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Abstract. The indexing algorithms and data structures for similarity
searching in metric spaces seem to emerge from a great diversity, and
different approaches have been proposed and analyzed separately, often
under different assumptions. Currently, the only realistic way to com-
pare two different algorithms is to apply them to the same data set.
We present a unified model for studying similarity searching algorithms,
defining common complexity measures allowing comparison between dif-
ferent approaches.

1 Introduction

A metric space is a set of “black box” objects on which a distance function has
been defined. On this set one performs “similarity queries”, whose simplest form
is to have a new element ¢ and a maximum distance r so that one wants to
retrieve all the elements of the set at distance r or less from ¢. This is trivially
solved by comparing g against every element in the set, but since the distance
is expensive to compute, the goal is to structure the set so that the number of
distance evaluations to answer the queries are minimized. This data structure
built on the set is often called an “index”.

This general problem has a lot of applications, such as non-traditional data-
bases (where the concept of exact search is of no use and we search for similar
objects, e.g. databases storing images, fingerprints or audio clips); machine learn-
ing and classification (where a new element must be classified according to its
closest existing element); image quantization and compression (where only some
vectors can be represented and those that cannot must be coded as their closest
representable point); text retrieval (where we look for words in a text database
allowing a small number of errors, or we look for documents which are similar
to a given query or document); computational biology (where we want to find a
DNA or protein sequence in a database allowing some errors due to typical vari-
ations); function prediction (where we want to search the most similar behavior
of a function in the past so as to predict its probable future behavior); etc.
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Since the problem has appeared in unrelated areas, the corresponding algo-
rithms and data structures seem to emerge from a great diversity, and different
approaches have been proposed and analyzed separately, often under different
assumptions [5,20,22,19,21,23,13,15,1, 4, 14,18,3,11,17,7, 8, 24]. Due to space
limitations we refer the reader to a recent survey where all the known approaches
for similarity searching are discussed [9].

Currently, the only realistic way to compare two different algorithms is to
apply them to the same data set. We present a unified complexity model for the
search in metric spaces. Its main contribution can be summarized in Figure 1:
all the indexing algorithms partition the set of elements into subsets. An index
is built which allows to determine a set of candidate sets where the elements rel-
evant for the query can appear. At query time, que index is searched to find the
relevant subsets (the cost to do this is called “internal complexity”) and those
subsets are checked exhaustively (which corresponds to the “external complex-
ity” of the search). There is a tradeoff between internal and external complexity:
finer grained partitions have higher internal and lower external complexity.
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Fig. 1. The unified model for indexing and querying metric spaces.

2 Metric Spaces and Proximity Queries

We introduce now the basic notation for the problem. The set X will denote
the universe of objects. A finite subset U, of size n = |U|, will be called the
dictionary. The function d : X x X — R will denote a measure of “similarity”
between objects, satisfying the following properties for all z,y, z € X:



0  positiveness,

d(y,z)  symmetry,

0  reflexivity, and in most cases
Oiff z =y strict positiveness.

The similarity d will be called a distance if it satisfies the triangle inequality
(+5) d(z,9) < d(z,2) + d(z, ).
There are basically two types of queries of interest in metric spaces:

(a) Range queries: retrieve all elements which are within distance r to g. This
is, (a,7)a = {u€ U / d(g,u) < r}.

(b) Nearest neighbor queries: retrieve the closest elements to ¢ in U. This is,
nng(g) = {v € U/ Vv € U, d(¢q,u) < d(q,v)}. We may also want the %
nearest neighbors.

We restrict ourselves to the analysis of range queries, since nearest neighbor
queries can be derived from range queries using a branch and bound scheme.

3 Equivalence Relations and Cosets

Given a set X, a partition 7(X) = {my, w2, -+, 7, - -} is a subset of the power
set P(X) such that every element of the set belongs exactly to one partition, i.e.

Uim:X, and m;N7w; =¢ forallz#j

A relation, denoted by ~, is a subset of the cross product X x X (the set of
ordered pairs) of X. Two elements z, y are said to be related, denoted by = ~ y,
if the pair (z,y) is in the subset. A relation ~ is said to be an equivalence
relation if it satisfies the properties of

—z~zforall x €X, reflexivity
—z~yifand onlyif y ~ 2, symmetry
— z~yand y~ zthen z ~ 2, transitivity

It can be shown that every partition m(X) induces an equivalence relation ~
and, conversely, every equivalence relation induces a partition [10]. Two elements
are related if they belong to the same partition. Every element 7; of the partition
is then called an equivalence class. An equivalence class is often named after
one of its representatives (any element of m; can be taken as a representative).
An alternative definition of an equivalence class of an element z is the set of all
y such that z ~ y. We will denote the equivalence class of z as [z] = {y: z ~ y}.

Given the set X and an equivalence relation ~, we obtain the quotient 7(X) =
X /~. It indicates the set of equivalence classes or cosets, obtained when applying
the equivalence relation to the set X.

For a fixed set X, consider two equivalence relations ~; and ~,. We say
that ~; is a refinement of ~; if for any pair z,y € X such that x ~; y then



necessarily = ~2 y. Equivalently, a partition 7!(X) is a refinement of partition
2 (X) if n}C 7rJ2» for every partition element 7} of 7! and some coset 7rJ2» of the
partition m%. We may also say that 7% (equivalently ~2) is a coarsening of 7’
(equivalently ~1).

The relevance of equivalence classes for us comes from the possibility of using
them on a metric space in a way that a new metric space is derived from the
quotient set. This new metric space will be a coarser version of the original one.

4 Indexing and Partitions

The equivalence classes obtained with an equivalence relation of a metric space
can be considered themselves as points in a new metric space, as soon as we
define the distance function D of this new metric space.

In Figure 1 we can see a schematic example of the idea. We divide the space
in several regions (equivalence classes). The points inside each region are indis-
tinguishable. We consider them as points in a new metric space. To answer a
query, we first search the relevant classes in the quotient space. Then, instead
of exhaustively examining the entire dictionary we just examine the classes that
contain potentially interesting points. In other words, if a class can contain a
point that should be returned in the outcome of the query, then the class will
be examined.

For this approach to be useful we need that the mapping is contractive, i.e.
D([a], [8]) < d(a, b) for any a,b € X. This ensures that all the points relevant to
a query (g, 7)q are contained in the classes returned by the query ([¢], 7)p on the
quotient space. We explain the idea in more detail now.

We introduce a new function Do : m(X) x m(X) — RT now defined in
the quotient. Since Dy is defined between equivalence classes, a natural choice is
Do([z], [y]) = infoe[z)ye[y]1d(®, y) }, which we call the extension of d. We define
the outcome of a query in the coset as ([¢q],7)p, = {u € U: Do([u], [¢]) < r}.

Dy could be used for similarity searching in a natural way. From the definition
it is clear that Dgo([z], [y]) < d(=,y) for any =z € [z], y € [y]. This permits to
convert one search problem into another, hopefully simpler, search problem. For a
given query (g, 7)q we find out the equivalence class [g] the query point ¢ belongs
to. Then, using the new distance function Dy the query is transformed into
([g], 7)p,- Since Do([q], [«]) < d(g,w), this naturally implies (q,7)q C ([¢], 7)D,-
That is, ([¢],7)p, is indeed a list of candidates, so it is enough to perform an
exhaustive search on that candidate list (now using the original distance d), to
obtain the actual outcome of the query (g, 7)q4.

Unfortunately, Dy does not satisfy the triangle inequality, just (p1) to (p3),
and in most cases (p4). Hence, no general search algorithm is possible using Dq
itself. However, Dg gives the maximum possible values that keep the mapping
contractive, and therefore we can use any other distance that satisfies the prop-
erties of metric spaces and that lower bounds Dg. This distance, D, can be used
for indexing purposes and still serves to obtain a list of candidates for the actual



outcome using d. An example of D is given in Figure 2, where the equivalence
classes are rings centered around a point p.
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Fig. 2. Two points z and y, and their equivalence classes (the shaded rings). D gives
the minimum distance among rings, which lower bounds the distance between z and

Y.

When selecting D, another important consideration is the cost to compute
it. In fact, the most important tradeoff for an indexing algorithm is to keep low
the number of evaluations to compute the D distance, and at the same time
to reduce the final exhaustive search. In fact, the above procedure is used in
virtually every indexing algorithm. In other words:

Most indexing algorithms for prozimity searching consist in building a
set of equivalence classes, discard some classes, and search exhaustively
the rest.

Some examples may help to understand the above definitions.

Example 1. The brute force method of not indexing and examining every
point in the dictionary for each query, creates one equivalence class per point
in the set X. In this case, the coset obtained is the same as the original set
m(X) = X/~ = X, it holds z ~ y <= z = y, Do([z],[y]) = d(z,y) for any
pair z,y and consequently (¢,7)s = ([¢], 7)D,. In other words the candidate list
is actually the outcome of the query. No extra effort is done in trimming the
candidate list, however all the work have been done in building the candidate
list.

Example 2. Another trivial example, situated in the other side of the
spectrum, is when all points in X are assigned to the same equivalence class, i.e.
z~y <= z,y € X. Hence [z] = [y] for all elements in the set X. In this case we
have 7(X) = X/~ = {-}, a set with a single element, and it holds Dq([z], [y]) = 0
for every pair of points. In this case finding the candidate list is trivial, since it is
actually the dictionary itself, but trimming the list is as difficult as the original
problem.



Example 3. A more realistic example, indeed a true indexing algorithm, is
when we have an arbitrary reference point p € X and the equivalence relation is
given by z ~ y <= d(p, ) = d(p, y). In this case D([z], [y]) = |d(=, p) — d(v, p)|
is a safe lower bound for the Dy distance (guaranteed by triangle inequality). For
a query of the form (g, 7)q the candidate list ([g],7)p consist of all points such
that D([¢], [#]) < r or in other way all the points such that |d(g,p) — d(z,p)| <
r. Graphically, this distance represents a ring centered at p containing a disk
centered at ¢ and radius r (recall Figure 2). This is the familiar rule used in
many independent algorithms to trim the space, as seen later.

Example 4. The approximate search problem was firstly introduced in
“vector spaces” (R*), and the very first family of algorithms used there were
based on a coset operation. These were called bucketing methods, and consist in
the construction of cells or buckets [2]. Searching for an arbitrary point in R* is
converted into an exhaustive search in a finite set of cells. The procedure used
two steps: (1) first they find which cell the query point belongs to and after that
they build a set of candidate cells using the query range; (2) this set of candidate
cells is inspected exhaustively to find the actual points inside the query range.
In this case the equivalence classes are the cells, and the tradeoff is expressed as
follows: the larger the cells, the cheaper it is to find the appropriate ones, but
the more costly is the final exhaustive search.

5 Measures of Efficiency

As sketched previously, most indexing algorithms rely on building an equivalence
class. The corresponding search algorithms have two parts:

1. Find the classes that may be relevant for the query.
2. Exhaustively search all the elements of these classes.

The first part involves performing some evaluations of the d distance, as
shown in the Example 3 above. It may also involve some extra CPU time (which
although not the central point in this paper, must be kept reasonable). The dis-
tance evaluations performed in this stage are called internal, and their number
define the internal complexity.

The second part consists of directly comparing the query against the candi-
date list. These evaluations of d are called external. The amount of external
evaluations is called external complexrity and is related to the discriminative
power of the D distance, a concept that we explain shortly.

The indexing scheme needs to find a balance between the complexity to
compute D and its discriminative power.

Examples 1 and 2 can serve as upper and lower bounds of what is done by the
actual indexing algorithms. The first algorithm has minimal external complexity,
since the distance function D discriminates as much as the original distance
function d. However, the internal complexity is maximal, in the sense that finding
the relevant classes is as hard as solving the original problem. This case shows



maximum discriminative power, as the metric spaces (X, d) and (7(X), D) are
isometric [16]. Example 2 has minimal internal complexity, since it is trivial to
compute the relevant equivalence class. However, its external complexity is as
high as in the original problem, since all the points are candidates.

Example 3 is in between for internal and external complexity. The internal
complexity is 1 distance evaluation (the distance from ¢ to p), and the external
complexity will correspond to the number of elements that lie in the selected
ring. We could intersect it with more rings (increasing internal complexity) to
reduce the external complexity.

The tradeoff is partially formalized with the notions of refinement and coars-
ening of a partition. In particular, the following theorems show that the external
complexity decreases as the partition is more refined (and we may assume that
the internal complexity increases since more information has to be obtained).

Theorem 1. If ~1is a coarsening of ~2 then the extended distances D1 and Dy
have the property Dy ([z], [y]) < D1([=], [v]).

Proof. Di([z],[y]) = aly,vely] {42, Y)} < infaer, yepl {d(2, ¥)} =
D;([z], [y]), since [z]2 C [z ]1 and [ rxe [ ]1. We are using [z]; and [y] to denote

the equivalence class of z and y under equivalence relation ~;.

Theorem 2. If A; and Az are indexing algorithms based on equivalence rela-
tions ~1 and ~3, respectively, and ~2 1s a coarsening of ~1, then A1 has lower
external complexity than As.

Proof. We have to show that ([¢],7)p, C ([¢],7)p,. But this is clear, since
Dy([z], [y]) < Di([z], [4]) implies ([g],7)p, = {y € U: Du([a],[y]) <7} C {y €
U= D2([ql, [4]) < 7} = (Ig]: 7).

An interesting idea arising from the above theorems is to build a hierarchy of
coarsening operations. Using this hierarchy we could proceed downwards from a
very coarse level building a candidate list of equivalence classes of the next level,
using for example D7; this candidate list will be refined using the D! distance
function and so on until we reach the bottom level. This is done, e.g. in [4].

The concept of discriminative power serves as an indicator of the performance
or fitness of the equivalence relation (or equivalently, of the distance function D).
In general, it will be more costly to have more discriminative power. A related
concept is that of “fragmentation”, which is explained next.

5.1 Locality and Fragmentation of a Partition

The equivalence classes can be thought of as a set of non intersecting cells in
the space, where every point inside a given cell belongs to the same equivalence
class. Of course, this is not very precise from a mathematical point of view, but
can serve to clarify the concept. In the mathematical definition an equivalence
class is not confined to a single cell; indeed it can be an arbitrary collection of
cells.



A consequence of the above observation is that we need an additional prop-
erty which will be called locality. It stands for how much the equivalence class
resembles a cell. Intuitively the opposite property, fragmentation of a partition,
can be easier to understand. An equivalence class is fragmented if it consists of
several “local” pieces. We do not go beyond with the formalization of this con-
cept, because the definition involves properties not common to every metric
space and we want to maintain our model as general as possible.

Figure 3 exemplifies a fragmented partition. It is natural to expect a better
performance, i.e. more discriminative power, from a local partition than from
a fragmented partition. This is because the candidate list obtained with the
distance D will contain points actually far away from the query if the partition
is fragmented. Notice that in Figure 3, the fragmentation would disappear if we
added a third pivot.

Two fragments of the same
-~ equivalence class

Fig. 3. With two rings we define an equivalence based on being at the same distance
to both points. However, the resulting class is partitioned.

6 Pivot Based and Clustering Algorithms

A large class of methods to index metric spaces are just variants of what we call
“pivot-based algorithms” [5,20,22,21,23,13,15,1,14,18,3,11,7, 8, 24]. The idea
is an extension of Example 3, using more pivots in order to decrease the external
complexity. Instead of just one pivot, one selects i “pivots” p;---pp € U, and
stores all the distances d(u, p;) for all «w € U. This set of distances is the index.
Now, given a query (g, 7)q, ¢ is compared against each pivot. This costs h distance
evaluations, which is the internal complexity.

The elements are filtered out with the following reasoning. For any u € U,
the distance d(g,u) cannot be smaller than |d(u,p;) — d(q,p;)| for any pivot
p;, because of the triangular inequality. Therefore, all the elements u such that
|d(w, p;) —d(g, p:)| > 7 for some p; can be safely discarded (recall that d(u, p;) is
precomputed). The external complexity then corresponds to comparing ¢ directly
against all those u € U that could not be discarded.

In terms of our model, we have that the equivalence classes correspond to
the intersection of sphere shells centered at the p;’s (recall Figure 3). Hence



Distance Computations

D([z], [y]) = max;{|d(z, p;) — d(y, p: )|} is a safe lower bound to the Dy function
corresponding to these equivalence classes.

As explained, the internal complexity increases and the external complexity
decreases as h grows, so there exists an optimum. We present an experiment
showing this phenomenon. Our metric space is the unitary real cube in & dimen-
sions ([0, 1)*) under the Euclidean distance. We generated n = 100, 000 random
points and search a random query ¢ with a radius r such that 0.01% of the
dictionary is retrieved.

Figure 4 (left) shows internal, external and total distance evaluations in 8
dimensions, using up to 256 pivots. The optimum number of pivots for this case
is close to h = 110. Despite that with 256 pivots we reach an optimum only
until 8 dimensions, it seems clear that the optimal & grows very fast with k. The
optimal A is 15, 30 and 110 for 4, 6, and 8 dimensions, respectively. Figure 4
(right) shows the overall complexity in higher dimensions, where the optimum
is not achieved with 256 pivots.
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Fig. 4. On the left, internal, external and overall distance evaluations in 8 dimensions,
using different number of pivots. On the right, overall distance evaluations for different

number of dimensions.

This also shows that a lot of memory is required for high-dimensional spaces,
because of which most indexing algorithms do not reach this optimum but they
us as many pivots as memory permits.

Another kind of algorithms, less popular, is called “clustering” algorithms
[5,4,17]. The idea is also partitioning the space in equivalence classes, but the
classes are not defined as being at the same distance to a set of pivots. In this
case the classes are normally being closer to a pivot than to any other pivot. The
result is that the classes are more local (less fragmented). On the other hand,
clustering indices tend to have high construction costs and cannot be easily
improved by adding more and more pivots.



7 The Curse of Dimensionality and Conclusions

The fact that the optimum number of pivots grows quickly with the dimension
is just one aspect of the general phenomenon called “curse of dimensionality”. It
is expressed as an exponential dependency on & that appears in the performance
of any algorithm to index k-dimensional vector spaces. It is interesting that
the phenomenon appears also when we disregard the coordinates and view the
vector space just as a metric space, so that one can in general speak of “high-
dimensional” metric spaces even when no explicit concept of dimension exists.

This phenomenon has a general cause which has also been mentioned in [23,
4,6,12,9]. Very briefly, high dimensional metric spaces have a more concentrated
histogram of distances, and therefore a random query selecting a band of width
2r of the histogram of distances to a pivot p; captures much more points in
high dimensional metric spaces. Only the points outside the band can be dis-
carded, and therefore more and more pivots have to be considered to discard a
significative amount of points. Figure 5 illustrates.

ra q b ra q rb
- -
2r 2r

Fig. 5. A low-dimensional (left) and high-dimensional (right) histogram of distances,
showing that on high dimensions virtually all the elements become candidates for the
exhaustive evaluation.

Another facet of high dimensionality is the difficulty of obtaining local par-
titions. Even with perfect pivot selection we need k + 1 points to obtain a local
partition in R* (recall Figure 3). In general metric spaces one resorts to random
pivot selection and this number is much higher. This shows why clustering al-
gorithms may be better suited for high dimensional spaces, as the experiments
in [9] show: fragmentation is smaller in the equivalence relations produced by
clustering algorithms. As a consequence, pivot based algorithms need much more
memory than clustering algorithms to beat them in high dimensions.

The most interesting research line on indexing metric spaces seems to be
the development of a clustering approach that can be improved by using more
memory and that needs less memory than pivot based algorithms to achieve the
same performance.
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