
Combining Structural and Textual Contexts for Compressing Semistructured
Databases ∗

Joaquín Adiego1, Pablo de la Fuente1 and Gonzalo Navarro2

1Dpto. de Informática, Universidad de Valladolid, Valladolid, España.

{jadiego, pfuente}@infor.uva.es
2Dpto. de Ciencias de Computación, Universidad de Chile, Santiago, Chile.

gnavarro@dcc.uchile.cl

Abstract

We describe a compression technique for semistructured
documents, calledSCMPPM, which combines the Predic-
tion by Partial Matching technique with Structural Contexts
Model (SCM) technique. SCMPPM takes advantage of the
context information usually implicit in the structure of the
text. The idea is to use a separate PPM model to compress
the text that lies inside each different structure type (e.g.,
different XML tag). The intuition is that the distribution
of the texts that belong to a given structure type should
be similar, and different from that of other structure types.
This should allow PPM to make better predictions. We test
our idea against plain PPM modelling, as well as against
other structure-aware techniques. Results show that the
new compression method obtains significant improvements
in compression ratios.

Keywords: PPM, Compression Model, Semistructured
Documents.

1 Introduction and Related Work

Our goal in this paper is to explore the possibility of
considering the text structure in the context of compressed
structured documents. Structure has semantic meaning, but
classical compressors do not profit from it. We aim at tak-
ing advantage of such structure. Although this idea is not
new, very few compression methods are based on it

A compression method that considers the document
structure isXMill [LS00], developed in AT&T Labs.XMill

∗This work was partially supported by CYTED VII.19 RIBIDI project
(all authors), TIC2003-09268 project, MCyT, España (first and second au-
thors) and Millennium Nucleus Center for Web Research, Grant P01-029-
F, Mideplan, Chile (third author).

is an XML-specific compressor designed to exchange and
store XML documents. It is based on thezlib library, which
combines Ziv-Lempel compression [ZL77] with a variant
of Huffman [Huf52].

Another approach isXMLPPM [Che01], an adaptive
PPM-based compressor where the context given by the path
in the structure tree is used to model the text in the sub-
tree. That is, different models are used to code tag names,
attribute names, attribute values, textual content, and soon.
XMLPPM is based on the intuition that the text under simi-
lar parts should follow a similar distribution.

SCM [ANdlF03] is a generic model to compress
semistructured documents, which takes advantage of the
context information usually implicit in the structure of the
text. The idea is that the vocabulary distribution of all the
texts that belong to a given structure type should be sim-
ilar, and different from that of other structure types. For
example, in an email archive, in that each message is rep-
resented like a semistructured document, a different model
would be used for each of the fields<From>,<Subject>,
<Date>, <Body>, and so on.

SCM concept was tested using a word-based Huffman
coding, which is the standard for compressing large natu-
ral language textual databases. The compression method
obtained significant improvements in compression ratios. It
was also shown that storing separate models may not pay off
if the distribution of different structure types is not differ-
ent enough, and a heuristic tomergemodels was presented
with the aim of minimizing the total size of the compressed
database.

In this paper we apply the SCM concept in a different
way. We use separate models to compress the text that lies
inside different tags. Instead of Huffman we use PPM-based
models for each structural element, and an arithmetic coder.

Our experimental results show significant gains over the
methods that are insensitive to the structure (including plain



SCM Processor

Structural Context N

PPM

Arithmetic

Coder

Structured

Documents

Compressed

Documents

PPM

Structural Context 2

PPM

Structural Context 1

PPM

Default Context

Figure 1. SCMPPM conceptual block diagram

PPM), as well as over the other methods that consider the
structure.

2 Prediction by Partial Matching

We must briefly review the Prediction by Partial Match-
ing (PPM) data compression scheme. PPM is a finite-
context statistical modelling technique that can be viewed
as blending together several fixed-order models to predict
the next character in the input sequence. Models that condi-
tion their predictions on a few immediately preceding sym-
bols are called finite-context models of orderk, wherek is
the number of preceding symbols used. PPM uses a suite of
fixed-order context models with different values ofk, from
0 up to some pre-determined maximum, to predict upcom-
ing characters. Probability estimation works as follows: if
the symbol has been seen in the longest matching context,
then the probability is the relative frequency in the context
and the symbol that actually occurs is encoded relative to its
predicted distribution using arithmetic coding. Otherwise,
anescape symbolis encoded, and the next longest context
is tried, and so on. The decoder maintains the same model
and uses symbols seen so far and escape symbols to decode
incoming symbols and update its model.

3 SCMPPM

Structural Contexts Model (SCM) is a generic com-
pression model based on the idea that texts under same

tags should have similar distributions [ANdlF03]. In most
cases, natural language texts are structured in a semantically
meaningful manner. This means that we can expect that, at
least for some tags, the distribution of the text that appears
inside a given tag differs from that of another tag, and con-
sequently, if a PPM model is used to model text inside a
specific tag will obtain better predictions. In our example
of Section 1, where the tags correspond to the fields of an
email archive, we can expect that the<From> field con-
tains names and email addresses, the<Date> field contains
dates, and the<Subject> and<Body> fields contain free
text.

In cases where the text distribution under different tags
is very different, the use of separate PPM models to encode
the different tags contents is likely to improve the com-
pression ratio. On the other hand, there is an additional
cost when several escape characters are emitted to model
new symbols repeated in the PPM models of different tags.
Moreover, if we use a single PPM model instead, this sin-
gle model may be of higher order using the same amount of
memory.

In the SCM technique, there must exist one model called
default model, which is the one in use at the beginning of
the encoding/decoding process. Also, it is possible to have
a different model for each tag, or in general we can have any
grouping of tags under models. In this paper we assume that
each tag has its own model and that the default is used for
the text that is not under any tag.

We will obtain all the words that constitute the docu-
ments one by one. In this case, aword is any maximal

2



sequence of alphanumeric or of non-alphanumeric charac-
ters. We will take into account a special case of words:tags.
A tag is a code embedded in the text which represents the
structure, format or style of the data. A tag is recognized
from surrounding text by the use of delimiter characters. A
common delimiter character for an XML o SGML tag are
the symbols’<’ and’>’. Usually two types of tags ex-
ist: start-tags, which are the first part of container element,
’<...>’; andend-tags, which are the markup that ends a
container element,’</...>’.

On the other hand, PPM models only work with symbols
and, consequently, whenever we must code a word we must
code all the symbols that form it sequentially.

At the begining of the process, the default model is used
to predict the symbol probabilities. When a start-structure
tag appears, we push the current model in a stack and switch
to the appropriate model. When an end-structure tag is
found we must return to the previous model stored in the
stack. Both start-structure and end-structure tags are coded
using the current model and then we switch models. The en-
coding and decoding processes use the same model switch-
ing technique.

The following code describes the model switching used
for coding and decoding.

Algorithm 1 (Model Switching)

current_model← default_model
while there are more wordsdo

word← get_word()
code/decode(each_symbol(word), current_model)
if (word is a start-structure tag)

then push(current_model)
current_model← model(word)

else if (word is an end-structure tag)
then current_model← pop()

Figure 1 shows a SCMPPM conceptual block diagram
architecture. Structured documents are processed by the
“SCM Processor” which is in charge to direct symbols to
its corresponding structural context. Each symbol is mod-
elled in a structural context by a PPM model that provides
probability values, and then coded by an arithmetic coder to
form the compressed file.

4 Evaluation of the Model

We implemented a prototype of SCMPPM, and used it to
empirically analyze our idea and evaluate its performance.
We have chosen the PPMD+ model variant for our imple-
mentation [CW84].

For the experiments we selected different size collections
of WSJ, ZIFF and AP, from TREC-3 [Har95]. We concate-
nated files so as to obtain approximately similar subcollec-

tion sizes from the three collections, so the size in Mbytes is
approximate. TREC collections follow the SGML standard.

The structuring of the collections is similar: they have
only one level of structure, with the tag<DOC> indicat-
ing documents, and inside each document, tags indicating
document identifier, date, title, author, source, content,key-
words, etc. We assume that each structural tag will use a
separate PPMD+ model to compress the text that lies inside
it.

In Table 1 we show the compression ratios obtained for
increasing subcollections of the different text collections,
for SCMPPM using contexts of order 3, 5 and 7. It can be
seen that compression improves with the subcollection size
and withk.

Size (Mb.) TREC-WSJ TREC-ZIFF TREC-AP
k = 3 PPM context models

1 29.00% 25.95% 29.92%
5 28.00% 26.72% 28.83%

10 27.77% 26.88% 28.59%
20 27.66% 26.86% 28.40%
40 27.96% 26.78% 28.36%
60 27.34% 26.72% 28.32%

100 27.46% 26.78% 28.35%
k = 5 PPM context models

1 26.03% 22.67% 25.97%
5 23.32% 21.85% 23.19%

10 22.46% 21.41% 22.44%
20 21.72% 21.23% 21.72%
40 21.22% 20.74% 21.29%
60 20.97% 20.46% 21.09%

100 20.56% 20.32% 20.92%
k = 7 PPM context models

1 25.74% 22.31% 26.34%
5 22.98% 21.57% 23.21%

10 22.00% 21.25% 22.26%
20 21.19% 20.75% 21.28%
40 20.63% 20.09% 20.58%
60 20.00% 19.70% 20.23%

100 19.41% 19.42% 19.88%

Table 1. Sizes and compression ratios for the
different collections and contexts numbers

In Figure 2 the evolution of the mean compression ratio
of three collections can be observed when the number of
contexts of each model and the collection size grows. The
graphical representation for collections AP and ZIFF is very
similar.

In Table 2 we can see a comparison of the compression
performance of our SCMPPM technique (with ordersk = 5
andk = 7) against the base technique, is a plain PPMD+

3



0
20

40
60

80
100

Collection size (Mbytes)

3
4

5
6

7
8

9

PPM Contexts

20

22

24

26

28

30

Compression ratio (%)

Figure 2. Evolution of the compression ratio
when number of contexts and collection size
grows, for TREC-WSJ.

modeler for all the text. Since it is just one PPM model,
we use orderk = 7 for it in order to use approximately
the same amount of memory as our SCMPPM withk = 5.
In this case, SCMPPM obtains improvements of up to 1%,
which increases as the collection size grows. In the other
hand, when we use SCMPPM withk = 7 (same order than
base technique that using more memory) the improvement
in compression is up to 6%. These results depend on the
characteristics of source collections. In this case, TREC
collections have a set of fields with shorts texts (dates, ref-
erences, etc.) and only one a field with long free text. There-
fore, the model that code this field must code almost a many
symbols as the model used in the base technique.

Finally, we compare our prototype (with orderk = 5)
against other compression systems. We consider compres-
sors that do not consider the structure and three structure-
aware compressors. In the first type, we use the MG system
[WMB99] and standard systems. MG system is a classic
public domain software, versatile, standard and of general
purpose, which handles text and images. MG compresses
structured documents by handling tags as words, and uses
a variant of word-based Huffman compression calledHuff-
word.

Standard systems used to compare against SCMPPM are
(1)zip and (2)gzip, using LZ77 plus a variant of Huffman
algorithm; (3)UNIX’s compress, that implements LZW al-
gorithm; (4)bzip2, which uses the Burrows-Wheeler block
sorting text compression algorithm, plus Huffman coding.
Bzip2compression is generally considerably better than that
achieved by more conventional LZ77/LZ78-based compres-
sors, and it approaches the performance of the PPM family
of statistical compressors.

The other three compressors are specific to XML:
(5)XMill [LS00] based on Ziv-Lempel and Huffman;
(6)XMLPPM[Che01] based on adaptive PPMD+ (withk =
5 order context models) over the structural context; and
(7)SCMHuff[ANdlF03] based on the Structural Contexts
Model (SCM) concept using a word-based Huffman coder.

We compressed all the collections with all systems1 and
averaged compression ratios for each collection size. Aver-
age compression ratios are shown in Table 3.

In Table 3 and Figure 3 it can be observed that the stan-
dard compressors obtain approximately constant compres-
sion ratios, exceptbzip2that applies a Huffman-type coding
over a text block previously transformed by the Burrows-
Wheeler Transformation, this yields a compression ratio
close to PPM. SCMPPM improves the compression ratio
of bzip2by 28%.

Word-based compressors have a convergent compression
ratio when collection grows, due to the vocabulary overhead
in small collections. Character-based compressors have a
roughly constant compression ratio. On the other hand, our
SCMPPM has a convergent ratio due to the structure over-
head in small collections.

XMill obtains an average compression ratio roughly con-
stant in all cases because it useszlib as its main compression
machinery. The compression ratio obtained is not competi-
tive in this experiment: SCMPPM improves its compression
ratio by 77%.

MG andSCMHuff improve for larger collections, as ex-
pected for word-based Huffman methods, but they stay well
above the compression that can be achieved by SCMPPM,
which improves them by more than 35%.

XMLPPM is the most competitive alternative to
SCMPPM. Hence, although for 1 Mbyte the compression
ratios are similar, for 100 Mbytes SCMPPM wins by 25%.
In order to testXMLPPM with at least the same amount
of memory that SCMPPM withk = 5, we modify the
XMLPPM implementation swiching valuek = 5 by k = 7
in its PPM models. This change did not produce a signifi-
cant variation in the compression ratio (±0.5%), very sim-
ilar to the original version. Although the ratio got slightly
worse in the small collections (1 and 5 Mbytes) and im-
proved slightly in the large ones.

5 Conclusions and Future Work

We have proposed a new method for compressing
semistructured documents, combining the SCM general
concept with PPMD+ modelling. We have shown that the
method actually improves compression ratios by more than
1% with respect to plain PPMD+ using the same account

1XMLPPM required several changes to the sources in order to run prop-
erly, but these did not affect the compressibility of the collection.

4



Size (Mb.) SCMPPMk = 5 SCMPPMk = 7 PPMD+k = 7
1 24.89% 24.79% 24.44%
5 22.78% 22.72% 22.65%

10 22.10% 21.83% 22.12%
20 21.55% 21.07% 21.61%
40 21.08% 20.43% 21.20%
60 20.84% 19.97% 20.99%

100 20.60% 19.57% 20.80%

Table 2. Compression ratios using SCMPPM with k = 5 and k = 7, against plain PPM with k = 7. The
ratios shown are average values over three collections.

Size SCMPPMk = 5 MG System XMill XMLPPM SCMHuff
1 24.89% 34.22% 36.46% 25.38% 39.34%
5 22.78% 30.72% 36.44% 25.70% 32.76%

10 22.10% 29.93% 36.49% 25.79% 31.13%
20 21.55% 29.30% 36.51% 25.80% 29.75%
40 21.08% 28.83% 36.55% 25.88% 28.76%
60 20.84% 28.67% 36.61% 25.91% 28.36%

100 20.60% 28.54% 36.56% 25.90% 27.91%

Size SCMPPMk = 5 compress zip gzip bzip2
1 24.89% 41.08% 35.27% 35.26% 28.95%
5 22.78% 40.80% 35.75% 35.66% 28.94%

10 22.10% 40.75% 35.81% 35.81% 26.37%
20 21.55% 40.70% 35.79% 35.79% 26.39%
40 21.08% 40.74% 36.01% 36.01% 26.54%
60 20.84% 40.58% 35.78% 35.89% 26.44%

100 20.60% 40.66% 35.91% 35.91% 26.43%

Table 3. Comparison between SCMPPM and other systems, using default settings for all. The ratios
shown in the table are average values for each collection siz e, over the different collections tested.

of memory, and by at least 25% with respect to alternative
state-of-art compressors.

The prototype is a basic implementation and we are
working on several improvements, which will make it even
more competitive. We are working to use words and sep-
artors as base symbols of the PPM model, as words re-
flect much better than characters the true entropy of the text
[TB90]. For example, a semiadaptive Huffman coder over
the model that considers characters as symbols typically ob-
tains a compressed file whose size is around 60% of the
original size, on natural language. A Huffman coder when
words are the symbols obtains 25% [ZMNBY00]. Another
example is the WLZW algorithm (Ziv-Lempel on words)
[BSTW86, DPS99].

We also plan to investigte more in depth the relationship
between the type and density of the structuring and the im-
provements obtained with our method, since ours success is

based on a semantic assumption and it would be interesting
to see how this works on other text collections. We also plan
to experiment with XML collections (INEX, DBLP, IMDB,
SwissProt and others) to verify the benefits of the technique.

We note in particular that SCMPPM is equivalent to hav-
ing an extra context given by the last structure tag seen. This
extra context comes before the first character context. Un-
der this light, we envision serveral generalizations, suchas
using more than one structural context (e.g. the two last
structural elements containing the current text), and inter-
leaving the structural with the character contexts in other
orders than first the structural and then the character con-
texts.

5



20

25

30

35

40

20 40 60 80 100

C
om

pr
es

si
on

 r
at

io
 (

%
)

Collection size (Mbytes)

SCMPPM
SCMHuff

MG System
XMill

XMLPPM
compress

zip
gzip

bzip2

Figure 3. Graphical comparison between SCMPPM and other sys tems

References

[ANdlF03] J. Adiego, G. Navarro, and P. de la Fuente.
SCM: Structural contexts model for im-
proving compression in semistructured text
databases. InProc. String Processing and
Information Retrieval (SPIRE’03), LNCS
2857, pages 153–167. Springer, 2003.

[BSTW86] J. Bentley, D. Sleator, R. Tarjan, and V. Wei.
A locally adaptive data compression scheme.
Communications of the ACM, 29:320–330,
1986.

[Che01] J. Cheney. Compressing XML with multi-
plexed hierarchical PPM models. InProc.
Data Compression Conference (DCC 2001),
pages 163–, 2001.

[CW84] J. Clearly and I. Witten. Data compres-
sion using adaptive coding and partial string
matching. IEEE Transactions on Communi-
cations, COM-32(4):396–402, April 1984.

[DPS99] J. Dvorský, J. Pokorný, and V. Snásel. Word-
based compression methods and indexing for
text retrieval systems. InADBIS’99, LNCS
1691, pages 75–84. Springer, 1999.

[Har95] D. Harman. Overview of the Third Text
REtrieval Conference. InProc. Third Text
REtrieval Conference (TREC-3), pages 1–19,
1995. NIST Special Publication 500-207.

[Huf52] D.A. Huffman. A method for the construc-
tion of minimum-redundancy codes.Proc.
Inst. Radio Engineers, 40(9):1098–1101,
1952.

[LS00] H. Liefke and D. Suciu. XMill: an efficient
compressor for XML data. InProc. ACM
SIGMOD 2000, pages 153–164, 2000.

[TB90] I. Witten T. Bell, J. Cleary. Text Compres-
sion. Prentice Hall, Englewood Cliffs, N.J.,
1990.

[WMB99] I. Witten, A. Moffat, and T. Bell. Manag-
ing Gigabytes. Morgan Kaufmann Publish-
ers, Inc., second edition, 1999.

[ZL77] J. Ziv and A. Lempel. An universal algo-
rithm for sequential data compression.IEEE
Trans. on Information Theory, 23(3):337–
343, 1977.

[ZMNBY00] N. Ziviani, E. Moura, G. Navarro, and
R. Baeza-Yates. Compression: A key for
next-generation text retrieval systems.IEEE
Computer, 33(11):37–44, November 2000.

6


