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Abstract. Sequence representations supporting queries access, select
and rank are at the core of many data structures. There is a consid-
erable gap between different upper bounds, and the few lower bounds,
known for such representations, and how they interact with the space
used. In this article we prove a strong lower bound for rank, which holds
for rather permissive assumptions on the space used, and give matching
upper bounds that require only a compressed representation of the se-
quence. Within this compressed space, operations access and select can
be solved within almost-constant time.

1 Introduction

A large number of data structures build on sequence representations. In partic-
ular, supporting the following three queries on a sequence S[1, n] over alphabet
[1, σ] has proved extremely useful:

– access(S, i) gives S[i];
– selecta(S, j) gives the position of the jth occurrence of a ∈ [1, σ] in S; and
– ranka(S, i) gives the number of occurrences of a ∈ [1, σ] in S[1, i].

For example, Ferragina and Manzini’s FM-index [9], a compressed indexed
representation for text collections that supports pattern searches, is most suc-
cessfully implemented over a sequence representation supporting access and
rank [10]. Grossi et al. [18] had used earlier similar techniques for text indexing,
and invented wavelet trees, a compressed sequence representation that solves the
three queries in time O(lg σ). The time was reduced to O( lg σ

lg lgn ) with multiary

wavelet trees [10, 17].3 Golynski et al. [16] used these operations for represent-
ing labeled trees and permutations, and proposed another representation that
solved the operations in time O(lg lg σ), and some even in constant time. This
representation was made compressed by Barbay et al. [1]. Further applications
of the three operations to multi-labeled trees and binary relations were uncov-
ered by Barbay et al. [2]. Ferragina et al. [8] and Gupta et al. [20] devised new
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applications to XML indexing. Barbay et al. [3, 1] gave applications to repre-
senting permutations and inverted indexes. Claude and Navarro [7] presented
applications to graph representation. Mäkinen and Välimäki [29] and Gagie et
al. [13] applied them to document retrieval on general texts.

The most basic case is that of bitmaps, when σ = 2. In this case obvious appli-
cations are set representations supporting membership and predecessor search.
We assume throughout this article the RAM model with word size w = Ω(lg n).
Jacobson [21] achieved constant-time rank using o(n) extra bits on top of a plain
representation of S, and Munro [23] and Clark [6] achieved also constant-time
select. Golynski [14] showed a lower bound of Ω(n lg lg n/ lg n) extra bits for
supporting both operations in constant time if S is to be represented in plain
form (i.e., as an array of n bits), and gave matching upper bounds. When S
can be represented arbitrarily, Patrascu [25] achieved lg

(
n
m

)
+ O(n/ lgc n) bits

of space, where m is the number of 1s in S and c is any constant, and showed
this is optimal [28].

For general sequences, a useful measure of compressibility is the zero-order
entropy of S, H0(S) =

∑
a∈[1,σ]

na
n lg n

na
, where na is the number of occur-

rences of a in S. This can be extended to the k-th order entropy, Hk(S) =
1
n

∑
A∈[1,σ]k |TA|H0(TA), where TA is the string of symbols following k-tuple A

in S. It holds 0 ≤ Hk(S) ≤ Hk−1(S) ≤ H0(S) ≤ lg σ for any k, but the entropy
measure is only meaningful for k < lgσ n. See Manzini [22] and Gagie [12] for a
deeper discussion.

When representing sequences supporting these operations, we may aim at
using O(n lg σ) bits of space, but frequently one aims for less space. We may
aim at succinct representation of S, taking n lg σ+ o(n lg σ) bits, at a zero-order
compressed representation, taking at most nH0(S)+o(n lg σ) bits (we might also
wish to compress the redundancy, o(n lg σ), to achieve for example nH0(S) +
o(nH0(S))), or at a high-order compressed representation, nHk(S) + o(n lg σ).

Upper and lower bounds for sequence representations supporting the three
operations are far less understood over larger alphabets. When σ = O(polylog n),
the three operations can be carried out in constant time over a data structure
using nH0(S)+o(n) bits [10]. For larger alphabets, this solution requires the same
space and answers the queries in time O( lg σ

lg lgn ) [10, 17]. Another class of solutions

[16, 19, 1], especially attractive for “large alphabets”, achieves time O(lg lg σ) for
rank. For access and select they offer complementary complexities, where one
of the operations is constant-time and the other requires O(lg lg σ) time. They
achieve zero-order compressed space, nH0(S) + o(nH0(S)) + o(n) bits [1], and
even high-order compressed space, nHk(S) + o(n lg σ) for any k = o(lgσ n) [19].

There are several curious aspects in the map of the current solutions for
general sequences. On one hand, the times for access and select seem to be
complementary, whereas that for rank is always the same. On the other hand,
there is no smooth transition between the complexity of one solution, O( lg σ

lg lgn ),

and that of the other, O(lg lg σ).

The complementary nature of access and select is not a surprise. Golynski
[15] gave lower bounds that relate the time performance that can be achieved



for these operations with the redundancy of an encoding of S on top of its
information content. The lower bound acts on the product of both times, that
is, if t and t′ are the time complexities, and ρ is the bit-redundancy per symbol,
then ρ · t · t′ = Ω((lg σ)2/w) holds for a wide range of values of σ. The upper
bounds for large alphabets [16, 19] match this lower bound.

Although operation rank seems to be harder than the others (at least no
constant-time solution exists except for polylog-sized alphabets), no general
lower bounds on this operation have been proved. Only a recent result for the
case in which S must be encoded in plain form states that if one solves rank
within a = O( lg σ

lg lg σ ) access to the sequence, then the redundancy per symbol

is ρ = Ω((lg σ)/a) [19]. Since in the RAM model one can access up to w/ lg σ
symbols in one access, this implies a lower bound of ρ · t = Ω((lg σ)2/w), similar
to the one by Golynski [15] for the product of access and select times.

In this article we make several contributions that help close the gap between
lower and upper bounds on sequence representation.

1. We prove the first general lower bound on rank, which shows that this
operation is, in a sense, noticeably harder than the others: No structure
using O(n · wO(1)) bits can answer rank queries in time o(lg lg σ

lgw ). Note the

space includes the rather permissive O(n ·polylog n). For this range of times
our general bound is much stronger than the existing restricted one [19],
which only forbids achieving it within n lg σ + O(n lg2 σ/(w lg lg σ

lgw )) bits.
Our lower bound uses a reduction from predecessor queries.

2. We give a matching upper bound for rank, using O(n lg σ) bits of space and
answering queries in time O(lg lg σ

lgw ). This is lower than any time complexity

achieved so far for this operation within O(n · wO(1)) bits, and it elegantly
unifies both known upper bounds under a single and lower time complexity.
This is achieved via a reduction to a predecessor query structure that is
tuned to use slightly less space than usual.

3. We derive succinct and compressed representations of sequences that achieve
time O( lg σ

lgw ) for access, select and rank, improving upon previous results

[10]. This yields constant-time operations for σ = wO(1). Succinctness is
achieved by replacing universal tables used in other solutions with bit ma-
nipulations on the RAM model. Compression is achieved by combining the
succinct representation with existing compression boosters.

4. We derive succinct and compressed representations of sequences over larger
alphabets, which achieve time O(lg lg σ

lgw ) for rank, which is optimal, and
almost-constant time for access and select. The result improves upon almost
all succinct and compressed representations proposed so far [16, 2, 1, 19]. This
is achieved by plugging our O(n lg σ)-bit solutions into existing succinct and
compressed data structures.

Our results assume a RAM model where bit shifts, bitwise logical operations,
and arithmetic operations (including multiplication) are permitted. Otherwise
we can simulate them with universal tables within o(n) extra bits of space, but
all lgw in our upper bounds become lg lg n.



2 Lower Bound for rank

Our technique is to reduce from a predecessor problem and apply the density-
aware lower bounds of Patrascu and Thorup [26]. Assume that we have n keys
from a universe of size u = nσ, then the keys are of length ` = lg u = lg n+ lg σ.
According to branch 2 of Patrascu and Thorup’s result, the time for predecessor

queries in this setting is lower bounded by Ω
(

lg
(
`−lgn
a

))
, where a = lg(s/n) +

lgw and s is the space in words of our representation (the lower bound is in
the cell probe model for word length w, so the space is always expressed in
number of cells). The lower bounds holds even for a more restricted version
of the predecessor problem in which one of two colors is associated with each
element and the query only needs to return the color of the predecessor. We
assume σ = O(n); the other case will be considered at the end of the section.

The reduction is as follows. We divide the universe n ·σ into σ intervals, each
of size n. This division can be viewed as a binary matrix of n columns by σ rows,
where we set a 1 at row r and column c iff element (r− 1) · n+ c belongs to the
set. We will use four data structures.

1. A plain bitvector L[1, n] which stores the color associated with each element.
The array is indexed by the original ranks of the elements.

2. A partial sums structure R stores the number of elements in each row. It
is a bitmap concatenating the σ unary representations, 1nr0, of the number
of 1s in each row r ∈ [1, σ]. Thus R is of length n + σ and can give in
constant time the number of 1s up to (and including) any row r, count(r) =
rank1(R, select0(R, r)) = select0(R, r)− r, in constant time and O(n+σ) =
O(n) bits of space [23, 6].

3. A column mapping data structure C that maps the original columns into
a set of columns where (i) empty columns are eliminated, and (ii) new
columns are created when two or more 1s fall in the same column. C is a
bitmap concatenating the n unary representations, 1nc0, of the numbers nc
of 1s in each column c ∈ [1, n]. So C is of length 2n. Note that the new
matrix of mapped columns has also n columns (one per element in the set)
and exactly one 1 per column. The original column c is then mapped to
col(c) = rank1(C, select0(C, c)) = select0(C, c)− c, using constant time and
O(n) bits. Note that col(c) is the last of the columns to which the original
column c might have been expanded.

4. A string S[1, n] over alphabet [1, σ], so that S[c] = r iff the only 1 at column
c (after column remapping) is at row r. Over this string we build a data
structure able to answer queries rankr(S, c).

Queries are done in the following way. Given an element x ∈ [1, u], we first
deompose it into a pair (r, c) where x = (r − 1) · n + c. In a first step, we
compute count(r − 1) in constant time. This gives us the count of elements up
to point (r − 1) · n. Next we must compute the count of elements in the range
[(r − 1) · n + 1, (r − 1) · n + c]. For doing that we first remap the column to
c′ = col(c) in constant time, and finally compute rankr(S, c

′), which gives the



number of 1s in row r up to column c′. Note that if column c was expanded to
several ones, we are counting the 1s up to the last of the expanded columns, so
that all the original 1s at column c are counted at their respective rows. Then
the rank of the predecessor of x is p = count(r − 1) + rankr(S, col(c)). Finally,
the color associated with x is given by L[p].

Theorem 1. Given a data structure that supports rank queries on strings of
length n over alphabet [1, σ] in time t(n, σ) and using s(n, σ) bits of space, we
can solve the colored predecessor problem for n integers from universe [1, nσ] in
time t(n, σ) +O(1) using a data structure that occupies s(n, σ) +O(n) bits.

By the reduction above we get that any lower bound for predecessor search
for n keys over a universe of size nσ must also apply to rank queries on sequences
of length n over alphabet of size σ. In our case, if we aim at using O(n·wO(1)) bits

of space, this lower bound (branch 2 [26]) is Ω
(

lg `−lgn
lg(s/n)+lgw

)
= Ω

(
lg lg σ

lgw

)
.

For σ = Θ(n) and w = Θ(lg n), the bound is simply Ω(lg lg σ). In case
σ = ω(n), Ω(lg lg σ

lgw ) must still be a lower bound, as otherwise we could break it

in the case σ = O(n) by just declaring σ artificially larger.

Theorem 2. Any data structure that uses space O(n · wO(1)) bits to represent
a sequence of length n over alphabet [1, σ], must use time Ω(lg lg σ

lgw ) to answer
rank queries.

For simplicity, assume w = Θ(lg n). This lower bound is trivial for small
lg σ = O(lg lg n) (i.e., σ = O(polylog n)), where constant-time solutions for
rank exist that require only nH0(S) + o(n) bits [10]. On the other hand, if σ
is sufficiently large, lg σ = Ω((lg lg n)1+ε) for any constant ε > 0, the lower
bound becomes simply Ω(lg lg σ), where it is matched by known compact and
compressed solutions [16, 1, 19] requiring as little as nH0(S) + o(nH0(S)) + o(n)
or nHk(S) + o(n lg σ) bits.

The only range where this lower bound has not yet been matched is ω(lg lg n) =
lg σ = o((lg lg n)1+ε), for any constant ε > 0. The next section presents a new
matching upper bound.

3 Optimal Upper Bound for rank

We now show a matching upper bound with optimal time and space O(n lg σ)
bits. In the next sections we make the space succinct and even compressed.

We reduce the problem to predecessor search and then use an existing so-
lution for that problem. The idea is simply to represent the string S[1, n] over
alphabet [1, σ] as a matrix of σ rows and n columns, and regard the matrix as
the set of n points {(S[c]− 1) · n+ c, c ∈ [1, n]} over the universe [1, nσ]. Then
we store an array of n cells containing 〈r, rankr(S, c)〉, where r = S[c], for the
point corresponding to column c in the set.

To query rankr(S, c) we compute the predecessor of (r − 1) · n+ c. If it is a
pair 〈r, v〉, for some v, then the answer is v. Else the answer is zero.



This solution requires n lg σ + n lg n bits for the pairs, on top of the space
of the predecessor query. If σ ≤ n we can reduce this extra space to 2n lg σ by
storing the pairs 〈r, rankr(S, c)〉 in a different way. We virtually cut the string
into chunks of length σ, and store the pair as 〈r, rankr(S, c) − rankr(S, c −
(c mod σ))〉. The rest of the rankr information is obtained in constant time and
O(n) bits using Golynski et al.’s [16] reduction to chunks: They store a bitmap
A[1, 2n] where the matrix is traversed row-wise and we append to A a 1 for
each 1 found in the matrix and a 0 each time we move to the next chunk (so
we append n/σ 0s per row). Then the remaining information for rankr(S, c)
is rankr(S, c − (c mod σ)) = select0(A, p1) − select0(A, p0) − (c div σ), where
p0 = (r − 1) · n/σ and p1 = p0 + (c div σ) (we have simplified the formulas by
assuming σ divides n).

Theorem 3. Given a solution for predecessor search on a set of n keys chosen
from a universe of size u, that occupies space s(n, u) and answers in time t(n, u),
there exists a solution for rank queries on a sequence of length n over an alphabet
[1, σ] that runs in time t(n, nσ) +O(1) and occupies s(n, nσ) +O(n lg σ) bits.

In the extended version of their article, Patrascu and Thorup [27] give an
upper bound matching the lower bound of branch 2 and using O(n lg u) bits for n
elements over a universe [1, u], and give hints to reduce the space to O(n lg(u/n)).
For completeness, we do this explicitly in an extended version of the present
paper [5, App. A]. By using this predecessor data structure, the following result
on rank is immediate.

Theorem 4. A string S[1, n] over alphabet [1, σ] can be represented using O(n lg σ)
bits, so that operation rank is solved in time O(lg lg σ

lgw ).

Note that, within this space, operations access and select can also be solved
in constant time.

4 Optimal-time rank in Succinct and Compressed Space

We start with a sequence representation using n lg σ+o(n lg σ) bits (i.e., succinct)
that answers access and select queries in almost-constant time, and rank in time
O(lg lg σ

lgw ). This is done in two phases: a constant-time solution for σ = wO(1),
and then a solution for general alphabets. Then we address compression.

4.1 Succinct Representation for Small Alphabets

Using multiary wavelet trees [10] we can obtain succinct space and O( lg σ
lg lgn )

time for access, select and rank. This is constant for lg σ = O(lg lg n). We start
by extending this result to the case lg σ = O(lgw), as a base case for handling
larger alphabets thereafter. More precisely, we prove the following result.

Theorem 5. A string S[1, n] over alphabet [1, σ] can be represented using n lg σ+
o(n lg σ) bits so that operations access, select and rank can be solved in time
O( lg σ

lgw ). If σ = wO(1), the space is ndlg σe+ o(n) bits and the times are O(1).



A multiary wavelet tree for S[1, n] divides, at the root node v, the alphabet
[1, σ] into r contiguous regions of the same size. A sequence Rv[1, n] recording the
region each symbol belongs to is stored at the root node (note Rv is a sequence
over alphabet [1, r]). This node has r children, each handling the subsequence
of S formed by the symbols belonging to a given region. The children are de-
composed recursively, thus the wavelet tree has height O(lgr σ). Queries access,
select and rank on sequence S[1, n] are carried out via O(lgr σ) similar queries
on the sequences Rv stored at wavelet tree nodes [18]. By choosing r such that
lg r = Θ(lg lg n), it turns out that the operations on the sequences Rv can be
carried out in constant time, and thus the cost of the operations on the original
sequence S is O( lg σ

lg lgn ) [10].

In order to achieve time O( lg σ
lgw ), we need to handle in constant time the

operations over alphabets of size r = wβ , for some 0 < β < 1, so that lg r =
Θ(lgw). This time we cannot resort to universal tables of size o(n), but rather
must use bit manipulation on the RAM model.

The sequence Rv[1, n] is stored as the concatenation of n fields of length lg r,
into consecutive machine words. Thus achieving constant-time access is trivial:
To access Rv[i] we simply extract the corresponding bits, from the (1 + (i− 1) ·
lg r)-th to the (i · lg r)-th, from one or two consecutive machine words, using bit
shifts and masking.

Operations rank and select are more complex. We will proceed by cutting
the sequence Rv into blocks of length b = wα symbols, for some β < α < 1.
First we show how, given a block number i and a symbol a, we extract from
R[1, b] = Rv[(i− 1) · b+ 1, i · b] a bitmap B[1, b] such that B[j] = 1 iff R[j] = a.
Then we use this result to achieve constant-time rank queries. Next, we show
how to solve predecessor queries in constant time, for several fields of length lgw
bits fitting in a machine word. Finally, we use this result to obtain constant-time
select queries.

Projecting a Block. Given sequence R[1, b] = Rv[1 + (i− 1) · b, i · b], which is of
length b · ` = wα lg r < wα lgw = o(w) bits, where ` = lg r, and given a ∈ [1, r],
we extract B[1, b · `] such that B[j · `] = 1 iff R[j] = a.

To do so, we first compute X = a · (0`−11)b. This creates b copies of a within
`-bit long fields. Second, we compute Y = R xor X, which will have zeroed
fields at the positions j where R[j] = a. To identify those fields, we compute
Z = (10`−1)b − Y , which will have a 1 at the highest bit of the zeroed fields in
Y . Now W = Z and (10`−1)b isolates those leading bits.

Constant-time rank Queries. We now describe how we can do rank queries in
constant time for Rv[1, n]. Our solution follows that of Jacobson [21]. We choose a
superblock size s = w2 and a block size b = (

√
w−1)/ lg r. For each a ∈ [1, r], we

store the accumulated values per superblock, ranka(Rv, i · s) for all 1 ≤ i ≤ n/s.
We also store the within-superblock accumulated values per block, ranka(Rv, i ·
b) − ranka(Rv, b(i · b)/sc · s), for 1 ≤ i ≤ n/b. Both arrays of counters require,
over all symbols, r((n/s) ·w+(n/b) · lg s) = O(nwβ(lgw)2/

√
w) bits. Added over



the O( lg σ
lgw ) wavelet tree levels, the space required is O(n lg σ lgw/w1/2−β) bits.

This is o(n lg σ) for any β < 1/2, and furthermore it is o(n) if σ = wO(1).
To solve a query ranka(Rv, i), we need to add up three values: (i) the su-

perblock accumulator at position bi/sc, (ii) the block accumulator at position
bi/bc, (iii), the bits set at B[1, (i mod b) · `], where B corresponds to the values
equal to a in Rv[bi/bc · b+ 1, bi/bc · b+ b]. We have shown above how to extract
B[1, b · `], so we count the number of bits set in C = B and 1(i mod b)·`.

This counting is known as a popcount operation. Given a bit block of length
b` =

√
w − 1, with bits set at positions multiple of `, we popcount it using the

following steps:

1. We first duplicate the block b times into b fields. That is, we compute X =
C · (0b`−11)b.

2. We now isolate a different bit in each different field. This is done with Y =
X and (0b`10`−1)b. This will isolate the ith aligned bit in field i.

3. We now sum up all those isolated bits using the multiplication Z = Y ·
(0b`+`−11)b. The end result of the popcount operation lies at the bits Z[b2`+
1, b2`+ lg b].

4. We finally extract the result as c = (Z � b2`) and (1lg b).

Constant-time select Queries. The solution to select queries is similar but more
technical. For lack of space we describe it in the extended version [5, Sec. 4.1.3].

4.2 Succinct Representation for Larger Alphabets

We assume now lg σ = ω(lgw); otherwise the previous section achieves succinct-
ness and constant time for all operations.

We build on Golynski et al.’s solution [16]. They first cut S into chunks
of length σ. With bitvector A[1, 2n] described in Section 3 they reduce all the
queries, in constant time, to within a chunk. For each chunk they store a bitmap
X[1, 2σ] where the number of occurrences of each symbol a ∈ [1, σ] in the chunk,
na, is concatenated in unary, X = 1n101n20 . . . 1nσ0. Now they introduce two
complementary solutions.

Constant-time Select. The first one stores, for each consecutive symbol a ∈ [1, σ],
the chunk positions where it appears, in increasing order. Let π be the resulting
permutation, which is stored with the representation of Munro et al. [24]. This
requires σ lg σ(1 + 1/f(n, σ)) bits and computes any π(i) in constant time and
any π−1(j) in time O(f(n, σ)), for any f(n, σ) ≥ 1. With this representation
they solve, within the chunk, selecta(i) = π(select0(X, a − 1) − (a − 1) + i) in
constant time and access(i) = 1 + rank0(select1(X,π−1(i))) in time O(f(n, σ)).

For ranka(i), they basically carry out a predecessor search within the interval
of π that corresponds to a: [select0(X, a − 1) − (a − 1) + 1, select0(X, a) − a].
They have a sampled predecessor structure with one value out of lg σ, which
takes just O(σ) bits. With this structure they reduce the interval to size lg σ,
and a binary search completes the process, within overall time O(lg lg σ).



To achieve optimal time, we sample one value out of lg σ
lgw within chunks. We

build the predecessor data structures of Patrascu and Thorup [27], mentioned in
Section 3, over the sampled values. Added over all the chunks, these structures
take O((n/ lg σ

lgw ) lg σ) = O(n lgw) = o(n lg σ) bits (as we assumed lg σ = ω(lgw)).

The predecessor structures take time O(lg lg σ
lgw ) (see Theorem 10 in the extended

version [5, App. A]). The search is then completed with a binary search between
two consecutive sampled values, which also takes time O(lg lg σ

lgw ).

Constant-time Access. This time we use the structure of Munro et al. on π−1, so
we compute any π−1(j) in constant time and any π(i) in time O(f(n, σ)). Thus
we get access in constant time and select in time O(f(n, σ)).

Now the binary search of rank needs to compute values of π, which is not
anymore constant time. This is why Golynski et al. [16] obtained time slightly
over lg lg σ time for rank in this case. We instead set the sampling step to

( lg σ
lgw )

1
f(n,σ) . The predecessor structures on the sampled values still answer in time

O(lg lg σ
lgw ), but they take O((n/( lg σ

lgw )
1

f(n,σ) ) lg σ) bits of space. This is o(n lg σ)

provided f(n, σ) = o(lg lg σ
lgw ). On the other hand, the time for the binary search

is O( f(n,σ)f(n,σ) lg lg σ
lgw ), as desired.

The following theorem, which improves upon Golynski et al.’s [16] (not only
as a consequence of a higher low-order space term), summarizes our result.

Theorem 6. A string S[1, n] over alphabet [1, σ], σ ≤ n, can be represented us-
ing n lg σ+o(n lg σ) bits, so that, given any function ω(1) = f(n, σ) = o(lg lg σ

lgw ),

(i) operations access and select can be solved in time O(1) and O(f(n, σ)), or
vice versa, and (ii) rank can be solved in time O(lg lg σ

lgw ).

For larger alphabets we must add a dictionary mapping [1, σ] to the (at most)
n symbols actually occurring in S, in the standard way.

4.3 Zero-order Compression

Barbay et al. [1] showed how, given a representation R of a sequence in n lg σ+
o(n lg σ) bits, its times for access, select and rank can be maintained while
reducing its space to nH0(S) + o(nH0(S)) + o(n) bits. This can be done even
if R works only for σ ≥ (lg n)c for some constant c. The technique separates
the symbols according to their frequencies into O(lg n) classes. The sequence of
classes is represented using a multiary wavelet tree [10], and the subsequences
of the symbols of each class are represented with an instance of R.

We can use this technique to compress the space of our succinct representa-
tions. By using Theorem 5 as our structure R, we obtain the following result,
which improves upon Ferragina et al. [10].

Theorem 7. A string S[1, n] over alphabet [1, σ] can be represented using nH0(S)
+o(nH0(S)) + o(n) bits so that operations access, select and rank can be solved



in time O( lg σ
lgw ). If σ = wO(1), the space is nH0(S) + o(n) and the operation

times are O(1).

To handle larger alphabets, we use Theorem 6 as our structure R. The only
technical problem is that the subsequences range over a smaller alphabet [1, σ′],
and Theorem 6 holds only for lg σ′ = ω(lgw). In subsequences with smaller al-

phabets we can use Theorem 5, which give access, select and rank times O( lg σ′

lgw ).

More precisely, we use that structure for lg σ′

lgw ≤ f(n, σ), else use Theorem 6. This

gives the following result, which improves upon Barbay et al.’s [1].

Theorem 8. A string S[1, n] over alphabet [1, σ], σ ≤ n, can be represented us-
ing nH0(S)+o(nH0(S))+o(n) bits, so that, given any function ω(1) = f(n, σ) =
o(lg lg σ

lgw ), (i) operations access and select can be solved in time O(f(n, σ)), and

(ii) rank can be solved in time O(lg lg σ
lgw ).

4.4 High-order Compression

Ferragina and Venturini [11] showed how a string S[1, n] over alphabet [1, σ] can
be stored within nHk(S) + o(n lg σ) bits, for any k = o(lgσ n), so that it offers
constant-time access to any O(lgσ n) consecutive symbols.

We provide select and rank functionality on top of this representation by
adding extra data structures that take o(n lg σ) bits, whenever lg σ = ω(lgw).
The technique is similar to those used by Barbay et al. [2] and Grossi et al. [19].
We divide the text logically into chunks, as with Golynski et al. [16], and for
each chunk we store a monotone minimum perfect hash function (mmphf) fa
for each a ∈ [1, σ]. Each fa stores the positions where symbol a occurs in the
chunk, so that given the position i of an occurrence of a, fa(i) gives ranka(i)
within the chunk. All the mmphfs can be stored within O(σ lg lg σ) = o(σ lg σ)
bits and can be queried in constant time [4]. With array X we can know, given
a, how many symbols smaller than a are there in the chunk.

Now we have sufficient ingredients to compute π−1 in constant time: Let a
be the ith symbol in the chunk (obtained in constant time using Ferragina and
Venturini’s structure), then π−1(i) = fa(i) + select0(X, a− 1)− (a− 1). Now we
can compute select and rank just as done in the “constant-time access” branch
of Section 4.2. The resulting theorem improves upon Barbay et al.’s results [2]
(they did not use mmphfs).

Theorem 9. A string S[1, n] over alphabet [1, σ], for σ ≤ n and lg σ = ω(lgw),
can be represented using nHk(S) + o(n lg σ) bits for any k = o(lgσ n) so that,
given any function ω(1) = f(n, σ) = o(lg lg σ

lgw ), (i) operation access can be solved

in constant time, (ii) operation select can be solved in time O(f(n, σ)), and (ii)
operation rank can be solved in time O(lg lg σ

lgw ).

To compare with the corresponding result by Grossi et al. [19] (who do use
mmphfs) we can fix the redundancy to O( n lg σ

lg lg σ ), where they obtain O(lg lg σ)
time for select and rank, whereas we obtain the same time for select and our
improved time for rank, as long as lg σ = Ω(lgw lg lgw lg lg lgw).



5 Conclusions

This paper considerably reduces the gap between upper and lower bounds for
sequence representations providing access, select and rank queries. Most no-
tably, we give matching lower and upper bounds Θ(lg lg σ

lgw ) for operation rank,
which was the least developed one in terms of lower bounds. The issue of the
space related to this complexity is basically solved as well: we have shown it can
be achieved even within compressed space, and it cannot be surpassed within
space O(n · wO(1)). On the other hand, operations access and select can be
solved, within the same compressed space, in almost constant time (i.e., as close
to O(1) as desired but not both reaching it, unless we double the space).

There are still some intriguing issues that remain unclear:

1. Golynski’s lower bounds [15] leave open the door to achieving constant time
for access and select simultaneously, with O(n(lg σ)2/ lg n) bits of redun-
dancy. However, this has not yet been achieved for the interesting case
ω(lgw) = lg σ = o(lg n). We conjecture that this is not possible and a
stronger lower bound holds.

2. While we can achieve constant-time select and almost-constant time for
access (or vice versa) within zero-order entropy space, we can achieve only
the second combination within high-order entropy space. If simultaneous
constant-time access and select is not possible, then no solution for the
first combination can build over a compressed representation of S giving
constant-time access, as it has been the norm [2, 1, 19].

3. We have achieved high-order compression with almost-constant access and
select times, and optimal rank time, but on alphabets of size superpolyno-
mial in w. By using one Golynski’s binary rank/select index [14] per symbol
over Ferragina and Venturini’s representation [11], we get high-order com-
pression and constant time for all the operations for any σ = o(lg n). This
leaves open the interesting band of alphabet sizes Ω(lg n) = σ = wO(1).

References

1. J. Barbay, T. Gagie, G. Navarro, and Y. Nekrich. Alphabet partitioning for com-
pressed rank/select and applications. In Proc. 21st ISAAC, LNCS 6507, pages
315–326, 2010. Part II.

2. J. Barbay, M. He, J. I. Munro, and S. S. Rao. Succinct indexes for strings, binary
relations and multi-labeled trees. In Proc. 18th SODA, pages 680–689, 2007.

3. J. Barbay and G. Navarro. Compressed representations of permutations, and ap-
plications. In Proc. 26th STACS, pages 111–122, 2009.

4. D. Belazzougui, P. Boldi, R. Pagh, and S. Vigna. Monotone minimal perfect hash-
ing: searching a sorted table with o(1) accesses. In Proc. 20th SODA, pages 785–
794, 2009.

5. D. Belazzougui and G. Navarro. New lower and upper bounds for representing se-
quences. CoRR, arXiv:1111.26211v1, 2011. http://arxiv.org/abs/1111.2621v1.

6. D. Clark. Compact Pat Trees. PhD thesis, University of Waterloo, Canada, 1996.



7. F. Claude and G. Navarro. Extended compact web graph representations. In
Algorithms and Applications (Ukkonen Festschrift), LNCS 6060, pages 77–91, 2010.

8. P. Ferragina, F. Luccio, G. Manzini, and S. Muthukrishnan. Compressing and
indexing labeled trees, with applications. Journal of the ACM, 57(1), 2009.

9. P. Ferragina and G. Manzini. Indexing compressed texts. Journal of the ACM,
52(4):552–581, 2005.
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