have data distributed across a disk,where data near to the current disk head position costs less to access than datafurther away. For these applications we show that it is possible to improve thetotal search cost, which is equivalent to the number of data accesses multipliedby the average access cost.The full inverted �le is the most common type of index used in informationretrieval systems. It is composed of a table and a list of occurrences, where an en-try in the table consists of a word and a list of addresses in the text correspondingto that word. In general, inverted �les need a storage overhead between 30% and100%, depending on the data structure and the use of stopwords, and the searchtime is logarithmic. Similar space and time complexity can be achieved by patarrays. The great advantage of pat arrays is its potential use in other kind ofsearches that are di�cult or ine�cient over inverted �les. That is the case whensearching for a long sequence of words, some types of boolean queries, regularexpression searching, longest repetitions and most frequent searching [GBY91].Consequently, pat arrays should be considered seriously when designing a textsearching method for text databases that are not updated frequently.Due to the high non-constant retrieval costs inherent to the disk technology,a naive implementation of pat arrays for large textual databases may result ina poor performance. A solution to improve the performance of text retrievalfrom disk was proposed in [BYBZ94], using two models of hierarchy of indices.They consist of a two-level hierarchy model that uses the main memory and onelevel of external storage (magnetic or optical devices) and a three-level hierarchymodel that uses the main memory and two levels of external storage (magneticand optical devices). Performance improvement is achieved in both models bystoring most of higher index levels in faster memories, so that only a reducedinterval of the pat array is left on the disk, thus decreasing the number of accessesin the slowest device of the hierarchy.The main goal of this paper is to present an algorithm that improves theexpected retrieval time of the indirect binary search in an interval of a patarray. For both magnetic and optical disks, we are interested in reducing thetime complexity of the search in the last level, because optical disks have poorrandom access performance, more than a magnitude slower than magnetic disks,and magnetic disks are more than a magnitude slower than main memory. Asmagnetic and optical disks have non-uniform data access times depending onthe current head position, our algorithm optimizes the total retrieval time, notthe total number of disk accesses. The algorithm takes into account both theexpected partition produced by reading each track and the cost of accessingthat track.

2 Searching in a PAT Array on DisksA pat array is an array of pointers to su�xes, providing sorted accesses to allsu�xes of interest in the text. With a pat array it is possible to obtain all theoccurrences of a string pre�x in a text in logarithmic time using binary search.The binary search is indirect since it is necessary to access both the index andthe text to compare a search key with a su�x. Figure 1 illustrates an exampleof a text database with nine index points and the corresponding pat array.28 14 38 17 11 25 6 30 11 2 3 4 5 6 7 8 91 6 11 14 17 25 28 30 38This text is an example of a textual database6 6 6 6 6 6 66 6Fig. 1. pat array or su�x arrayTo search for the pre�x tex in the pat array presented in Figure 1 we performan indirect binary search over the array and obtain [7, 8] as the result (position7 of the pat array points to the su�x beginning at the position 6 in the text,and position 8 of the pat array points to the su�x beginning at position 30 inthe text). The size of the answer in this case is 2, which is the size of the arrayinterval. Searching in a pat array takes at most 2m logn character comparisonsand at most 4 logn disk accesses, where n is the number of indexing points andmis the length of a given query. Building a pat array is similar to sorting variablelength records, at a cost of O(n logn) accesses on average. The extra space usedby a pat array is only one pointer per index point.When the hierarchy model is used, the last phase of the search is performedby an indirect binary search in which a reduced interval of the pat array isstored in main memory, as a pat block with b elements. The hierarchy model[BYBZ94] divides the pat array into equal-sized blocks with b elements andmoves one element of each block to main memory together with a �xed amountof characters from the text related to the element selected from each block.Using this information, a preliminary binary search can be performed directlyin the upper level. At the end of this search we know that the desired answeris inside the b elements of the pat block. This small pat block is transferred tomain memory and the exact answer is found through an indirect binary searchbetween the pat block in main memory and text su�xes in disk. This way, thecost is no more than 2 log2 b disk accesses. This is the part of the search that weintend to improve.The entries of the pat block are pointers to random positions in the text �lestored on disk. Consequently, the sequence of disk positions to be visited duringa binary search produces random displacements of the disk access mechanism.

Our strategy to reduce the overall binary search time looks for pivots that needlittle disk head movement and that bisect the pat block as closely as possible.Each disk head movement produced by accessing a pivot changes the costs ofaccessing the remaining potential pivots, changing the problem with each searchiteration. This problem seems closely related to a binary search over nodes withdi�erent access probabilities, for which an optimal binary search tree can be con-structed by moving the nodes with higher access probability to the root[Knu73].A solution for searching in a non-uniform access cost memory is also closelyrelated[AACS87, Kni88]. However, these solutions do not directly apply, sincein our problem the costs vary dynamically, depending on the current position ofthe disk reading mechanism.The following de�nitions are used in the presentation of the optimal and thepractical algorithms:1. Let b be the size of the current pat block (a reduced interval of the pat arrayinitially transferred from disk to main memory). Note that b is reduced ateach iteration in the optimal and the practical algorithms.2. Let Cost(h; t; ns) (cost function) be the time needed to read ns sectors fromtrack t, with the reading mechanism being currently on track h. ThusCost(h; t; ns) = Seek(jh � tj) + Latency + ns � Transfer (1)Although the costs vary between magnetic and optical disks, in both casesthere are three components: seek time, latency time, and transfer time. Seektime is the time needed to move the disk head to the desired disk track andtherefore depends on the current head position. Latency time (or rotationtime) is the time needed to wait for the desired sector to pass under the diskhead. The average latency time is constant for magnetic disks and variablefor cd-roms, which rotate faster reading inner tracks than when readingouter tracks. In our analysis, we use an average cd-rom latency. Transfertime is the time needed to transfer the desired data from the disk head tomain memory.We ignore some details in this de�nition. For example, because we assume aconstant latency for each access, reading two sectors in the same cylinder androtational position (but di�erent surfaces) of a multidisk drive will cost twoconstant latency times. It is clear that de�ning the access cost as functionof sector is more accurate, however we have chosen to de�ne it as a functionof track (seek time plus a constant latency time) for simplicity.3. Let an useful sector be a sector that contains a piece of text with at leastone related pointer present in the current pat block.4. Let size(t) be the number of useful sectors in a track t.5. Let newsize(t) (reduction function) be the expected number of useful sectorsof the next iteration after reading track t.Assuming that the search for a pointer can occur anywhere in the pat blockwith equal probability, then the probability that a given segment is selectedfor the next iteration is proportional to its size. More formally, suppose thepositions of a pat block of size b are numbered 1..b, and that track t \owns"

positions p1; p2; :::pk of the pat block. Figure 2 shows an instantiation of apartition of the pat block containing 8 segments generated by the text keysof a track t. After reading track t we can compare the search key with thetext keys and only one of the segments becomes the next subproblem.p0 p8 = b� � � � � � �p1 p2 p3 p4 p5 p6 p7Fig. 2. A pat block partition generated by all text keys of a trackThusnewsize(t) = k+1Xi=1 (Length of segment i)� (Prob of i being selected)that is newsize(t) = k+1Xi=1 (pi � pi�1 � 1)2b (2)where p0 = 0 and pk+1 = b.Assuming that all positions have the same probability, if one only knowsthat a track owns k positions without knowing which positions, then, theexpected size of the next iteration (by counting over all possible values forpi) is newsize(k) = (b� k)(2b� k)b(k + 2) � 2k + 2 b (3)where the approximation holds for k << b. An important improvement thatan optimal algorithm can make is to search for tracks owning two or more patblock positions, since it would drastically reduce the new size at a negligibleadditional cost. The optimal and practical algorithms that we present takefull advantage of this idea.6. Let C(h; 1::b) be the cost of the optimal algorithm when the reading mecha-nism is currently on track h and 1::b is the current portion of the pat blockwhere we are searching.3 An Optimal AlgorithmFirst, we present an optimal algorithm, using the de�nitions above, and show itsimpracticability. Second, using some simplifying assumptions, a feasible optimalalgorithm is presented, still too costly for most uses, but useful for comparativepurposes.

From Eq. (1) the track t to be read next is the one that minimizesCost(h; t; size(t)) + C(t; from::to)where from::to is the selected segment from the comparisons made possible byreading track t.Thus, the optimal algorithm satis�es the recurrence equationC(h; 1::b) = mint(Cost(h; t; size(t)) +C(t; from::to) (4)Unfortunately, it is not possible to know in advance which segment from::towill be selected after reading t, so it is not possible to recursively compute theC function of the right side of Eq. (4).However, we can develop an algorithm that optimizes the expected cost byreplacing C with the expected C. In this case, our recurrence is converted toC(h; 1::b) = mint(Cost(h; t; size(t)) + k+1Xi=1 (pi � pi�1 � 1)b C(t; pi�1+ 1; pi � 1))It is then possible to take each candidate segment and recursively computethe cost of the algorithm provided this segment is selected and the search startsfrom t, and then sum up the costs for all segments weighted by the probability foreach segment to be selected. With a naive implementation, this strategy requiresO(3b) time. The time can be reduced to O(b4) (with O(b3) space) by usingdynamic programming. The time cost makes it impractical for use in situationswhere b is large, since calculations could demand more time than the savingsproduced by the smart search strategy. We do not include the pseudocode ofthis algorithm for lack of space.We develop a simpler heuristic strategy by weakening the de�nition of ex-pected C, interpreting it as if no information about the contents of the pat blockis available (of course we use it for the Cost function in Eq. (1), but not for theC of the right side). That means to use a C averaged over all possible pat arrayblock contents, and to use some weighting strategy to favor those tracks whoseneighborhood is \good", in the sense of owning a large number of positions ofthe current pat block. More formally,C(h; b) = mint(Cost(h; t; size(t)) +weight(t) � C 0(newsize(t)))where C 0(x) is an average estimate of the cost of the algorithm with a pat blockof size x (see the next section).In the next section we present a practical algorithm which follows this idea.4 A Practical AlgorithmTo design a practical algorithm from the general heuristic principle stated inthe previous section, we need the following: a suitable weighting function, and

an estimation of the average cost of the algorithm, which is part of the of thede�nition of the very same algorithm.The simplest weighting function is a uniform one, that is weight(t) = 1 for alltracks. This is equivalent to not taking into account the neighborhood of tracks,but only their contents and distance from current position. We show that thissimple strategy is quite close to optimal, so the e�ort of making a more complexanalysis at each iteration is not worth doing. Figure 3 presents the practicalalgorithm.Search (bPAT, head)while (size of bPAT > 0){ compute S = set of useful tracks (which own a position of bPAT)compute newsize(s), for each s in S (recall Eq. (2))t = s in S which minimizes Cost(head,s,size(s)) + C'(newsize(s))move to t and read all useful sectorsbPAT = appropriate new partition (after search key comparisonwith keys read)head = t} Fig. 3. Practical algorithmNote that the better candidates for selection are those tracks that eitherare near to the current head position or generate a good partition of the patblock. A track near to the current position may avoid an expensive seek costand, on the other hand, a candidate track that owns many positions increasesthe probability of making the next partition (newsize) much smaller than b=2.The next section presents an approximate analysis of this algorithm for mag-netic and optical disks. By using these formulas to estimate the cost of smallerinstances of the problem, we are able to complete the de�nition of the algorithm,thus eliminating its self-reference.Note that it is possible to apply the practical algorithm until obtaining apat block size small enough to be tractable with the optimal strategy that usesthe O(b4) time dynamic programming mentioned in the previous section. It hasto be experimentally determined whether this improvement is worth doing forsmall sizes.Observe that we can traverse the pat block from left to right, and keep theset of useful tracks. At the same time we can compute the sum of squares ofthe segments of the partition that each track produces in the pat block (recallEq. (2)), since it determines the average size of the subproblem that that trackgenerates (newsize). Note that if the pat block is traversed from one side toanother, it is easy to accumulate the sum of squares, by recording the previousnode owned by each track, together with the current sum of squares. This way,both S and newsize can be computed in one pass, that is, O(b) time.In the average case, this algorithm is O(b) in each iteration (note that b

decreases at each step), since at most b tracks may be useful and they may bestored in a hash table to achieve constant search cost (when searching for a trackin S). Of course it is O(b log b) in the worst case. The space requirement is O(b).In the next section we show that this algorithm makes, on average, less thanlog 1! (b+ 1) iterations, where 12 � ! < 1 is the expected reduction in the size ofthe pat block (i.e. the size of the pat block at iteration i is bwi). Comparingthis with classical binary search, we note that more iterations are required. Thetotal average CPU cost isb 0B@log 1! (b+1)�1Xi=0 !i1CA = b2(b + 1)(1� !) � b1� !which is linear. The worst case occurs when the search for each candidate takeslog b, making each iteration O(b log b):log 1! (b+1)�1Xi=0 b!i log2(b!i) � b1� ! log 1! b5 Analytical ResultsIn this section we evaluate the practical algorithm, both for magnetic and opticaldisks. In each case, an analytical cost model is presented and analytical boundsfor the algorithm under this cost model are obtained.5.1 Magnetic DisksThe following de�nitions are used in the analysis of the practical algorithm formagnetic disks:1. Let C(b) be the the retrieval cost for magnetic disks when retrieving from apat block with b elements.2. Let � be the sum of the latency and transfer time (which really depends onthe number of sectors to read) and let � be the seek time per track.3. Let T be the number of tracks occupied by the text �le and let �T be thedistance that separates any two disk tracks.4. Let � be a small number of central positions in the current pat block.A Seek Cost Model for Magnetic Disks The cost function of magneticdisks may be modeled by a function of the formf(�T) = � + ��TAccording to [HP90], typical disks have 500{2000 tracks by surface, each ofthem divided in 32 sectors. Sectors hold 512{2048 bytes. The typical value for

latency is 8.3 ms, while transfer rates vary from 1 to 4MB per second. Averageseek times range from 12 ms to 20 ms. Disks have from 1 to 20 plates, that is, 2to 40 surfaces. The set of tracks from all surfaces which are at the same distanceto the center is called a cylinder. For practical purposes, one can treat a diskwith k surfaces and 32 sectors as if it had only one surface, but whose tracksheld 32� k sectors, with the same latency (8.3 ms). So the following discussionassumes only one surface, although the number of surfaces must be taken intoaccount when calculating the number of tracks (cylinders) required by a �le ofa speci�ed size.Average seek time means the sum of all possible head displacements, dividedby the number of possible displacements. This is2T 2 TXi=1 iXj=1(i � j) = T 2 � 13T � T3 (5)From the above discussion, we get the following values (in milliseconds):� = 8:3 + ns � (0:125::2:0)� = 0:018::0:12For our purposes it is better for the �le to be contiguously allocated on thedisk, to reduce seek time. That also means that it should use as least cylindersas possible, so it should �ll cylinders as completely as possible.In many environments the sectors composing a �le may be scattered on thedisk. This obviously degrades the performance of any algorithm, although ouralgorithms are also optimal (in their own sense) under this situation. Anotherproblem is that under di�erent operating system policies, the cost model mayvary. For example, some disk administrators do not serve requests that wouldmake the disk head switch to the opposite direction of movement until the lastrequest in the current direction is served. Under this scheme, those tracks thatare following the current direction are much cheaper than the others. Both algo-rithms are able to handle all of these complications provided the cost function isappropriately de�ned. However, in the analysis we assume contiguous allocationand the simple cost model, which is optimistic if the �le is scattered on the disk.Analysis of the Algorithm It is useful to compare the performance of ourpractical algorithm with that of the standard binary search. The cost of eachbinary search step includes one seek, one rotational latency, and one transfer.Since the seek is random, we may use Eq. (5) to show that on average, 1/3 ofthe disk surface is traversed. The number of steps needed to complete the searchis log2(b+ 1), where b is the initial pat block size. Thus we haveBinary Search Magnetic Cost (b) = �� + T3 �� log2(b+ 1) (6)

Now we turn our attention to our algorithm. Since we are not able to analyzethe real algorithm, we use a simpli�ed model, whose predictions are to be exper-imentally tested against the real algorithm, to show its precision. It is importantto note that this model is an upper bound for the expected case of the algorithm,so its predictions are always pessimistic.The model is as follows. Suppose there are no tracks with more than oneuseful sector (this is worse than reality). At each step, we select the � centralpositions of our pat block, and read the nearest track which owns some of thosecentral positions. The process continues until the pat block size is � �. At thispoint, we traverse the disk from one end to the other, in one pass, readingany useful track, until the pat block becomes empty. Since the real algorithmconsiders all (useful) tracks and selects the best one taking into account just seekcost and the generated partition, this model can never make a better decisionthan the real algorithm.We �rst obtain the expected size of the new pat block. This is (by using thesame idea of Eq. (2))1�b b+�2 �1Xi= b��2 (i� 1)2 + (b� i)2 = b2 � 1 + �2 + 146b � b2 + �6 + 43and the bound is obtained by considering b � �. Note that the bound is of theform Xb+ Y , with X = 1=2 and Y = �=6 + 4=3.The next step is to obtain the average seek cost needed to access the nearestof the � tracks, from a total of T . By summing over all possible positions at thistrack we can prove that the seek cost is approximately T=2�.Thus, a bound of the cost for size b (until obtaining a block of size � �) isC(b) = � + � T2� + C(Xb+ Y) (b > �)By unfolding the right side of this recurrence, we get its closed expressionC(b) = �� + � T2�� log2� 63� � 8 b� 3� + 163� � 8 � + C(�)� �� + � T2�� log2� 63� � 8 b� + C(�) (7)The value of C(�) corresponds to solve the pat block of size �, which consistsof linearly traversing the disk surface and reading any useful track. On average,half of the � tracks are read, and half of the surface is traversed. Thus,C(�) = � �2 + �T2which gives us the �nal cost expressionC(b) � �� + � T2�� log2� 63� � 8 b�+ � �2 + �T2

It is possible to prove that the optimal value for � is:� =r�T� log2 b+O(1)For example, for a 160 megabytes �le, b = 1000, T = 5000, � = 10:3, � =0:045, we have � = 15, and C(b) = 320 milliseconds, a 37% of the cost of thestandard binary search (Eq. (6) gives 850 milliseconds). The result obtained bynumerically �nding the optimal � di�ers by less than one. For an actual diskwith a track capacity of 32 sectors and 4 recording surfaces, simulations for thepractical algorithm yield 34% of the cost of the standard algorithm.5.2 CD-ROM DisksThe following de�nitions are used in the analysis of the practical algorithm forcd-rom disks:1. Let C(b) be the the retrieval cost for cd-rom disks when retrieving from apat block with b elements.2. Let c be the sum of the latency and transfer time by sector read and let tsbe the seek time.3. Let T be the number of tracks occupied by the text �le. Let �T be thedistance that separates any two disk tracks.4. Let Q be the span size, the capability of accessing nearby tracks from thecurrent position with no displacement of the reading mechanism.5. Let � be the growing rate of the seek time as a function of the displacementof the access mechanism (in tracks) inside the span.6. Let � be the growing rate of the seek time as a function of the displacementof the access mechanism (in tracks) outside the span.A Seek Cost Model for CD-ROM Disks The cost function of the cd-romdrive is highly dependent on disk position and the amount of the displacementof the access mechanism. An important feature to be considered is the span sizecapability Q, since inside the span, the seek costs are negligible. In actual cd-rom drives the span size is up to 60 tracks, depending on the type of the drive.The data access located within span boundaries requires a seek time of only 1millisecond per additional track, while the access of tracks outside the span sizemay require 200 to 600 milliseconds.The set of tracks covered by a span in a cd-rom might be compared to theset of tracks belonging to a cylinder in a magnetic disk. In [BZ92] the set oftracks inside a span is considered as an optical cylinder. Thus, the data accessin cd-rom disks has two modes: (i) proximal access, for tracks inside the opticalcylinder, and (ii) non-proximal access, for tracks outside the optical cylinderboundaries. These two modes are also known as short seeks and long seeks,respectively.

Other components of the access time to a given sector are the rotationallatency and the transfer time from disk to main memory. The rotational latencyis directly proportional to the position of the data on the disk, due to the constantlinear velocity (clv) physical format, costing from 65 milliseconds (inner track)to 153 milliseconds (outer track) to locate a sector. The transfer time is directlyproportional to the amount of data transferred from disk to main memory, atthe constant rate of 150 kilobytes per second (300 or 600 kilobytes per second insome drives). Any data in the cd-rom is accessed by giving the physical addressof the corresponding sector, and the sector size is always 2048 bytes. So, the sumof latency and transfer time by sector read isc = (65::153)+ 13The seek time may be linearized, considering a slope between 0.02 and 0.04milliseconds per track for non-proximal accesses and 1 millisecond per track forproximal accesses. The expression for ts is:ts = f(�T) = ���T for �T � Q (proximal access)ts = f(�T) = t0 + ��T for �T > Q (non � proximal access)where t0 represents the seek time for the �rst track outside the boundaries ofthe current optical cylinder, therefore requiring a seek. Some typical values for�, � and Q are: � � 1 millisecond/track, 0:02 � � � 0:04 milliseconds/track,200 � t0 � 600 milliseconds and 1 < Q � 60 tracks.We have also to consider that the optical head adjusts itself every time a newaccess is done, centering the anchor point on the track it has just moved to.Analysis of the Algorithm We begin this section with the analysis of binarysearch on this cost model. Since the probability for a random track to be withinthe span size is negligible, we haveBinary Search Optical Cost (b) = �c+ t0 + T3 �� log2(b + 1) (8)We use a di�erent model to approximately analyze the behavior of our algo-rithm on the optical cost model, since the one used for the magnetic case is farfrom optimal here. The idea is as follows: at any time, if there is a text key withinthe span size, we read it; else we read the track owning the middle position ofthe pat block. Again, this model cannot perform better than our algorithm, onaverage, since we include both situations in the practical algorithm.Assuming that we read any sector within the span size, this sector is atrandom, so using Eq. (3) with k = 1, the expected size of the new pat blockafter reading that sector is bounded by 2=3 b, while of course the non-proximalaccess cuts the pat block by half.Since the disk head is in the middle of the span size, the expected cost forthe proximal access is A = c+ �Q4

while for the non-proximal access, since the track to read is at random but surelyoutside the span, we have the expected costB = c + t0 + � �Q2 + T � Q3 �Finally, the probability for the nearest track to be outside of the span size is�1� QT �b = �bwhere A, B and � are used as shorthands.Then, the cost expression satis�es the following recurrenceC(b) = (1 � �b)�A+ C�23 b��+ �b�B + C �12 b�� (9)with the border condition C(0) = 0. Note that A < B.Although this recurrence is hard to solve, it is possible to numerically com-pute any desired value. In order to provide a deeper insight on the complexityof this algorithm, we �rst prove a bound for C(b) and then present an approxi-mation, useful to compare the algorithm against the standard binary search. Byusing induction and bounding summations with integrals, we can prove that:C(b) � A log32 b + B + �B � A log 32 2���+ log 32 11� ��In order to be able to compare with binary search, it is mandatory to �nd atight value for the constant term, although it may not be a formal bound. Theidea is to replace the sum of the costs for all traversed values of b by an integral,thus we have to use a logarithmic scale. By using this technique, we can provethat an approximate solution for this recurrence is:C(b) � c+ � Q4log2 3� 1 log2(b + 1) + c+ t0 + � T3 � c+ � Q4log2 3� 1! log2 11� �This �nal formula does give us a good understanding of the performance ofthe algorithm, and although it is not formally an upper bound, it is tight enoughto extract percentages to compare it against the standard binary search. Forexample, for b = 1000, T = 5000 (equivalent to approximately 120 megabytes),c = 125, � = 1, � = 0.03, t0 = 400 and Q = 50, this �nal approximationgives us C(b) = 4601, 80.2% of the cost of the binary search (Eq. (8) gives 5726milliseconds). By computing directly from the recurrence (9), we get C(b) =4491 (78.4%). Simulations for the practical algorithm yield 70% of the cost ofthe standard binary search.

6 Experimental ResultsWe developed a simulation program to perform the actions of the practical al-gorithm. The simulator maps the text �le on the disk sectors and tracks, eithermagnetic or optical, and computes the exact time needed to access and read anydisk position. For a text with n index points and a pat block with b elements, thesimulator generates b random pointers in the range 1::n. These pointers representa set of random disk text positions which are stored in a table with b entries.The track number corresponding to each entry is also computed and stored inthe table. By de�nition, all text index points associated to pat array entries arein lexicographic order. We use this property to associate an integer (in ascendingorder from left to right) to each pat block entry as a text representation.The parameters of interest in the simulation are: the text size (in our exper-iments we used texts ranging from 1 to 245 Megabytes), the pat block size, b(usually ranging from 256 to 2048 elements), and the access time function forthe disk and reading device, either magnetic or optical. We consider an averageword length of W = 6 characters. Thus, given a text size with M bytes, thenumber of index points of the corresponding pat array is given by n = M=W .We assume that all �les are contiguously stored in the disk starting at track 1.For each iteration of the practical algorithm the simulator scans the currentpat block and sort the tracks in ascending order, so that we can compute thesum of squares as described in Eq. (2). Then, a next track is selected accordingto the cost minimization criteria of the practical algorithm and a new partitionin the current pat block is obtained, until the search key is found. We run a set of400 successful random searches for each text and pat block size, both for opticaland magnetic disks. For comparison purposes, the same set of random pointersand search key for each simulation run is used by the practical algorithm andby the standard binary search algorithm.Table 1 presents the results for magnetic disks and Table 2 presents the re-sults for cd-rom disks. The values in both tables represent the gain (Practical-Cost = StandardBinaryCost) in percentage terms (StardardBinaryCost = 1). Allvalues are within 95% con�dence interval.SectorLength = 512 bytes; TrackCapacity = 64 sectors;Surfaces = 8; � = 8:3ms; � = 0:045; (BinaryCost = 1:00);PAT Block Text Text Text Text Text TextSize (b) 1.0MB 15.4MB 30.7MB 61.4MB 122.9MB 245.8MB256 0.22�0:08 0.65�0:14 0.71�0:2 0.67�0:1 0.60�0:14 0.52�0:12512 0.19�0:06 0.62�0:1 0.68�0:16 0.72�0:1 0.68�0:18 0.56�0:11024 0.18�0:04 0.56�0:16 0.65�0:1 0.70�0:18 0.65�0:12 0.55�0:082048 0.15�0:04 0.50�0:08 0.59�0:1 0.62�0:1 0.60�0:1 0.54�0:1Table 1. Performance gain (PracticalCost=BinaryCost) for magnetic disks

Q = 30; � = 1; t0 = 300; � = 0:03; (BinaryCost = 1:00);PAT Block Text Text Text Text Text TextSize (b) 1.0MB 15.4MB 30.7MB 61.4MB 122.9MB 245.8MB256 0.48�0:1 0.51�0:1 0.60�0:16 0.72�0:15 0.78�0:14 0.80�0:2512 0.41�0:14 0.50�0:12 0.58�0:12 0.70�0:2 0.78�0:16 0.78�0:141024 0.35�0:1 0.44�0:1 0.55�0:12 0.65�0:18 0.70�0:1 0.76�0:142048 0.32�0:08 0.42�0:06 0.50�0:08 0.61�0:12 0.63�0:08 0.70�0:14Table 2. Performance gain (PracticalCost=BinaryCost) for cd-rom disksSome comments can be derived from the experimental results, as follows:1. We observe that this process presents an intrinsically large variance. Howev-er, this is not a restriction since the probability of the standard binary searchto perform better than the practical algorithm is very small. For example, ifthe desired answer is exactly at the root of the binary search process, thenthe standard algorithm is faster than ours. However, considering the valuesof b we are using, the probability of the answer to be at the root level of asubtree corresponding to a pat block is very small. We observed that thepractical algorithm performs better than the standard binary search in morethan 95% of the cases, for all the parameters used in our experiments.2. The results for magnetic disks have shown a non-monotonic variation of thegain. We found that the disk parameters in the cost function have di�erentweights in the overall retrieval cost, depending on how much the �le is spreadon the disk tracks. Small �les occupy few tracks in the disk and each trackowns many positions of the pat block, which makes the savings on latencylarger than the savings on seek costs. Large �les, distributed in many trackson the disk, gives more margin for savings on seek costs. We veri�ed exper-imentally this conclusion, by cancelling separately the in
uence of the seekcosts and latency costs in the simulator. The gain is monotonic on both �lesize and b when we consider only the latency cost (with seek cost null), andnon-monotonic on �le size and constant on b when we consider only seekcost (with latency cost null).3. The experimental average head displacement, in tracks, using the standardbinary search is 0:31T � AverageHeadDisp � 0:37T , which matches quiteclosely the assumption of T=3 used in our analysis. The same measure forthe practical algorithm presents no signi�cant di�erence for small �les: forinstance, a 1 megabyte �le has an experimental average head displacementof 0:35T . However, for large �les the practical algorithm beats the standardbinary search: for instance, for �les ranging from 100 to 245 megabytes weobtained an average head displacement of only 0:1T . This result con�rmsthat the savings on seek costs have more weight for larger �les.4. Finally, we compared the cost reduction in terms of the time needed to

search for a given key. For example, a text �le of 30.7 megabytes, stored in amagnetic disk, with a pat block of 1024 elements, has an average cost of 100milliseconds using the standard binary search and 60 milliseconds using thepractical algorithm. The same �le stored in a cd-rom disk has an averagecost of 3.5 seconds using the stardard binary search and 1.8 seconds usingthe practical algorithm.References[AACS87] A. Aggarwal, B. Alpern, K. Chandra and M. Snir. \A Model for HierarchicalMemory", Proc. of the 19th Annual ACM Symp. of the Theory of Computing,New York, 1987, 305-314.[BYBZ94] R. Baeza-Yates, E.F. Barbosa and N. Ziviani. Hierarchies of indices for textsearching. In Proceedings RIAO'94 Intelligent Multimedia Information Re-trieval Systems and Management, pages 11{13. Rockefeller University, NewYork, Oct. 1994.[BZ92] E. F. Barbosa and N. Ziviani. Data structures and access methods for read-only optical disks. In R. Baeza-Yates and U. Manber, editors, ComputerScience: Research and Applications, pages 189{207. Plenum Publishing Cor-p., 1992.[GBY91] G. H. Gonnet and R. Baeza-Yates. Handbook of Algorithms and Data Struc-tures. Addison-Wesley, 1991.[Gon87] G. H. Gonnet. pat 3.1: An E�cient Text Searching System. User's Manu-al. Center for the New Oxford English Dictionary. University of Waterloo,Waterloo, Canada, 1987.[HP90] J. L. Hennesy and D. A. Patterson. Computer Architecture. A QuantitativeApproach. Morgan Kaufmann Publishers, Inc., 1990.[Kni88] W.J. Knight. Search in an Ordered Array having Variable Probe Cost. SIAMJ. of Computing 17 (6), Dec. 1988, 1203-1214.[Knu73] D.E. Knuth. The Art of Computer Programming: Sorting and Searching,volume 3. Addison-Wesley, Reading, Massachusetts, 1973.[MM90] U. Manber and G. Myers. Su�x Arrays: A new method for on-line stringsearches. ACM-SIAM Symposium on Discrete Algorithms, pages 319{327,Jan. 1990.[Mor68] D. R. Morrison. PATRICIA - Practical Algorithm To Retrieve InformationCoded in Alphanumeric. Journal of the ACM, 15(4):514{534, 1968.
This article was processed using the LaTEX macro package with LLNCS style

