

1 A Textbook Solution for Dynamic Strings

2 **Zsuzsanna Lipták**

3 Dipartimento di Informatica, University of Verona, Italy

4 **Francesco Masillo**

5 Dipartimento di Informatica, University of Verona, Italy

6 **Gonzalo Navarro**

7 Center for Biotechnology and Bioengineering (CeBiB)

8 Department of Computer Science, University of Chile, Chile

9 **Abstract**

10 We consider the problem of maintaining a collection of strings while efficiently supporting splits and
11 concatenations on them, as well as comparing two substrings, and computing the longest common
12 prefix between two suffixes. This problem can be solved in optimal time $\mathcal{O}(\log N)$ whp for the
13 updates and $\mathcal{O}(1)$ worst-case time for the queries, where N is the total collection size [Gawrychowski
14 et al., SODA 2018]. We present here a much simpler solution based on a forest of enhanced splay
15 trees (FeST), where both the updates and the substring comparison take $\mathcal{O}(\log n)$ amortized time,
16 n being the lengths of the strings involved. The longest common prefix of length ℓ is computed in
17 $\mathcal{O}(\log n + \log^2 \ell)$ amortized time. Our query results are correct whp. Our simpler solution enables
18 other more general updates in $\mathcal{O}(\log n)$ amortized time, such as reversing a substring and/or mapping
19 its symbols. We can also regard substrings as circular or as their omega extension.

20 **2012 ACM Subject Classification** Theory of computation → Data structures design and analysis

21 **Keywords and phrases** dynamic strings, splay trees, dynamic data structures, LCP, circular strings

22 **Digital Object Identifier** 10.4230/LIPIcs..2024.

23 **Funding** *Zsuzsanna Lipták*: Partially funded by the MUR PRIN project Nr. 2022YRB97K 'PINC'
24 (Pangenome INformatiCs. From Theory to Applications) and by the INdAM-GNCS Project
25 CUP_E53C23001670001 (Compressione, indicizzazione, analisi e confronto di dati biologici).

26 *Gonzalo Navarro*: Funded by Basal Funds FB0001, Mideplan, Chile, and Fondecyt Grant 1-230755,
27 Chile.

© Zsuzsanna Lipták, Francesco Masillo, Gonzalo Navarro;
licensed under Creative Commons License CC-BY 4.0

Leibniz International Proceedings in Informatics

LIPICS Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

28

1 Introduction

29 Consider the problem in which we have to maintain a collection of *dynamic strings*, that
 30 is, strings we want to modify over time. The modifications may be edit operations such
 31 as insertion, deletion, or substitution of a single character; inserting or deleting an entire
 32 substring (possibly creating a new string from the deleted substring); adding a fresh string
 33 to the collection; etc. In terms of queries, we may want to retrieve a symbol or substring of a
 34 dynamic string, determine whether two substrings from anywhere in the collection are equal,
 35 or even determine the longest prefix shared by two suffixes in the collection (LCP). The
 36 collection must be maintained in such a way that both updates and queries have little cost.

37 This setup is known in general as the *dynamic strings* problem. A partial and fairly
 38 straightforward solution are the so-called ropes, or cords [7]. These are binary trees¹ where
 39 the leaves store short substrings, whose left-to-right concatenation forms the string. Ropes
 40 were introduced for the Cedar programming language to speed up handling very long
 41 strings; a C implementation (termed cords) was also given in the same paper [7]. As the
 42 motivating application of ropes/cords was that of implementing a text editor, they support
 43 edit operations and extraction/insertion of substrings to enable fast typing and cut&paste, as
 44 well as retrieving substrings, but do not support queries like substring equality or LCPs. The
 45 trees must be periodically rebalanced to maintain logarithmic times. Recently, a modified
 46 version of ropes was implemented for the Ruby language as a basic data type [39]. This
 47 variant supports the same updates but does not give any theoretical guarantee.

48 The first solution we know of that enables equality tests, by Sundar and Tarjan [47],
 49 supports splitting and concatenating whole sequences, and whole-string equality in constant
 50 time, with updates taking $\mathcal{O}(\sqrt{N \log m} + \log m)$ amortized time, where N is the total length
 51 of all the strings in the collection and m is the number of updates so far. It is easy to
 52 see that these three primitives encompass all the operations and queries above, except for
 53 LCP (substring retrieval is often implicit). The update complexity was soon improved by
 54 Mehlhorn et al. [38] to $\mathcal{O}(\log^2 N)$ expected time with a randomized data structure, and
 55 $\mathcal{O}(\log N (\log m \log^* m + \log N))$ worst-case time with a deterministic one. The deterministic
 56 time complexity was later improved by Alstrup et al. [1] to $\mathcal{O}(\log N \log^* N)$ (which holds
 57 with high probability, whp), also computing LCPs in $\mathcal{O}(\log N)$ worst-case time. Recently,
 58 Gawrychowski et al. [23, 24] obtained $\mathcal{O}(\log N)$ update time whp, retaining constant time
 59 to compare substrings, and also decreasing the LCP time to constant, among many other
 60 results. They also showed that the problem is essentially closed because just updates
 61 and substring equality require $\Omega(\log N)$ time even if allowing amortization. Nishimoto
 62 et al. [41, 42] showed how to compute LCPs in worst-case time $\mathcal{O}(\log N + \log \ell \log^* N)$,
 63 where ℓ is the LCP length, while inserting/deleting substrings of length ℓ in worst-case time
 64 $\mathcal{O}((\ell + \log N \log^* N) \frac{(\log \log N)^2}{\log \log \log N})$.

65 All these results build on the idea of parsing a string hierarchically by consistently cutting
 66 it into blocks, giving unique names to the blocks, and passing the sequence of names to the
 67 next level of parsing. The string is then represented by a parse tree of logarithmic height,
 68 whose root consists of a single name, which can be compared to the name at the root of
 69 another substring to determine string equality. While there is a general consensus on the
 70 fact that those solutions are overly complicated, Gawrychowski et al. [24] mention that

71 “We note that it is very simple to achieve $\mathcal{O}(\log n)$ update time [...], if we allow the

¹ The authors [7] actually state that they are DAGs and referring to them as binary trees is just a simplification. The reason is that the nodes can have more than one parent, so subtrees may be shared.

72 equality queries to give an incorrect result with polynomially small probability. We represent
 73 every string by a balanced search tree with characters in the leaves and every node storing
 74 a fingerprint of the sequence represented by its descendant leaves. However, it is not clear
 75 how to make the answers always correct in this approach [...]. Furthermore, it seems that
 76 both computing the longest common prefix of two strings of length n and comparing them
 77 lexicographically requires $\Omega(\log^2 n)$ time in this approach.”

78 This suggestion, indeed, connects to the original idea of ropes [7]. Cardinal and Iacono
 79 [12] built on the suggestion to develop a kind of tree dubbed “Data Dependent Tree (DDT)”,
 80 which enables updates and LCP computation in $\mathcal{O}(\log N)$ *expected amortized* time, yet
 81 with no errors. DDTs eliminate the chance of errors by ensuring that the fingerprints have
 82 no collisions—they simply rebuild all DDTs for all strings in the collection, using a new
 83 hash function, when this low-probability event occurs—and reduce the LCP complexity to
 84 $\mathcal{O}(\log N)$ by ensuring that subtrees representing the same string have the same shape (so
 85 one can descend in the subtrees of both strings synchronously).

86 In this paper we build on the same suggestion [24], but explore the use of another kind of
 87 tree—an enhanced splay tree—which yields a beautifully simple yet powerful data structure
 88 for maintaining dynamic string collections. We obtain logarithmic *amortized* update times for
 89 most operations (our cost to compute LCPs lies between logarithmic and squared-logarithmic,
 90 see later) and our queries return correct answers whp. The ease of implementation of splay
 91 trees makes our solution attractive to be included in a textbook for undergraduate students.

92 An important consequence of using simpler data structures is that our space usage is
 93 $\mathcal{O}(N)$, whereas the solutions based on parsings require in addition $\mathcal{O}(\log N)$ space per update
 94 performed, as each one adds a new path to the parse tree. Since the previous parse tree
 95 is still available, those structures are *persistent*: one can access any previous version. Our
 96 solution is not persistent in principle, but we can make it persistent using $\mathcal{O}(\log n)$ extra
 97 space per update or query made so far (we cannot make direct use of the techniques of
 98 Driscoll et al. [19]). This adds only $\mathcal{O}(1)$ amortized time to the operations.

99 It would not be hard to obtain *worst-case* times instead of amortized ones, by choosing
 100 AVL, α -balanced, or other trees that guarantee logarithmic height. One can indeed find the
 101 use of such binary trees for representing strings in the literature [44, 16, 22]. Our solution
 102 using splay trees has the key advantage of being very simple and easy to understand. The
 103 basic operations of splitting and concatenating strings, using worst-case balanced trees, imply
 104 attaching and detaching many subtrees, plus careful rebalancing, which is a nightmare to
 105 explain and implement.² Knuth, for example, considered them too complicated to include in
 106 his book [34, p. 473] “*Deletion, concatenation, etc. It is possible to do many other things
 107 to balanced trees and maintain the balance, but the algorithms are sufficiently lengthly that
 108 the details are beyond the scope of this book.*” Instead, he says [34, p. 478] “*A much simpler
 109 self-adjusting data structure called a splay tree was developed subsequently [...] Splay trees, like
 110 the other kinds of balanced trees already mentioned, support the operations of concatenation
 111 and splitting as well as insertion and deletion, and in a particularly simple way.*”

112 **Our contribution.** We use a splay tree [45], enhanced with additional information, to
 113 represent each string in the collection, where all the nodes contain string symbols and
 114 Karp-Rabin-like fingerprints [30, 40] of the symbols in their subtree. We refer to our data
 115 structure as a *forest of enhanced splay trees*, or FeST. As we will see, we can create new

² As an example, an efficient implementation [33] of Rytter’s AVL grammar [44] has over 10,000 lines of C++ code considering only their “basic” variant.

116 strings in $\mathcal{O}(n)$ time, extract substrings of length ℓ in $\mathcal{O}(\ell + \log n)$ time, perform updates
 117 and (correctly whp) compare substrings in $\mathcal{O}(\log n)$ time, where n is the length of the strings
 118 involved—as opposed to the total length N of all the strings—and the times are amortized
 119 (the linear terms are also worst-case). Further, we can compute LCPs correctly whp in
 120 amortized time $\mathcal{O}(\log n + \log^2 \ell)$, where ℓ is the length of the returned LCP.

121 While our LCP time is $\mathcal{O}(\log^2 n)$ for long enough ℓ , LCPs are usually much shorter than
 122 the suffixes. For example, in considerably general probabilistic models [48], the maximum
 123 LCP value between *any* distinct suffixes of two strings of length n is almost surely $\mathcal{O}(\log n)$,
 124 in which case our algorithm runs in $\mathcal{O}(\log n)$ amortized time.

125 The versatility of our FeST data structure allows us to easily support other kinds of
 126 operations, such as reversing or complementing substrings, or both. We can thus implement
 127 the reverse complementation of a substring in a DNA or RNA sequence, whereby the substring
 128 is reversed and each character is replaced by its Watson-Crick complement. Substring reversal
 129 alone is used in classic problems on genome rearrangements where genomes are represented
 130 as sequences of genes, and have to be sorted by reversals (see, e.g., [50, 6, 10, 11, 43, 13], to
 131 cite just a few). Note that chromosomes can be viewed either as permutations or as strings,
 132 when gene duplication is taken into account, see Fertin et al. [20]; our FeST data structure
 133 accommodates both. We can also implement signed reversals [28, 27], another model of
 134 evolutionary operation used in genome rearrangements. In general, we can combine reversals
 135 with any involution on the alphabet, of which signed or Watson-Crick complementation are
 136 only examples. In order to support these operations in $\mathcal{O}(\log n)$ amortized time, we only need
 137 to add new constant-space annotations, further enhancing our splay trees while retaining the
 138 running times for the other operations. The obvious solution of maintaining modified copies
 139 of the strings (e.g., reversed, complemented, etc.) is less attractive in practice due to the
 140 extra space and time needed to store and update all the copies.

141 **Operations supported.** We maintain a collection of strings of total length N in $\mathcal{O}(N)$ space,
 142 and support the following operations, where we distinguish the basic string data type from
 143 dynamic strings (all times are amortized). We have not chosen a minimal set of primitives
 144 because reducing to primitives entails considerable performance overheads in practice, even
 145 if the asymptotic time complexities are not altered.

- 146 ■ **make-string(w)** creates a dynamic string s from a basic string w , in $\mathcal{O}(|s|)$ time.
- 147 ■ **access(s, i)** returns the symbol $s[i]$ in $\mathcal{O}(\log |s|)$ time.
- 148 ■ **retrieve(s, i, j)** returns the basic string $w[1..j - i + 1] = s[i..j]$, in $\mathcal{O}(|w| + \log |s|)$ time.
- 149 ■ **substitute(s, i, c), $\text{insert}(s, i, c)$, and $\text{delete}(s, i)$** perform the basic edit operations on
 150 s : substituting $s[i]$ by character c , inserting c at $s[i]$, and deleting $s[i]$, respectively, all in
 151 $\mathcal{O}(\log |s|)$ time. For appending c at the end of s one can use $\text{insert}(s, |s| + 1, c)$.
- 152 ■ **introduce(s_1, i, s_2)** inserts s_2 at position i of s_1 (for $1 \leq i \leq |s_1| + 1$), converting s_1 to
 153 $s_1[..i - 1] \cdot s_2 \cdot s_1[i..]$ and destroying s_2 , in $\mathcal{O}(\log |s_1 s_2|)$ time.
- 154 ■ **extract(s, i, j)** creates dynamic string $s' = s[i..j]$, removing it from s , in $\mathcal{O}(\log |s|)$ time.
- 155 ■ **equal(s_1, i_1, s_2, i_2, ℓ)** determines the equality of substrings $s_1[i_1..i_1 + \ell - 1]$ and $s_2[i_2..i_2 +$
 156 $\ell - 1]$ in $\mathcal{O}(\log |s_1 s_2|)$ time, correctly whp.
- 157 ■ **lcp(s_1, i_1, s_2, i_2)** computes the length ℓ of the longest common prefix between suffixes
 158 $s_1[i_1..]$ and $s_2[i_2..]$, in $\mathcal{O}(\log |s_1 s_2| + \log^2 \ell)$ time, correctly whp, and also tells which suffix
 159 is lexicographically smaller.
- 160 ■ **reverse(s, i, j)** reverses the substring $s[i..j]$ of s , in $\mathcal{O}(\log |s|)$ time.
- 161 ■ **map(s, i, j)** applies a fixed involution (a symbol mapping that is its own inverse) to all
 162 the symbols of $s[i..j]$, in $\mathcal{O}(\log |s|)$ time.

163 Our data structure also enables easy implementation of other features, such as handling
 164 circular strings. This is an important and emerging topic [5, 15, 25, 26, 29], as many current
 165 sequence collections, in particular in computational biology, consist of circular rather than
 166 linear strings. Recent data structures built for circular strings [8, 9], based on the extended
 167 Burrows-Wheeler Transform (eBWT) [37], avoid the detour via the linearization and handle
 168 the circular input strings directly. Finally, FeST also allows queries on the omega extensions
 169 of strings, that is, on the infinite concatenation $s^\omega = s \cdot s \cdot s \cdot \dots$. These occur, for example,
 170 in the context of the eBWT, which is based on the so-called omega-order. In Section 5 we
 171 will sketch how to handle circular strings and the omega extension of strings; a detailed
 172 description will be given in the full version of the paper.

173 2 Basic concepts

174 **Strings.** We use array-based notation for strings, indexing from 1, so a string s is a finite
 175 sequence over a finite ordered alphabet Σ , written $s = s[1..n] = s[1]s[2] \dots s[n]$, for some
 176 $n \geq 0$. We assume that the alphabet Σ is integer. The length of s is denoted $|s|$, and
 177 ε denotes the *empty string*, the unique string of length 0. For $1 \leq i, j \leq |s|$, we write
 178 $s[i..j] = s[i]s[i+1] \dots s[j]$ for the *substring* from i to j , where $s[i..j] = \varepsilon$ if $i > j$. We
 179 write *prefixes* as $s[..i] = s[1..i]$ and *suffixes* as $s[i..] = s[i..|s|]$. Given two strings s, t , their
 180 concatenation is written $s \cdot t$ or simply st , and s^k denotes the k -fold concatenation of s , with
 181 $s^0 = \varepsilon$. A substring (prefix, suffix) of s is called *proper* if it does not equal s .

182 The *longest common prefix* (LCP) of two strings s and t is defined as the longest string
 183 u that is both a prefix of s and t , and $\text{lcp}(s, t) = |u|$ as its length. One can define the
 184 lexicographic order based on the lcp: $s <_{\text{lex}} t$ if either s is a proper prefix of t , or otherwise
 185 if $s[\ell+1] < t[\ell+1]$, where $\ell = \text{lcp}(s, t)$.

186 **Splay trees.** The *splay tree* [45] is a binary search tree that guarantees that a sequence of
 187 insertions, deletions, and node accesses costs $\mathcal{O}(\log n)$ amortized time per operation on a
 188 tree of n nodes that starts initially empty. In addition, splay trees support splitting and
 189 joining trees, both in $\mathcal{O}(\log n)$ amortized time, where n is the total number of nodes involved
 190 in the operation.

191 The basic operation of the splay tree is called *splay*(x), which moves a tree node x to
 192 the root by a sequence of primitive rotations called zig, zig-zig, zig-zag, and their symmetric
 193 versions. Let $x(A, B)$ denote a tree rooted at x with left and right subtrees A and B , then
 194 the rotation zig-zig converts $z(y(x(A, B), C), D)$ into $x(A, y(B, z(C, D)))$, while the rotation
 195 zig-zag converts $z(y(A, x(B, C)), D)$ into $x(y(A, B), z(C, D))$. Whether zig-zig or zig-zag (or
 196 their symmetric variant) is applied to x depends on its relative position w.r.t. its grandparent.
 197 Note that both of these operations are composed by two edge rotations. Finally, operation
 198 zig, which is only applied if x is a child of the root, converts $y(x(A, B), C)$ into $x(A, y(B, C))$.

199 Every access or update on the tree is followed by a *splay* on the deepest reached node. In
 200 particular, after finding a node x in a downward traversal, we do *splay*(x) to make x the tree
 201 root. The goal is that the costs of all the operations are proportional to the cost of all the
 202 related *splay* operations performed, so we can focus on analyzing only the splays. Many of
 203 the splay tree properties can be derived from a general “access lemma” [45, Lem. 1].

204 ► **Lemma 1** (Access Lemma [45]). *Let us assign any positive weight $w(x)$ to the nodes x of a
 205 splay tree T , and define $sw(x)$ as the sum of the weights of all the nodes in the subtree rooted
 206 at x . Then, the amortized time to splay x is $\mathcal{O}(\log(W/sw(x))) \subseteq \mathcal{O}(\log(W/w(x)))$, where
 207 $W = \sum_{x \in T} w(x)$.*

208 The result is obtained by defining $r(x) = \log sw(x)$ (all our logarithms are in base 2) and
 209 $\Phi(T) = \sum_{x \in T} r(x)$ as the potential function for the splay tree T . If we choose $w(x) = 1$ for
 210 all x , then $W = n$ on a splay tree of n nodes, and thus we obtain $\mathcal{O}(\log n)$ amortized cost for
 211 each operation. By choosing other functions $w(x)$, one can prove other properties of splay
 212 trees like static optimality, the static finger property, and the working set property [45].

213 The update operations supported by splay trees include inserting new nodes, deleting
 214 nodes, joining two trees (where all the nodes in the second tree go to the right of the nodes
 215 in the first tree), and splitting a tree into two at some node (where all the nodes to its right
 216 become a second tree). The times of those operations are ruled by the “balance theorem
 217 with updates” [45, Thm. 6].

218 ▶ **Lemma 2** (Balance Theorem with Updates [45]). *Any sequence of access, insert, delete,
 219 join and split operations on a collection of initially empty splay trees has an amortized cost
 220 of $\mathcal{O}(\log n)$ per operation, where n is the size of the tree(s) where the operation is carried out.*

221 This theorem is proved with the potential function that assigns $w(x) = 1$ to every node
 222 x . Note the theorem considers a forest of splay trees, whose potential function is the sum of
 223 the functions $\Phi(T)$ over the trees T in the forest. For details, see the original paper [45].

224 **Karp-Rabin fingerprinting.** Our queries will be correct “with high probability” (whp),
 225 meaning a probability of at least $1 - 1/N^c$ for an arbitrarily large constant c , where N is
 226 the total size of the collection. This will come from the use of a variant of the original
 227 Karp-Rabin fingerprint [30] (cf. [40]) defined as follows. Let $[1..a]$ be the alphabet of our
 228 strings and $p \geq a$ a prime number. We choose a random base b uniformly from $[1..p - 1]$.
 229 The fingerprint κ of string $s[1..n]$ is defined as $\kappa(s) = \left(\sum_{i=0}^{n-1} s[n-i] \cdot b^i \right) \bmod p$. We say
 230 that two strings $s \neq s'$ of the same length n collide through κ if $\kappa(s) = \kappa(s')$, that is,
 231 $\kappa(s'') = 0$ where $s'' = s - s'$ is the string defined by $s''[i] = (s[i] - s'[i]) \bmod p$. Since $\kappa(s'')$
 232 is a polynomial, in the variable b , of degree at most $n - 1$ over the field \mathbb{Z}_p , it has at most
 233 $n - 1$ roots. The probability of a collision between two strings of length n is then bounded
 234 by $(n - 1)/(p - 1)$ because b is uniformly chosen in $[1..p - 1]$. By choosing $p \in \Theta(N^{c+1})$
 235 for any desired constant c , we obtain that κ is collision-free on any $s \neq s'$ whp. We will
 236 actually choose $p \in \Theta(N^{c+2})$ because some of our operations perform $\mathcal{O}(\text{polylog } N)$ string
 237 comparisons, not just one. Since N varies over time, we can use instead a fixed upper bound,
 238 like the total amount of main memory. We use the RAM machine model where logical and
 239 arithmetic operations on $\Theta(\log N)$ machine words take constant time.

240 Two fingerprints $\kappa(s)$ and $\kappa(s')$ can then be composed in constant time to form $\kappa(s' \cdot s) =$
 241 $(\kappa(s') \cdot b^{|s|} + \kappa(s)) \bmod p$. To avoid the $\mathcal{O}(\log |s|)$ time for modular exponentiation, we
 242 will maintain the value $b^{|s|} \bmod p$ together with $\kappa(s)$. The corresponding value for $s' \cdot s$ is
 243 $(b^{|s'|} \cdot b^{|s|}) \bmod p$, so we can maintain those powers in constant time upon concatenations.

244 3 Our data structure and standard operations

245 In this section we describe our data structure called FeST (for Forest of enhanced Splay
 246 Trees), composed of a collection of (enhanced) splay trees, and then show how the traditional
 247 operations on dynamic strings are carried out on it.

248 3.1 The data structure

249 We will use a FeST for maintaining the collection of strings, one splay tree per string. A
 250 dynamic string $s[1..n]$ is encoded in a splay tree with n nodes such that $s[k]$ is stored in

XX:6 A Textbook Solution for Dynamic Strings

251 the node x with in-order k (the in-order of a node is the position in which it is listed if we
252 recursively traverse first the left subtree, then the node, and finally the right subtree). We
253 will say that node x *represents* the substring $s[i..j]$, where $[i..j]$ is the range of the in-orders
254 of all the nodes in the subtree rooted at x . Let T be the splay tree representing string s ,
255 then for $1 \leq i \leq |s|$, we call $\text{node}(i)$ the node with in-order i , and for a node x of T , we call
256 $\text{pos}(x)$ the in-order of node x . The root of T is denoted $\text{root}(T)$.

257 For the amortized analysis of our FeST, our potential function Φ will be the sum of the
258 potential functions $\Phi(T)$ over all the splay trees T representing our string collection. The
259 collection starts initially empty, with $\Phi = 0$. New strings are added to the collection with
260 `make-string`; then edited with `substitute`, `insert`, and `delete`, and redistributed with
261 `introduce` and `extract`.

262 **Information stored at nodes.** A node x of the splay tree representing $s[i..j]$ will contain
263 pointers to its left and right children, called $x.\text{left}$ and $x.\text{right}$, its symbol $x.\text{char} = s[\text{pos}(x)]$,
264 its subtree size $x.\text{size} = j - i + 1$, its fingerprint $x.\text{fp} = \kappa(s[i..j])$, and the value $x.\text{power} =$
265 $b^{j-i+1} \bmod p$. These fields are recomputed in constant time whenever a node x acquires new
266 children $x.\text{left}$ and/or $x.\text{right}$ (e.g., during the splay rotations) with the following formulas:
267 (1) $x.\text{size} = x.\text{left}.\text{size} + 1 + x.\text{right}.\text{size}$, (2) $x.\text{fp} = ((x.\text{left}.\text{fp} \cdot b + x.\text{char}) \cdot x.\text{right}.\text{power} +$
268 $x.\text{right}.\text{fp}) \bmod p$, and (3) $x.\text{power} = (x.\text{left}.\text{power} \cdot b \cdot x.\text{right}.\text{power}) \bmod p$, as explained in
269 Section 2. For the formula to be complete when the left and/or right child is `null`, we assume
270 $\text{null}.\text{size} = 0$, $\text{null}.\text{fp} = 0$, and $\text{null}.\text{power} = 1$. We will later incorporate other fields.

271 Subtree sizes allow us identify $\text{node}(i)$ given i , in the splay tree T representing string s , in
272 $\mathcal{O}(\log |s|)$ amortized time. This means we can answer `access`(s, i) in $\mathcal{O}(\log |s|)$ amortized time,
273 since $s[i] = \text{node}(i).\text{char}$. Finding $\text{node}(i)$ is done in the usual way, with the recursive function
274 `find`(i) = `find`($\text{root}(T), i$) that returns the i th smallest element in the subtree rooted at the
275 given node. More precisely, `find`(x, i) = x if $i = x.\text{left}.\text{size} + 1$, `find`(x, i) = `find`($x.\text{left}, i$)
276 if $i < x.\text{left}.\text{size} + 1$, and `find`(x, i) = `find`($x.\text{right}, i - (x.\text{left}.\text{size} + 1)$) if $i > x.\text{left}.\text{size} + 1$.
277 To obtain logarithmic amortized time, `find` splays the node it returns, thus $\text{pos}(\text{root}(T)) = i$
278 holds after calling `find`($\text{root}(T), i$).

279 **Isolating substrings.** We will make use of another primitive we call `isolate`(i, j), for
280 $1 \leq i, j \leq |s|$ and $i \leq j + 1$, on a tree T representing string s . This operation rearranges T in
281 such a way that $s[i..j]$ becomes represented by one subtree, and returns this subtree's root y .

282 If $i = 1$ and $j = n$, then $y = \text{root}(T)$ and we are done. If $i = 1$ and $j < n$, then we find
283 (and splay) $\text{node}(j + 1)$ using `find`($j + 1$); this will move $\text{node}(j + 1)$ to the root, and $s[i..j]$
284 will be represented by the left subtree of the root, so $y = \text{root}(T).\text{left}$. Similarly, if $1 < i$
285 and $j = n$, then we perform `find`($i - 1$), so $\text{node}(i - 1)$ is splayed to the root and $s[i..j]$ is
286 represented by the right subtree of the root, thus $y = \text{root}(T).\text{right}$.

287 Finally, if $1 < i, j < n$, then splaying first $\text{node}(j + 1)$ and then $\text{node}(i - 1)$ will typically
288 result in $\text{node}(i - 1)$ being the root and $\text{node}(j + 1)$ its right child, thus the left subtree of
289 $\text{node}(j + 1)$ contains $s[i..j]$, that is, $y = \text{root}(T).\text{right}.\text{left}$. The only exception arises if the
290 last splay operation on $\text{node}(i - 1)$ is a zig-zig, as in this case $\text{node}(j + 1)$ would become
291 a grandchild, not a child, of the root. Therefore, in this case, we modify the last splay
292 operation: if $\text{node}(i - 1)$ is a grandchild of the root and a zig-zig must be applied, we perform
293 instead two consecutive zig operations on $\text{node}(i - 1)$ in a bottom-up manner, that is, we first
294 rotate the edge between $\text{node}(i - 1)$ and its parent, and then the edge between $\text{node}(i - 1)$
295 and its new parent (former grandparent), see Fig. 1.

296 We now consider the effect of the modified zig-zig operation on the potential. In the proof

of Lemma 1 [45, Lem. 1], Sleator and Tarjan show that the zig-zig and the zig-zag cases contribute $3(r'(x) - r(x))$ to the amortized cost, where $r'(x)$ is the new value of $r(x)$ after the operation. The sum then telescopes to $3(r(t) - r(x)) = 3 \log(sw(t)/sw(x))$ along an upward path towards a root node t . The zig rotation, instead, contributes $1 + r'(x) - r(x)$, where the 1 would be problematic if it was not applied only once in the path. Our new zig-zig may, at most one time in the path, cost like two zig's, $2 + 2(r'(x) - r(x))$, which raises the cost bound of the whole splay operation from $1 + 3 \log(sw(t)/sw(x))$ to $2 + 3 \log(sw(t)/sw(x))$. This retains the amortized complexity, that is, the amortized time for `isolate` is $\mathcal{O}(\log |s|)$.

(a) General sequence of operations for `isolate`(i, j).

(b) Case of zig-zag as the last splaying operation for `isolate`(i, j).

(c) Case of the modified zig-zig as the last splaying operation for `isolate`(i, j).

Figure 1 Scheme of the `isolate`(i, j) operation applied on a splay tree. Subfigures 1b and 1c show two cases of the last splay operation of `isolate`(i, j), yielding a single (shaded) subtree that represents the substring $s[i..j]$.

305 **3.2 Creating a new dynamic string**

306 Given a basic string $w[1..n]$, operation `make-string`(w) creates a new dynamic string $s[1..n]$
 307 with the same content as w , which is added to the FeST. While this can be accomplished in
 308 $\mathcal{O}(n \log n)$ amortized time via successive `insert` operations on an initially empty string, we
 309 describe a “bulk-loading” technique that achieves linear worst-case (and amortized) time.

310 The idea is to create, in $\mathcal{O}(n)$ time, a perfectly balanced splay tree using the standard
 311 recursive procedure. As we show in the next lemma, this shape of the tree adds only $\mathcal{O}(n)$
 312 to the potential function, and therefore the amortized time of this procedure is also $\mathcal{O}(n)$.

313 ► **Lemma 3.** *The potential $\Phi(T)$ of a perfectly balanced splay tree T with n nodes is at most
 314 $2n + \mathcal{O}(\log^2 n) \subseteq \mathcal{O}(n)$.*

315 **Proof.** Let d be the depth of the deepest leaves in a perfectly balanced binary tree, and
 316 call $l = d - d' + 1$ the *level* of any node of depth d' . It is easy to see that there are at
 317 most $1 + n/2^l$ subtrees of level l . Those subtrees have at most $2^l - 1$ nodes. Separating the
 318 sum $\Phi(T) = \sum_{x \in T} r(x)$ by levels l and using the bound $sw(x) < 2^l$ if x is of level l , we get
 319 $\Phi(T) < \sum_{l=1}^{\log n} \left(1 + \frac{n}{2^l}\right) \log 2^l = 2n + \mathcal{O}(\log^2 n)$. ◀

320 Once the tree is created and the fields $x.\text{char}$ are assigned in in-order, we perform a
 321 post-order traversal to compute the other fields. This is done in constant time per node
 322 using the formulas given in Section 3.1.

323 **3.3 Retrieving a substring**

324 Given a string s in the FeST and two indices $1 \leq i \leq j \leq |s|$, operation `retrieve`(s, i, j)
 325 extracts the substring $s[i..j]$ and returns it as a basic string. The special case $i = j$ is given
 326 by `access`(s, i), which finds `node`(i), splays it, and returns `root`(T).`char`, recall Section 3.1. If
 327 $i < j$, we perform $y = \text{isolate}(i, j)$ and then we return $s[i..j]$ with an in-order traversal of
 328 the subtree rooted at y . Overall, the operation `retrieve`(s, i, j) takes $\mathcal{O}(\log |s|)$ amortized
 329 time for `isolate`, and then $\mathcal{O}(j - i + 1)$ worst case time for the traversal of the subtree.

330 **3.4 Edit operations**

331 Let s be a string in the FeST, i an index of s , and c a character. The simplest edit operation,
 332 `substitute`(s, i, c) writes c at $s[i]$, that is, s becomes $s' = s[..i-1] \cdot c \cdot s[i+1..]$. It is
 333 implemented by doing `find`(i) in the splay tree T of s , in $\mathcal{O}(\log |s|)$ amortized time. After the
 334 operation, `node`(i) is the root, so we set `root`(T).`char` = c and recompute (only) its fingerprint
 335 as explained in Section 3.1.

336 Now consider operation `insert`(s, i, c), which converts s into $s' = s[..i-1] \cdot c \cdot s[i..]$. This
 337 corresponds to the standard insertion of a node in the splay tree, at in-order position i . We
 338 first use `find`(i) in order to make $x = \text{node}(i)$ the tree root, and then create a new root node
 339 y , with $y.\text{left} = x.\text{left}$ and $y.\text{right} = x$. We then set $x.\text{left} = \text{null}$ and recompute the other
 340 fields of x as shown in Section 3.1. Finally, we set $y.\text{char} = c$ and also compute its other
 341 fields. By Lemma 2, the amortized cost for an insertion is $\mathcal{O}(\log |s|)$.

342 Finally, the operation `delete`(s, i) converts s into $s' = s[..i-1] \cdot s[i+1..]$. This corresponds
 343 to standard deletion in the splay tree: we first do `find`(i) in the tree T of s , so that $x = \text{node}(i)$
 344 becomes the root, and then join the splay trees of $x.\text{left}$ and $x.\text{right}$, isolating the root node
 345 x and freeing it. The joined tree now represents s' ; the amortized cost is $\mathcal{O}(\log |s|)$.

346 **3.5 Introducing and extracting substrings**

347 Given two strings s_1 and s_2 represented by trees T_1 and T_2 in the FeST, and an insertion
 348 position i in s_1 , operation `introduce`(s_1, i, s_2) generates a new string $s = s_1[..i-1] \cdot s_2 \cdot s_1[i..]$
 349 (the original strings are not anymore available). We implement this operation by first doing
 350 $y = \text{isolate}(i, i-1)$ on the tree T_1 . Note that in this case y will be a *null* node, whose
 351 in-order position is between $i-1$ and i . We then replace this null node by (the root of) the
 352 tree T_2 . As shown in Section 3.1, the node y that we replace has at most two ancestors in
 353 T_1 , say x_1 (the root) and x_2 . We must then recompute the fields of x_2 and then of x_1 .

354 Apart from the $\mathcal{O}(\log |s_1|)$ amortized time for `isolate`, the other operations take constant
 355 time. We must consider the change in the potential introduced by connecting T_2 to T_1 . In
 356 the potential Φ , the summands $\log sw(x_1)$ and $\log sw(x_2)$ will increase to $\log(sw(x_1) + |s_2|)$
 357 and $\log(sw(x_2) + |s_2|)$, thus the increase is $\mathcal{O}(\log |s_2|)$. The total amortized time is thus
 358 $\mathcal{O}(\log |s_1| + \log |s_2|) = \mathcal{O}(\log |s_1 s_2|)$.

359 Let s be a string represented by tree T in the FeST and $i \leq j$ indices in s . Function
 360 `extract`(s, i, j) removes $s[i..j]$ from s and creates a new dynamic string s' from it. This can
 361 be carried out by first doing $y = \text{isolate}(i, j)$ on T , then detaching y from its parent in T
 362 to make it the root of the tree that will represent s' , and finally recomputing the fields of
 363 the (former) ancestors x_2 and x_1 of y . The change in potential is negative, as $\log sw(x_1)$ and
 364 $\log sw(x_2)$ decrease by up to $\mathcal{O}(\log(j-i+1))$. The total amortized time is then $\mathcal{O}(\log |s|)$.

365 **3.6 Substring equality**

366 Let $s_1[i_1..i_1 + \ell - 1]$ and $s_2[i_2..i_2 + \ell - 1]$ be two substrings, where possibly $s_1 = s_2$. Per
 367 Section 2, we can compute `equal` whp by comparing $\kappa(s_1[i_1..i_1 + \ell - 1])$ and $\kappa(s_2[i_2..i_2 + \ell - 1])$.
 368 We compute $y_1 = \text{isolate}(i_1, i_1 + \ell - 1)$ on the tree of s_1 and $y_2 = \text{isolate}(i_2, i_2 + \ell - 1)$
 369 on the tree of s_2 . Once node y_1 represents $s_1[i_1..i_1 + \ell - 1]$ and y_2 represents $s_2[i_2..i_2 + \ell - 1]$,
 370 we compare $y_1.\text{fp} = \kappa(s_1[i_1..i_1 + \ell - 1])$ with $y_2.\text{fp} = \kappa(s_2[i_2..i_2 + \ell - 1])$.

371 The splay operations take $\mathcal{O}(\log |s_1 s_2|)$ amortized time, while the comparison of the
 372 fingerprints takes constant time and returns the correct answer whp. Note this is a one-sided
 373 error; if the method answers negatively, the strings are distinct.

374 **4 Extended operations**

375 In this section we consider less standard operations of dynamic strings, including the
 376 computation of LCPs and others we have not seen addressed before.

377 **4.1 Longest common prefixes**

378 Operation `lcp`(s_1, i_1, s_2, i_2) computes $\text{lcp}(s_1[i_1..], s_2[i_2..])$ correctly whp, by exponentially
 379 searching for the maximum value ℓ such that $s_1[i_1..i_1 + \ell - 1] = s_2[i_2..i_2 + \ell - 1]$. The
 380 exponential search requires $\mathcal{O}(\log \ell)$ equality tests, which are done using `equal` operations.
 381 The amortized cost of this basic solution is then $\mathcal{O}(\log |s_1 s_2| \log \ell)$; we now improve it.

382 We note that all the accesses the exponential search performs in s_1 and s_2 are at distance
 383 $\mathcal{O}(\ell)$ from $s_1[i_1]$ and $s_2[i_2]$. We could then use the dynamic finger property [18] to show,
 384 with some care, that the amortized time is $\mathcal{O}(\log |s_1 s_2| + \log^2 \ell)$. This property, however,
 385 uses a different mechanism of potential functions where trees cannot be joined or split.³ We

³ The static finger property cannot be used either, because we need new fingers every time an LCP is

Figure 2 Scheme of operations for 1cp shown on one of the two strings.

386 then use an alternative approach. The main idea is that, if we could bound ℓ beforehand,
387 we could isolate those areas so that the accesses inside them would cost $\mathcal{O}(\log \ell)$ and then
388 we could reach the desired amortized time. Bounding ℓ in less than $\mathcal{O}(\log \ell)$ accesses (i.e.,
389 $\mathcal{O}(\log |s_1 s_2| \log \ell)$ time) is challenging, however. Assuming for now that $s_1 \neq s_2$ (we later
390 handle the case $s_1 = s_2$), our plan is as follows (see Fig. 2):

- 391 1. Find a (crude) upper bound $\ell' \geq \ell$.
- 392 2. Extract substrings $s'_1 = s_1[i_1..i_1 + \ell' - 1]$ and $s'_2 = s_2[i_2..i_2 + \ell' - 1]$.
- 393 3. Run the basic exponential search for ℓ between $s'_1[1..]$ and $s'_2[1..]$.
- 394 4. Reinsert substrings s'_1 and s'_2 into s_1 and s_2 .

395 Steps 2 and 4 are carried out in $\mathcal{O}(\log |s_1 s_2|)$ amortized time using the operations `extract`
396 and `introduce`, respectively. Step 3 will still require $\mathcal{O}(\log \ell)$ substring comparisons, but
397 since they will be carried out on the shorter substrings s'_1 and s'_2 , they will take $\mathcal{O}(\log \ell \log \ell')$
398 amortized time. The main challenge is to balance the cost to find ℓ' in Step 1 with the
399 quality of the approximation of ℓ' so that $\log \ell'$ is not much larger than $\log \ell$.

400 Consider the following strategy for Step 1. Let $n = |s_1 s_2|$ and $n' = \min(|s_1| - i_1 + 1, |s_2| - i_2 + 1)$. We first check a few border cases that we handle in $\mathcal{O}(\log n)$ amortized
401 time: if $s_1[i_1..i_1 + n' - 1] = s_2[i_2..i_2 + n' - 1]$ we finish with the answer $\ell = n'$, or else if
402 $s_1[i_1..i_1 + 1] \neq s_2[i_2..i_2 + 1]$ we finish with the answer $\ell = 0$ or $\ell = 1$. Otherwise, we define
403 the sequence $\ell_0 = 2$ and $\ell_i = \min(n', \ell_{i-1}^2)$ and try out the values ℓ_i for $i = 1, 2, \dots$, until we
404 obtain $s_1[i_1..i_1 + \ell_i - 1] \neq s_2[i_2..i_2 + \ell_i - 1]$. This implies that $\ell_{i-1} \leq \ell < \ell_i$, so we can use
405 $\ell' = \ell_i \leq \ell^2$. This yields $\mathcal{O}(\log \ell \log \ell') = \mathcal{O}(\log^2 \ell)$ amortized time for Step 3. On the other
406 hand, since $\ell \geq \ell_{i-1} = 2^{2^{i-1}}$, it holds $i \leq 1 + \log \log \ell$. Since each of the i values is tried out
407 in $\mathcal{O}(\log n)$ time with `equal`, the amortized cost of Step 1 is $\mathcal{O}(\log n \log \log \ell)$ and the total
408 cost to compute 1cp is $\mathcal{O}(\log n \log \log \ell + \log^2 \ell)$. In particular, this is $\mathcal{O}(\log^2 \ell)$ when ℓ is
409 large enough, $\log \ell = \Omega(\sqrt{\log n \log \log n})$.

411 **Hitting twice.** To obtain our desired time $\mathcal{O}(\log n + \log^2 \ell)$ for every value of $\log \ell$, we will
412 apply our general strategy twice. First, we will set $\ell'' = 2^{\log^{2/3} n}$ and determine whether
413 $s_1[i_1..i_1 + \ell'' - 1] = s_2[i_2..i_2 + \ell'' - 1]$. If they are equal, then $\log \ell = \Omega(\log^{2/3} n)$ and we can
414 apply the strategy of the previous paragraph verbatim, obtaining amortized time $\mathcal{O}(\log^2 \ell)$.
415 If they are not equal, then we know that $\ell'' > \ell$, so we `extract` $s''_1 = s_1[i_1..i_1 + \ell'' - 1]$ and

computed. Extending the “unified theorem” [45, Thm. 5] to m fingers (to support m LCP operations in the sequence) introduces an $\mathcal{O}(\log m)$ additive amortized time in the operations, since now $W = \Theta(m)$.

416 $s''_2 = s_2[i_2..i_2 + \ell'' - 1]$ to complete the search for ℓ' inside those (note we are still in Step 1). We
 417 use the same sequence ℓ_i of the previous paragraph, with the only difference that the accesses
 418 are done on trees of size ℓ'' and not n ; therefore each step costs $\mathcal{O}(\log \ell'') = \mathcal{O}(\log^{2/3} n)$
 419 instead of $\mathcal{O}(\log n)$. After finally finding ℓ' , we introduce back s''_1 and s''_2 into s_1 and s_2 .
 420 Step 1 then completes in amortized time $\mathcal{O}(\log n + \log^{2/3} n \log \log \ell) = \mathcal{O}(\log n)$. Having
 421 found $\ell' \leq \ell^2$, we proceed with Step 2 onwards as above, taking $\mathcal{O}(\log^2 \ell)$ additional time.

422 **When the strings are the same.** In the case $s_1 = s_2$, assume w.l.o.g. $i_1 < i_2$. We can still
 423 carry out Step 1 and, if $i_1 + \ell' \leq i_2$, proceed with the plan in the same way, extracting s'_1
 424 and s'_2 from the same string and later reintroducing them. In case $i_1 + \ell' > i_2$, however, both
 425 substrings overlap. In this case we extract just one substring, $s' = s_1[i_1..i_2 + \ell' - 1]$, which is
 426 of length at most $2\ell'$, and run the basic exponential search between $s'[1..]$ and $s'[i_2 - i_1 + 1..]$
 427 still in amortized time $\mathcal{O}(\log \ell \log \ell')$. We finally reintroduce s' in s_1 . The same is done if
 428 we need to extract s''_1 and s''_2 : if both come from the same string and $i_1 + \ell'' > i_2$, then we
 429 extract just one single string $s'' = s[i_1..i_2 + \ell'' - 1]$ and obtain the same asymptotic times.

430 **Lexicographic comparisons.** Once we know that (whp) the LCP of the suffixes is of length
 431 ℓ , we can determine which is smaller by accessing (using `access`) the symbols at positions
 432 $s_1[i_1 + \ell]$ and $s_2[i_2 + \ell]$ and comparing them, in $\mathcal{O}(\log |s_1 s_2|)$ additional amortized time.

433 4.2 Substring reversals

434 Operation `reverse`(s, i, j) changes s to $s[..i - 1]s[j]s[j - 1] \dots s[i + 1]s[i]s[j + 1..]$. Reflecting
 435 it directly in our current structure requires $\Omega(j - i + 1)$ time, which is potentially $\Omega(|s|)$.
 436 Our strategy, instead, is to just “mark” the subtrees where the reversal should be carried
 437 out, and de-amortize its cost across future operations, materializing it progressively as we
 438 traverse the marked subtrees. To this end, we extend our FeST data structure with a new
 439 Boolean field $x.\text{rev}$ in each node x , which indicates that its whole subtree should be regarded
 440 as reversed, that is, its descending nodes should be read right-to-left, but that this update
 441 has not yet been carried out. This field is set to *false* on newly created nodes. We also add
 442 a field $x.\text{fprev}$, so that if x represents $s[i..j]$, then $x.\text{fprev} = \kappa(s[j]s[j - 1] \dots s[i + 1]s[i])$ is
 443 the fingerprint of the reversed string. When $x.\text{rev}$ is *true*, the fields of x (including $x.\text{fp}$ and
 444 $x.\text{fprev}$) still do not reflect the reversal.

445 The fields $x.\text{fprev}$ must be maintained in the same way as the fields $x.\text{fp}$. Concretely, upon
 446 every update where the children of node x change, we not only recompute $x.\text{fp}$ as shown in
 447 Section 3.1, but also $x.\text{fprev} = ((x.\text{right}.\text{fprev} \cdot b + x.\text{char}) \cdot x.\text{left}.\text{power} + x.\text{left}.\text{fprev}) \bmod p$.

448 In order to apply the described reversal to a substring $s[i..j]$, we first compute $y =$
 449 `isolate`(i, j) on the tree of s , and then toggle the Boolean value $y.\text{rev} = \neg y.\text{rev}$ (note
 450 that, if y had already an unprocessed reversal, this is undone without ever materializing
 451 it). The operation `reverse` then takes $\mathcal{O}(\log |s|)$ amortized time, dominated by the cost of
 452 `isolate`(i, j). We must, however, handle potentially reversed nodes.

453 **Fixing marked nodes.** Every time we access a tree node, if it is marked as reversed, we *fix*
 454 it, after which it can be treated as a regular node because its fields will already reflect the
 455 reversal of its represented string (though some descendant nodes may still need fixing).

456 Fixing a node involves exchanging its left and right children, toggling their reverse marks,
 457 and updating the node fingerprint. More precisely, we define the primitive `fix`(x) as follows:
 458 if $x.\text{rev}$ is *true*, then (i) set $x.\text{rev} = \text{false}$, $x.\text{left}.\text{rev} = \neg x.\text{left}.\text{rev}$, $x.\text{right}.\text{rev} = \neg x.\text{right}.\text{rev}$,

Figure 3 Scheme of the `fix` operation on node x .

459 (ii) swap $x.left$ with $x.right$, and (iii) swap $x.fp$ with $x.fprev$. See Fig. 3 for an example. It is
 460 easy to see that `fix` maintains the invariants about the meaning of the reverse fields.

461 Because all the operations in splay trees, including the *splay*, are done along paths that
 462 are first traversed downwards from the root, it suffices that we run `fix`(x) on every node
 463 x we find as we descend from the root (for example, on every node x where we perform
 464 `find`(x, i)), before taking any other action on the node. This ensures that all the accesses
 465 and structural changes to the splay tree are performed over fixed nodes, and therefore no
 466 algorithm needs further changes. For example, when we perform *splay*(x), all the ancestors of
 467 x are already fixed. As another example, if we run `equal` as in Section 3.6, the nodes y_1 and
 468 y_2 will already be fixed by the time we read their fingerprint fields. As a third example, if
 469 we run `retrieve`(s, i, j) as in Section 3.3 and the subtree of y has reversed nodes inside, we
 470 will progressively fix all those nodes as we traverse the subtree, therefore correctly retrieving
 471 $s[i..j]$ within $\mathcal{O}(j - i + 1)$ time.

472 Note that `fix` takes constant time per node and does not change the potential function
 473 Φ , so no time complexities change due to our adjustments. The new fields also enable other
 474 queries, for example to decide whether a string is a palindrome.

4.3 Involutions

475 We support the operation `map`(s, i, j) analogously to substring reversals, that is, isolating
 476 $s[i..j]$ in a node $y = \text{isolate}(i, j)$ and then marking that the substring covered by node y is
 477 mapped using a new Boolean field $y.map$, which is set to *true*. This will indicate that every
 478 symbol $s[k]$, for $i \leq k \leq j$, must be interpreted as $f(s[k])$, but that the change has not yet
 479 been materialized. Similarly to `reverse`, this information will be propagated downwards
 480 as we descend into a subtree, otherwise it is maintained in the subtree's root only. The
 481 operation will then take $\mathcal{O}(\log |s|)$ amortized time.

482 To manage the mapping and deamortize its linear cost across subsequent operations, we
 483 will also store fields $x.mfp = \kappa(f(s[i])f(s[i+1]) \cdots f(s[j]))$ and $x.mfprev = \kappa(f(s[j])f(s[j-1]) \cdots f(s[i]))$, which maintain the fingerprint of the mapped string, and its reverse, represented
 484 by x . Those are maintained analogously as the previous fingerprints: (1) $x.mfp = ((x.left.mfp \cdot$
 485 $b + f(x.\text{char})) \cdot x.right.power + x.right.mfp) \bmod p$, and (2) $x.mfprev = ((x.right.mfprev \cdot b +$
 486 $f(x.\text{char})) \cdot x.left.power + x.left.mfprev) \bmod p$.

487 As for string reversals, every time we access a tree node, if it is marked as mapped,
 488 we unmark it and toggle the mapped mark of its children, before proceeding with any
 489 other action. Precisely, we define the primitive `fixm`(x) as follows: if $x.map$ is *true*, then
 490 (i) set $x.map = \text{false}$, $x.left.map = \neg x.left.map$, $x.right.map = \neg x.right.map$, (ii) set
 491 $x.\text{char} = f(x.\text{char})$, and (iii) swap $x.fp$ with $x.mfp$, and $x.fprev$ with $x.mfprev$. We note
 492 that, in addition, the `fix` operation defined in Section 4.2 must also exchange $x.mfp$ with
 493 $x.mfprev$ if we also support involutions. Note how, as for reversals, two applications of f
 494 cancel each other, which is correct because f is an involution. Operation `fixm` is applied in

497 the same way as fix along tree traversals.

498 **Reverse complementation.** By combining string reversals and involutions, we can for
 499 example support the application of *reverse complementation* of substrings in DNA sequences,
 500 where a substring $s[i..j]$ is reversed and in addition its symbols are replaced by their Watson-
 501 Crick complement, applying the involution $f(A) = T$, $f(T) = A$, $f(C) = G$, and $f(G) = C$. In
 502 case we *only* want to perform reverse complementation (and not reversals and involutions
 503 independently), we can simplify our fields and maintain only a Boolean field $x.rc$ and the
 504 fingerprint $x.mfprev$ in addition to $x.fp$. Fixing a node consists of: if $x.rc$ is *true*, then (i)
 505 set $x.rc = \text{false}$, $x.left.rc = \neg x.left.rc$, $x.right.rc = \neg x.right.rc$, (ii) set $x.char = f(x.char)$,
 506 (iii) swap $x.left$ with $x.right$, (iv) swap $x.fp$ with $x.mfprev$.

507 5 Circular strings and omega extension

508 Our data structure can be easily extended to handle circular strings. We do this by introducing
 509 a new routine, called `rotate`, which allows us linearize the circular string starting at any
 510 of its indices. By carefully using this primitive, along with a slight modification for the
 511 computation of fingerprints, we can support every operation that we presented on linear
 512 strings with the same time bounds, as well as signed reversals, in $\mathcal{O}(\log |\$|)$ amortized time.

513 By supporting operations on circular strings, we can also handle the omega extension of
 514 strings, which is the infinite concatenation of a string: $s^\omega = s \cdot s \cdot \dots$. Again, we are able to
 515 meet the same time bounds on every operation on linear strings. We also define two ways to
 516 implement the equality between omega-extended substrings. Full details will be contained in
 517 the full version of the paper.

518 6 Conclusion

519 We presented a new data structure, a forest of enhanced splay trees (FeST), to handle
 520 collections of dynamic strings. Our solution is much simpler than those offering the best
 521 theoretical results, while still offering logarithmic amortized times for most update and query
 522 operations. We answer queries correctly whp, and updates are always correct.

523 To build our data structure, we employ an approach that differs from theoretical solutions:
 524 we use a splay tree for representing each string, enhancing it with additional annotations.
 525 The use of binary trees to represent dynamic strings is not new, but exploiting the simplicity
 526 of splay trees for attaching and detaching subtrees is. As our FeST is easy to understand,
 527 explain, and implement, we believe that it offers the opportunity of wide usability and can
 528 become a textbook implementation of dynamic strings. Further, we have found nontrivial—
 529 yet perfectly implementable—solutions to relevant queries, like computing the length ℓ of
 530 the longest common prefix of two suffixes in time $\mathcal{O}(\log n + \log^2 \ell)$ instead of the trivial
 531 $\mathcal{O}(\log^2 n)$. The simplicity of our solution enables new features, like the possibility of reversing
 532 a substring, or reverse-complementing it, to be easily implemented in logarithmic amortized
 533 time. Our data structure also allows handling circular strings, as well as omega-extensions of
 534 strings—features competing solutions have not explored.

535 References

- 536 1 Stephen Alstrup, Gerth Stølting Brodal, and Theis Rauhe. Pattern matching in dynamic
 537 texts. In *Proc. 11th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA)*, pages
 538 819–828, 2000.

XX:14 A Textbook Solution for Dynamic Strings

- 539 2 Amihood Amir, Itai Boneh, Panagiotis Charalampopoulos, and Eitan Kondratovsky. Repetition
540 detection in a dynamic string. In *Proc. 27th Annual European Symposium on Algorithms*
541 (*ESA*), pages 5:1–5:18, 2019.
- 542 3 Amihood Amir, Panagiotis Charalampopoulos, Costas S. Iliopoulos, Solon P. Pissis, and Jakub
543 Radoszewski. Longest common factor after one edit operation. In *Proc. 24th International*
544 *Symposium on String Processing and Information Retrieval (SPIRE)*, pages 14–26, 2017.
- 545 4 Amihood Amir, Panagiotis Charalampopoulos, Solon P. Pissis, and Jakub Radoszewski.
546 Dynamic and internal longest common substring. *Algorithmica*, 82(12):3707–3743, 2020.
- 547 5 Lorraine A.K. Ayad and Solon P. Pissis. MARS: Improving multiple circular sequence alignment
548 using refined sequences. *BMC Genomics*, 18(1):1–10, 2017.
- 549 6 Vineet Bafna and Pavel A. Pevzner. Genome rearrangements and sorting by reversals. In *Proc.*
550 *34th Annual Symposium on Foundations of Computer Science (FOCS)*, pages 148–157, 1993.
- 551 7 Hans-Juergen Boehm, Russell R. Atkinson, and Michael F. Plass. Ropes: An alternative to
552 strings. *Software Practice and Experience*, 25(12):1315–1330, 1995.
- 553 8 Christina Boucher, Davide Cenzato, Zsuzsanna Lipták, Massimiliano Rossi, and Marinella
554 Sciortino. Computing the original eBWT faster, simpler, and with less memory. In *Proc.*
555 *28th International Symposium on String Processing and Information Retrieval (SPIRE)*, pages
556 129–142, 2021.
- 557 9 Christina Boucher, Davide Cenzato, Zsuzsanna Lipták, Massimiliano Rossi, and Marinella
558 Sciortino. r -indexing the eBWT. *Information and Computation*, 298:105155, 2024. doi:
559 10.1016/j.ic.2024.105155.
- 560 10 Alberto Caprara. Sorting by reversals is difficult. In *Proc. 1st Annual International Conference*
561 *on Research in Computational Molecular Biology (RECOMB)*, pages 75–83, 1997.
- 562 11 Alberto Caprara and Romeo Rizzi. Improved approximation for breakpoint graph
563 decomposition and sorting by reversals. *Journal of Combinatorial Optimization*, 6(2):157–182,
564 2002.
- 565 12 Jean Cardinal and John Iacono. Modular subset sum, dynamic strings, and zero-sum sets. In
566 *Proc. 4th Symposium on Simplicity in Algorithms (SOSA)*, pages 45–56. SIAM, 2021.
- 567 13 Giulio Cerbai and Luca S. Ferrari. Permutation patterns in genome rearrangement problems:
568 The reversal model. *Discrete Applied Mathematics*, 279:34–48, 2020.
- 569 14 Panagiotis Charalampopoulos, Tomasz Kociumaka, and Shay Mozes. Dynamic string alignment.
570 In *Proc. 31st Annual Symposium on Combinatorial Pattern Matching (CPM)*, pages 9:1–9:13,
571 2020.
- 572 15 Panagiotis Charalampopoulos, Tomasz Kociumaka, Jakub Radoszewski, Solon P. Pissis,
573 Wojciech Rytter, Tomasz Walen, and Wiktor Zuba. Approximate circular pattern matching.
574 In *Proc. 30th Annual European Symposium on Algorithms (ESA)*, pages 35:1–35:19, 2022.
- 575 16 M. Charikar, E. Lehman, D. Liu, R. Panigrahy, M. Prabhakaran, A. Sahai, and A. Shelat.
576 The smallest grammar problem. *IEEE Transactions on Information Theory*, 51(7):2554–2576,
577 2005.
- 578 17 Raphaël Clifford, Allan Grønlund, Kasper Green Larsen, and Tatiana Starikovskaya. Upper
579 and lower bounds for dynamic data structures on strings. In *Proc. 35th Symposium on*
580 *Theoretical Aspects of Computer Science (STACS)*, pages 22:1–22:14, 2018.
- 581 18 Richard Cole. On the dynamic finger conjecture for splay trees. Part II: The proof. *SIAM*
582 *Journal on Computing*, 30(1):44–85, 2000.
- 583 19 James R. Driscoll, Neil Sarnak, Daniel Dominic Sleator, and Robert Endre Tarjan. Making
584 data structures persistent. In *Proc. 18th Annual ACM Symposium on Theory of Computing*
585 (*STOC*), pages 109–121, 1986.
- 586 20 Guillaume Fertin, Anthony Labarre, Irena Rusu, Eric Tannier, and Stéphane Vialette.
587 *Combinatorics of Genome Rearrangements*. MIT Press, 2009.
- 588 21 Mitsuru Funakoshi, Yuto Nakashima, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda.
589 Longest substring palindrome after edit. In *Proc. 29th Annual Symposium on Combinatorial*
590 *Pattern Matching (CPM)*, pages 12:1–12:14, 2018.

- 591 22 Paweł Gawrychowski. Pattern matching in Lempel-Ziv compressed strings: Fast, simple,
592 and deterministic. In *Proc. 19th Annual European Symposium on Algorithms (ESA)*, pages
593 421–432, 2011.
- 594 23 Paweł Gawrychowski, Adam Karczmarz, Tomasz Kociumaka, Jakub Lacki, and Piotr
595 Sankowski. Optimal dynamic strings. *CoRR*, abs/1511.02612, 2015.
- 596 24 Paweł Gawrychowski, Adam Karczmarz, Tomasz Kociumaka, Jakub Lacki, and Piotr
597 Sankowski. Optimal dynamic strings. In *Proc. 29th Annual ACM-SIAM Symposium on
598 Discrete Algorithms (SODA)*, pages 1509–1528, 2018.
- 599 25 Roberto Grossi, Costas S. Iliopoulos, Jesper Jansson, Zara Lim, Wing-Kin Sung, and Wiktor
600 Zuba. Finding the cyclic covers of a string. In *Proc. 17th International Conference and
601 Workshops on Algorithms and Computation (WALCOM)*, pages 139–150, 2023.
- 602 26 Roberto Grossi, Costas S Iliopoulos, Robert Mercas, Nadia Pisanti, Solon P Pissis, Ahmad
603 Retha, and Fatima Vayani. Circular sequence comparison: algorithms and applications.
604 *Algorithms for Molecular Biology*, 11(1):1–14, 2016.
- 605 27 Yijie Han. Improving the efficiency of sorting by reversals. In *Proc. International Conference
606 on Bioinformatics & Computational Biology (BIOCOMP)*, pages 406–409, 2006.
- 607 28 Sridhar Hannenhalli and Pavel A. Pevzner. Transforming cabbage into turnip: Polynomial
608 algorithm for sorting signed permutations by reversals. In *Proc. 27th Annual ACM Symposium
609 on Theory of Computing (STOC)*, pages 178–189, 1995.
- 610 29 Costas S. Iliopoulos, Tomasz Kociumaka, Jakub Radoszewski, Wojciech Rytter, Tomasz Walen,
611 and Wiktor Zuba. Linear-time computation of cyclic roots and cyclic covers of a string. In
612 *Proc. 34th Annual Symposium on Combinatorial Pattern Matching (CPM)*, pages 15:1–15:15,
613 2023.
- 614 30 Richard M. Karp and Michael O. Rabin. Efficient randomized pattern-matching algorithms.
615 *IBM Journal of Research and Development*, 31(2):249–260, 1987.
- 616 31 Dominik Kempa and Tomasz Kociumaka. Dynamic suffix array with polylogarithmic queries
617 and updates. In *Proc. 54th Annual ACM SIGACT Symposium on Theory of Computing
618 (STOC)*, pages 1657–1670. ACM, 2022.
- 619 32 Dominik Kempa and Tomasz Kociumaka. Dynamic suffix array with polylogarithmic queries
620 and updates. *CoRR*, abs/2201.01285, 2022. URL: <https://arxiv.org/abs/2201.01285>,
621 [arXiv:2201.01285](https://arxiv.org/abs/2201.01285).
- 622 33 Dominik Kempa and Ben Langmead. Fast and space-efficient construction of AVL grammars
623 from the LZ77 parsing. *CoRR*, 2105.11052, 2021.
- 624 34 D. E. Knuth. *The Art of Computer Programming, volume 3: Sorting and Searching*. Addison-
625 Wesley, 2nd edition, 1998.
- 626 35 Tomasz Kociumaka, Anish Mukherjee, and Barna Saha. Approximating edit distance in the
627 fully dynamic model. In *Proc. 64th IEEE Annual Symposium on Foundations of Computer
628 Science (FOCS)*, pages 1628–1638. IEEE, 2023.
- 629 36 M. Lothaire. *Applied Combinatorics on Words*. Cambridge University Press, 2005.
- 630 37 Sabrina Mantaci, Antonio Restivo, Giovanna Rosone, and Marinella Sciortino. An extension
631 of the Burrows-Wheeler transform. *Theoretical Computer Science*, 387(3):298–312, 2007.
- 632 38 Kurt Mehlhorn, Rajamani Sundar, and Christian Uhrig. Maintaining dynamic sequences
633 under equality tests in polylogarithmic time. *Algorithmica*, 17(2):183–198, 1997.
- 634 39 Kevin Menard, Chris Seaton, and Benoit Daloze. Specializing ropes for ruby. In *Proc. 15th
635 International Conference on Managed Languages & Runtimes (ManLang)*, pages 10:1–10:7,
636 2018.
- 637 40 Gonzalo Navarro and Nicola Prezza. Universal compressed text indexing. *Theoretical Computer
638 Science*, 762:41–50, 2019.
- 639 41 Takaaki Nishimoto, Tomohiro I, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda.
640 Fully dynamic data structure for LCE queries in compressed space. In *Proc. 41st International
641 Symposium on Mathematical Foundations of Computer Science (MFCS)*, pages 72:1–72:14,
642 2016.

XX:16 A Textbook Solution for Dynamic Strings

- 643 42 Takaaki Nishimoto, Tomohiro I, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda.
644 Dynamic index and LZ factorization in compressed space. *Discrete Applied Mathematics*,
645 274:116–129, 2020.
- 646 43 Andre Rodrigues Oliveira, Ulisses Dias, and Zanoni Dias. On the sorting by reversals and
647 transpositions problem. *Journal of Universal Computer Science*, 23(9):868–906, 2017.
- 648 44 W. Rytter. Application of Lempel-Ziv factorization to the approximation of grammar-based
649 compression. *Theoretical Computer Science*, 302(1-3):211–222, 2003.
- 650 45 Daniel Dominic Sleator and Robert Endre Tarjan. Self-adjusting binary search trees. *Journal
651 of the ACM*, 32(3):652–686, 1985.
- 652 46 Damien Stehlé and Paul Zimmermann. A binary recursive gcd algorithm. In *Proc. 6th
653 International Symposium on Algorithmic Number Theory (ANTS)*, pages 411–425, 2004.
- 654 47 Rajamani Sundar and Robert E. Tarjan. Unique binary-search-tree representations and
655 equality testing of sets and sequences. *SIAM Journal on Computing*, 23(1):24–44, 1994.
- 656 48 Wojciech Szpankowski. A generalized suffix tree and its (un)expected asymptotic behaviors.
657 *SIAM Journal on Computing*, 22(6):1176–1198, 1993.
- 658 49 Yuki Urabe, Yuto Nakashima, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda.
659 Longest Lyndon substring after edit. In *Proc. 29th Annual Symposium on Combinatorial
660 Pattern Matching (CPM)*, pages 19:1–19:10, 2018.
- 661 50 G.A. Watterson, W.J. Ewens, T.E. Hall, and A. Morgan. The chromosome inversion problem.
662 *Journal of Theoretical Biology*, 99:1–7, 1982.

663 **APPENDIX**664 **A Figures**

Figure 4 Cycle-rotation operation: `rotate(s, 9)` moves $s[9..]$ to the left of $s[..8]$. After the rotation the string becomes $s[9..]s[..8]$.

665 **B Other Related Work**

666 A related line of work aims at maintaining a data structure such that the solution to some
 667 particular problem on one or two strings can be efficiently updated when these strings undergo
 668 an edit operation (deletion, insertion, or substitution). Examples are longest common factor
 669 of two strings [3, 4], optimal alignment of two strings [14], approximating the edit distance [35],
 670 longest palindromic substring [21], longest square [2], or longest Lyndon factor [49] of one
 671 string. The setup can be what is referred to as partially dynamic, when the original string or
 672 strings are returned to their state before the edit, or fully dynamic, when the edit operations
 673 are reflected on the original string or strings. Clifford et al. [17] give lower bounds on various
 674 problems of this kind when a single substitution is applied.

675 This setup, also referred to as *dynamic strings*, differs from ours in several ways: (a)
 676 we are not only interested in solving one specific problem on strings; (b) we have an entire
 677 collection of strings, and will want to ask queries on any one or any pair of these; and (c) we
 678 allow many different kinds of update operations.

679 Locally consistent parsings to maintain dynamic strings have been used to support more
 680 complex problems, such as simulating suffix arrays [31, 32].

681 **C Circular strings and omega extensions**682 **C.1 Additional definitions**

683 In this section, we are going to use some further concepts regarding periodicity and conjugacy.

684 A string s is called *periodic* with period r if $s[i+r] = s[i]$ for all $1 \leq i \leq |s| - r$.

685 Two strings s, t are *conjugates* if there exist strings u, v , possibly empty, such that $s = uv$
 686 and $t = vu$. Conjugacy is an equivalence; the equivalence classes $[s]$ are also called *circular*
 687 *strings*, and any $t \in [s]$ is called a *linearization* of this circular string. Abusing notation, any
 688 linear string s can be viewed as a circular string, in which case it is taken as a representative
 689 of its conjugacy class. A *substring* of a circular string s is any prefix of any $t \in [s]$, or,
 690 equivalently, a string of the form $s[i..j]$ for $1 \leq i, j \leq |s|$ (a linear substring), or $s[i..]s[..j]$,

691 where $j < i$. A *necklace* is a string s with the property that $s \leq_{\text{lex}} t$ for all $t \in [s]$. Every
 692 conjugacy class contains exactly one necklace.

693 When the dynamic strings in our collection are to be interpreted as circular strings, we
 694 need to adjust some of our operations. Our model is that we will maintain a canonical
 695 representative \hat{s} of the class of rotations of s . All the indices of the operations refer to
 696 positions in \hat{s} . Internally, we may store in the FeST another representative s of the class, not
 697 necessarily \hat{s} .

698 C.2 Circular strings

699 Our general approach to handle operations on \hat{s} regarding it as circular is to rotate it
 700 conveniently before accessing it. The splay tree T of \hat{s} will then maintain some (string)
 701 rotation $s = \hat{s}[r..]\hat{s}[..r - 1]$ of \hat{s} , and we will maintain a field $\text{start}(\hat{s}) = r$ so that we can map
 702 any index $\hat{s}[i]$ referred to in update or query operations to $s[((|s| + i - \text{start}(\hat{s})) \bmod |s|) + 1]$.

703 When we want to change the rotation of \hat{s} to another index r' , so that we now store
 704 $s' = \hat{s}[r'..]\hat{s}[..r' - 1]$, we make use of a new operation **rotate**(s, i), which rotates s so that
 705 its splay tree represents $s[i..]s[..i - 1]$. This is implemented as $s' = \text{extract}(s, i, |s|)$ followed
 706 by **introduce**($s, 1, s'$). We then move from rotation r to r' in $\mathcal{O}(\log |s|)$ amortized time by
 707 doing **rotate**($s, r' - r + 1$) if $r' > r$, or **rotate**($s, |s| + r' - r + 1$) if $r' < r$. We then set
 708 $\text{start}(\hat{s}) = r'$.

709 Operation $s = \text{make-string}(w)$ stays as before, in the understanding that $\hat{s} = w$ will be
 710 seen as the canonical representation of the class, so we set $\text{start}(\hat{s}) = 1$; this can be changed
 711 later with a string rotation if desired. All the operations that address a single position $\hat{s}[i]$,
 712 like **access** and the edit operations, are implemented verbatim by just shifting the index
 713 i using $\text{start}(\hat{s})$ as explained. Instead, the operations **retrieve**, **extract**, **equal**, **reverse**,
 714 and **map**, which act on a range $\hat{s}[i..j]$, may give trouble when $i > j$, as in this case the
 715 substring is $\hat{s}[i..]\hat{s}[..j]$ by circularity. In this case, those operations will be preceded by a
 716 change of rotation from the current one, $r = \text{start}(\hat{s})$, to $r' = 1$, using **rotate** as explained.
 717 This guard will get rid of those cases. Note that, in the case of **equal**, we may need to rotate
 718 both s_1 and s_2 , independently, to compute each of the two signatures.

719 The two remaining operations deserve some consideration. Operation **introduce**(s_1, i, s_2)
 720 could be implemented verbatim (with the shifting of i), but in this case it would introduce
 721 in $\hat{s}_1[i]$ the current rotation of s_2 , instead of \hat{s}_2 as one would expect. Therefore, we precede
 722 the operation by a change of rotation in s_2 to $r' = 1$, which makes the splay tree store \hat{s}_2
 723 with $\text{start}(\hat{s}_2) = 1$.

724 Finally, in operation **lcp**(s_1, i_1, s_2, i_2) we do not know for how long the LCP will extend,
 725 so we precede it by changes of rotations in both s_1 and s_2 that make them start at position
 726 1 of \hat{s}_1 and \hat{s}_2 . In case $s_1 = s_2$, however, this trick cannot be used. One simple solution is
 727 to rotate the string every time we call **equal** during Step 1; recall Section 4.1. This will be
 728 needed as long as the accesses are done on s_1 and s_2 ; as soon as we extract the substrings
 729 of length ℓ'' (and, later, ℓ' for Step 3), we work only on the extracted strings. While the
 730 complexity is preserved, rotating the string every time can be too cumbersome. We can use
 731 an alternative way to compute signatures of circular substrings, $\kappa(s[i..]s[..j])$: we compute as
 732 in Section 3.6 $\sigma = \kappa(s[i..])$ and $\tau = \kappa(s[..j])$, as well as $b^j \bmod p$, which comes for free with
 733 the computation of τ ; then $\kappa(s[i..]s[..j]) = (\sigma \cdot b^j + \tau) \bmod p$.

734 Overall, we maintain for all the operations the same asymptotic running times given in
 735 the Introduction when the strings are interpreted as circular.

736 **Signed reversals on circular strings.** By combining reversals and involutions, we can support
737 signed reversals on circular strings, too. We do this in the same way as for linear strings,
738 namely by doubling the alphabet Σ of gene identifiers such that each gene i has a negated
739 version $-i$, and using the involution $f(i) = -i$ (and $f(-i) = i$). Note that the original paper
740 in which reversals were introduced [50] used circular chromosomes.

741 C.3 Omega extensions

742 Circular dynamic strings allow us to implement operations that act on the omega extensions
743 of the underlying strings. Recall that for a (linear) string s , the infinite string s^ω is defined as
744 the infinite concatenation $s^\omega = s \cdot s \cdot s \cdot \dots$. These are, for example, used in the definition of the
745 *extended Burrows-Wheeler Transform* (eBWT) of Mantaci et al. [37], where the underlying
746 string order is based on omega extensions. In this case, comparisons of substrings may need
747 to be made whose length exceeds the shorter of the two strings s_1 and s_2 . We therefore
748 introduce a generalization of circular substrings as follows: t is called an *omega-substring* of
749 s if $t = s[i..]s^k s[..j]$ for some $j < i - 1$ and $k \geq 0$. Note that the suffix $s[i..]$ and the prefix
750 $s[..j]$ may also be empty. Thus, t is an omega-substring of s if and only if $t = v^k v[..j]$ for
751 some $k \geq 1$ and some conjugate v of s .

752 An important tool in this section will be the famous Fine and Wilf Lemma [36], which
753 states that if a string w has two periods r, q and $|w| \geq r + q - \gcd(r, q)$, then w is also
754 periodic with period $\gcd(r, q)$ (a string s is called periodic with period r if $s[i+r] = s[i]$ for
755 all $1 \leq i \leq |s| - r$). The following is a known corollary, a different formulation of which was
756 proven, e.g., in [37]; we reprove it here for completeness.

757 ▶ **Lemma 4.** *Let u, v be two strings. If $\text{lcp}(u^\omega, v^\omega) \geq |u| + |v| - \gcd(|u|, |v|)$, then $u^\omega = v^\omega$.*

758 **Proof.** Let $\ell = \text{lcp}(u^\omega, v^\omega) \geq |u| + |v| - \gcd(|u|, |v|)$. Then the string $t = s_1^\omega[.. \ell]$ is periodic
759 both with period $|u|$ and with period $|v|$, and thus, by the Fine and Wilf lemma, it is also
760 periodic with period $\gcd(|u|, |v|)$. Since $\gcd(|u|, |v|) \leq |u|, |v|$, this implies that both u and v
761 are powers of the same string x , of length $\gcd(|u|, |v|)$ and therefore, $u^\omega = x^\omega = v^\omega$. ◀

762 We further observe that the fingerprint of strings of the form u^k can be computed from the
763 fingerprint of string u . More precisely, let u be a string, $\pi = \kappa(u)$ its fingerprint, and $k \geq 1$.
764 Then, calling $d = b^{|u|} \bmod p$ (which we also obtain in the field $y.\text{power}$ when computing
765 $\kappa(u)$), it holds

$$\begin{aligned} \kappa(u^k) &= (\pi \cdot d^{k-1} + \pi \cdot d^{k-2} + \dots + \pi \cdot d + \pi) \bmod p \\ &= (\pi \cdot (d^{k-1} + d^{k-2} + \dots + 1)) \bmod p, \end{aligned} \tag{1}$$

768 where $\text{geomsum}(d, k-1) = (d^{k-1} + d^{k-2} + \dots + 1) \bmod p$ can be computed in $\mathcal{O}(\log k)$ time
769 using the identity $d^{2k+1} + d^{2k} + \dots + 1 = (d+1) \cdot ((d^2)^k + (d^2)^{k-1} + \dots + 1)$, as follows⁴ (all
770 modulo p):

$$\begin{aligned} \text{geomsum}(d, 0) &= 1 \\ \text{geomsum}(d, 2k+1) &= (d+1) \cdot \text{geomsum}(d^2, k) \\ \text{geomsum}(d, 2k) &= d \cdot \text{geomsum}(d, 2k-1) + 1 \end{aligned} \tag{2}$$

⁴ This technique seems to be folklore. Note that the better known formula $\text{geomsum}(d, k) = ((d^{k+1} - 1) \cdot (d-1)^{-1}) \bmod p$ requires computing multiplicative inverses, which takes $\mathcal{O}(\log N)$ time using the extended Euclid's algorithm, or $\mathcal{O}(\log \log N)$ with faster algorithms [46]; those terms would not be absorbed by others in our cost formula.

774 **Extended substring equality.** We devise at least two ways in which our `equal` query
 775 can be extended to omega extensions. First, consider the query $\text{equal}_\omega(s_1, i_1, s_2, i_2, \ell) =$
 776 $\text{equal}(s_1^\omega, i_1, s_2^\omega, i_2, \ell)$, that is, the normal substring equality interpreted on the omega
 777 extensions of s_1 and s_2 . We let $v_1 = \text{rotate}(s_1, i_1)$ and $v_2 = \text{rotate}(s_2, i_2)$. Then we have
 778 $s_1^\omega[i_1..i_1 + \ell - 1] = v_1^{k_1} v_1[..j_1]$, where $k_1 = \lfloor \ell/|s_1| \rfloor$ and $j_1 = \ell \bmod |s_1|$. If $k_1 = 0$, we simply
 779 compute $\kappa_1 = \kappa(s_1^\omega[i_1..i_1 + \ell - 1]) = \kappa(v_1[..j_1])$. Otherwise, we compute $\kappa_1 = \kappa(s_1^\omega[i_1..i_1 + \ell - 1])$
 780 by applying Eq. (1) as follows:

$$781 \quad \kappa_1 = (\kappa(v_1) \cdot (d^{k_1-1} + \dots + 1) \cdot b^{j_1} + \kappa(v_1[..j_1])) \bmod p. \quad (3)$$

782 There are various components to compute in this formula apart from the fingerprints
 783 themselves. First, note that $d = b^{|s_1|} \bmod p = b^{|v_1|} \bmod p = \text{root}(T_1).\text{power}$ for the tree T_1
 784 of s_1 (or v_1), so we have it in constant time. Second, $b^{j_1} \bmod p$ is the field $y.\text{power}$ after
 785 we compute $\kappa(v_1[..j_1])$ via $y = \text{isolate}(v_1, 1, j_1)$ after completion of $\text{rotate}(s_1, i_1)$, thus we
 786 also have it in constant time. Third, $d^{k_1-1} + \dots + 1 = \text{geomsum}(d, k_1 - 1)$ is computed with
 787 Eq. (2) in time $\mathcal{O}(\log k_1) \subseteq \mathcal{O}(\log \ell)$.

788 By Lemma 4 we can define $\ell_\omega = |s_1| + |s_2|$ and, if $\ell \geq \ell_\omega$, run the `equal` query
 789 with ℓ_ω instead of ℓ . The lemma shows that $s_1[i_1..i_1 + \ell - 1] = s_2[i_2..i_2 + \ell - 1]$ iff
 790 $s_1[i_1..i_1 + \ell_\omega - 1] = s_2[i_2..i_2 + \ell_\omega - 1]$. This limits ℓ to $|s_1| + |s_2|$ in our query and therefore
 791 the cost $\mathcal{O}(\log \ell)$ is in $\mathcal{O}(\log |s_1 s_2|)$.

792 We compute κ_2 analogously, and return *true* if and only if $\kappa_1 = \kappa_2$, after undoing the
 793 rotations to get back the original strings s_1 and s_2 . The total amortized time for operation
 794 `equal` is then $\mathcal{O}(\log |s_1 s_2|)$. Note that our results still hold whp because we are deciding
 795 on fingerprints of strings of length $\mathcal{O}(N)$, not $\mathcal{O}(\ell)$ (which is in principle unbounded).

796 A second extension of `equal` is $\text{equal}_\omega(s_1, i_1, \ell_1, s_2, i_2, \ell_2)$, interpreted as $(s_1^\omega[i_1..i_1 +$
 797 $\ell_1 - 1])^\omega = (s_2^\omega[i_2..i_2 + \ell_2 - 1])^\omega$, that is, the omega extension of $s_1^\omega[i_1..i_1 + \ell_1 - 1]$ is
 798 equal to the omega extension of $s_2^\omega[i_2..i_2 + \ell_2 - 1]$. By Lemma 4, this is equivalent to
 799 $(s_1^\omega[i_1..i_1 + \ell_1 - 1])^{\ell_2} = (s_2^\omega[i_2..i_2 + \ell_2 - 1])^{\ell_1}$. So we first compute $\kappa_1 = \kappa(s_1^\omega[i_1..i_1 + \ell_1 - 1])$
 800 and $\kappa_2 = \kappa(s_2^\omega[i_2..i_2 + \ell_2 - 1])$ as above, compute $d_1 = b^{\ell_1} \bmod p$ and $d_2 = b^{\ell_2} \bmod p$, and
 801 then return whether $(\kappa_1 \cdot (d_1^{\ell_2-1} + \dots + 1)) \bmod p = (\kappa_2 \cdot (d_2^{\ell_1-1} + \dots + 1)) \bmod p$. Operation
 802 `equal` is then also computed in amortized time $\mathcal{O}(\log |s_1 s_2|)$.

803 **Extended longest common prefix.** We are also able to extend LCPs to omega extensions:
 804 operation $\text{lcp}_\omega(s_1, i_1, s_2, i_2)$ computes, for the corresponding rotations $v_1 = \text{rotate}(s_1, i_1)$
 805 and $v_2 = \text{rotate}(s_2, i_2)$, the longest common prefix length $\text{lcp}(v_1^\omega, v_2^\omega)$, as well as the
 806 lexicographic order of v_1^ω and v_2^ω . That this can be done efficiently follows again from Lemma 4.
 807 We first compare their omega-substrings of length $\ell_\omega = |s_1| + |s_2|$. If $\text{equal}_\omega(s_1, i_1, s_2, i_2, \ell_\omega)$
 808 answers *true*, then it follows that $\text{lcp}(s_1, i_1, s_2, i_2) = \infty$. Otherwise, we run a close variant of
 809 the algorithm described in Section 4.1; note that ℓ_ω can be considerably larger than one of s_1
 810 or s_2 . For Step 1, we define $n' = n = |s_1 s_2|$; the other formulas do not change. We run the
 811 `equal` computations on s_1 and s_2 using Eq. (3) to compute the fingerprints. We extract the
 812 substrings of length ℓ' in Step 3 (analogously, ℓ'' in Step 1) using the `extract` for circular
 813 strings, but do so only if $\ell' \leq |s_1|$ (resp., $\ell' \leq |s_2|$); otherwise we keep accessing the original
 814 string using Eq. (3). The total amortized time to compute LCPs on omega extensions is thus
 815 $\mathcal{O}(\log |s_1 s_2|)$.

816 C.4 Future work

817 One feature that we would like to add to our data structure is allowing identification of
 818 conjugates. The rationale behind this is that a circular string can be represented by any

819 of its linearizations, so these should all be regarded as equivalent. Furthermore, when the
820 collection contains several conjugates of the same string, then this may be just an artifact
821 caused by the data acquisition process.

822 This could be solved by replacing each circular string with its necklace representative,
823 that is, the unique conjugate that is lexicographically minimal in the conjugacy class,
824 before applying `make-string`; this representative is computable in linear time in the string
825 length [36]. However, updates can change the lexicographic relationship of the rotations, and
826 thus the necklace representative of the conjugacy class. Recomputing the necklace rotation
827 of s after each update would add worst-case $\mathcal{O}(|s|)$ time to our running times, which is not
828 acceptable. Computing the necklace rotation after an edit operation, or more in general,
829 after any one of our update operations, is an interesting research question, which to the best
830 of our knowledge has not yet been addressed.