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Abstract. In this paper we introduce a new measure of the intrinsic
searching complexity of a general metric space. This measure reflects the
expected behavior of the search algorithms on the metric space, yet it
is easy to estimate and independent of the search algorithm. We prove
average case lower bounds, in terms of this complexity measure, for a
large class of proximity search algorithms. This gives some new insight
on the intrinsic difficulty of the search problem in metric spaces.

1 Introduction

Proximity searching in metric spaces consists in finding either the (k) nearest
neighbors or the set of points within a fixed distance (r) to a query element. Due
to its relevance in a vast number of fields, from multimedia retrieval to machine
learning, classification and Web searching, a lot of practical algorithms have
been proposed. Those algorithms are effective in some metric spaces (e.g. vector
spaces of intrinsic low dimension), but perform poorly in some other spaces (e.g.
DNA subsequences, and text collections with the edit distance).

It has been suggested that the histogram of distances between database el-
ements is an important measure of how difficult it is to search for proximity
queries in a particular instance of metric space. Under this point of view, the
easy instances would have a flat histogram, while the hard spaces have a sharp
histogram [1].

For vector spaces, it has been suspected for a long time that no algorithm
could break the so called “curse of dimensionality”. Despite that the problem
can be trivially solved in O(1) time using space exponential on the dimension,
the research focuses on the more realistic case of polynomial space. Under this
case, one version of the curse of dimensionality has been recently proved for
nearest neighbor searching on the Hamming cube ({0,1}9) in the worst case
sense. Chakrabarti et al. [2] obtain 2(loglogd/ logloglogd) for approximate al-
gorithms, while Borodin et al. [3] give a lower bound of 2(logd) for exact algo-
rithms, even allowing randomization. On the other hand, there exist O(loglogd)
approximate randomized algorithms [4]. There exist also previous 2(n®) worst
case lower bounds for orthogonal range searching on a set of n real d-dimensional
points by Melhorn [5], but this does not consider the dimension d.
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For general metric spaces, on the other hand, there are no known lower
bounds, neither in the average nor in the worst case sense. In most cases even
the analyses of particular algorithms seem so difficult that the authors validate
their complexity claims just by experiments [6,7] A few authors attempt to
formally analyze their algorithms [8-11,1], but they need to make simplifying
assumptions that have to be experimentally validated anyway.

In [12] we presented a framework able to unify the existing approaches under
a unique theoretical model. This paper is aimed at discovering a measure of the
intrinsic search difficulty (which is independent of the search algorithm) of a
metric space. To this end we analyze the complexity of a large class of proximity
search algorithms and prove lower bounds in terms of this measure of intrinsic
search difficulty.

2 Basic Concepts

The set X will denote the universe of walid objects. A finite subset of it, U, of size
n = |UJ, is the set of objects, or database, where we search. A distance function
d : X x X — R, satisfying the usual properties of triangle inequality, reflexiv-
ity, symmetry and positiveness, will measure the closeness between points. The
metric space is the pair (X, d).

There are basically two types of queries of interest in metric spaces:

Range query: Retrieve all elements which are within distance r to gq.
This is, retrieve (¢,r)a = {u €U / d(q,u) <r}.

(k) Nearest neighbor query: Retrieve the k closest elements to ¢ in U.
This is, retrieve nng(q, k) C U such that |nnq(q, k)] = k and Yu € nnq(q, k),v €
U - nng (Q1 k): d(q7 u) < d(qa 1)).

In this work we concentrate on range queries for simplicity. Many of the
results, however, can be extended to nearest neighbor searching as well, since
the corresponding algorithms are normally built over those for range queries [13].

Since the operation of leading complexity is computing distances, we will
measure the complexity of the searching algorithms in terms of the number of
distances computed.

3 Proximity Search Algorithms

Different data structures have been proposed to filter out elements based on the
triangular inequality (see [13] for a complete survey). We divide the exposition
according to the two main techniques used.

Pivot-based algorithms are built on a single general idea: select some el-
ements from U (called pivots), and identify all the other elements with their
distances to (some of) the pivots. The methods differ in how they select the
pivots, how much information they store about the distances among elements
and pivots, etc. The simplest variant works as follows: k& pivots are selected and
each object v is mapped to k coordinates which are its distances to the pivots:



&(v) = (d(v,p1),...,d(v,pr)). Later, the query ¢ is also mapped to ®(q) and if
it differs from an object in more than r along some coordinate then the element
is filtered out by the triangle inequality. That is, if for some pivot p; and some
element v of the set it holds |d(q, p;) —d(v, p;)| > 7, then we know that d(q,v) > r
without need to evaluate d(v, q). The elements that cannot be filtered out using
this rule are directly compared.

An interesting feature of most of these algorithms is that they can reduce
the number of distance evaluations by increasing the number of pivots. Define
Di(z,y) = Loo(P(z),P(y)) = maxi<;<i |d(z,p;) — d(y,p;)|. Using the pivots
D1, ---, Pk 18 equivalent to discarding elements u such that Dy (q,u) > r. As more
pivots are added we need to perform more distance evaluations (exactly k) to
compute Dg(q,*) (these are called internal evaluations), but on the other hand
Dy (q,*) increases its value and hence it has a higher chance of filtering out
more elements (those comparisons against elements that cannot be filtered our
are called exzternal). It follows that there exists an optimum k. This optimum,
however, cannot be normally reached because it is too high in terms of space
requirements: kn distances have to be precomputed and stored in order to use
k pivots. Hence, in general these methods use as many pivots as they can, and
they are normally well below their optimum.

Clustering algorithms try to divide the space in zones as compact as pos-
sible. They select a set of centers, which are elements from U, and divide the
space so that each center has its zone of influence. Each zone is normally divided
recursively. The algorithms differ in how the centers are selected, how the zones
are delimited, etc.

4 The Intrinsic Search Difficulty of a Metric Space

For the specific goal of predicting the behavior of an indexing data structure,
the authors of [14] propose a measure called the distance exponent, based on
an empirical power law observed in many data sets. They note that the average
number of sites within distance r to a database element is proportional to r¢. Ex-
trapolating this feature, they derive formulas for selectivity estimation of range
queries, and relate a to the intrinsic dimension of the metric data set. Other
articles relevant to the relationship between intrinsic dimension and search cost
are [15,16,1].

Despite all the efforts, no definition of “dimension” in metric spaces has pro-
vided a lower bound for the search complexity, as they have been obtained for
metric spaces. Our goal is to define a measure of the intrinsic search difficulty
which, albeit not necessarily related to a concept of dimension, permits us de-
riving those lower bounds.

Many authors [6,17,1] have proposed to use the histogram of distances to
characterize the difficulty of searching in an arbitrary metric space, but no quan-
titative definition has been attempted. We present now a quantitative measure
in this line and study its suitability.



Let us start with a well-known example. Consider a distance such that
d(z,z) = 0 and d(z,y) = 1 for all z # y. Under this distance (in fact an
equality test), we do not obtain any information from a comparison except that
the element considered is or is not our query. It is clear that it is not possible
to avoid a sequential search in this case, no matter how smart is our indexing
technique.

Let us consider the histogram of distances between points in the metric space
X. This can be approximated by using the dictionary U as a random sample of
X. The idea is that, as the space is more difficult to search, the mean u of the
histogram grows and/or its variance o is reduced. Our previous example is an
extreme case.

Figure 1 gives an intuitive explanation of why the search problem is harder
when the histogram is concentrated. If we consider a random query ¢ and an
indexing scheme based on random pivots, then the possible distances between
q and a pivot p are distributed according to the histogram of the figure. The
elimination rule says that we can discard any point u such that d(p, u) & [d(p, q)—
r,d(p,q) + r]. The grayed areas in the figure show the points that we cannot
discard. As the histogram is more and more concentrated around its mean, less
and less points can be discarded using the information given by d(p, ¢). Moreover,
in many cases (e.g. to retrieve a fixed fraction of the database) the search radius r
must grow as the mean distance u grows, which makes the problem even harder.
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Fig. 1. An easy (left) and hard (right) histogram of distances, showing that on hard
histograms virtually all the elements become candidates for exhaustive evaluation.

Note that in general the histogram can have more than one peak, especially
with clustered data. However, after using just one pivot we remove from consid-
eration all the peaks non relevant to the query. Hence, the difficult part of the
search starts when the histogram of (remaining) elements has just one peak.

This phenomenon is independent of the nature of the metric space (vectorial
or not, in particular) and gives us a way to quantify how hard is to search on an
arbitrary metric space.

2
Definition. The intrinsic search difficulty of a metric space is defined as p = §=,
where p and 02 are the mean and variance of its histogram of distances.



The technical convenience of the exact definition is made clear shortly. Ob-
serve that the intrinsic search difficulty grows with the mean and with the inverse
of the variance of the histogram. Moreover, measuring this intrinsic difficulty on
an arbitrary and unknown metric space can be accomplished by simple statisti-
cal means via a reasonable number of distance evaluations among random points
of the set. This is much simpler and cheaper than all previous approaches, in
particular those based on a definition of dimension.

On multimodal distributions we can consider one peak of the histogram at a
time and obtain a search difficulty for queries lying in each corresponding cluster,
or consider the whole histogram and obtain a general lower bound (lower than
the separate bounds).

Let us check our definition on vector spaces. As shown in [18], a uniformly
distributed ¢-dimensional vector space under the L, distance has mean @(£'/9)
and standard deviation @(£'/5-1/2). Therefore its intrinsic difficulty is ©(¢) (al-
though the constant is not necessarily 1). So the intuitive concept of dimension-
ality in vector spaces matches our general concept of intrinsic search difficulty.
After all, there is a relation to dimension, where it can be defined.

We have generated random uniformly distributed points in the real /-dimensional
vector space [0, 1)¢ for £ between 2 and 20, using three different distances Ly, Lo
and L.,. We have selected one million pairs of points for each combination of
dimension £ and distance Ly and have computed the intrinsic difficulty u?/(20?)
of the resulting histogram of distances. The intrinsic difficulty grows linearly
with the representational dimension when the points are chosen at random. We
have included a table with the least squares estimations, which shows that a
vector space of dimension ¢ has intrinsic difficulty from 1.00 x £ to 1.43 x £,
depending on the L, distance used (any Ls with s > 3 generates a line between
those of Ly and L).

Distance Intrinsic Percent
Difficulty Error
Ly —0.314 + 1.003¢| 0.34%
Lo —1.182 + 1.346¢| 1.66%
Lo —1.631 + 1.425¢| 3.27%

5 Lower Bounds in Terms of the Intrinsic Difficulty

5.1 A Lower Bound for Pivoting Algorithms

Our main result in this section is a lower bound on the range search cost with
a given search radius r using a pivoting scheme that chooses k£ global pivots at
random. As we show next, the complexity of the search is related to r and the
intrinsic difficulty p.

We are considering independent identically distributed (i.i.d.) random vari-
ables for the distribution of distances between points. Although not accurate,
this simplification is optimistic and hence can be used to lower bound the per-
formance of the indexing algorithms. We come back to this shortly.



Let (¢,7)q be a range query over a metric space indexed by means of k
random pivots, and let u be an element of U. The probability that « cannot be
excluded from direct verification after considering the k pivots is exactly

Pr(|d(g,p1) — d(u,pr)| <7,....|d(g, pr) — d(u, py)| < 1) (1)

Since all the pivots are assumed to be random and their distance distributions
i.i.d. random variables, this expression is the product of probabilities

Pr(ld(g,p1) — d(u,p1)| <r) x ... x Pr(|d(qg,pr) — d(u,pr)| <r) (2)

which for the same reason can be simplified to
Pr(not discarding u) = Pr(|d(q,p) — d(u,p)| < r)k (3)

for a random pivot p.

If X and Y are two i.i.d. random variables with mean p and variance o2, then
the mean of X — Y is 0 and its variance is 202. Using Chebyschev’s inequality’
we have that Pr(]X — Y| > €) < 20?/e2. Therefore,

Pr(ld(q,p) — d(u,p)| <7) > 1-—

where o2 is precisely the variance of the distance distribution in our metric space.
The argument that follows is valid for 20%/r? < 1, or r > /20 (large enough
radii), otherwise the lower bound is zero. Then, we have

202\ ¥
Pr(not discarding u) > (1 - —)

We have now that the total search cost is the number of internal distance
evaluations (k) plus the external evaluations (those to check the remaining can-
didates), whose number is on average n x Pr(not discarding u). Therefore

202\ "
Cost > k + n (1—L>

r2

is a lower bound to the average search cost by using pivots. Optimizing we obtain

that the best k is
Inn + Inln(1/t)

In(1/2)
where ¢t = 1 — 202 /r?. Using this optimal k*, we obtain an absolute (i.e. in-

dependent on k) lower bound for the average cost of any random pivot-based
algorithm:

E* =

Inn + Inin(1/t) + 1 Inn r?
> L
In(1/t) ~ In(1/t) T 202

! For an arbitrary distribution Z with mean p, and variance o2, Pr(|Z — p.| > €) <
2.2
o; /e

Cost > Inn




which shows that the cost depends strongly on o/r. As r increases ¢ tends to 1
and reaching the optimum requires more and more pivots, yet it gets more and
more costly.

Another way to represent this result is to assume that we are interested in
retrieving at most a fixed fraction f of the elements, in which case r can be
written as r = p — o/y/f by Chebyschev’s inequality. In this case the lower
bound becomes

2 — 0 2 1 2
;?lnn = %lnn = <\/_—ﬁ> Inn

which is valid for f > 1/(2p). We have just proved

Theorem 1. Any pivot based algorithm using random pivots has a lower bound
(VP — 1/v/2f)?Inn in the average number of distance evaluations performed for
a random range query retrieving at most a fraction f of the set, where p is the
intrinsic search difficulty of the metric space.

This result matches that of [19,20] on FHQTSs, about obtaining ©(logn)
search time using @(logn) pivots, but here we are more interested in the “con-
stant” term, which depends on the metric space itself and not on the database
size n.

The theorem shows clearly that the parameters governing the performance
of range searching algorithms are p and f. As p grows and f stays fixed, this
tends to plnn.

We have considered i.i.d. random variables for each pivot and the query. This
is a reasonable approximation, as we do not expect much difference between
the “view points” from the general distribution of distances to the individual
distributions, a subject discussed in depth in [1]. The expression given in Eq. (3)
cannot be obtained without this simplification.

A stronger assumption comes from considering all the variables as indepen-
dent. This is an optimistic consideration equivalent to assuming that in order
to discard each element u of the set we take k new pivots at random. The real
algorithm fixes £ random pivots and uses them to try to discard all the elements
u of the set. The latter alternative can suffer from dependencies from a point u
to another, which cannot happen in the former case (for example, if u is close to
a pivot p and v’ is close to u then the distance from u' to p carries less informa-
tion). Since the assumption is optimistic, using it to reduce the joint distribution
in Eq. (1) to the expression given in Eq. (2) keeps the lower bound valid.

5.2 The Target Space

It is interesting to study which is the behavior of the mapped space after selecting
k pivots. Let us start with the mean of the distance Dy, in the target space. As
already seen, Dy (u,v) is the maximum of k random variables |d(u, p;) — d(v, p;)|
and therefore

N
Pr(Dy(u,0) <2) = Pr(ld(u.p) - d(v,p) <o) > (1—21)



where the last inequality comes from applying Chebyschev as in the previous
section. Calling Z the random variable associated to Dy, we have that its cumu-
lative probability function is

F.(z) = Pr(Dg(u,v)<z) > (1_E>k

if # > \/20. F.(z) can be optimistically assumed to be zero otherwise (“opti-
mistically” means that we will obtain an upper bound on E(Z)). To obtain the
density function f,(z) we differentiate the cumulative distribution and get

fo(z) = k(1 —20%/2*)F 140%)2?

if ¢ > V20 and zero otherwise. Now to obtain the mean we compute

E(Z) < /oo cf.(x) de = 4ko® /Oo (1 —20%/z*)* 1 /2? dx
J\V2e J\V 20

Now doing the change y = 202 /2% (and hence dy = —402/z* dx) we have

! k+3
E(Z) < \/51«7/ (1—y) Ty 2y = ﬁm( . 2)
Jo 3
This is the exact solution (recall that (kT/]Z/Z) = (k+1/2)(k — 1/2)(k —
3/2)---(5/2)(3/2)). For large k this converges to

E(Z) < oV2rk

This means that the mean value of Dy, is independent on the mean p of the
original metric space. Rather, it is proportional to the standard deviation (this
is reasonable because it is a maximum of differences between distances). On the
other hand, this mean grows with the square root of the number of pivots. Recall
that, since this comes from using Chebyschev’s inequality, the result is just an
upper bound on the mean of Dy.

It is clear that Dy, as a lower bound for d, should be as close to d as possible
in order to filter out most of the irrelevant elements. Therefore, we could like
that both means be equal. Solving u = o/ 27k yields k = p/n, which means that
we must have at least a number of pivots proportional to the intrinsic difficulty
of the space. This is an optimistic bound and in practice k has to be much larger
(as shown in Theorem 1, the optimum is indeed larger).

We have tried to obtain an upper bound on the variance of Dy, but the
integral [ 2”f.(z) dz does not converge. This does not mean that Dy does not
have variance, because ours is just an upper bound.

This also shows that we could search in the mapped space with radius ' =
rﬂlm(kﬁf) /= rk(ki'/lzﬂ) //p = Vrkr/\/p and still get most of the results.
This opens the door to probabilistic algorithms which, with the penalty of a
small error probability, are much faster than the exact versions [21].



5.3 A Lower Bound for Clustering Algorithms

With a similar procedure we can prove a lower bound for clustering algorithms.
For space limitations we do not give a proof of the theorem. The technical report
contains all the details [22].

Theorem 2. Any clustering based algorithm using random centers has a lower
bound C;(2(/p — 1/v/2f)?) in the average number of distance evaluations per-
formed for a random range query retrieving a fraction of at most f of the
database, where p is the intrinsic dimension of the space and Cy() is the internal
complexity to find the relevant classes, satisfying 2(logm) = Cr(m) = O(m).

This result is weaker than Theorem 1 because of our inability to give a good
lower bound on C;, so we cannot ensure more than a logarithmic increase with
respect to p. However, even assuming C;(m) = ©@(m) (i.e. exhaustive search
of the classes), when the theorem becomes very similar to Theorem 1, there is
an important reason that explains why the clustering based algorithms can in
practice be better than pivot based ones. We can in this case achieve the optimal
number of centers m*, which is impossible in practice for pivot-based algorithms.
The reason is that it is much more economical to represent the Voronoi partition
using m centers than the pivot partition using k pivots.

6 Conclusions and Future Work

We have proposed a new quantitative measure of the intrinsic search difficulty
of a general metric space. It is simple and, unlike previous attempts, it permits
deriving lower bounds on the search cost of large classes of proximity search
algorithms.

Future work involves tuning this measure so as to increase its predictive
power (currently it serves only as a lower bound), therefore giving a practical
and extremely useful tool to predict the difficulty of searching on an unknown
metric space.
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