
A Textbook Solution for Dynamic Strings1

Zsuzsanna Lipták #2

Dipartimento di Informatica, University of Verona, Italy3

Francesco Masillo #4

Dipartimento di Informatica, University of Verona, Italy5

Gonzalo Navarro #6

Center for Biotechnology and Bioengineering (CeBiB)7

Department of Computer Science, University of Chile, Chile8

Abstract9

We consider the problem of maintaining a collection of strings while efficiently supporting splits and10

concatenations on them, as well as comparing two substrings, and computing the longest common11

prefix between two suffixes. This problem can be solved in optimal time O(log N) whp for the12

updates and O(1) worst-case time for the queries, where N is the total collection size [Gawrychowski13

et al., SODA 2018]. We present here a much simpler solution based on a forest of enhanced splay14

trees (FeST), where both the updates and the substring comparison take O(log n) amortized time,15

n being the lengths of the strings involved. The longest common prefix of length ℓ is computed in16

O(log n + log2 ℓ) amortized time. Our query results are correct whp. Our simpler solution enables17

other more general updates in O(log n) amortized time, such as reversing a substring and/or mapping18

its symbols. We can also regard substrings as circular or as their omega extension.19

2012 ACM Subject Classification Theory of computation → Data structures design and analysis20

Keywords and phrases dynamic strings, splay trees, dynamic data structures, LCP, circular strings21

Digital Object Identifier 10.4230/LIPIcs..2024.22

Funding Zsuzsanna Lipták: Partially funded by the MUR PRIN project Nr. 2022YRB97K ’PINC’23

(Pangenome INformatiCs. From Theory to Applications) and by the INdAM-GNCS Project24

CUP_E53C23001670001 (Compressione, indicizzazione, analisi e confronto di dati biologici).25

Gonzalo Navarro: Funded by Basal Funds FB0001, Mideplan, Chile, and Fondecyt Grant 1-230755,26

Chile.27

© Zsuzsanna Lipták, Francesco Masillo, Gonzalo Navarro;
licensed under Creative Commons License CC-BY 4.0

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:zsuzsanna.liptak@univr.it
https://orcid.org/0000-0002-3233-0691
mailto:francesco.masillo@univr.it
https://orcid.org/0000-0002-2078-6835
mailto:gnavarro@dcc.uchile.cl
https://orcid.org/0000-0002-2286-741X
https://doi.org/10.4230/LIPIcs..2024.
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Zs. Lipták, F. Masillo, G. Navarro XX:1

1 Introduction28

Consider the problem in which we have to maintain a collection of dynamic strings, that29

is, strings we want to modify over time. The modifications may be edit operations such30

as insertion, deletion, or substitution of a single character; inserting or deleting an entire31

substring (possibly creating a new string from the deleted substring); adding a fresh string32

to the collection; etc. In terms of queries, we may want to retrieve a symbol or substring of a33

dynamic string, determine whether two substrings from anywhere in the collection are equal,34

or even determine the longest prefix shared by two suffixes in the collection (LCP). The35

collection must be maintained in such a way that both updates and queries have little cost.36

This setup is known in general as the dynamic strings problem. A partial and fairly37

straightforward solution are the so-called ropes, or cords [7]. These are binary trees1 where38

the leaves store short substrings, whose left-to-right concatenation forms the string. Ropes39

were introduced for the Cedar programming language to speed up handling very long40

strings; a C implementation (termed cords) was also given in the same paper [7]. As the41

motivating application of ropes/cords was that of implementing a text editor, they support42

edit operations and extraction/insertion of substrings to enable fast typing and cut&paste, as43

well as retrieving substrings, but do not support queries like substring equality or LCPs. The44

trees must be periodically rebalanced to maintain logarithmic times. Recently, a modified45

version of ropes was implemented for the Ruby language as a basic data type [39]. This46

variant supports the same updates but does not give any theoretical guarantee.47

The first solution we know of that enables equality tests, by Sundar and Tarjan [47],48

supports splitting and concatenating whole sequences, and whole-string equality in constant49

time, with updates taking O(
√

N log m + log m) amortized time, where N is the total length50

of all the strings in the collection and m is the number of updates so far. It is easy to51

see that these three primitives encompass all the operations and queries above, except for52

LCP (substring retrieval is often implicit). The update complexity was soon improved by53

Mehlhorn et al. [38] to O(log2 N) expected time with a randomized data structure, and54

O(log N(log m log∗ m + log N)) worst-case time with a deterministic one. The deterministic55

time complexity was later improved by Alstrup et al. [1] to O(log N log∗ N) (which holds56

with high probability, whp), also computing LCPs in O(log N) worst-case time. Recently,57

Gawrychowski et al. [23, 24] obtained O(log N) update time whp, retaining constant time58

to compare substrings, and also decreasing the LCP time to constant, among many other59

results. They also showed that the problem is essentially closed because just updates60

and substring equality require Ω(log N) time even if allowing amortization. Nishimoto61

et al. [41, 42] showed how to compute LCPs in worst-case time O(log N + log ℓ log∗ N),62

where ℓ is the LCP length, while inserting/deleting substrings of length ℓ in worst-case time63

O((ℓ + log N log∗ N) (log log N)2

log log log N).64

All these results build on the idea of parsing a string hierarchically by consistently cutting65

it into blocks, giving unique names to the blocks, and passing the sequence of names to the66

next level of parsing. The string is then represented by a parse tree of logarithmic height,67

whose root consists of a single name, which can be compared to the name at the root of68

another substring to determine string equality. While there is a general consensus on the69

fact that those solutions are overly complicated, Gawrychowski et al. [24] mention that70

“We note that it is very simple to achieve O(log n) update time [...], if we allow the71

1 The authors [7] actually state that they are DAGs and referring to them as binary trees is just a
simplification. The reason is that the nodes can have more than one parent, so subtrees may be shared.

XX:2 A Textbook Solution for Dynamic Strings

equality queries to give an incorrect result with polynomially small probability. We represent72

every string by a balanced search tree with characters in the leaves and every node storing73

a fingerprint of the sequence represented by its descendant leaves. However, it is not clear74

how to make the answers always correct in this approach [...]. Furthermore, it seems that75

both computing the longest common prefix of two strings of length n and comparing them76

lexicographically requires Ω(log2 n) time in this approach.”77

This suggestion, indeed, connects to the original idea of ropes [7]. Cardinal and Iacono78

[12] built on the suggestion to develop a kind of tree dubbed “Data Dependent Tree (DDT)”,79

which enables updates and LCP computation in O(log N) expected amortized time, yet80

with no errors. DDTs eliminate the chance of errors by ensuring that the fingerprints have81

no collisions—they simply rebuild all DDTs for all strings in the collection, using a new82

hash function, when this low-probability event occurs—and reduce the LCP complexity to83

O(log N) by ensuring that subtrees representing the same string have the same shape (so84

one can descend in the subtrees of both strings synchronously).85

In this paper we build on the same suggestion [24], but explore the use of another kind of86

tree—an enhanced splay tree—which yields a beautifully simple yet powerful data structure87

for maintaining dynamic string collections. We obtain logarithmic amortized update times for88

most operations (our cost to compute LCPs lies between logarithmic and squared-logarithmic,89

see later) and our queries return correct answers whp. The ease of implementation of splay90

trees makes our solution attractive to be included in a textbook for undergraduate students.91

An important consequence of using simpler data structures is that our space usage is92

O(N), whereas the solutions based on parsings require in addition O(log N) space per update93

performed, as each one adds a new path to the parse tree. Since the previous parse tree94

is still available, those structures are persistent: one can access any previous version. Our95

solution is not persistent in principle, but we can make it persistent using O(log n) extra96

space per update or query made so far (we cannot make direct use of the techniques of97

Driscoll et al. [19]). This adds only O(1) amortized time to the operations.98

It would not be hard to obtain worst-case times instead of amortized ones, by choosing99

AVL, α-balanced, or other trees that guarantee logarithmic height. One can indeed find the100

use of such binary trees for representing strings in the literature [44, 16, 22]. Our solution101

using splay trees has the key advantage of being very simple and easy to understand. The102

basic operations of splitting and concatenating strings, using worst-case balanced trees, imply103

attaching and detaching many subtrees, plus careful rebalancing, which is a nightmare to104

explain and implement.2 Knuth, for example, considered them too complicated to include in105

his book [34, p. 473] “Deletion, concatenation, etc. It is possible to do many other things106

to balanced trees and maintain the balance, but the algorithms are sufficiently lengthly that107

the details are beyond the scope of this book.” Instead, he says [34, p. 478] “A much simpler108

self-adjusting data structure called a splay tree was developed subsequently [...] Splay trees, like109

the other kinds of balanced trees already mentioned, support the operations of concatenation110

and splitting as well as insertion and deletion, and in a particularly simple way.”111

Our contribution. We use a splay tree [45], enhanced with additional information, to112

represent each string in the collection, where all the nodes contain string symbols and113

Karp-Rabin-like fingerprints [30, 40] of the symbols in their subtree. We refer to our data114

structure as a forest of enhanced splay trees, or FeST. As we will see, we can create new115

2 As an example, an efficient implementation [33] of Rytter’s AVL grammar [44] has over 10,000 lines of
C++ code considering only their “basic” variant.

Zs. Lipták, F. Masillo, G. Navarro XX:3

strings in O(n) time, extract substrings of length ℓ in O(ℓ + log n) time, perform updates116

and (correctly whp) compare substrings in O(log n) time, where n is the length of the strings117

involved—as opposed to the total length N of all the strings—and the times are amortized118

(the linear terms are also worst-case). Further, we can compute LCPs correctly whp in119

amortized time O(log n + log2 ℓ), where ℓ is the length of the returned LCP.120

While our LCP time is O(log2 n) for long enough ℓ, LCPs are usually much shorter than121

the suffixes. For example, in considerably general probabilistic models [48], the maximum122

LCP value between any distinct suffixes of two strings of length n is almost surely O(log n),123

in which case our algorithm runs in O(log n) amortized time.124

The versatility of our FeST data structure allows us to easily support other kinds of125

operations, such as reversing or complementing substrings, or both. We can thus implement126

the reverse complementation of a substring in a DNA or RNA sequence, whereby the substring127

is reversed and each character is replaced by its Watson-Crick complement. Substring reversal128

alone is used in classic problems on genome rearrangements where genomes are represented129

as sequences of genes, and have to be sorted by reversals (see, e.g., [50, 6, 10, 11, 43, 13], to130

cite just a few). Note that chromosomes can be viewed either as permutations or as strings,131

when gene duplication is taken into account, see Fertin et al. [20]; our FeST data structure132

accommodates both. We can also implement signed reversals [28, 27], another model of133

evolutionary operation used in genome rearrangements. In general, we can combine reversals134

with any involution on the alphabet, of which signed or Watson-Crick complementation are135

only examples. In order to support these operations in O(log n) amortized time, we only need136

to add new constant-space annotations, further enhancing our splay trees while retaining the137

running times for the other operations. The obvious solution of maintaining modified copies138

of the strings (e.g., reversed, complemented, etc.) is less attractive in practice due to the139

extra space and time needed to store and update all the copies.140

Operations supported. We maintain a collection of strings of total length N in O(N) space,141

and support the following operations, where we distinguish the basic string data type from142

dynamic strings (all times are amortized). We have not chosen a minimal set of primitives143

because reducing to primitives entails considerable performance overheads in practice, even144

if the asymptotic time complexities are not altered.145

make-string(w) creates a dynamic string s from a basic string w, in O(|s|) time.146

access(s, i) returns the symbol s[i] in O(log |s|) time.147

retrieve(s, i, j) returns the basic string w[1..j − i + 1] = s[i..j], in O(|w| + log |s|) time.148

substitute(s, i, c), insert(s, i, c), and delete(s, i) perform the basic edit operations on149

s: substituting s[i] by character c, inserting c at s[i], and deleting s[i], respectively, all in150

O(log |s|) time. For appending c at the end of s one can use insert(s, |s| + 1, c).151

introduce(s1, i, s2) inserts s2 at position i of s1 (for 1 ≤ i ≤ |s1| + 1), converting s1 to152

s1[..i − 1] · s2 · s1[i..] and destroying s2, in O(log |s1s2|) time.153

extract(s, i, j) creates dynamic string s′ = s[i..j], removing it from s, in O(log |s|) time.154

equal(s1, i1, s2, i2, ℓ) determines the equality of substrings s1[i1..i1 + ℓ − 1] and s2[i2..i2 +155

ℓ − 1] in O(log |s1s2|) time, correctly whp.156

lcp(s1, i1, s2, i2) computes the length ℓ of the longest common prefix between suffixes157

s1[i1..] and s2[i2..], in O(log |s1s2| + log2 ℓ) time, correctly whp, and also tells which suffix158

is lexicographically smaller.159

reverse(s, i, j) reverses the substring s[i..j] of s, in O(log |s|) time.160

map(s, i, j) applies a fixed involution (a symbol mapping that is its own inverse) to all161

the symbols of s[i..j], in O(log |s|) time.162

XX:4 A Textbook Solution for Dynamic Strings

Our data structure also enables easy implementation of other features, such as handling163

circular strings. This is an important and emerging topic [5, 15, 25, 26, 29], as many current164

sequence collections, in particular in computational biology, consist of circular rather than165

linear strings. Recent data structures built for circular strings [8, 9], based on the extended166

Burrows-Wheeler Transform (eBWT) [37], avoid the detour via the linearization and handle167

the circular input strings directly. Finally, FeST also allows queries on the omega extensions168

of strings, that is, on the infinite concatenation sω = s · s · s · · · . These occur, for example,169

in the context of the eBWT, which is based on the so-called omega-order. In Section 5 we170

will sketch how to handle circular strings and the omega extension of strings; a detailed171

description will be given in the full version of the paper.172

2 Basic concepts173

Strings. We use array-based notation for strings, indexing from 1, so a string s is a finite174

sequence over a finite ordered alphabet Σ, written s = s[1..n] = s[1]s[2] · · · s[n], for some175

n ≥ 0. We assume that the alphabet Σ is integer. The length of s is denoted |s|, and176

ε denotes the empty string, the unique string of length 0. For 1 ≤ i, j ≤ |s|, we write177

s[i..j] = s[i]s[i + 1] · · · s[j] for the substring from i to j, where s[i..j] = ε if i > j. We178

write prefixes as s[..i] = s[1..i] and suffixes as s[i..] = s[i..|s|]. Given two strings s, t, their179

concatenation is written s · t or simply st, and sk denotes the k-fold concatenation of s, with180

s0 = ε. A substring (prefix, suffix) of s is called proper if it does not equal s.181

The longest common prefix (LCP) of two strings s and t is defined as the longest string182

u that is both a prefix of s and t, and lcp(s, t) = |u| as its length. One can define the183

lexicographic order based on the lcp: s <lex t if either s is a proper prefix of t, or otherwise184

if s[ℓ + 1] < t[ℓ + 1], where ℓ = lcp(s, t).185

Splay trees. The splay tree [45] is a binary search tree that guarantees that a sequence of186

insertions, deletions, and node accesses costs O(log n) amortized time per operation on a187

tree of n nodes that starts initially empty. In addition, splay trees support splitting and188

joining trees, both in O(log n) amortized time, where n is the total number of nodes involved189

in the operation.190

The basic operation of the splay tree is called splay(x), which moves a tree node x to191

the root by a sequence of primitive rotations called zig, zig-zig, zig-zag, and their symmetric192

versions. Let x(A, B) denote a tree rooted at x with left and right subtrees A and B, then193

the rotation zig-zig converts z(y(x(A, B), C), D) into x(A, y(B, z(C, D)), while the rotation194

zig-zag converts z(y(A, x(B, C)), D) into x(y(A, B), z(C, D)). Whether zig-zig or zig-zag (or195

their symmetric variant) is applied to x depends on its relative position w.r.t. its grandparent.196

Note that both of these operations are composed by two edge rotations. Finally, operation197

zig, which is only applied if x is a child of the root, converts y(x(A, B), C) into x(A, y(B, C)).198

Every access or update on the tree is followed by a splay on the deepest reached node. In199

particular, after finding a node x in a downward traversal, we do splay(x) to make x the tree200

root. The goal is that the costs of all the operations are proportional to the cost of all the201

related splay operations performed, so we can focus on analyzing only the splays. Many of202

the splay tree properties can be derived from a general “access lemma” [45, Lem. 1].203

▶ Lemma 1 (Access Lemma [45]). Let us assign any positive weight w(x) to the nodes x of a204

splay tree T , and define sw(x) as the sum of the weights of all the nodes in the subtree rooted205

at x. Then, the amortized time to splay x is O(log(W/sw(x))) ⊆ O(log(W/w(x))), where206

W =
∑

x∈T w(x).207

Zs. Lipták, F. Masillo, G. Navarro XX:5

The result is obtained by defining r(x) = log sw(x) (all our logarithms are in base 2) and208

Φ(T) =
∑

x∈T r(x) as the potential function for the splay tree T . If we choose w(x) = 1 for209

all x, then W = n on a splay tree of n nodes, and thus we obtain O(log n) amortized cost for210

each operation. By choosing other functions w(x), one can prove other properties of splay211

trees like static optimality, the static finger property, and the working set property [45].212

The update operations supported by splay trees include inserting new nodes, deleting213

nodes, joining two trees (where all the nodes in the second tree go to the right of the nodes214

in the first tree), and splitting a tree into two at some node (where all the nodes to its right215

become a second tree). The times of those operations are ruled by the “balance theorem216

with updates” [45, Thm. 6].217

▶ Lemma 2 (Balance Theorem with Updates [45]). Any sequence of access, insert, delete,218

join and split operations on a collection of initially empty splay trees has an amortized cost219

of O(log n) per operation, where n is the size of the tree(s) where the operation is carried out.220

This theorem is proved with the potential function that assigns w(x) = 1 to every node221

x. Note the theorem considers a forest of splay trees, whose potential function is the sum of222

the functions Φ(T) over the trees T in the forest. For details, see the original paper [45].223

Karp-Rabin fingerprinting. Our queries will be correct “with high probability” (whp),224

meaning a probability of at least 1 − 1/N c for an arbitrarily large constant c, where N is225

the total size of the collection. This will come from the use of a variant of the original226

Karp-Rabin fingerprint [30] (cf. [40]) defined as follows. Let [1..a] be the alphabet of our227

strings and p ≥ a a prime number. We choose a random base b uniformly from [1..p − 1].228

The fingerprint κ of string s[1..n] is defined as κ(s) =
(∑n−1

i=0 s[n − i] · bi
)

mod p. We say229

that two strings s ̸= s′ of the same length n collide through κ if κ(s) = κ(s′), that is,230

κ(s′′) = 0 where s′′ = s − s′ is the string defined by s′′[i] = (s[i] − s′[i]) mod p. Since κ(s′′)231

is a polynomial, in the variable b, of degree at most n − 1 over the field Zp, it has at most232

n − 1 roots. The probability of a collision between two strings of length n is then bounded233

by (n − 1)/(p − 1) because b is uniformly chosen in [1..p − 1]. By choosing p ∈ Θ(N c+1)234

for any desired constant c, we obtain that κ is collision-free on any s ̸= s′ whp. We will235

actually choose p ∈ Θ(N c+2) because some of our operations perform O(polylog N) string236

comparisons, not just one. Since N varies over time, we can use instead a fixed upper bound,237

like the total amount of main memory. We use the RAM machine model where logical and238

arithmetic operations on Θ(log N) machine words take constant time.239

Two fingerprints κ(s) and κ(s′) can then be composed in constant time to form κ(s′ · s) =240

(κ(s′) · b|s| + κ(s)) mod p. To avoid the O(log |s|) time for modular exponentiation, we241

will maintain the value b|s| mod p together with κ(s). The corresponding value for s′ · s is242

(b|s′| · b|s|) mod p, so we can maintain those powers in constant time upon concatenations.243

3 Our data structure and standard operations244

In this section we describe our data structure called FeST (for Forest of enhanced Splay245

Trees), composed of a collection of (enhanced) splay trees, and then show how the traditional246

operations on dynamic strings are carried out on it.247

3.1 The data structure248

We will use a FeST for maintaining the collection of strings, one splay tree per string. A249

dynamic string s[1..n] is encoded in a splay tree with n nodes such that s[k] is stored in250

XX:6 A Textbook Solution for Dynamic Strings

the node x with in-order k (the in-order of a node is the position in which it is listed if we251

recursively traverse first the left subtree, then the node, and finally the right subtree). We252

will say that node x represents the substring s[i..j], where [i..j] is the range of the in-orders253

of all the nodes in the subtree rooted at x. Let T be the splay tree representing string s,254

then for 1 ≤ i ≤ |s|, we call node(i) the node with in-order i, and for a node x of T , we call255

pos(x) the in-order of node x. The root of T is denoted root(T).256

For the amortized analysis of our FeST, our potential function Φ will be the sum of the257

potential functions Φ(T) over all the splay trees T representing our string collection. The258

collection starts initially empty, with Φ = 0. New strings are added to the collection with259

make-string; then edited with substitute, insert, and delete, and redistributed with260

introduce and extract.261

Information stored at nodes. A node x of the splay tree representing s[i..j] will contain262

pointers to its left and right children, called x.left and x.right, its symbol x.char = s[pos(x)],263

its subtree size x.size = j − i + 1, its fingerprint x.fp = κ(s[i..j]), and the value x.power =264

bj−i+1 mod p. These fields are recomputed in constant time whenever a node x acquires new265

children x.left and/or x.right (e.g., during the splay rotations) with the following formulas:266

(1) x.size = x.left.size + 1 + x.right.size, (2) x.fp = ((x.left.fp · b + x.char) · x.right.power +267

x.right.fp) mod p, and (3) x.power = (x.left.power · b · x.right.power) mod p, as explained in268

Section 2. For the formula to be complete when the left and/or right child is null, we assume269

null.size = 0, null.fp = 0, and null.power = 1. We will later incorporate other fields.270

Subtree sizes allow us identify node(i) given i, in the splay tree T representing string s, in271

O(log |s|) amortized time. This means we can answer access(s, i) in O(log |s|) amortized time,272

since s[i] = node(i).char. Finding node(i) is done in the usual way, with the recursive function273

find(i) = find(root(T), i) that returns the ith smallest element in the subtree rooted at the274

given node. More precisely, find(x, i) = x if i = x.left.size + 1, find(x, i) = find(x.left, i)275

if i < x.left.size + 1, and find(x, i) = find(x.right, i − (x.left.size + 1)) if i > x.left.size + 1.276

To obtain logarithmic amortized time, find splays the node it returns, thus pos(root(T)) = i277

holds after calling find(root(T), i).278

Isolating substrings. We will make use of another primitive we call isolate(i, j), for279

1 ≤ i, j ≤ |s| and i ≤ j + 1, on a tree T representing string s. This operation rearranges T in280

such a way that s[i..j] becomes represented by one subtree, and returns this subtree’s root y.281

If i = 1 and j = n, then y = root(T) and we are done. If i = 1 and j < n, then we find282

(and splay) node(j + 1) using find(j + 1); this will move node(j + 1) to the root, and s[i..j]283

will be represented by the left subtree of the root, so y = root(T).left. Similarly, if 1 < i284

and j = n, then we perform find(i − 1), so node(i − 1) is splayed to the root and s[i..j] is285

represented by the right subtree of the root, thus y = root(T).right.286

Finally, if 1 < i, j < n, then splaying first node(j + 1) and then node(i − 1) will typically287

result in node(i − 1) being the root and node(j + 1) its right child, thus the left subtree of288

node(j + 1) contains s[i..j], that is, y = root(T).right.left. The only exception arises if the289

last splay operation on node(i − 1) is a zig-zig, as in this case node(j + 1) would become290

a grandchild, not a child, of the root. Therefore, in this case, we modify the last splay291

operation: if node(i − 1) is a grandchild of the root and a zig-zig must be applied, we perform292

instead two consecutive zig operations on node(i − 1) in a bottom-up manner, that is, we first293

rotate the edge between node(i − 1) and its parent, and then the edge between node(i − 1)294

and its new parent (former grandparent), see Fig. 1.295

We now consider the effect of the modified zig-zig operation on the potential. In the proof296

Zs. Lipták, F. Masillo, G. Navarro XX:7

of Lemma 1 [45, Lem. 1], Sleator and Tarjan show that the zig-zig and the zig-zag cases297

contribute 3(r′(x)−r(x)) to the amortized cost, where r′(x) is the new value of r(x) after the298

operation. The sum then telescopes to 3(r(t) − r(x)) = 3 log(sw(t)/sw(x)) along an upward299

path towards a root node t. The zig rotation, instead, contributes 1 + r′(x) − r(x), where300

the 1 would be problematic if it was not applied only once in the path. Our new zig-zig may,301

at most one time in the path, cost like two zig’s, 2 + 2(r′(x) − r(x)), which raises the cost302

bound of the whole splay operation from 1 + 3 log(sw(t)/sw(x)) to 2 + 3 log(sw(t)/sw(x)).303

This retains the amortized complexity, that is, the amortized time for isolate is O(log |s|).304

j

splay
node(j + 1)

i

splay
node(i − 1)

i − 1

j + 1

i j

i

j + 1

(a) General sequence of operations for isolate(i, j).
j + 1

p

i − 1
A

D

B C

rotate
(node(i − 1),p)

i − 1

A B

j + 1

C

D

p
rotate
(node(i − 1),
node(j + 1))

i − 1

BA

j + 1

C D

p

i j

i j i j

(b) Case of zig-zag as the last splaying operation for isolate(i, j).

j + 1

y

i − 1

A

D

C

B

rotate
(node(i − 1),y)

i − 1

A

B

j + 1

C

D

y
rotate
(node(i − 1),
node(j + 1))

i − 1

A

B

j + 1

C

D
y

i

j

i j i j

(c) Case of the modified zig-zig as the last splaying operation for isolate(i, j).

Figure 1 Scheme of the isolate(i, j) operation applied on a splay tree. Subfigures 1b and 1c
show two cases of the last splay operation of isolate(i, j), yielding a single (shaded) subtree that
represents the substring s[i..j].

XX:8 A Textbook Solution for Dynamic Strings

3.2 Creating a new dynamic string305

Given a basic string w[1..n], operation make-string(w) creates a new dynamic string s[1..n]306

with the same content as w, which is added to the FeST. While this can be accomplished in307

O(n log n) amortized time via successive insert operations on an initially empty string, we308

describe a “bulk-loading” technique that achieves linear worst-case (and amortized) time.309

The idea is to create, in O(n) time, a perfectly balanced splay tree using the standard310

recursive procedure. As we show in the next lemma, this shape of the tree adds only O(n)311

to the potential function, and therefore the amortized time of this procedure is also O(n).312

▶ Lemma 3. The potential Φ(T) of a perfectly balanced splay tree T with n nodes is at most313

2n + O(log2 n) ⊆ O(n).314

Proof. Let d be the depth of the deepest leaves in a perfectly balanced binary tree, and315

call l = d − d′ + 1 the level of any node of depth d′. It is easy to see that there are at316

most 1 + n/2l subtrees of level l. Those subtrees have at most 2l − 1 nodes. Separating the317

sum Φ(T) =
∑

x∈T r(x) by levels l and using the bound sw(x) < 2l if x is of level l, we get318

Φ(T) <
∑log n

l=1
(
1 + n

2l

)
log 2l = 2n + O(log2 n). ◀319

Once the tree is created and the fields x.char are assigned in in-order, we perform a320

post-order traversal to compute the other fields. This is done in constant time per node321

using the formulas given in Section 3.1.322

3.3 Retrieving a substring323

Given a string s in the FeST and two indices 1 ≤ i ≤ j ≤ |s|, operation retrieve(s, i, j)324

extracts the substring s[i..j] and returns it as a basic string. The special case i = j is given325

by access(s, i), which finds node(i), splays it, and returns root(T).char, recall Section 3.1. If326

i < j, we perform y = isolate(i, j) and then we return s[i..j] with an in-order traversal of327

the subtree rooted at y. Overall, the operation retrieve(s, i, j) takes O(log |s|) amortized328

time for isolate, and then O(j − i + 1) worst case time for the traversal of the subtree.329

3.4 Edit operations330

Let s be a string in the FeST, i an index of s, and c a character. The simplest edit operation,331

substitute(s, i, c) writes c at s[i], that is, s becomes s′ = s[..i − 1] · c · s[i + 1..]. It is332

implemented by doing find(i) in the splay tree T of s, in O(log |s|) amortized time. After the333

operation, node(i) is the root, so we set root(T).char = c and recompute (only) its fingerprint334

as explained in Section 3.1.335

Now consider operation insert(s, i, c), which converts s into s′ = s[..i − 1] · c · s[i..]. This336

corresponds to the standard insertion of a node in the splay tree, at in-order position i. We337

first use find(i) in order to make x = node(i) the tree root, and then create a new root node338

y, with y.left = x.left and y.right = x. We then set x.left = null and recompute the other339

fields of x as shown in Section 3.1. Finally, we set y.char = c and also compute its other340

fields. By Lemma 2, the amortized cost for an insertion is O(log |s|).341

Finally, the operation delete(s, i) converts s into s′ = s[..i−1]·s[i+1..]. This corresponds342

to standard deletion in the splay tree: we first do find(i) in the tree T of s, so that x = node(i)343

becomes the root, and then join the splay trees of x.left and x.right, isolating the root node344

x and freeing it. The joined tree now represents s′; the amortized cost is O(log |s|).345

Zs. Lipták, F. Masillo, G. Navarro XX:9

3.5 Introducing and extracting substrings346

Given two strings s1 and s2 represented by trees T1 and T2 in the FeST, and an insertion347

position i in s1, operation introduce(s1, i, s2) generates a new string s = s1[..i−1] ·s2 ·s1[i..]348

(the original strings are not anymore available). We implement this operation by first doing349

y = isolate(i, i − 1) on the tree T1. Note that in this case y will be a null node, whose350

in-order position is between i − 1 and i. We then replace this null node by (the root of) the351

tree T2. As shown in Section 3.1, the node y that we replace has at most two ancestors in352

T1, say x1 (the root) and x2. We must then recompute the fields of x2 and then of x1.353

Apart from the O(log |s1|) amortized time for isolate, the other operations take constant354

time. We must consider the change in the potential introduced by connecting T2 to T1. In355

the potential Φ, the summands log sw(x1) and log sw(x2) will increase to log(sw(x1) + |s2|)356

and log(sw(x2) + |s2|), thus the increase is O(log |s2|). The total amortized time is thus357

O(log |s1| + log |s2|) = O(log |s1s2|).358

Let s be a string represented by tree T in the FeST and i ≤ j indices in s. Function359

extract(s, i, j) removes s[i..j] from s and creates a new dynamic string s′ from it. This can360

be carried out by first doing y = isolate(i, j) on T , then detaching y from its parent in T361

to make it the root of the tree that will represent s′, and finally recomputing the fields of362

the (former) ancestors x2 and x1 of y. The change in potential is negative, as log sw(x1) and363

log sw(x2) decrease by up to O(log(j − i + 1)). The total amortized time is then O(log |s|).364

3.6 Substring equality365

Let s1[i1..i1 + ℓ − 1] and s2[i2..i2 + ℓ − 1] be two substrings, where possibly s1 = s2. Per366

Section 2, we can compute equal whp by comparing κ(s1[i1..i1+ℓ−1]) and κ(s2[i2..i2+ℓ−1]).367

We compute y1 = isolate(i1, i1 + ℓ − 1) on the tree of s1 and y2 = isolate(i2, i2 + ℓ − 1)368

on the tree of s2. Once node y1 represents s1[i1..i1 + ℓ − 1] and y2 represents s2[i2..i2 + ℓ − 1],369

we compare y1.fp = κ(s1[i1..i1 + ℓ − 1]) with y2.fp = κ(s2[i2..i2 + ℓ − 1]).370

The splay operations take O(log |s1s2|) amortized time, while the comparison of the371

fingerprints takes constant time and returns the correct answer whp. Note this is a one-sided372

error; if the method answers negatively, the strings are distinct.373

4 Extended operations374

In this section we consider less standard operations of dynamic strings, including the375

computation of LCPs and others we have not seen addressed before.376

4.1 Longest common prefixes377

Operation lcp(s1, i1, s2, i2) computes lcp(s1[i1..], s2[i2..]) correctly whp, by exponentially378

searching for the maximum value ℓ such that s1[i1..i1 + ℓ − 1] = s2[i2..i2 + ℓ − 1]. The379

exponential search requires O(log ℓ) equality tests, which are done using equal operations.380

The amortized cost of this basic solution is then O(log |s1s2| log ℓ); we now improve it.381

We note that all the accesses the exponential search performs in s1 and s2 are at distance382

O(ℓ) from s1[i1] and s2[i2]. We could then use the dynamic finger property [18] to show,383

with some care, that the amortized time is O(log |s1s2| + log2 ℓ). This property, however,384

uses a different mechanism of potential functions where trees cannot be joined or split.3 We385

3 The static finger property cannot be used either, because we need new fingers every time an LCP is

XX:10 A Textbook Solution for Dynamic Strings

ℓ′

extract(s1, i1, i1+ℓ′−1)

ℓ′

exponential search

ℓ′

ℓi1

re-introduce

Figure 2 Scheme of operations for lcp shown on one of the two strings.

then use an alternative approach. The main idea is that, if we could bound ℓ beforehand,386

we could isolate those areas so that the accesses inside them would cost O(log ℓ) and then387

we could reach the desired amortized time. Bounding ℓ in less than O(log ℓ) accesses (i.e.,388

O(log |s1s2| log ℓ) time) is challenging, however. Assuming for now that s1 ̸= s2 (we later389

handle the case s1 = s2), our plan is as follows (see Fig. 2):390

1. Find a (crude) upper bound ℓ′ ≥ ℓ.391

2. Extract substrings s′
1 = s1[i1..i1 + ℓ′ − 1] and s′

2 = s2[i2..s2 + ℓ′ − 1].392

3. Run the basic exponential search for ℓ between s′
1[1..] and s′

2[1..].393

4. Reinsert substrings s′
1 and s′

2 into s1 and s2.394

Steps 2 and 4 are carried out in O(log |s1s2|) amortized time using the operations extract395

and introduce, respectively. Step 3 will still require O(log ℓ) substring comparisons, but396

since they will be carried out on the shorter substrings s′
1 and s′

2, they will take O(log ℓ log ℓ′)397

amortized time. The main challenge is to balance the cost to find ℓ′ in Step 1 with the398

quality of the approximation of ℓ′ so that log ℓ′ is not much larger than log ℓ.399

Consider the following strategy for Step 1. Let n = |s1s2| and n′ = min(|s1| − i1 +400

1, |s2| − i2 + 1). We first check a few border cases that we handle in O(log n) amortized401

time: if s1[i1..i1 + n′ − 1] = s2[i2..i2 + n′ − 1] we finish with the answer ℓ = n′, or else if402

s1[i1..i1 + 1] ̸= s2[i2..i2 + 1] we finish with the answer ℓ = 0 or ℓ = 1. Otherwise, we define403

the sequence ℓ0 = 2 and ℓi = min(n′, ℓ 2
i−1) and try out the values ℓi for i = 1, 2, . . ., until we404

obtain s1[i1..i1 + ℓi − 1] ̸= s2[i2..i2 + ℓi − 1]. This implies that ℓi−1 ≤ ℓ < ℓi, so we can use405

ℓ′ = ℓi ≤ ℓ2. This yields O(log ℓ log ℓ′) = O(log2 ℓ) amortized time for Step 3. On the other406

hand, since ℓ ≥ ℓi−1 = 22i−1 , it holds i ≤ 1 + log log ℓ. Since each of the i values is tried out407

in O(log n) time with equal, the amortized cost of Step 1 is O(log n log log ℓ) and the total408

cost to compute lcp is O(log n log log ℓ + log2 ℓ). In particular, this is O(log2 ℓ) when ℓ is409

large enough, log ℓ = Ω(
√

log n log log n).410

Hitting twice. To obtain our desired time O(log n + log2 ℓ) for every value of log ℓ, we will411

apply our general strategy twice. First, we will set ℓ′′ = 2log2/3 n and determine whether412

s1[i1..i1 + ℓ′′ − 1] = s2[i2..i2 + ℓ′′ − 1]. If they are equal, then log ℓ = Ω(log2/3 n) and we can413

apply the strategy of the previous paragraph verbatim, obtaining amortized time O(log2 ℓ).414

If they are not equal, then we know that ℓ′′ > ℓ, so we extract s′′
1 = s1[i1..i1 + ℓ′′ − 1] and415

computed. Extending the “unified theorem” [45, Thm. 5] to m fingers (to support m LCP operations in
the sequence) introduces an O(log m) additive amortized time in the operations, since now W = Θ(m).

Zs. Lipták, F. Masillo, G. Navarro XX:11

s′′
2 = s2[i2..i2+ℓ′′−1] to complete the search for ℓ′ inside those (note we are still in Step 1). We416

use the same sequence ℓi of the previous paragraph, with the only difference that the accesses417

are done on trees of size ℓ′′ and not n; therefore each step costs O(log ℓ′′) = O(log2/3 n)418

instead of O(log n). After finally finding ℓ′, we introduce back s′′
1 and s′′

2 into s1 and s2.419

Step 1 then completes in amortized time O(log n + log2/3 n log log ℓ) = O(log n). Having420

found ℓ′ ≤ ℓ2, we proceed with Step 2 onwards as above, taking O(log2 ℓ) additional time.421

When the strings are the same. In the case s1 = s2, assume w.l.o.g. i1 < i2. We can still422

carry out Step 1 and, if i1 + ℓ′ ≤ i2, proceed with the plan in the same way, extracting s′
1423

and s′
2 from the same string and later reintroducing them. In case i1 + ℓ′ > i2, however, both424

substrings overlap. In this case we extract just one substring, s′ = s1[i1..i2 + ℓ′ − 1], which is425

of length at most 2ℓ′, and run the basic exponential search between s′[1..] and s′[i2 − i1 + 1..]426

still in amortized time O(log ℓ log ℓ′). We finally reintroduce s′ in s1. The same is done if427

we need to extract s′′
1 and s′′

2 : if both come from the same string and i1 + ℓ′′ > i2, then we428

extract just one single string s′′ = s[i1..i2 + ℓ′′ − 1] and obtain the same asymptotic times.429

Lexicographic comparisons. Once we know that (whp) the LCP of the suffixes is of length430

ℓ, we can determine which is smaller by accessing (using access) the symbols at positions431

s1[i1 + ℓ] and s2[i2 + ℓ] and comparing them, in O(log |s1s2|) additional amortized time.432

4.2 Substring reversals433

Operation reverse(s, i, j) changes s to s[..i − 1]s[j]s[j − 1] · · · s[i + 1]s[i]s[j + 1..]. Reflecting434

it directly in our current structure requires Ω(j − i + 1) time, which is potentially Ω(|s|).435

Our strategy, instead, is to just “mark” the subtrees where the reversal should be carried436

out, and de-amortize its cost across future operations, materializing it progressively as we437

traverse the marked subtrees. To this end, we extend our FeST data structure with a new438

Boolean field x.rev in each node x, which indicates that its whole subtree should be regarded439

as reversed, that is, its descending nodes should be read right-to-left, but that this update440

has not yet been carried out. This field is set to false on newly created nodes. We also add441

a field x.fprev, so that if x represents s[i..j], then x.fprev = κ(s[j]s[j − 1] · · · s[i + 1]s[i]) is442

the fingerprint of the reversed string. When x.rev is true, the fields of x (including x.fp and443

x.fprev) still do not reflect the reversal.444

The fields x.fprev must be maintained in the same way as the fields x.fp. Concretely, upon445

every update where the children of node x change, we not only recompute x.fp as shown in446

Section 3.1, but also x.fprev = ((x.right.fprev · b + x.char) · x.left.power + x.left.fprev) mod p.447

In order to apply the described reversal to a substring s[i..j], we first compute y =448

isolate(i, j) on the tree of s, and then toggle the Boolean value y.rev = ¬ y.rev (note449

that, if y had already an unprocessed reversal, this is undone without ever materializing450

it). The operation reverse then takes O(log |s|) amortized time, dominated by the cost of451

isolate(i, j). We must, however, handle potentially reversed nodes.452

Fixing marked nodes. Every time we access a tree node, if it is marked as reversed, we fix453

it, after which it can be treated as a regular node because its fields will already reflect the454

reversal of its represented string (though some descendant nodes may still need fixing).455

Fixing a node involves exchanging its left and right children, toggling their reverse marks,456

and updating the node fingerprint. More precisely, we define the primitive fix(x) as follows:457

if x.rev is true, then (i) set x.rev = false, x.left.rev = ¬ x.left.rev, x.right.rev = ¬ x.right.rev,458

XX:12 A Textbook Solution for Dynamic Strings

x

A B

x.rev = true

toggle rev

x

A B

root(A).rev =
¬root(A).rev

swap left-right
and x.fp with x.fprev

x

B A

x.rev = false

root(B).rev =
¬root(B).rev

x.fp ↔ x.fprev

Figure 3 Scheme of the fix operation on node x.

(ii) swap x.left with x.right, and (iii) swap x.fp with x.fprev. See Fig. 3 for an example. It is459

easy to see that fix maintains the invariants about the meaning of the reverse fields.460

Because all the operations in splay trees, including the splay, are done along paths that461

are first traversed downwards from the root, it suffices that we run fix(x) on every node462

x we find as we descend from the root (for example, on every node x where we perform463

find(x, i)), before taking any other action on the node. This ensures that all the accesses464

and structural changes to the splay tree are performed over fixed nodes, and therefore no465

algorithm needs further changes. For example, when we perform splay(x), all the ancestors of466

x are already fixed. As another example, if we run equal as in Section 3.6, the nodes y1 and467

y2 will already be fixed by the time we read their fingerprint fields. As a third example, if468

we run retrieve(s, i, j) as in Section 3.3 and the subtree of y has reversed nodes inside, we469

will progressively fix all those nodes as we traverse the subtree, therefore correctly retrieving470

s[i..j] within O(j − i + 1) time.471

Note that fix takes constant time per node and does not change the potential function472

Φ, so no time complexities change due to our adjustments. The new fields also enable other473

queries, for example to decide whether a string is a palindrome.474

4.3 Involutions475

We support the operation map(s, i, j) analogously to substring reversals, that is, isolating476

s[i..j] in a node y = isolate(i, j) and then marking that the substring covered by node y is477

mapped using a new Boolean field y.map, which is set to true. This will indicate that every478

symbol s[k], for i ≤ k ≤ j, must be interpreted as f(s[k]), but that the change has not yet479

been materialized. Similarly to reverse, this information will be propagated downwards480

as we descend into a subtree, otherwise it is maintained in the subtree’s root only. The481

operation will then take O(log |s|) amortized time.482

To manage the mapping and deamortize its linear cost across subsequent operations, we483

will also store fields x.mfp = κ(f(s[i])f(s[i + 1]) · · · f(s[j])) and x.mfprev = κ(f(s[j])f(s[j −484

1]) · · · f(s[i])), which maintain the fingerprint of the mapped string, and its reverse, represented485

by x. Those are maintained analogously as the previous fingerprints: (1) x.mfp = ((x.left.mfp·486

b + f(x.char)) · x.right.power + x.right.mfp) mod p, and (2) x.mfprev = ((x.right.mfprev · b +487

f(x.char)) · x.left.power + x.left.mfprev) mod p.488

As for string reversals, every time we access a tree node, if it is marked as mapped,489

we unmark it and toggle the mapped mark of its children, before proceeding with any490

other action. Precisely, we define the primitive fixm(x) as follows: if x.map is true, then491

(i) set x.map = false, x.left.map = ¬ x.left.map, x.right.map = ¬ x.right.map, (ii) set492

x.char = f(x.char), and (iii) swap x.fp with x.mfp, and x.fprev with x.mfprev. We note493

that, in addition, the fix operation defined in Section 4.2 must also exchange x.mfp with494

x.mfprev if we also support involutions. Note how, as for reversals, two applications of f495

cancel each other, which is correct because f is an involution. Operation fixm is applied in496

Zs. Lipták, F. Masillo, G. Navarro XX:13

the same way as fix along tree traversals.497

Reverse complementation. By combining string reversals and involutions, we can for498

example support the application of reverse complementation of substrings in DNA sequences,499

where a substring s[i..j] is reversed and in addition its symbols are replaced by their Watson-500

Crick complement, applying the involution f(A) = T, f(T) = A, f(C) = G, and f(G) = C. In501

case we only want to perform reverse complementation (and not reversals and involutions502

independently), we can simplify our fields and maintain only a Boolean field x.rc and the503

fingerprint x.mfprev in addition to x.fp. Fixing a node consists of: if x.rc is true, then (i)504

set x.rc = false, x.left.rc = ¬ x.left.rc, x.right.rc = ¬ x.right.rc, (ii) set x.char = f(x.char),505

(iii) swap x.left with x.right, (iv) swap x.fp with x.mfprev.506

5 Circular strings and omega extension507

Our data structure can be easily extended to handle circular strings. We do this by introducing508

a new routine, called rotate, which allows us linearize the circular string starting at any509

of its indices. By carefully using this primitive, along with a slight modification for the510

computation of fingerprints, we can support every operation that we presented on linear511

strings with the same time bounds, as well as signed reversals, in O(log |ŝ|) amortized time.512

By supporting operations on circular strings, we can also handle the omega extension of513

strings, which is the infinite concatenation of a string: sω = s · s · · · . Again, we are able to514

meet the same time bounds on every operation on linear strings. We also define two ways to515

implement the equality between omega-extended substrings. Full details will be contained in516

the full version of the paper.517

6 Conclusion518

We presented a new data structure, a forest of enhanced splay trees (FeST), to handle519

collections of dynamic strings. Our solution is much simpler than those offering the best520

theoretical results, while still offering logarithmic amortized times for most update and query521

operations. We answer queries correctly whp, and updates are always correct.522

To build our data structure, we employ an approach that differs from theoretical solutions:523

we use a splay tree for representing each string, enhancing it with additional annotations.524

The use of binary trees to represent dynamic strings is not new, but exploiting the simplicity525

of splay trees for attaching and detaching subtrees is. As our FeST is easy to understand,526

explain, and implement, we believe that it offers the opportunity of wide usability and can527

become a textbook implementation of dynamic strings. Further, we have found nontrivial—528

yet perfectly implementable—solutions to relevant queries, like computing the length ℓ of529

the longest common prefix of two suffixes in time O(log n + log2 ℓ) instead of the trivial530

O(log2 n). The simplicity of our solution enables new features, like the possibility of reversing531

a substring, or reverse-complementing it, to be easily implemented in logarithmic amortized532

time. Our data structure also allows handling circular strings, as well as omega-extensions of533

strings—features competing solutions have not explored.534

References535

1 Stephen Alstrup, Gerth Stølting Brodal, and Theis Rauhe. Pattern matching in dynamic536

texts. In Proc. 11th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages537

819–828, 2000.538

XX:14 A Textbook Solution for Dynamic Strings

2 Amihood Amir, Itai Boneh, Panagiotis Charalampopoulos, and Eitan Kondratovsky. Repetition539

detection in a dynamic string. In Proc. 27th Annual European Symposium on Algorithms540

(ESA), pages 5:1–5:18, 2019.541

3 Amihood Amir, Panagiotis Charalampopoulos, Costas S. Iliopoulos, Solon P. Pissis, and Jakub542

Radoszewski. Longest common factor after one edit operation. In Proc. 24th International543

Symposium on String Processing and Information Retrieval (SPIRE), pages 14–26, 2017.544

4 Amihood Amir, Panagiotis Charalampopoulos, Solon P. Pissis, and Jakub Radoszewski.545

Dynamic and internal longest common substring. Algorithmica, 82(12):3707–3743, 2020.546

5 Lorraine A.K. Ayad and Solon P. Pissis. MARS: Improving multiple circular sequence alignment547

using refined sequences. BMC Genomics, 18(1):1–10, 2017.548

6 Vineet Bafna and Pavel A. Pevzner. Genome rearrangements and sorting by reversals. In Proc.549

34th Annual Symposium on Foundations of Computer Science (FOCS), pages 148–157, 1993.550

7 Hans-Juergen Boehm, Russell R. Atkinson, and Michael F. Plass. Ropes: An alternative to551

strings. Software Practice and Experience, 25(12):1315–1330, 1995.552

8 Christina Boucher, Davide Cenzato, Zsuzsanna Lipták, Massimiliano Rossi, and Marinella553

Sciortino. Computing the original eBWT faster, simpler, and with less memory. In Proc.554

28th International Symposium on String Processing and Information Retrieval (SPIRE), pages555

129–142, 2021.556

9 Christina Boucher, Davide Cenzato, Zsuzsanna Lipták, Massimiliano Rossi, and Marinella557

Sciortino. r-indexing the eBWT. Information and Computation, 298:105155, 2024. doi:558

10.1016/j.ic.2024.105155.559

10 Alberto Caprara. Sorting by reversals is difficult. In Proc. 1st Annual International Conference560

on Research in Computational Molecular Biology (RECOMB), pages 75–83, 1997.561

11 Alberto Caprara and Romeo Rizzi. Improved approximation for breakpoint graph562

decomposition and sorting by reversals. Journal of Combinatorial Optimization, 6(2):157–182,563

2002.564

12 Jean Cardinal and John Iacono. Modular subset sum, dynamic strings, and zero-sum sets. In565

Proc. 4th Symposium on Simplicity in Algorithms (SOSA), pages 45–56. SIAM, 2021.566

13 Giulio Cerbai and Luca S. Ferrari. Permutation patterns in genome rearrangement problems:567

The reversal model. Discrete Applied Mathematics, 279:34–48, 2020.568

14 Panagiotis Charalampopoulos, Tomasz Kociumaka, and Shay Mozes. Dynamic string alignment.569

In Proc. 31st Annual Symposium on Combinatorial Pattern Matching (CPM), pages 9:1–9:13,570

2020.571

15 Panagiotis Charalampopoulos, Tomasz Kociumaka, Jakub Radoszewski, Solon P. Pissis,572

Wojciech Rytter, Tomasz Walen, and Wiktor Zuba. Approximate circular pattern matching.573

In Proc. 30th Annual European Symposium on Algorithms (ESA), pages 35:1–35:19, 2022.574

16 M. Charikar, E. Lehman, D. Liu, R. Panigrahy, M. Prabhakaran, A. Sahai, and A. Shelat.575

The smallest grammar problem. IEEE Transactions on Information Theory, 51(7):2554–2576,576

2005.577

17 Raphaël Clifford, Allan Grønlund, Kasper Green Larsen, and Tatiana Starikovskaya. Upper578

and lower bounds for dynamic data structures on strings. In Proc. 35th Symposium on579

Theoretical Aspects of Computer Science (STACS), pages 22:1–22:14, 2018.580

18 Richard Cole. On the dynamic finger conjecture for splay trees. Part II: The proof. SIAM581

Journal on Computing, 30(1):44–85, 2000.582

19 James R. Driscoll, Neil Sarnak, Daniel Dominic Sleator, and Robert Endre Tarjan. Making583

data structures persistent. In Proc. 18th Annual ACM Symposium on Theory of Computing584

(STOC), pages 109–121, 1986.585

20 Guillaume Fertin, Anthony Labarre, Irena Rusu, Eric Tannier, and Stéphane Vialette.586

Combinatorics of Genome Rearrangements. MIT Press, 2009.587

21 Mitsuru Funakoshi, Yuto Nakashima, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda.588

Longest substring palindrome after edit. In Proc. 29th Annual Symposium on Combinatorial589

Pattern Matching (CPM), pages 12:1–12:14, 2018.590

https://doi.org/10.1016/j.ic.2024.105155
https://doi.org/10.1016/j.ic.2024.105155
https://doi.org/10.1016/j.ic.2024.105155

Zs. Lipták, F. Masillo, G. Navarro XX:15

22 Pawel Gawrychowski. Pattern matching in Lempel-Ziv compressed strings: Fast, simple,591

and deterministic. In Proc. 19th Annual European Symposium on Algorithms (ESA), pages592

421–432, 2011.593

23 Pawel Gawrychowski, Adam Karczmarz, Tomasz Kociumaka, Jakub Lacki, and Piotr594

Sankowski. Optimal dynamic strings. CoRR, abs/1511.02612, 2015.595

24 Pawel Gawrychowski, Adam Karczmarz, Tomasz Kociumaka, Jakub Lacki, and Piotr596

Sankowski. Optimal dynamic strings. In Proc. 29th Annual ACM-SIAM Symposium on597

Discrete Algorithms (SODA), pages 1509–1528, 2018.598

25 Roberto Grossi, Costas S. Iliopoulos, Jesper Jansson, Zara Lim, Wing-Kin Sung, and Wiktor599

Zuba. Finding the cyclic covers of a string. In Proc. 17th International Conference and600

Workshops on Algorithms and Computation (WALCOM), pages 139–150, 2023.601

26 Roberto Grossi, Costas S Iliopoulos, Robert Mercas, Nadia Pisanti, Solon P Pissis, Ahmad602

Retha, and Fatima Vayani. Circular sequence comparison: algorithms and applications.603

Algorithms for Molecular Biology, 11(1):1–14, 2016.604

27 Yijie Han. Improving the efficiency of sorting by reversals. In Proc. International Conference605

on Bioinformatics & Computational Biology (BIOCOMP), pages 406–409, 2006.606

28 Sridhar Hannenhalli and Pavel A. Pevzner. Transforming cabbage into turnip: Polynomial607

algorithm for sorting signed permutations by reversals. In Proc. 27th Annual ACM Symposium608

on Theory of Computing (STOC), pages 178–189, 1995.609

29 Costas S. Iliopoulos, Tomasz Kociumaka, Jakub Radoszewski, Wojciech Rytter, Tomasz Walen,610

and Wiktor Zuba. Linear-time computation of cyclic roots and cyclic covers of a string. In611

Proc. 34th Annual Symposium on Combinatorial Pattern Matching (CPM), pages 15:1–15:15,612

2023.613

30 Richard M. Karp and Michael O. Rabin. Efficient randomized pattern-matching algorithms.614

IBM Journal of Research and Development, 31(2):249–260, 1987.615

31 Dominik Kempa and Tomasz Kociumaka. Dynamic suffix array with polylogarithmic queries616

and updates. In Proc. 54th Annual ACM SIGACT Symposium on Theory of Computing617

(STOC), pages 1657–1670. ACM, 2022.618

32 Dominik Kempa and Tomasz Kociumaka. Dynamic suffix array with polylogarithmic queries619

and updates. CoRR, abs/2201.01285, 2022. URL: https://arxiv.org/abs/2201.01285,620

arXiv:2201.01285.621

33 Dominik Kempa and Ben Langmead. Fast and space-efficient construction of AVL grammars622

from the LZ77 parsing. CoRR, 2105.11052, 2021.623

34 D. E. Knuth. The Art of Computer Programming, volume 3: Sorting and Searching. Addison-624

Wesley, 2nd edition, 1998.625

35 Tomasz Kociumaka, Anish Mukherjee, and Barna Saha. Approximating edit distance in the626

fully dynamic model. In Proc. 64th IEEE Annual Symposium on Foundations of Computer627

Science (FOCS), pages 1628–1638. IEEE, 2023.628

36 M. Lothaire. Applied Combinatorics on Words. Cambridge University Press, 2005.629

37 Sabrina Mantaci, Antonio Restivo, Giovanna Rosone, and Marinella Sciortino. An extension630

of the Burrows-Wheeler transform. Theoretical Computer Science, 387(3):298–312, 2007.631

38 Kurt Mehlhorn, Rajamani Sundar, and Christian Uhrig. Maintaining dynamic sequences632

under equality tests in polylogarithmic time. Algorithmica, 17(2):183–198, 1997.633

39 Kevin Menard, Chris Seaton, and Benoit Daloze. Specializing ropes for ruby. In Proc. 15th634

International Conference on Managed Languages & Runtimes (ManLang), pages 10:1–10:7,635

2018.636

40 Gonzalo Navarro and Nicola Prezza. Universal compressed text indexing. Theoretical Computer637

Science, 762:41–50, 2019.638

41 Takaaki Nishimoto, Tomohiro I, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda.639

Fully dynamic data structure for LCE queries in compressed space. In Proc. 41st International640

Symposium on Mathematical Foundations of Computer Science (MFCS), pages 72:1–72:14,641

2016.642

https://arxiv.org/abs/2201.01285
https://arxiv.org/abs/2201.01285

XX:16 A Textbook Solution for Dynamic Strings

42 Takaaki Nishimoto, Tomohiro I, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda.643

Dynamic index and LZ factorization in compressed space. Discrete Applied Mathematics,644

274:116–129, 2020.645

43 Andre Rodrigues Oliveira, Ulisses Dias, and Zanoni Dias. On the sorting by reversals and646

transpositions problem. Journal of Universal Computer Science, 23(9):868–906, 2017.647

44 W. Rytter. Application of Lempel-Ziv factorization to the approximation of grammar-based648

compression. Theoretical Computer Science, 302(1-3):211–222, 2003.649

45 Daniel Dominic Sleator and Robert Endre Tarjan. Self-adjusting binary search trees. Journal650

of the ACM, 32(3):652–686, 1985.651

46 Damien Stehlé and Paul Zimmermann. A binary recursive gcd algorithm. In Proc. 6th652

International Symposium on Algorithmic Number Theory (ANTS), pages 411–425, 2004.653

47 Rajamani Sundar and Robert E. Tarjan. Unique binary-search-tree representations and654

equality testing of sets and sequences. SIAM Journal on Computing, 23(1):24–44, 1994.655

48 Wojciech Szpankowski. A generalized suffix tree and its (un)expected asymptotic behaviors.656

SIAM Journal on Computing, 22(6):1176–1198, 1993.657

49 Yuki Urabe, Yuto Nakashima, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda.658

Longest Lyndon substring after edit. In Proc. 29th Annual Symposium on Combinatorial659

Pattern Matching (CPM), pages 19:1–19:10, 2018.660

50 G.A. Watterson, W.J. Ewens, T.E. Hall, and A. Morgan. The chromosome inversion problem.661

Journal of Theoretical Biology, 99:1–7, 1982.662

Zs. Lipták, F. Masillo, G. Navarro XX:17

APPENDIX663

A Figures664

s =mississippi

m

s

s p

i i

s

i

s

i

p

extract(s, 9, 11)

s =mississi
s′ =ppi

m

s

s

p

i i

s

i

s

i

p introduce(s, 1, s′)

m

i

i

s

s

s

s = ppimississi

p

i

p

i

s

Figure 4 Cycle-rotation operation: rotate(s, 9) moves s[9..] to the left of s[..8]. After the rotation
the string becomes s[9..]s[..8].

B Other Related Work665

A related line of work aims at maintaining a data structure such that the solution to some666

particular problem on one or two strings can be efficiently updated when these strings undergo667

an edit operation (deletion, insertion, or substitution). Examples are longest common factor668

of two strings [3, 4], optimal alignment of two strings [14], approximating the edit distance [35],669

longest palindromic substring [21], longest square [2], or longest Lyndon factor [49] of one670

string. The setup can be what is referred to as partially dynamic, when the original string or671

strings are returned to their state before the edit, or fully dynamic, when the edit operations672

are reflected on the original string or strings. Clifford et al. [17] give lower bounds on various673

problems of this kind when a single substitution is applied.674

This setup, also referred to as dynamic strings, differs from ours in several ways: (a)675

we are not only interested in solving one specific problem on strings; (b) we have an entire676

collection of strings, and will want to ask queries on any one or any pair of these; and (c) we677

allow many different kinds of update operations.678

Locally consistent parsings to maintain dynamic strings have been used to support more679

complex problems, such as simulating suffix arrays [31, 32].680

C Circular strings and omega extensions681

C.1 Additional definitions682

In this section, we are going to use some further concepts regarding periodicity and conjugacy.683

A string s is called periodic with period r if s[i + r] = s[i] for all 1 ≤ i ≤ |s| − r.684

Two strings s, t are conjugates if there exist strings u, v, possibly empty, such that s = uv685

and t = vu. Conjugacy is an equivalence; the equivalence classes [s] are also called circular686

strings, and any t ∈ [s] is called a linearization of this circular string. Abusing notation, any687

linear string s can be viewed as a circular string, in which case it is taken as a representative688

of its conjugacy class. A substring of a circular string s is any prefix of any t ∈ [s], or,689

equivalently, a string of the form s[i..j] for 1 ≤ i, j ≤ |s| (a linear substring), or s[i..]s[..j],690

XX:18 A Textbook Solution for Dynamic Strings

where j < i. A necklace is a string s with the property that s ≤lex t for all t ∈ [s]. Every691

conjugacy class contains exactly one necklace.692

When the dynamic strings in our collection are to be interpreted as circular strings, we693

need to adjust some of our operations. Our model is that we will maintain a canonical694

representative ŝ of the class of rotations of s. All the indices of the operations refer to695

positions in ŝ. Internally, we may store in the FeST another representative s of the class, not696

necessarily ŝ.697

C.2 Circular strings698

Our general approach to handle operations on ŝ regarding it as circular is to rotate it699

conveniently before accessing it. The splay tree T of ŝ will then maintain some (string)700

rotation s = ŝ[r..]ŝ[..r − 1] of ŝ, and we will maintain a field start(ŝ) = r so that we can map701

any index ŝ[i] referred to in update or query operations to s[((|s| + i − start(ŝ)) mod |s|) + 1].702

When we want to change the rotation of ŝ to another index r′, so that we now store703

s′ = ŝ[r′..]ŝ[..r′ − 1], we make use of a new operation rotate(s, i), which rotates s so that704

its splay tree represents s[i..]s[..i − 1]. This is implemented as s′ = extract(s, i, |s|) followed705

by introduce(s, 1, s′). We then move from rotation r to r′ in O(log |s|) amortized time by706

doing rotate(s, r′ − r + 1) if r′ > r, or rotate(s, |s| + r′ − r + 1) if r′ < r. We then set707

start(ŝ) = r′.708

Operation s = make-string(w) stays as before, in the understanding that ŝ = w will be709

seen as the canonical representation of the class, so we set start(ŝ) = 1; this can be changed710

later with a string rotation if desired. All the operations that address a single position ŝ[i],711

like access and the edit operations, are implemented verbatim by just shifting the index712

i using start(ŝ) as explained. Instead, the operations retrieve, extract, equal, reverse,713

and map, which act on a range ŝ[i..j], may give trouble when i > j, as in this case the714

substring is ŝ[i..]ŝ[..j] by circularity. In this case, those operations will be preceded by a715

change of rotation from the current one, r = start(ŝ), to r′ = 1, using rotate as explained.716

This guard will get rid of those cases. Note that, in the case of equal, we may need to rotate717

both s1 and s2, independently, to compute each of the two signatures.718

The two remaining operations deserve some consideration. Operation introduce(s1, i, s2)719

could be implemented verbatim (with the shifting of i), but in this case it would introduce720

in ŝ1[i] the current rotation of s2, instead of ŝ2 as one would expect. Therefore, we precede721

the operation by a change of rotation in s2 to r′ = 1, which makes the splay tree store ŝ2722

with start(ŝ2) = 1.723

Finally, in operation lcp(s1, i1, s2, i2) we do not know for how long the LCP will extend,724

so we precede it by changes of rotations in both s1 and s2 that make them start at position725

1 of ŝ1 and ŝ2. In case s1 = s2, however, this trick cannot be used. One simple solution is726

to rotate the string every time we call equal during Step 1; recall Section 4.1. This will be727

needed as long as the accesses are done on s1 and s2; as soon as we extract the substrings728

of length ℓ′′ (and, later, ℓ′ for Step 3), we work only on the extracted strings. While the729

complexity is preserved, rotating the string every time can be too cumbersome. We can use730

an alternative way to compute signatures of circular substrings, κ(s[i..]s[..j]): we compute as731

in Section 3.6 σ = κ(s[i..]) and τ = κ(s[..j]), as well as bj mod p, which comes for free with732

the computation of τ ; then κ(s[i..]s[..j]) = (σ · bj + τ) mod p.733

Overall, we maintain for all the operations the same asymptotic running times given in734

the Introduction when the strings are interpreted as circular.735

Zs. Lipták, F. Masillo, G. Navarro XX:19

Signed reversals on circular strings. By combining reversals and involutions, we can support736

signed reversals on circular strings, too. We do this in the same way as for linear strings,737

namely by doubling the alphabet Σ of gene identifiers such that each gene i has a negated738

version −i, and using the involution f(i) = −i (and f(−i) = i). Note that the original paper739

in which reversals were introduced [50] used circular chromosomes.740

C.3 Omega extensions741

Circular dynamic strings allow us to implement operations that act on the omega extensions742

of the underlying strings. Recall that for a (linear) string s, the infinite string sω is defined as743

the infinite concatenation sω = s ·s ·s · · · . These are, for example, used in the definition of the744

extended Burrows-Wheeler Transform (eBWT) of Mantaci et al. [37], where the underlying745

string order is based on omega extensions. In this case, comparisons of substrings may need746

to be made whose length exceeds the shorter of the two strings s1 and s2. We therefore747

introduce a generalization of circular substrings as follows: t is called an omega-substring of748

s if t = s[i..]sks[..j] for some j < i − 1 and k ≥ 0. Note that the suffix s[i..] and the prefix749

s[..j] may also be empty. Thus, t is an omega-substring of s if and only if t = vkv[..j] for750

some k ≥ 1 and some conjugate v of s.751

An important tool in this section will be the famous Fine and Wilf Lemma [36], which752

states that if a string w has two periods r, q and |w| ≥ r + q − gcd(r, q), then w is also753

periodic with period gcd(r, q) (a string s is called periodic with period r if s[i + r] = s[i] for754

all 1 ≤ i ≤ |s| − r). The following is a known corollary, a different formulation of which was755

proven, e.g., in [37]; we reprove it here for completeness.756

▶ Lemma 4. Let u, v be two strings. If lcp(uω, vω) ≥ |u| + |v| − gcd(|u|, |v|), then uω = vω.757

Proof. Let ℓ = lcp(uω, vω) ≥ |u| + |v| − gcd(|u|, |v|). Then the string t = sω
1 [..ℓ] is periodic758

both with period |u| and with period |v|, and thus, by the Fine and Wilf lemma, it is also759

periodic with period gcd(|u|, |v|). Since gcd(|u|, |v|) ≤ |u|, |v|, this implies that both u and v760

are powers of the same string x, of length gcd(|u|, |v|) and therefore, uω = xω = vω. ◀761

We further observe that the fingerprint of strings of the form uk can be computed from the762

fingerprint of string u. More precisely, let u be a string, π = κ(u) its fingerprint, and k ≥ 1.763

Then, calling d = b|u| mod p (which we also obtain in the field y.power when computing764

κ(u)), it holds765

κ(uk) = (π · dk−1 + π · dk−2 + · · · + π · d + π) mod p766

= (π · (dk−1 + dk−2 + · · · + 1)) mod p, (1)767

where geomsum(d, k − 1) = (dk−1 + dk−2 + · · · + 1) mod p can be computed in O(log k) time768

using the identity d2k+1 + d2k + · · · + 1 = (d + 1) · ((d2)k + (d2)k−1 + · · · + 1), as follows4 (all769

modulo p):770

geomsum(d, 0) = 1771

geomsum(d, 2k + 1) = (d + 1) · geomsum(d2, k) (2)772

geomsum(d, 2k) = d · geomsum(d, 2k − 1) + 1773

4 This technique seems to be folklore. Note that the better known formula geomsum(d, k) = ((dk+1 −
1) · (d − 1)−1) mod p requires computing multiplicative inverses, which takes O(log N) time using the
extended Euclid’s algorithm, or O(log log N) with faster algorithms [46]; those terms would not be
absorbed by others in our cost formula.

XX:20 A Textbook Solution for Dynamic Strings

Extended substring equality. We devise at least two ways in which our equal query774

can be extended to omega extensions. First, consider the query equalω(s1, i1, s2, i2, ℓ) =775

equal(sω
1 , i1, sω

2 , i2, ℓ), that is, the normal substring equality interpreted on the omega776

extensions of s1 and s2. We let v1 = rotate(s1, i1) and v2 = rotate(s2, i2). Then we have777

sω
1 [i1..i1 + ℓ − 1] = vk1

1 v1[..j1], where k1 = ⌊ℓ/|s1|⌋ and j1 = ℓ mod |s1|. If k1 = 0, we simply778

compute κ1 = κ(sω
1 [i1..i1+ℓ−1]) = κ(v1[..j1]). Otherwise, we compute κ1 = κ(sω

1 [i1..i1+ℓ−1])779

by applying Eq. (1) as follows:780

κ1 = (κ(v1) · (dk1−1 + · · · + 1) · bj1 + κ(v1[..j1])) mod p. (3)781

There are various components to compute in this formula apart from the fingerprints782

themselves. First, note that d = b|s1| mod p = b|v1| mod p = root(T1).power for the tree T1783

of s1 (or v1), so we have it in constant time. Second, bj1 mod p is the field y.power after784

we compute κ(v1[..j1]) via y = isolate(v1, 1, j1) after completion of rotate(s1, i1), thus we785

also have it in constant time. Third, dk1−1 + · · · + 1 = geomsum(d, k1 − 1) is computed with786

Eq. (2) in time O(log k1) ⊆ O(log ℓ).787

By Lemma 4 we can define ℓω = |s1| + |s2| and, if ℓ ≥ ℓω, run the equalω query788

with ℓω instead of ℓ. The lemma shows that s1[i1..i1 + ℓ − 1] = s2[i2..i2 + ℓ − 1] iff789

s1[i1..i1 + ℓω − 1] = s2[i2..i2 + ℓω − 1]. This limits ℓ to |s1| + |s2| in our query and therefore790

the cost O(log ℓ) is in O(log |s1s2|).791

We compute κ2 analogously, and return true if and only if κ1 = κ2, after undoing the792

rotations to get back the original strings s1 and s2. The total amortized time for operation793

equalω is then O(log |s1s2|). Note that our results still hold whp because we are deciding794

on fingerprints of strings of length O(N), not O(ℓ) (which is in principle unbounded).795

A second extension of equal is equalω
ω(s1, i1, ℓ1, s2, i2, ℓ2), interpreted as (sω

1 [i1..i1 +796

ℓ1 − 1])ω = (sω
2 [i2..i2 + ℓ2 − 1])ω, that is, the omega extension of sω

1 [i1..i1 + ℓ1 − 1] is797

equal to the omega extension of sω
2 [i2..i2 + ℓ2 − 1]. By Lemma 4, this is equivalent to798

(sω
1 [i1..i1 + ℓ1 − 1])ℓ2 = (sω

2 [i2..i2 + ℓ2 − 1])ℓ1 . So we first compute κ1 = κ(sω
1 [i1..i1 + ℓ1 − 1])799

and κ2 = κ(sω
2 [i2..i2 + ℓ2 − 1]) as above, compute d1 = bℓ1 mod p and d2 = bℓ2 mod p, and800

then return whether (κ1 · (dℓ2−1
1 + · · · + 1)) mod p = (κ2 · (dℓ1−1

2 + · · · + 1)) mod p. Operation801

equalω
ω is then also computed in amortized time O(log |s1s2|).802

Extended longest common prefix. We are also able to extend LCPs to omega extensions:803

operation lcpω(s1, i1, s2, i2) computes, for the corresponding rotations v1 = rotate(s1, i1)804

and v2 = rotate(s2, i2), the longest common prefix length lcp(vω
1 , vω

2), as well as the805

lexicographic order of vω
1 and vω

2 . That this can be done efficiently follows again from Lemma 4.806

We first compare their omega-substrings of length ℓω = |s1| + |s2|. If equalω(s1, i1, s2, i2, ℓω)807

answers true, then it follows that lcp(s1, i1, s2, i2) is ∞. Otherwise, we run a close variant of808

the algorithm described in Section 4.1; note that ℓω can be considerably larger than one of s1809

or s2. For Step 1, we define n′ = n = |s1s2|; the other formulas do not change. We run the810

equalω computations on s1 and s2 using Eq. (3) to compute the fingerprints. We extract the811

substrings of length ℓ′ in Step 3 (analogously, ℓ′′ in Step 1) using the extract for circular812

strings, but do so only if ℓ′ ≤ |s1| (resp., ℓ′ ≤ |s2|); otherwise we keep accessing the original813

string using Eq. (3). The total amortized time to compute LCPs on omega extensions is thus814

O(log |s1s2|).815

C.4 Future work816

One feature that we would like to add to our data structure is allowing identification of817

conjugates. The rationale behind this is that a circular string can be represented by any818

Zs. Lipták, F. Masillo, G. Navarro XX:21

of its linearizations, so these should all be regarded as equivalent. Furthermore, when the819

collection contains several conjugates of the same string, then this may be just an artifact820

caused by the data acquisition process.821

This could be solved by replacing each circular string with its necklace representative,822

that is, the unique conjugate that is lexicographically minimal in the conjugacy class,823

before applying make-string; this representative is computable in linear time in the string824

length [36]. However, updates can change the lexicographic relationship of the rotations, and825

thus the necklace representative of the conjugacy class. Recomputing the necklace rotation826

of s after each update would add worst-case O(|s|) time to our running times, which is not827

acceptable. Computing the necklace rotation after an edit operation, or more in general,828

after any one of our update operations, is an interesting research question, which to the best829

of our knowledge has not yet been addressed.830

	1 Introduction
	2 Basic concepts
	3 Our data structure and standard operations
	3.1 The data structure
	3.2 Creating a new dynamic string
	3.3 Retrieving a substring
	3.4 Edit operations
	3.5 Introducing and extracting substrings
	3.6 Substring equality

	4 Extended operations
	4.1 Longest common prefixes
	4.2 Substring reversals
	4.3 Involutions

	5 Circular strings and omega extension
	6 Conclusion
	A Figures
	B Other Related Work
	C Circular strings and omega extensions
	C.1 Additional definitions
	C.2 Circular strings
	C.3 Omega extensions
	C.4 Future work

