
A Textbook Solution for Dynamic Strings1

Zsuzsanna Lipták #2

Dipartimento di Informatica, University of Verona, Italy3

Francesco Masillo #4

Dipartimento di Informatica, University of Verona, Italy5

Gonzalo Navarro #6

Center for Biotechnology and Bioengineering (CeBiB)7

Department of Computer Science, University of Chile, Chile8

Abstract9

We consider the problem of maintaining a collection of strings while efficiently supporting splits and10

concatenations on them, as well as comparing two substrings, and computing the longest common11

prefix between two suffixes. This problem can be solved in optimal time O(log N) whp for the12

updates and O(1) worst-case time for the queries, where N is the total collection size [Gawrychowski13

et al., SODA 2018]. We present here a much simpler solution based on a forest of enhanced splay14

trees (FeST), where both the updates and the substring comparison take O(log n) amortized time,15

n being the lengths of the strings involved. The longest common prefix of length ℓ is computed in16

O(log n + log2 ℓ) amortized time. Our query results are correct whp. Our simpler solution enables17

other more general updates in O(log n) amortized time, such as reversing a substring and/or mapping18

its symbols. We can also regard substrings as circular or as their omega extension.19

2012 ACM Subject Classification Theory of computation → Data structures design and analysis20

Keywords and phrases dynamic strings, splay trees, dynamic data structures, LCP, circular strings21

Digital Object Identifier 10.4230/LIPIcs..2024.22

Funding Zsuzsanna Lipták: Partially funded by the MUR PRIN project Nr. 2022YRB97K ’PINC’23

(Pangenome INformatiCs. From Theory to Applications) and by the INdAM-GNCS Project24

CUP_E53C23001670001 (Compressione, indicizzazione, analisi e confronto di dati biologici).25

Gonzalo Navarro: Funded by Basal Funds FB0001, Mideplan, Chile, and Fondecyt Grant 1-230755,26

Chile.27

© Zsuzsanna Lipták, Francesco Masillo, Gonzalo Navarro;
licensed under Creative Commons License CC-BY 4.0

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:zsuzsanna.liptak@univr.it
https://orcid.org/0000-0002-3233-0691
mailto:francesco.masillo@univr.it
https://orcid.org/0000-0002-2078-6835
mailto:gnavarro@dcc.uchile.cl
https://orcid.org/0000-0002-2286-741X
https://doi.org/10.4230/LIPIcs..2024.
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Zs. Lipták, F. Masillo, G. Navarro XX:1

1 Introduction28

Consider the problem in which we have to maintain a collection of dynamic strings, that29

is, strings we want to modify over time. The modifications may be edit operations such30

as insertion, deletion, or substitution of a single character; inserting or deleting an entire31

substring (possibly creating a new string from the deleted substring); adding a fresh string32

to the collection; etc. In terms of queries, we may want to retrieve a symbol or substring of a33

dynamic string, determine whether two substrings from anywhere in the collection are equal,34

or even determine the longest prefix shared by two suffixes in the collection (LCP). The35

collection must be maintained in such a way that both updates and queries have little cost.36

This setup is known in general as the dynamic strings problem. A partial and fairly37

straightforward solution are the so-called ropes, or cords [7]. These are binary trees1 where38

the leaves store short substrings, whose left-to-right concatenation forms the string. Ropes39

were introduced for the Cedar programming language to speed up handling very long40

strings; a C implementation (termed cords) was also given in the same paper [7]. As the41

motivating application of ropes/cords was that of implementing a text editor, they support42

edit operations and extraction/insertion of substrings to enable fast typing and cut&paste, as43

well as retrieving substrings, but do not support queries like substring equality or LCPs. The44

trees must be periodically rebalanced to maintain logarithmic times. Recently, a modified45

version of ropes was implemented for the Ruby language as a basic data type [39]. This46

variant supports the same updates but does not give any theoretical guarantee.47

The first solution we know of that enables equality tests, by Sundar and Tarjan [47],48

supports splitting and concatenating whole sequences, and whole-string equality in constant49

time, with updates taking O(
√

N log m + log m) amortized time, where N is the total50

length of all the strings in the collection and m is the number of updates so far. It is51

easy to see that these three primitives encompass all the operations and queries above,52

except for LCP (substring retrieval is often implicit). The update complexity was soon53

improved by Mehlhorn et al. [38] to O(log2 N) expected time with a randomized data54

structure, and O(log N(log m log∗ m + log N)) worst-case time with a deterministic one. The55

deterministic time complexity was later improved by Alstrup et al. [1] to O(log N log∗ N)56

with high probability (whp), also computing LCPs in O(log N) worst-case time. Recently,57

Gawrychowski et al. [23, 24] obtained O(log N) update time whp, retaining constant time58

to compare substrings, and also decreasing the LCP time to constant, among many other59

results. They also showed that the problem is essentially closed because just updates60

and substring equality require Ω(log N) time even if allowing amortization. Nishimoto61

et al. [41, 42] showed how to compute LCPs in worst-case time O(log N + log ℓ log∗ N),62

where ℓ is the LCP length, while inserting/deleting substrings of length ℓ in worst-case time63

O((ℓ + log N log∗ N) (log log N)2

log log log N). See Section B in the Appendix for more related work.64

All these results build on the idea of parsing a string hierarchically by consistently cutting65

it into blocks, giving unique names to the blocks, and passing the sequence of names to the66

next level of parsing. The string is then represented by a parse tree of logarithmic height,67

whose root consists of a single name, which can be compared to the name at the root of68

another substring to determine string equality. While there is a general consensus on the69

fact that those solutions are overly complicated, Gawrychowski et al. [24] mention that70

“We note that it is very simple to achieve O(log n) update time [...], if we allow the71

1 The authors [7] actually state that they are DAGs and referring to them as binary trees is just a
simplification. The reason is that the nodes can have more than one parent, so subtrees may be shared.

XX:2 A Textbook Solution for Dynamic Strings

equality queries to give an incorrect result with polynomially small probability. We represent72

every string by a balanced search tree with characters in the leaves and every node storing73

a fingerprint of the sequence represented by its descendant leaves. However, it is not clear74

how to make the answers always correct in this approach [...]. Furthermore, it seems that75

both computing the longest common prefix of two strings of length n and comparing them76

lexicographically requires Ω(log2 n) time in this approach.”77

This suggestion, indeed, connects to the original idea of ropes [7]. Cardinal and Iacono78

[12] built on the suggestion to develop a kind of tree dubbed “Data Dependent Tree (DDT)”,79

which enables updates and LCP computation in O(log N) expected amortized time, yet80

with no errors. DDTs eliminate the chance of errors by ensuring that the fingerprints have81

no collisions—they simply rebuild all DDTs for all strings in the collection, using a new82

hash function, when this low-probability event occurs—and reduce the LCP complexity to83

O(log N) by ensuring that subtrees representing the same string have the same shape (so84

one can descend in the subtrees of both strings synchronously).85

In this paper we build on the same suggestion [24], but explore the use of another kind of86

tree—an enhanced splay tree—which yields a beautifully simple yet powerful data structure87

for maintaining dynamic string collections. We obtain logarithmic amortized update times for88

most operations (our cost to compute LCPs lies between logarithmic and squared-logarithmic,89

see later) and our queries return correct answers whp. The ease of implementation of splay90

trees makes our solution attractive to be included in a textbook for undergraduate students.91

An important consequence of using simpler data structures is that our space usage is92

O(N), whereas the solutions based on parsings require in addition O(log N) space per update93

performed, as each one adds a new path to the parse tree. Since the previous parse tree94

is still available, those structures are persistent: one can access any previous version. Our95

solution is not persistent in principle, but we can make it persistent using O(1) extra space96

per update or query made so far, by using the techniques of Driscoll et al. [19]. These add97

only O(1) amortized time to the operations.98

It would not be hard to obtain worst-case times instead of amortized ones, by choosing99

AVL, α-balanced, or other trees that guarantee logarithmic height. One can indeed find the100

use of such binary trees for representing strings in the literature [44, 16, 22]. Our solution101

using splay trees has the key advantage of being very simple and easy to understand. The102

basic operations of splitting and concatenating strings, using worst-case balanced trees, imply103

attaching and detaching many subtrees, plus careful rebalancing, which is a nightmare to104

explain and implement.2 Knuth, for example, considered them too complicated to include in105

his book [34, p. 473] “Deletion, concatenation, etc. It is possible to do many other things106

to balanced trees and maintain the balance, but the algorithms are sufficiently lengthly that107

the details are beyond the scope of this book.” Instead, he says [34, p. 478] “A much simpler108

self-adjusting data structure called a splay tree was developed subsequently [...] Splay trees, like109

the other kinds of balanced trees already mentioned, support the operations of concatenation110

and splitting as well as insertion and deletion, and in a particularly simple way.”111

Our contribution. We use a splay tree [45], enhanced with additional information, to112

represent each string in the collection, where all the nodes contain string symbols and113

Karp-Rabin-like fingerprints [30, 40] of the symbols in their subtree. We refer to our data114

structure as a forest of enhanced splay trees, or FeST. As we will see, we can create new115

2 As an example, an efficient implementation [33] of Rytter’s AVL grammar [44] has over 10,000 lines of
C++ code considering only their “basic” variant.

Zs. Lipták, F. Masillo, G. Navarro XX:3

strings in O(n) time, extract substrings of length ℓ in O(ℓ + log n) time, perform updates116

and (correctly whp) compare substrings in O(log n) time, where n is the length of the strings117

involved—as opposed to the total length N of all the strings—and the times are amortized118

(the linear terms are also worst-case). Further, we can compute LCPs correctly whp in119

amortized time O(log n + log2 ℓ), where ℓ is the length of the returned LCP.120

While our LCP time is O(log2 n) for long enough ℓ, LCPs are usually much shorter than121

the suffixes. For example, in considerably general probabilistic models [48], the maximum122

LCP value between any distinct suffixes of two strings of length n is almost surely O(log n),123

in which case our algorithm runs in O(log n) amortized time.124

The versatility of our FeST data structure allows us to easily support other kinds of125

operations, such as reversing or complementing substrings, or both. We can thus implement126

the reverse complementation of a substring in a DNA or RNA sequence, whereby the substring127

is reversed and each character is replaced by its Watson-Crick complement. Substring reversal128

alone is used in classic problems on genome rearrangements where genomes are represented129

as sequences of genes, and have to be sorted by reversals (see, e.g., [50, 6, 10, 11, 43, 13], to130

cite just a few). Note that chromosomes can be viewed either as permutations or as strings,131

when gene duplication is taken into account, see Fertin et al. [20]; our FeST data structure132

accommodates both. We can also implement signed reversals [28, 27], another model of133

evolutionary operation used in genome rearrangements. In general, we can combine reversals134

with any involution on the alphabet, of which signed or Watson-Crick complementation are135

only examples. In order to support these operations in O(log n) amortized time, we only need136

to add new constant-space annotations, further enhancing our splay trees while retaining the137

running times for the other operations. The obvious solution of maintaining modified copies138

of the strings (e.g., reversed, complemented, etc.) is less attractive in practice due to the139

extra space and time needed to store and update all the copies.140

Operations supported. We maintain a collection of strings of total length N in O(N) space,141

and support the following operations, where we distinguish the basic string data type from142

dynamic strings (all times are amortized). We have not chose a minimal set of primitives143

because reducing to primitives entails considerable performance overheads in practice, even144

if the asymptotic time complexities are not altered.145

make-string(w) creates a dynamic string s from a basic string w, in O(|s|) time.146

access(s, i) returns the symbol s[i] in O(log |s|) time.147

retrieve(s, i, j) returns the basic string w[1..j − i + 1] = s[i..j], in O(|w| + log |s|) time.148

substitute(s, i, c), insert(s, i, c), and delete(s, i) perform the basic edit operations on149

s: substituting s[i] by character c, inserting c at s[i], and deleting s[i], respectively, all in150

O(log |s|) time. For appending c at the end of s one can use insert(s, |s| + 1, c).151

introduce(s1, i, s2) inserts s2 at position i of s1 (for 1 ≤ i ≤ |s1| + 1), converting s1 to152

s1[..i − 1] · s2 · s1[i..] and destroying s2, in O(log |s1s2|) time.153

extract(s, i, j) creates dynamic string s′ = s[i..j], removing it from s, in O(log |s|) time.154

equal(s1, i1, s2, i2, ℓ) determines the equality of substrings s1[i1..i1 + ℓ − 1] and s2[i2..i2 +155

ℓ − 1] in O(log |s1s2|) time, correctly whp.156

lcp(s1, i1, s2, i2) computes the length ℓ of the longest common prefix between suffixes157

s1[i1..] and s2[i2..], in O(log |s1s2| + log2 ℓ) time, correctly whp, and also tells which suffix158

is lexicographically smaller.159

reverse(s, i, j) reverses the substring s[i..j] of s, in O(log |s|) time.160

map(s, i, j) applies a fixed involution (a symbol mapping that is its own inverse) to all161

the symbols of s[i..j], in O(log |s|) time.162

XX:4 A Textbook Solution for Dynamic Strings

Our data structure also enables easy implementation of other features, such as handling163

circular strings. This is an important and emerging topic [5, 15, 25, 26, 29], as many current164

sequence collections, in particular in computational biology, consist of circular rather than165

linear strings. Recent data structures built for circular strings [8, 9], based on the extended166

Burrows-Wheeler Transform (eBWT) [37], avoid the detour via the linearization and handle167

the circular input strings directly. Finally, FeST also allows queries on the omega extensions168

of strings, that is, on the infinite concatentation sω = s · s · s · · · . These occur, for example,169

in the context of the eBWT, which is based on the so-called omega-order (see Appendix).170

2 Basic concepts171

Strings. We use array-based notation for strings, indexing from 1, so a string s is a finite172

sequence over a finite ordered alphabet Σ, written s = s[1..n] = s[1]s[2] · · · s[n], for some173

n ≥ 0. We assume that the alphabet Σ is integer. The length of s is denoted |s|, and174

ε denotes the empty string, the unique string of length 0. For 1 ≤ i, j ≤ |s|, we write175

s[i..j] = s[i]s[i + 1] · · · s[j] for the substring from i to j, where s[i..j] = ε if i > j. We176

write prefixes as s[..i] = s[1..i] and suffixes as s[i..] = s[i..|s|]. Given two strings s, t, their177

concatenation is written s · t or simply st, and sk denotes the k-fold concatenation of s, with178

s0 = ε. A substring (prefix, suffix) of s is called proper if it does not equal s.179

The longest common prefix (LCP) of two strings s and t is defined as the longest prefix180

u that is both a prefix of s and t, and lcp(s, t) = |u| as its length. One can define the181

lexicographic order based on the lcp: s <lex t if either s is a proper prefix of t, or otherwise182

if s[ℓ + 1] < t[ℓ + 1], where ℓ = lcp(s, t).183

Splay trees. The splay tree [45] is a binary search tree that guarantees that a sequence of184

insertions, deletions, and node accesses costs O(log n) amortized time per operation on a185

tree of n nodes that starts initially empty. In addition, splay trees support splitting and186

joining trees, both in O(log n) amortized time, where n is the total number of nodes involved187

in the operation.188

The basic operation of the splay tree is called splay(x), which moves a tree node x to189

the root by a sequence of primitive rotations called zig, zig-zig, zig-zag, and their symmetric190

versions. Let x(A, B) denote a tree rooted at x with left and right subtrees A and B, then191

the rotation zig-zig converts z(y(x(A, B), C), D) into x(A, y(B, z(C, D)), while the rotation192

zig-zag converts z(y(A, x(B, C)), D) into x(y(A, B), z(C, D)). Whether zig-zig or zig-zag (or193

their symmetric variant) is applied to x depends on its relative position w.r.t. its grandparent.194

Note that both of these operations are composed by two edge rotations. Finally, operation195

zig, which is only applied if x is a child of the root, converts y(x(A, B), C) into x(A, y(B, C)).196

Every access or update on the tree is followed by a splay on the deepest reached node. In197

particular, after finding a node x in a downward traversal, we do splay(x) to make x the tree198

root. The goal is that the costs of all the operations are proportional to the cost of all the199

related splay operations performed, so we can focus on analyzing only the splays. Many of200

the splay tree properties can be derived from a general “access lemma” [45, Lem. 1].201

▶ Lemma 1 (Access Lemma [45]). Let us assign any positive weight w(x) to the nodes x of a202

splay tree T , and define sw(x) as the sum of the weights of all the nodes in the subtree rooted203

at x. Then, the amortized time to splay x is O(log(W/sw(x))) ⊆ O(log(W/w(x))), where204

W =
∑

x∈T w(x).205

The result is obtained by defining r(x) = log sw(x) (all our logarithms are in base 2) and206

Φ(T) =
∑

x∈T r(x) as the potential function for the splay tree T . If we choose w(x) = 1 for207

Zs. Lipták, F. Masillo, G. Navarro XX:5

all x, then W = n on a splay tree of n nodes, and thus we obtain O(log n) amortized cost for208

each operation. By choosing other functions w(x), one can prove other properties of splay209

trees like static optimality, the static finger property, and the working set property [45].210

The update operations supported by splay trees include inserting new nodes, deleting211

nodes, joining two trees (where all the nodes in the second tree go to the right of the nodes212

in the first tree), and splitting a tree into two at some node (where all the nodes to its right213

become a second tree). The times of those operations are ruled by the “balance theorem214

with updates” [45, Thm. 6].215

▶ Lemma 2 (Balance Theorem with Updates [45]). Any sequence of access, insert, delete,216

join and split operations on a collection of initially empty splay trees has an amortized cost217

of O(log n) per operation, where n is the size of the tree(s) where the operation is carried out.218

This theorem is proved with the potential function that assigns w(x) = 1 to every node219

x. Note the theorem considers a forest of splay trees, whose potential function is the sum of220

the functions Φ(T) over the trees T in the forest. For details, see the original paper [45].221

Karp-Rabin fingerprinting. Our queries will be correct “with high probability” (whp),222

meaning a probability of at least 1 − 1/N c for an arbitrarily large constant c, where N is223

the total size of the collection. This will come from the use of a variant of the original224

Karp-Rabin fingerprint [30] (cf. [40]) defined as follows. Let [1..a] be the alphabet of our225

strings and p ≥ a a prime number. We choose a random base b uniformly from [1..p − 1].226

The fingerprint κ of string s[1..n] is defined as κ(s) =
(∑n−1

i=0 s[n − i] · bi
)

mod p. We say227

that two strings s ̸= s′ of the same length n collide through κ if κ(s) = κ(s′), that is,228

κ(s′′) = 0 where s′′ = s − s′ is the string defined by s′′[i] = (s[i] − s′[i]) mod p. Since κ(s′′)229

is a polynomial, in the variable b, of degree at most n − 1 over the field Zp, it has at most230

n − 1 roots. The probability of a collision between two strings of length n is then bounded231

by (n − 1)/(p − 1) because b is uniformly chosen in [1..p − 1]. By choosing p ∈ Θ(N c+1)232

for any desired constant c, we obtain that κ is collision-free on any s ̸= s′ whp. We will233

actually choose p ∈ Θ(N c+2) because some of our operations perform O(polylog N) string234

comparisons, not just one. Since N varies over time, we can use instead a fixed upper bound,235

like the total amount of main memory. We use the RAM machine model where logical and236

arithmetic operations on Θ(log N) machine words take constant time.237

Two fingerprints κ(s) and κ(s′) can then be composed in constant time to form κ(s′ · s) =238

(κ(s′) · b|s| + κ(s)) mod p. To avoid the O(log |s|) time for modular exponentiation, we239

will maintain the value b|s| mod p together with κ(s). The corresponding value for s′ · s is240

(b|s′| · b|s|) mod p, so we can maintain those powers in constant time upon concatenations.241

3 Our data structure and standard operations242

In this section we describe our data structure called FeST (for Forest of enhanced Splay243

Trees), composed of a collection of (enhanced) splay trees, and then show how the traditional244

operations on dynamic strings are carried out on it.245

3.1 The data structure246

We will use a FeST for maintaining the collection of strings, one splay tree per string. A247

dynamic string s[1..n] is encoded in a splay tree with n nodes such that s[k] is stored in248

the node x with in-order k (the in-order of a node is the position in which it is listed if we249

XX:6 A Textbook Solution for Dynamic Strings

recursively traverse first the left subtree, then the node, and finally the right subtree). We250

will say that node x represents the substring s[i..j], where [i..j] is the range of the in-orders251

of all the nodes in the subtree rooted at x. Let T be the splay tree representing string s,252

then for 1 ≤ i ≤ |s|, we call node(i) the node with in-order i, and for a node x of T , we call253

pos(x) the in-order of node x. The root of T is denoted root(T).254

For the amortized analysis of our FeST, our potential function Φ will be the sum of the255

potential functions Φ(T) over all the splay trees T representing our string collection. The256

collection starts initially empty, with Φ = 0. New strings are added to the collection with257

make-string; then edited with substitute, insert, and delete, and redistributed with258

introduce and extract.259

Information stored at nodes. A node x of the splay tree representing s[i..j] will contain the260

information of its left and right child, called x.left and x.right, its symbol x.char = s[pos(x)],261

its subtree size x.size = j − i + 1, its fingerprint x.fp = κ(s[i..j]), and the value x.power =262

bj−i+1 mod p. These fields are recomputed in constant time whenever a node x acquires new263

children x.left and/or x.right (e.g., during the splay rotations) with the following formulas:264

(1) x.size = x.left.size + 1 + x.right.size, (2) x.fp = ((x.left.fp · b + x.char) · x.right.power +265

x.right.fp) mod p, and (3) x.power = (x.left.power · b · x.right.power) mod p, as explained in266

Section 2. For the formula to be complete when the left and/or right child is null, we assume267

null.size = 0, null.fp = 0, and null.power = 1. We will later incorporate other fields.268

Subtree sizes allow us identify node(i) given i, in the splay tree T representing string s, in269

O(log |s|) amortized time. This means we can answer access(s, i) in O(log |s|) amortized time,270

since s[i] = node(i).char. Finding node(i) is done in the usual way, with the recursive function271

find(i) = find(root(T), i) that returns the ith smallest element in the subtree rooted at the272

given node. More precisely, find(x, i) = x if i = x.left.size + 1, find(x, i) = find(x.left, i)273

if i < x.left.size + 1, and find(x, i) = find(x.right, i − (x.left.size + 1)) if i > x.left.size + 1.274

To obtain logarithmic amortized time, find splays the node it returns, thus pos(root(T)) = i275

holds after calling find(root(T), i).276

Isolating substrings. We will make use of another primitive we call isolate(i, j), for277

1 ≤ i, j ≤ |s| and i ≤ j + 1, on a tree T representing string s. This operation rearranges T in278

such a way that s[i..j] becomes represented by one subtree, and returns this subtree’s root y.279

If i = 1 and j = n, then y = root(T) and we are done. If i = 1 and j < n, then we find280

(and splay) node(j + 1) using find(j + 1); this will move node(j + 1) to the root, and s[i..j]281

will be represented by the left subtree of the root, so y = root(T).left. Similarly, if 1 < i282

and j = n, then we perform find(i − 1), so node(i − 1) is splayed to the root and s[i..j] is283

represented by the right subtree of the root, thus y = root(T).right.284

Finally, if 1 < i, j < n, then splaying first node(j + 1) and then node(i − 1) will typically285

result in node(i − 1) being the root and node(j + 1) its right child, thus the left subtree of286

node(j + 1) contains s[i..j], that is, y = root(T).right.left. The only exception arises if the287

last splay operation on node(i − 1) is a zig-zig, as in this case node(j + 1) would become288

a grandchild, not a child, of the root. Therefore, in this case, we modify the last splay289

operation: if node(i − 1) is a grandchild of the root and a zig-zig must be applied, we perform290

instead two consecutive zig operations on node(i − 1) in a bottom-up manner, that is, we first291

rotate the edge between node(i − 1) and its parent, and then the edge between node(i − 1)292

and its new parent (former grandparent), see Fig. 3 in the Appendix.293

We now consider the effect of the modified zig-zig operation on the potential. In the proof294

of Lemma 1 [45, Lem. 1], Sleator and Tarjan show that the zig-zig and the zig-zag cases295

Zs. Lipták, F. Masillo, G. Navarro XX:7

contribute 3(r′(x)−r(x)) to the amortized cost, where r′(x) is the new value of r(x) after the296

operation. The sum then telescopes to 3(r(t) − r(x)) = 3 log(sw(t)/sw(x)) along an upward297

path towards a root node t. The zig rotation, instead, contributes 1 + r′(x) − r(x), where298

the 1 would be problematic if it was not applied only once in the path. Our new zig-zig may,299

at most one time in the path, cost like two zig’s, 2 + 2(r′(x) − r(x)), which raises the cost300

bound of the whole splay operation from 1 + 3 log(sw(t)/sw(x)) to 2 + 3 log(sw(t)/sw(x)).301

This retains the amortized complexity, that is, the amortized time for isolate is O(log |s|).302

3.2 Creating a new dynamic string303

Given a basic string w[1..n], operation make-string(w) creates a new dynamic string s[1..n]304

with the same content as w, which is added to the FeST. While this can be accomplished in305

O(n log n) amortized time via successive insert operations on an initially empty string, we306

describe a “bulk-loading” technique that achieves linear worst-case (and amortized) time.307

The idea is to create, in O(n) time, a perfectly balanced splay tree using the standard308

recursive procedure. As we show in the next lemma, this shape of the tree adds only O(n)309

to the potential function, and therefore the amortized time of this procedure is also O(n).310

▶ Lemma 3. The potential Φ(T) of a perfectly balanced splay tree T with n nodes is at most311

2n + O(log2 n) ⊆ O(n).312

Proof. Let d be the depth of the deepest leaves in a perfectly balanced binary tree, and313

call l = d − d′ + 1 the level of any node of depth d′. It is easy to see that there are at314

most 1 + n/2l subtrees of level l. Those subtrees have at most 2l − 1 nodes. Separating the315

sum Φ(T) =
∑

x∈T r(x) by levels l and using the bound sw(x) < 2l if x is of level l, we get316

Φ(T) <
∑log n

l=1
(
1 + n

2l

)
log 2l = 2n + O(log2 n). ◀317

Once the tree is created and the fields x.char are assigned in in-order, we perform a318

post-order traversal to compute the other fields. This is done in constant time per node319

using the formulas given in Section 3.1.320

3.3 Retrieving a substring321

Given a string s in the FeST and two indices 1 ≤ i ≤ j ≤ |s|, operation retrieve(s, i, j)322

extracts the substring s[i..j] and returns it as a basic string. The special case i = j is given323

by access(s, i), which finds node(i), splays it, and returns root(T).char, recall Section 3.1. If324

i < j, we perform y = isolate(i, j) and then we return s[i..j] with an in-order traversal of325

the subtree rooted at y. Overall, the operation retrieve(s, i, j) takes O(log |s|) amortized326

time for isolate, and then O(j − i + 1) worst case time for the traversal of the subtree.327

3.4 Edit operations328

Let s be a string in the FeST, i an index of s, and c a character. The simplest edit operation,329

substitute(s, i, c) writes c at s[i], that is, s becomes s′ = s[..i − 1] · c · s[i + 1..]. It is330

implemented by doing find(i) in the splay tree T of s, in O(log |s|) amortized time. After the331

operation, node(i) is the root, so we set root(T).char = c and recompute (only) its fingerprint332

as explained in Section 3.1.333

Now consider operation insert(s, i, c), which converts s into s′ = s[..i − 1] · c · s[i..]. This334

corresponds to the standard insertion of a node in the splay tree, at in-order position i. We335

first use find(i) in order to make x = node(i) the tree root, and then create a new root node336

y, with y.left = x.left and y.right = x. We then set x.left = null and recompute the other337

XX:8 A Textbook Solution for Dynamic Strings

fields of x as shown in Section 3.1. Finally, we set y.char = c and also compute its other338

fields. By Lemma 2, the amortized cost for an insertion is O(log |s|).339

Finally, the operation delete(s, i) converts s into s′ = s[..i−1]·s[i+1..]. This corresponds340

to standard deletion in the splay tree: we first do find(i) in the tree T of s, so that x = node(i)341

becomes the root, and then join the splay trees of x.left and x.right, isolating the root node342

x and freeing it. The joined tree now represents s′; the amortized cost is O(log |s|).343

3.5 Introducing and extracting substrings344

Given two strings s1 and s2 represented by trees T1 and T2 in the FeST, and an insertion345

position i in s1, operation introduce(s1, i, s2) generates a new string s = s1[..i−1] ·s2 ·s1[i..]346

(the original strings are not anymore available). We implement this operation by first doing347

y = isolate(i, i − 1) on the tree T1. Note that in this case y will be a null node, whose348

in-order position is between i − 1 and i. We then replace this null node by (the root of) the349

tree T2. As shown in Section 3.1, the node y that we replace has at most two ancestors in350

T1, say x1 (the root) and x2. We must then recompute the fields of x2 and then of x1.351

Apart from the O(log |s1|) amortized time for isolate, the other operations take constant352

time. We must consider the change in the potential introduced by connecting T2 to T1. In353

the potential Φ, the summands log sw(x1) and log sw(x2) will increase to log(sw(x1) + |s2|)354

and log(sw(x2) + |s2|), thus the increase is O(log |s2|). The total amortized time is thus355

O(log |s1| + log |s2|) = O(log |s1s2|).356

Let s be a string represented by tree T in the FeST and i ≤ j indices in s. Function357

extract(s, i, j) removes s[i..j] from s and creates a new dynamic string s′ from it. This can358

be carried out by first doing y = isolate(i, j) on T , then detaching y from its parent in T359

to make it the root of the tree that will represent s′, and finally recomputing the fields of360

the (former) ancestors x2 and x1 of y. The change in potential is negative, as log sw(x1) and361

log sw(x2) decrease by up to O(log(j − i + 1)). The total amortized time is then O(log |s|).362

3.6 Substring equality363

Let s1[i1..i1 + ℓ − 1] and s2[i2..i2 + ℓ − 1] be two substrings, where possibly s1 = s2. Per364

Section 2, we can compute equal whp by comparing κ(s1[i1..i1+ℓ−1]) and κ(s2[i2..i2+ℓ−1]).365

We compute y1 = isolate(i1, i1 + ℓ − 1) on the tree of s1 and y2 = isolate(i2, i2 + ℓ − 1)366

on the tree of s2. Once node y1 represents s1[i1..i1 + ℓ − 1] and y2 represents s2[i2..i2 + ℓ − 1],367

we compare y1.fp = κ(s1[i1..i1 + ℓ − 1]) with y2.fp = κ(s2[i2..i2 + ℓ − 1]).368

The splay operations take O(log |s1s2|) amortized time, while the comparison of the369

fingerprints takes constant time and returns the correct answer whp. Note this is a one-sided370

error; if the method answers negatively, the strings are distinct.371

4 Extended operations372

In this section we consider less standard operations of dynamic strings, including the373

computation of LCPs and others we have not seen addressed before.374

4.1 Longest common prefixes375

Operation lcp(s1, i1, s2, i2) computes lcp(s1[i1..], s2[i2..]) correctly whp, by exponentially376

searching for the maximum value ℓ such that s1[i1..i1 + ℓ − 1] = s2[i2..i2 + ℓ − 1]. The377

exponential search requires O(log ℓ) equality tests, which are done using equal operations.378

The amortized cost of this basic solution is then O(log |s1s2| log ℓ); we now improve it.379

Zs. Lipták, F. Masillo, G. Navarro XX:9

ℓ′

extract(s1, i1, i1+ℓ′−1)

ℓ′

exponential search

ℓ′

ℓi1

re-introduce

Figure 1 Scheme of operations for lcp shown on one of the two strings.

We note that all the accesses the exponential search performs in s1 and s2 are at distance380

O(ℓ) from s1[i1] and s2[i2]. We could then use the dynamic finger property [18] to show,381

with some care, that the amortized time is O(log |s1s2| + log2 ℓ). This property, however,382

uses a different mechanism of potential functions where trees cannot be joined or split.3 We383

then use an alternative approach. The main idea is that, if we could bound ℓ beforehand,384

we could isolate those areas so that the accesses inside them would cost O(log ℓ) and then385

we could reach the desired amortized time. Bounding ℓ in less than O(log ℓ) accesses (i.e.,386

O(log |s1s2| log ℓ) time) is challenging, however. Assuming for now that s1 ≠ s2 (we later387

handle the case s1 = s2), our plan is as follows (see Fig. 1):388

1. Find a (crude) upper bound ℓ′ ≥ ℓ.389

2. Extract substrings s′
1 = s1[i1..i1 + ℓ′ − 1] and s′

2 = s2[i2..s2 + ℓ′ − 1].390

3. Run the basic exponential search for ℓ between s′
1[1..] and s′

2[1..].391

4. Reinsert substrings s′
1 and s′

2 into s1 and s2.392

Steps 2 and 4 are carried out in O(log |s1s2|) amortized time using the operations extract393

and introduce, respectively. Step 3 will still require O(log ℓ) substring comparisons, but394

since they will be carried out on the shorter substrings s′
1 and s′

2, they will take O(log ℓ log ℓ′)395

amortized time. The main challenge is to balance the cost to find ℓ′ in Step 1 with the396

quality of the approximation of ℓ′ so that log ℓ′ is not much larger than log ℓ.397

Consider the following strategy for Step 1. Let n = |s1s2| and n′ = min(|s1| − i1 +398

1, |s2| − i2 + 1). We first check a few border cases that we handle in O(log n) amortized399

time: if s1[i1..i1 + n′ − 1] = s2[i2..i2 + n′ − 1] we finish with the answer ℓ = n′, or else if400

s1[i1..i1 + 1] ̸= s2[i2..i2 + 1] we finish with the answer ℓ = 0 or ℓ = 1. Otherwise, we define401

the sequence ℓ0 = 2 and ℓi = min(n′, ℓ 2
i−1) and try out the values ℓi for i = 1, 2, . . ., until we402

obtain s1[i1..i1 + ℓi − 1] ̸= s2[i2..i2 + ℓi − 1]. This implies that ℓi−1 ≤ ℓ < ℓi, so we can use403

ℓ′ = ℓi ≤ ℓ2. This yields O(log ℓ log ℓ′) = O(log2 ℓ) amortized time for Step 3. On the other404

hand, since ℓ ≥ ℓi−1 = 22i−1 , it holds i ≤ 1 + log log ℓ. Since each of the i values is tried out405

in O(log n) time with equal, the amortized cost of Step 1 is O(log n log log ℓ) and the total406

cost to compute lcp is O(log n log log ℓ + log2 ℓ). In particular, this is O(log2 ℓ) when ℓ is407

large enough, log ℓ = Ω(
√

log n log log n).408

3 The static finger property cannot be used either, because we need new fingers every time an LCP is
computed. Extending the “unified theorem” [45, Thm. 5] to m fingers (to support m LCP operations in
the sequence) introduces an O(log m) additive amortized time in the operations, since now W = Θ(m).

XX:10 A Textbook Solution for Dynamic Strings

Hitting twice. To obtain our desired time O(log n + log2 ℓ) for every value of log ℓ, we will409

apply our general strategy twice. First, we will set ℓ′′ = 2log2/3 n and determine whether410

s1[i1..i1 + ℓ′′ − 1] = s2[i2..i2 + ℓ′′ − 1]. If they are equal, then log ℓ = Ω(log2/3 n) and we can411

apply the strategy of the previous paragraph verbatim, obtaining amortized time O(log2 ℓ).412

If they are not equal, then we know that ℓ′′ > ℓ, so we extract s′′
1 = s1[i1..i1 + ℓ′′ − 1] and413

s′′
2 = s2[i2..i2+ℓ′′−1] to complete the search for ℓ′ inside those (note we are still in Step 1). We414

use the same sequence ℓi of the previous paragraph, with the only difference that the accesses415

are done on trees of size ℓ′′ and not n; therefore each step costs O(log ℓ′′) = O(log2/3 n)416

instead of O(log n). After finally finding ℓ′, we introduce back s′′
1 and s′′

2 into s1 and s2.417

Step 1 then completes in amortized time O(log n + log2/3 n log log ℓ) = O(log n). Having418

found ℓ′ ≤ ℓ2, we proceed with Step 2 onwards as above, taking O(log2 ℓ) additional time.419

When the strings are the same. In the case s1 = s2, assume w.l.o.g. i1 < i2. We can still420

carry out Step 1 and, if i1 + ℓ′ ≤ i2, proceed with the plan in the same way, extracting s′
1421

and s′
2 from the same string and later reintroducing them. In case i1 + ℓ′ > i2, however, both422

substrings overlap. In this case we extract just one substring, s′ = s1[i1..i2 + ℓ′ − 1], which is423

of length at most 2ℓ′, and run the basic exponential search between s′[1..] and s′[i2 − i1 + 1..]424

still in amortized time O(log ℓ log ℓ′). We finally reintroduce s′ in s1. The same is done if425

we need to extract s′′
1 and s′′

2 : if both come from the same string and i1 + ℓ′′ > i2, then we426

extract just one single string s′′ = s[i1..i2 + ℓ′′ − 1] and obtain the same asymptotic times.427

Lexicographic comparisons. Once we know that (whp) the LCP of the suffixes is of length428

ℓ, we can determine which is smaller by accessing (using access) the symbols at positions429

s1[i1 + ℓ] and s2[i2 + ℓ] and comparing them, in O(log |s1s2|) additional amortized time.430

4.2 Substring reversals431

Operation reverse(s, i, j) changes s to s[..i − 1]s[j]s[j − 1] · · · s[i + 1]s[i]s[j + 1..]. Reflecting432

it directly in our current structure requires Ω(j − i + 1) time, which is potentially Ω(|s|).433

Our strategy, instead, is to just “mark” the subtrees where the reversal should be carried434

out, and de-amortize its cost across future operations, materializing it progressively as we435

traverse the marked subtrees. To this end, we extend our FeST data structure with a new436

Boolean field x.rev in each node x, which indicates that its whole subtree should be regarded437

as reversed, that is, its descending nodes should be read right-to-left, but that this update438

has not yet been carried out. This field is set to false on newly created nodes. We also add439

a field x.fprev, so that if x represents s[i..j], then x.fprev = κ(s[j]s[j − 1] · · · s[i + 1]s[i]) is440

the fingerprint of the reversed string. When x.rev is true, the fields of x (including x.fp and441

x.fprev) still do not reflect the reversal.442

The fields x.fprev must be maintained in the same way as the fields x.fp. Concretely, upon443

every update where the children of node x change, we not only recompute x.fp as shown in444

Section 3.1, but also x.fprev = ((x.right.fprev · b + x.char) · x.left.power + x.left.fprev) mod p.445

In order to apply the described reversal to a substring s[i..j], we first compute y =446

isolate(i, j) on the tree of s, and then toggle the Boolean value y.rev = ¬ y.rev (note447

that, if y had already an unprocessed reversal, this is undone without ever materializing448

it). The operation reverse then takes O(log |s|) amortized time, dominated by the cost of449

isolate(i, j). We must, however, handle potentially reversed nodes.450

Fixing marked nodes. Every time we access a tree node, if it is marked as reversed, we fix451

it, after which it can be treated as a regular node because its fields will already reflect the452

Zs. Lipták, F. Masillo, G. Navarro XX:11

x

A B

x.rev = true

toggle rev

x

A B

root(A).rev =
¬root(A).rev

swap left-right
and x.fp with x.fprev

x

B A

x.rev = false

root(B).rev =
¬root(B).rev

x.fp ↔ x.fprev

Figure 2 Scheme of the fix operation on node x.

reversal of its represented string (though some descendant nodes may still need fixing).453

Fixing a node involves exchanging its left and right children, toggling their reverse marks,454

and updating the node fingerprint. More precisely, we define the primitive fix(x) as follows:455

if x.rev is true, then (i) set x.rev = false, x.left.rev = ¬ x.left.rev, x.right.rev = ¬ x.right.rev,456

(ii) swap x.left with x.right, and (iii) swap x.fp with x.fprev. See Fig. 2 for an example. It is457

easy to see that fix maintains the invariants about the meaning of the reverse fields.458

Because all the operations in splay trees, including the splay, are done along paths that459

are first traversed downwards from the root, it suffices that we run fix(x) on every node460

x we find as we descend from the root (for example, on every node x where we perform461

find(x, i)), before taking any other action on the node. This ensures that all the accesses462

and structural changes to the splay tree are performed over fixed nodes, and therefore no463

algorithm needs further changes. For example, when we perform splay(x), all the ancestors of464

x are already fixed. As another example, if we run equal as in Section 3.6, the nodes y1 and465

y2 will already be fixed by the time we read their fingerprint fields. As a third example, if466

we run retrieve(s, i, j) as in Section 3.3 and the subtree of y has reversed nodes inside, we467

will progressively fix all those nodes as we traverse the subtree, therefore correctly retrieving468

s[i..j] within O(j − i + 1) time.469

Note that fix takes constant time per node and does not change the potential function470

Φ, so no time complexities change due to our adjustments. The new fields also enable other471

queries, for example to decide whether a string is a palindrome.472

4.3 Involutions473

We support the operation map(s, i, j) analogously to substring reversals, that is, isolating474

s[i..j] in a node y = isolate(i, j) and then marking that the substring covered by node y is475

mapped using a new Boolean field y.map, which is set to true. This will indicate that every476

symbol s[k], for i ≤ k ≤ j, must be interpreted as f(s[k]), but that the change has not yet477

been materialized. Similarly to reverse, this information will be propagated downwards478

as we descend into a subtree, otherwise it is maintained in the subtree’s root only. The479

operation will then take O(log |s|) amortized time.480

To manage the mapping and deamortize its linear cost across subsequent operations, we481

will also store fields x.mfp = κ(f(s[i])f(s[i + 1]) · · · f(s[j])) and x.mfprev = κ(f(s[j])f(s[j −482

1]) · · · f(s[i])), which maintain the fingerprint of the mapped string, and its reverse, represented483

by x. Those are maintained analogously as the previous fingerprints: (1) x.mfp = ((x.left.mfp·484

b + f(x.char)) · x.right.power + x.right.mfp) mod p, and (2) x.mfprev = ((x.right.mfprev · b +485

f(x.char)) · x.left.power + x.left.mfprev) mod p.486

As for string reversals, every time we access a tree node, if it is marked as mapped,487

we unmark it and toggle the mapped mark of its children, before proceeding with any488

other action. Precisely, we define the primitive fixm(x) as follows: if x.map is true, then489

(i) set x.map = false, x.left.map = ¬ x.left.map, x.right.map = ¬ x.right.map, (ii) set490

XX:12 A Textbook Solution for Dynamic Strings

x.char = f(x.char), and (iii) swap x.fp with x.mfp, and x.fprev with x.mfprev. We note491

that, in addition, the fix operation defined in Section 4.2 must also exchange x.mfp with492

x.mfprev if we also support involutions. Note how, as for reversals, two applications of f493

cancel each other, which is correct because f is an involution. Operation fixm is applied in494

the same way as fix along tree traversals.495

Reverse complementation. By combining string reversals and involutions, we can for496

example support the application of reverse complementation of substrings in DNA sequences,497

where a substring s[i..j] is reversed and in addition its symbols are replaced by their Watson-498

Crick complement, applying the involution f(A) = T, f(T) = A, f(C) = G, and f(G) = C. In499

case we only want to perform reverse complementation (and not reversals and involutions500

independently), we can simplify our fields and maintain only a Boolean field x.rc and the501

fingerprint x.mfprev in addition to x.fp. Fixing a node consists of: if x.rc is true, then (i)502

set x.rc = false, x.left.rc = ¬ x.left.rc, x.right.rc = ¬ x.right.rc, (ii) set x.char = f(x.char),503

(iii) swap x.left with x.right, (iv) swap x.fp with x.mfprev.504

5 Circular strings and omega extension505

Our data structure can be easily extended to handle circular strings. We do this by introducing506

a new routine, called rotate, which allows us linearize the circular string starting at any507

of its indices. By carefully using this primitive, along with a slight modification for the508

computation of fingerprints, we can support every operation that we presented on linear509

strings with the same time bounds, as well as signed reversals, in O(log |ŝ|) amortized time.510

By supporting operations on circular strings, we can also handle the omega extension of511

strings, which is the infinite concatenation of a string: sω = s · s · · · . Again, we are able to512

meet the same time bounds on every operation on linear strings. We also define two ways to513

implement the equality between omega-extended substrings (for details see the Appendix).514

6 Conclusion515

We presented a new data structure, a forest of enhanced splay trees (FeST), to handle516

collections of dynamic strings. Our solution is much simpler than those offering the best517

theoretical results, while still offering logarithmic amortized times for most update and query518

operations. We answer queries correctly whp, and updates are always correct.519

To build our data structure, we employ an approach that differs from theoretical solutions:520

we use a splay tree for representing each string, enhancing it with additional annotations.521

The use of binary trees to represent dynamic strings is not new, but exploiting the simplicity522

of splay trees for attaching and detaching subtrees is. As our FeST is easy to understand,523

explain, and implement, we believe that it offers the opportunity of wide usability and can524

become a textbook implementation of dynamic strings. Further, we have found nontrivial—525

yet perfectly implementable—solutions to relevant queries, like computing the length ℓ of526

the longest common prefix of two suffixes in time O(log n + log2 ℓ) instead of the trivial527

O(log2 n). The simplicity of our solution enables new features, like the possibility of reversing528

a substring, or reverse-complementing it, to be easily implemented in logarithmic amortized529

time. Our data structure also allows handling circular strings, as well as omega-extensions of530

strings—features competing solutions have not explored. Details will be included in the full531

version of the paper (and can be found in the Appendix).532

Zs. Lipták, F. Masillo, G. Navarro XX:13

References533

1 Stephen Alstrup, Gerth Stølting Brodal, and Theis Rauhe. Pattern matching in dynamic534

texts. In Proc. 11th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages535

819–828, 2000.536

2 Amihood Amir, Itai Boneh, Panagiotis Charalampopoulos, and Eitan Kondratovsky. Repetition537

detection in a dynamic string. In Proc. 27th Annual European Symposium on Algorithms538

(ESA), pages 5:1–5:18, 2019.539

3 Amihood Amir, Panagiotis Charalampopoulos, Costas S. Iliopoulos, Solon P. Pissis, and Jakub540

Radoszewski. Longest common factor after one edit operation. In Proc. 24th International541

Symposium on String Processing and Information Retrieval (SPIRE), pages 14–26, 2017.542

4 Amihood Amir, Panagiotis Charalampopoulos, Solon P. Pissis, and Jakub Radoszewski.543

Dynamic and internal longest common substring. Algorithmica, 82(12):3707–3743, 2020.544

5 Lorraine A.K. Ayad and Solon P. Pissis. MARS: Improving multiple circular sequence alignment545

using refined sequences. BMC Genomics, 18(1):1–10, 2017.546

6 Vineet Bafna and Pavel A. Pevzner. Genome rearrangements and sorting by reversals. In Proc.547

34th Annual Symposium on Foundations of Computer Science (FOCS), pages 148–157, 1993.548

7 Hans-Juergen Boehm, Russell R. Atkinson, and Michael F. Plass. Ropes: An alternative to549

strings. Software Practice and Experience, 25(12):1315–1330, 1995.550

8 Christina Boucher, Davide Cenzato, Zsuzsanna Lipták, Massimiliano Rossi, and Marinella551

Sciortino. Computing the original eBWT faster, simpler, and with less memory. In Proc.552

28th International Symposium on String Processing and Information Retrieval (SPIRE), pages553

129–142, 2021.554

9 Christina Boucher, Davide Cenzato, Zsuzsanna Lipták, Massimiliano Rossi, and Marinella555

Sciortino. r-indexing the eBWT. Information and Computation, 298:105155, 2024. doi:556

10.1016/j.ic.2024.105155.557

10 Alberto Caprara. Sorting by reversals is difficult. In Proc. 1st Annual International Conference558

on Research in Computational Molecular Biology (RECOMB), pages 75–83, 1997.559

11 Alberto Caprara and Romeo Rizzi. Improved approximation for breakpoint graph560

decomposition and sorting by reversals. Journal of Combinatorial Optimization, 6(2):157–182,561

2002.562

12 Jean Cardinal and John Iacono. Modular subset sum, dynamic strings, and zero-sum sets. In563

Proc. 4th Symposium on Simplicity in Algorithms (SOSA), pages 45–56. SIAM, 2021.564

13 Giulio Cerbai and Luca S. Ferrari. Permutation patterns in genome rearrangement problems:565

The reversal model. Discrete Applied Mathematics, 279:34–48, 2020.566

14 Panagiotis Charalampopoulos, Tomasz Kociumaka, and Shay Mozes. Dynamic string alignment.567

In Proc. 31st Annual Symposium on Combinatorial Pattern Matching (CPM), pages 9:1–9:13,568

2020.569

15 Panagiotis Charalampopoulos, Tomasz Kociumaka, Jakub Radoszewski, Solon P. Pissis,570

Wojciech Rytter, Tomasz Walen, and Wiktor Zuba. Approximate circular pattern matching.571

In Proc. 30th Annual European Symposium on Algorithms (ESA), pages 35:1–35:19, 2022.572

16 M. Charikar, E. Lehman, D. Liu, R. Panigrahy, M. Prabhakaran, A. Sahai, and A. Shelat.573

The smallest grammar problem. IEEE Transactions on Information Theory, 51(7):2554–2576,574

2005.575

17 Raphaël Clifford, Allan Grønlund, Kasper Green Larsen, and Tatiana Starikovskaya. Upper576

and lower bounds for dynamic data structures on strings. In Proc. 35th Symposium on577

Theoretical Aspects of Computer Science (STACS), pages 22:1–22:14, 2018.578

18 Richard Cole. On the dynamic finger conjecture for splay trees. Part II: The proof. SIAM579

Journal on Computing, 30(1):44–85, 2000.580

19 James R. Driscoll, Neil Sarnak, Daniel Dominic Sleator, and Robert Endre Tarjan. Making581

data structures persistent. In Proc. 18th Annual ACM Symposium on Theory of Computing582

(STOC), pages 109–121, 1986.583

https://doi.org/10.1016/j.ic.2024.105155
https://doi.org/10.1016/j.ic.2024.105155
https://doi.org/10.1016/j.ic.2024.105155

XX:14 A Textbook Solution for Dynamic Strings

20 Guillaume Fertin, Anthony Labarre, Irena Rusu, Eric Tannier, and Stéphane Vialette.584

Combinatorics of Genome Rearrangements. MIT Press, 2009.585

21 Mitsuru Funakoshi, Yuto Nakashima, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda.586

Longest substring palindrome after edit. In Proc. 29th Annual Symposium on Combinatorial587

Pattern Matching (CPM), pages 12:1–12:14, 2018.588

22 Pawel Gawrychowski. Pattern matching in Lempel-Ziv compressed strings: Fast, simple,589

and deterministic. In Proc. 19th Annual European Symposium on Algorithms (ESA), pages590

421–432, 2011.591

23 Pawel Gawrychowski, Adam Karczmarz, Tomasz Kociumaka, Jakub Lacki, and Piotr592

Sankowski. Optimal dynamic strings. CoRR, abs/1511.02612, 2015.593

24 Pawel Gawrychowski, Adam Karczmarz, Tomasz Kociumaka, Jakub Lacki, and Piotr594

Sankowski. Optimal dynamic strings. In Proc. 29th Annual ACM-SIAM Symposium on595

Discrete Algorithms (SODA), pages 1509–1528, 2018.596

25 Roberto Grossi, Costas S. Iliopoulos, Jesper Jansson, Zara Lim, Wing-Kin Sung, and Wiktor597

Zuba. Finding the cyclic covers of a string. In Proc. 17th International Conference and598

Workshops on Algorithms and Computation (WALCOM), pages 139–150, 2023.599

26 Roberto Grossi, Costas S Iliopoulos, Robert Mercas, Nadia Pisanti, Solon P Pissis, Ahmad600

Retha, and Fatima Vayani. Circular sequence comparison: algorithms and applications.601

Algorithms for Molecular Biology, 11(1):1–14, 2016.602

27 Yijie Han. Improving the efficiency of sorting by reversals. In Proc. International Conference603

on Bioinformatics & Computational Biology (BIOCOMP), pages 406–409, 2006.604

28 Sridhar Hannenhalli and Pavel A. Pevzner. Transforming cabbage into turnip: Polynomial605

algorithm for sorting signed permutations by reversals. In Proc. 27th Annual ACM Symposium606

on Theory of Computing (STOC), pages 178–189, 1995.607

29 Costas S. Iliopoulos, Tomasz Kociumaka, Jakub Radoszewski, Wojciech Rytter, Tomasz Walen,608

and Wiktor Zuba. Linear-time computation of cyclic roots and cyclic covers of a string. In609

Proc. 34th Annual Symposium on Combinatorial Pattern Matching (CPM), pages 15:1–15:15,610

2023.611

30 Richard M. Karp and Michael O. Rabin. Efficient randomized pattern-matching algorithms.612

IBM Journal of Research and Development, 31(2):249–260, 1987.613

31 Dominik Kempa and Tomasz Kociumaka. Dynamic suffix array with polylogarithmic queries614

and updates. In Proc. 54th Annual ACM SIGACT Symposium on Theory of Computing615

(STOC), pages 1657–1670. ACM, 2022.616

32 Dominik Kempa and Tomasz Kociumaka. Dynamic suffix array with polylogarithmic queries617

and updates. CoRR, abs/2201.01285, 2022. URL: https://arxiv.org/abs/2201.01285,618

arXiv:2201.01285.619

33 Dominik Kempa and Ben Langmead. Fast and space-efficient construction of AVL grammars620

from the LZ77 parsing. CoRR, 2105.11052, 2021.621

34 D. E. Knuth. The Art of Computer Programming, volume 3: Sorting and Searching. Addison-622

Wesley, 2nd edition, 1998.623

35 Tomasz Kociumaka, Anish Mukherjee, and Barna Saha. Approximating edit distance in the624

fully dynamic model. In Proc. 64th IEEE Annual Symposium on Foundations of Computer625

Science (FOCS), pages 1628–1638. IEEE, 2023.626

36 M. Lothaire. Applied Combinatorics on Words. Cambridge University Press, 2005.627

37 Sabrina Mantaci, Antonio Restivo, Giovanna Rosone, and Marinella Sciortino. An extension628

of the Burrows-Wheeler transform. Theoretical Computer Science, 387(3):298–312, 2007.629

38 Kurt Mehlhorn, Rajamani Sundar, and Christian Uhrig. Maintaining dynamic sequences630

under equality tests in polylogarithmic time. Algorithmica, 17(2):183–198, 1997.631

39 Kevin Menard, Chris Seaton, and Benoit Daloze. Specializing ropes for ruby. In Proc. 15th632

International Conference on Managed Languages & Runtimes (ManLang), pages 10:1–10:7,633

2018.634

https://arxiv.org/abs/2201.01285
http://arxiv.org/abs/2201.01285

Zs. Lipták, F. Masillo, G. Navarro XX:15

40 Gonzalo Navarro and Nicola Prezza. Universal compressed text indexing. Theoretical Computer635

Science, 762:41–50, 2019.636

41 Takaaki Nishimoto, Tomohiro I, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda.637

Fully dynamic data structure for LCE queries in compressed space. In Proc. 41st International638

Symposium on Mathematical Foundations of Computer Science (MFCS), pages 72:1–72:14,639

2016.640

42 Takaaki Nishimoto, Tomohiro I, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda.641

Dynamic index and LZ factorization in compressed space. Discrete Applied Mathematics,642

274:116–129, 2020.643

43 Andre Rodrigues Oliveira, Ulisses Dias, and Zanoni Dias. On the sorting by reversals and644

transpositions problem. Journal of Universal Computer Science, 23(9):868–906, 2017.645

44 W. Rytter. Application of Lempel-Ziv factorization to the approximation of grammar-based646

compression. Theoretical Computer Science, 302(1-3):211–222, 2003.647

45 Daniel Dominic Sleator and Robert Endre Tarjan. Self-adjusting binary search trees. Journal648

of the ACM, 32(3):652–686, 1985.649

46 Damien Stehlé and Paul Zimmermann. A binary recursive gcd algorithm. In Proc. 6th650

International Symposium on Algorithmic Number Theory (ANTS), pages 411–425, 2004.651

47 Rajamani Sundar and Robert E. Tarjan. Unique binary-search-tree representations and652

equality testing of sets and sequences. SIAM Journal on Computing, 23(1):24–44, 1994.653

48 Wojciech Szpankowski. A generalized suffix tree and its (un)expected asymptotic behaviors.654

SIAM Journal on Computing, 22(6):1176–1198, 1993.655

49 Yuki Urabe, Yuto Nakashima, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda.656

Longest Lyndon substring after edit. In Proc. 29th Annual Symposium on Combinatorial657

Pattern Matching (CPM), pages 19:1–19:10, 2018.658

50 G.A. Watterson, W.J. Ewens, T.E. Hall, and A. Morgan. The chromosome inversion problem.659

Journal of Theoretical Biology, 99:1–7, 1982.660

XX:16 A Textbook Solution for Dynamic Strings

APPENDIX661

A Figures662

j

splay
node(j + 1)

i

splay
node(i − 1)

i − 1

j + 1

i j

i

j + 1

(a) General sequence of operations for isolate(i, j).
j + 1

p

i − 1
A

D

B C

rotate
(node(i − 1),p)

i − 1

A B

j + 1

C

D

p
rotate
(node(i − 1),
node(j + 1))

i − 1

BA

j + 1

C D

p

i j

i j i j

(b) Case of zig-zag as the last splaying operation for isolate(i, j).

j + 1

y

i − 1

A

D

C

B

rotate
(node(i − 1),y)

i − 1

A

B

j + 1

C

D

y
rotate
(node(i − 1),
node(j + 1))

i − 1

A

B

j + 1

C

D
y

i

j

i j i j

(c) Case of the modified zig-zig as the last splaying operation for isolate(i, j).

Figure 3 Scheme of the isolate(i, j) operation applied on a splay tree. Subfigures 3b and 3c
show two cases of the last splay operation of isolate(i, j), yielding a single (shaded) subtree that
represents the substring s[i..j].

Zs. Lipták, F. Masillo, G. Navarro XX:17

s =mississippi

m

s

s p

i i

s

i

s

i

p

extract(s, 9, 11)

s =mississi
s′ =ppi

m

s

s

p

i i

s

i

s

i

p introduce(s, 1, s′)

m

i

i

s

s

s

s = ppimississi

p

i

p

i

s

Figure 4 Cycle-rotation operation: rotate(s, 9) moves s[9..] to the left of s[..8]. After the rotation
the string becomes s[9..]s[..8].

B Other Related Work663

A related line of work aims at maintaining a data structure such that the solution to some664

particular problem on one or two strings can be efficiently updated when these strings undergo665

an edit operation (deletion, insertion, or substitution). Examples are longest common factor666

of two strings [3, 4], optimal alignment of two strings [14], approximating the edit distance [35],667

longest palindromic substring [21], longest square [2], or longest Lyndon factor [49] of one668

string. The setup can be what is referred to as partially dynamic, when the original string or669

strings are returned to their state before the edit, or fully dynamic, when the edit operations670

are reflected on the original string or strings. Clifford et al. [17] give lower bounds on various671

problems of this kind when a single substitution is applied.672

This setup, also referred to as dynamic strings, differs from ours in several ways: (a)673

we are not only interested in solving one specific problem on strings; (b) we have an entire674

collection of strings, and will want to ask queries on any one or any pair of these; and (c) we675

allow many different kinds of update operations.676

Locally consistent parsings to maintain dynamic strings have been used to support more677

complex problems, such as simulating suffix arrays [31, 32].678

C Circular strings and omega extensions679

C.1 Additional definitions680

In this section, we are going to use some further concepts regarding periodicity and conjugacy.681

A string s is called periodic with period r if s[i + r] = s[i] for all 1 ≤ i ≤ |s| − r.682

Two strings s, t are conjugates if there exist strings u, v, possibly empty, such that s = uv683

and t = vu. Conjugacy is an equivalence; the equivalence classes [s] are also called circular684

strings, and any t ∈ [s] is called a linearization of this circular string. Abusing notation, any685

linear string s can be viewed as a circular string, in which case it is taken as a representative686

of its conjugacy class. A substring of a circular string s is any prefix of any t ∈ [s], or,687

equivalently, a string of the form s[i..j] for 1 ≤ i, j ≤ |s| (a linear substring), or s[i..]s[..j],688

where j < i. A necklace is a string s with the property that s ≤lex t for all t ∈ [s]. Every689

conjugacy class contains exactly one necklace.690

When the dynamic strings in our collection are to be interpreted as circular strings, we691

need to adjust some of our operations. Our model is that we will maintain a canonical692

representative ŝ of the class of rotations of s. All the indices of the operations refer to693

XX:18 A Textbook Solution for Dynamic Strings

positions in ŝ. Internally, we may store in the FeST another representative s of the class, not694

necessarily ŝ.695

C.2 Circular strings696

Our general approach to handle operations on ŝ regarding it as circular is to rotate it697

conveniently before accessing it. The splay tree T of ŝ will then maintain some (string)698

rotation s = ŝ[r..]ŝ[..r − 1] of ŝ, and we will maintain a field start(ŝ) = r so that we can map699

any index ŝ[i] referred to in update or query operations to s[((|s| + i − start(ŝ)) mod |s|) + 1].700

When we want to change the rotation of ŝ to another index r′, so that we now store701

s′ = ŝ[r′..]ŝ[..r′ − 1], we make use of a new operation rotate(s, i), which rotates s so that702

its splay tree represents s[i..]s[..i − 1]. This is implemented as s′ = extract(s, i, |s|) followed703

by introduce(s, 1, s′). We then move from rotation r to r′ in O(log |s|) amortized time by704

doing rotate(s, r′ − r + 1) if r′ > r, or rotate(s, |s| + r′ − r + 1) if r′ < r. We then set705

start(ŝ) = r′.706

Operation s = make-string(w) stays as before, in the understanding that ŝ = w will be707

seen as the canonical representation of the class, so we set start(ŝ) = 1; this can be changed708

later with a string rotation if desired. All the operations that address a single position ŝ[i],709

like access and the edit operations, are implemented verbatim by just shifting the index710

i using start(ŝ) as explained. Instead, the operations retrieve, extract, equal, reverse,711

and map, which act on a range ŝ[i..j], may give trouble when i > j, as in this case the712

substring is ŝ[i..]ŝ[..j] by circularity. In this case, those operations will be preceded by a713

change of rotation from the current one, r = start(ŝ), to r′ = 1, using rotate as explained.714

This guard will get rid of those cases. Note that, in the case of equal, we may need to rotate715

both s1 and s2, independently, to compute each of the two signatures.716

The two remaining operations deserve some consideration. Operation introduce(s1, i, s2)717

could be implemented verbatim (with the shifting of i), but in this case it would introduce718

in ŝ1[i] the current rotation of s2, instead of ŝ2 as one would expect. Therefore, we precede719

the operation by a change of rotation in s2 to r′ = 1, which makes the splay tree store ŝ2720

with start(ŝ2) = 1.721

Finally, in operation lcp(s1, i1, s2, i2) we do not know for how long the LCP will extend,722

so we precede it by changes of rotations in both s1 and s2 that make them start at position723

1 of ŝ1 and ŝ2. In case s1 = s2, however, this trick cannot be used. One simple solution is724

to rotate the string every time we call equal during Step 1; recall Section 4.1. This will be725

needed as long as the accesses are done on s1 and s2; as soon as we extract the substrings726

of length ℓ′′ (and, later, ℓ′ for Step 3), we work only on the extracted strings. While the727

complexity is preserved, rotating the string every time can be too cumbersome. We can use728

an alternative way to compute signatures of circular substrings, κ(s[i..]s[..j]): we compute as729

in Section 3.6 σ = κ(s[i..]) and τ = κ(s[..j]), as well as bj mod p, which comes for free with730

the computation of τ ; then κ(s[i..]s[..j]) = (σ · bj + τ) mod p.731

Overall, we maintain for all the operations the same asymptotic running times given in732

the Introduction when the strings are interpreted as circular.733

Signed reversals on circular strings. By combining reversals and involutions, we can support734

signed reversals on circular strings, too. We do this in the same way as for linear strings,735

namely by doubling the alphabet Σ of gene identifiers such that each gene i has a negated736

version −i, and using the involution f(i) = −i (and f(−i) = i). Note that the original paper737

in which reversals were introduced [50] used circular chromosomes.738

Zs. Lipták, F. Masillo, G. Navarro XX:19

C.3 Omega extensions739

Circular dynamic strings allow us to implement operations that act on the omega extensions740

of the underlying strings. Recall that for a (linear) string s, the infinite string sω is defined as741

the infinite concatenation sω = s ·s ·s · · · . These are, for example, used in the definition of the742

extended Burrows-Wheeler Transform (eBWT) of Mantaci et al. [37], where the underlying743

string order is based on omega extensions. In this case, comparisons of substrings may need744

to be made whose length exceeds the shorter of the two strings s1 and s2. We therefore745

introduce a generalization of circular substrings as follows: t is called an omega-substring of746

s if t = s[i..]sks[..j] for some j < i − 1 and k ≥ 0. Note that the suffix s[i..] and the prefix747

s[..j] may also be empty. Thus, t is an omega-substring of s if and only if t = vkv[..j] for748

some k ≥ 1 and some conjugate v of s.749

An important tool in this section will be the famous Fine and Wilf Lemma [36], which750

states that if a string w has two periods r, q and |w| ≥ r + q − gcd(r, q), then w is also751

periodic with period gcd(r, q) (a string s is called periodic with period r if s[i + r] = s[i] for752

all 1 ≤ i ≤ |s| − r). The following is a known corollary, a different formulation of which was753

proven, e.g., in [37]; we reprove it here for completeness.754

▶ Lemma 4. Let u, v be two strings. If lcp(uω, vω) ≥ |u| + |v| − gcd(|u|, |v|), then uω = vω.755

Proof. Let ℓ = lcp(uω, vω) ≥ |u| + |v| − gcd(|u|, |v|). Then the string t = sω
1 [..ℓ] is periodic756

both with period |u| and with period |v|, and thus, by the Fine and Wilf lemma, it is also757

periodic with period gcd(|u|, |v|). Since gcd(|u|, |v|) ≤ |u|, |v|, this implies that both u and v758

are powers of the same string x, of length gcd(|u|, |v|) and therefore, uω = xω = vω. ◀759

We further observe that the fingerprint of strings of the form uk can be computed from the760

fingerprint of string u. More precisely, let u be a string, π = κ(u) its fingerprint, and k ≥ 1.761

Then, calling d = b|u| mod p (which we also obtain in the field y.power when computing762

κ(u)), it holds763

κ(uk) = (π · dk−1 + π · dk−2 + · · · + π · d + π) mod p764

= (π · (dk−1 + dk−2 + · · · + 1)) mod p, (1)765

where geomsum(d, k − 1) = (dk−1 + dk−2 + · · · + 1) mod p can be computed in O(log k) time766

using the identity d2k+1 + d2k + · · · + 1 = (d + 1) · ((d2)k + (d2)k−1 + · · · + 1), as follows4 (all767

modulo p):768

geomsum(d, 0) = 1769

geomsum(d, 2k + 1) = (d + 1) · geomsum(d2, k) (2)770

geomsum(d, 2k) = d · geomsum(d, 2k − 1) + 1771

Extended substring equality. We devise at least two ways in which our equal query772

can be extended to omega extensions. First, consider the query equalω(s1, i1, s2, i2, ℓ) =773

equal(sω
1 , i1, sω

2 , i2, ℓ), that is, the normal substring equality interpreted on the omega774

extensions of s1 and s2. We let v1 = rotate(s1, i1) and v2 = rotate(s2, i2). Then we have775

sω
1 [i1..i1 + ℓ − 1] = vk1

1 v1[..j1], where k1 = ⌊ℓ/|s1|⌋ and j1 = ℓ mod |s1|. If k1 = 0, we simply776

4 This technique seems to be folklore. Note that the better known formula geomsum(d, k) = ((dk+1 −
1) · (d − 1)−1) mod p requires computing multiplicative inverses, which takes O(log N) time using the
extended Euclid’s algorithm, or O(log log N) with faster algorithms [46]; those terms would not be
absorbed by others in our cost formula.

XX:20 A Textbook Solution for Dynamic Strings

compute κ1 = κ(sω
1 [i1..i1+ℓ−1]) = κ(v1[..j1]). Otherwise, we compute κ1 = κ(sω

1 [i1..i1+ℓ−1])777

by applying Eq. (1) as follows:778

κ1 = (κ(v1) · (dk1−1 + · · · + 1) · bj1 + κ(v1[..j1])) mod p. (3)779

There are various components to compute in this formula apart from the fingerprints780

themselves. First, note that d = b|s1| mod p = b|v1| mod p = root(T1).power for the tree T1781

of s1 (or v1), so we have it in constant time. Second, bj1 mod p is the field y.power after782

we compute κ(v1[..j1]) via y = isolate(v1, 1, j1) after completion of rotate(s1, i1), thus we783

also have it in constant time. Third, dk1−1 + · · · + 1 = geomsum(d, k1 − 1) is computed with784

Eq. (2) in time O(log k1) ⊆ O(log ℓ).785

By Lemma 4 we can define ℓω = |s1| + |s2| and, if ℓ ≥ ℓω, run the equalω query786

with ℓω instead of ℓ. The lemma shows that s1[i1..i1 + ℓ − 1] = s2[i2..i2 + ℓ − 1] iff787

s1[i1..i1 + ℓω − 1] = s2[i2..i2 + ℓω − 1]. This limits ℓ to |s1| + |s2| in our query and therefore788

the cost O(log ℓ) is in O(log |s1s2|).789

We compute κ2 analogously, and return true if and only if κ1 = κ2, after undoing the790

rotations to get back the original strings s1 and s2. The total amortized time for operation791

equalω is then O(log |s1s2|). Note that our results still hold whp because we are deciding792

on fingerprints of strings of length O(N), not O(ℓ) (which is in principle unbounded).793

A second extension of equal is equalω
ω(s1, i1, ℓ1, s2, i2, ℓ2), interpreted as (sω

1 [i1..i1 +794

ℓ1 − 1])ω = (sω
2 [i2..i2 + ℓ2 − 1])ω, that is, the omega extension of sω

1 [i1..i1 + ℓ1 − 1] is795

equal to the omega extension of sω
2 [i2..i2 + ℓ2 − 1]. By Lemma 4, this is equivalent to796

(sω
1 [i1..i1 + ℓ1 − 1])ℓ2 = (sω

2 [i2..i2 + ℓ2 − 1])ℓ1 . So we first compute κ1 = κ(sω
1 [i1..i1 + ℓ1 − 1])797

and κ2 = κ(sω
2 [i2..i2 + ℓ2 − 1]) as above, compute d1 = bℓ1 mod p and d2 = bℓ2 mod p, and798

then return whether (κ1 · (dℓ2−1
1 + · · · + 1)) mod p = (κ2 · (dℓ1−1

2 + · · · + 1)) mod p. Operation799

equalω
ω is then also computed in amortized time O(log |s1s2|).800

Extended longest common prefix. We are also able to extend LCPs to omega extensions:801

operation lcpω(s1, i1, s2, i2) computes, for the corresponding rotations v1 = rotate(s1, i1)802

and v2 = rotate(s2, i2), the longest common prefix length lcp(vω
1 , vω

2), as well as the803

lexicographic order of vω
1 and vω

2 . That this can be done efficiently follows again from Lemma 4.804

We first compare their omega-substrings of length ℓω = |s1| + |s2|. If equalω(s1, i1, s2, i2, ℓω)805

answers true, then it follows that lcp(s1, i1, s2, i2) is ∞. Otherwise, we run a close variant of806

the algorithm described in Section 4.1; note that ℓω can be considerably larger than one of s1807

or s2. For Step 1, we define n′ = n = |s1s2|; the other formulas do not change. We run the808

equalω computations on s1 and s2 using Eq. (3) to compute the fingerprints. We extract the809

substrings of length ℓ′ in Step 3 (analogously, ℓ′′ in Step 1) using the extract for circular810

strings, but do so only if ℓ′ ≤ |s1| (resp., ℓ′ ≤ |s2|); otherwise we keep accessing the original811

string using Eq. (3). The total amortized time to compute LCPs on omega extensions is thus812

O(log |s1s2|).813

C.4 Future work814

One feature that we would like to add to our data structure is allowing identification of815

conjugates. The rationale behind this is that a circular string can be represented by any816

of its linearizations, so these should all be regarded as equivalent. Furthermore, when the817

collection contains several conjugates of the same string, then this may be just an artifact818

caused by the data acquisition process.819

This could be solved by replacing each circular string with its necklace representative,820

that is, the unique conjugate that is lexicographically minimal in the conjugacy class,821

Zs. Lipták, F. Masillo, G. Navarro XX:21

before applying make-string; this representative is computable in linear time in the string822

length [36]. However, updates can change the lexicographic relationship of the rotations, and823

thus the necklace representative of the conjugacy class. Recomputing the necklace rotation824

of s after each update would add worst-case O(|s|) time to our running times, which is not825

acceptable. Computing the necklace rotation after an edit operation, or more in general,826

after any one of our update operations, is an interesting research question, which to the best827

of our knowledge has not yet been addressed.828

	1 Introduction
	2 Basic concepts
	3 Our data structure and standard operations
	3.1 The data structure
	3.2 Creating a new dynamic string
	3.3 Retrieving a substring
	3.4 Edit operations
	3.5 Introducing and extracting substrings
	3.6 Substring equality

	4 Extended operations
	4.1 Longest common prefixes
	4.2 Substring reversals
	4.3 Involutions

	5 Circular strings and omega extension
	6 Conclusion
	A Figures
	B Other Related Work
	C Circular strings and omega extensions
	C.1 Additional definitions
	C.2 Circular strings
	C.3 Omega extensions
	C.4 Future work

