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lAbstra
t. In this paper we introdu
e a new measure of the intrinsi
sear
hing 
omplexity of a general metri
 spa
e. This measure re
e
ts theexpe
ted behavior of the sear
h algorithms on the metri
 spa
e, yet itis easy to estimate and independent of the sear
h algorithm. We proveaverage 
ase lower bounds, in terms of this 
omplexity measure, for alarge 
lass of proximity sear
h algorithms. This gives some new insighton the intrinsi
 diÆ
ulty of the sear
h problem in metri
 spa
es.1 Introdu
tionProximity sear
hing in metri
 spa
es 
onsists in �nding either the (k) nearestneighbors or the set of points within a �xed distan
e (r) to a query element. Dueto its relevan
e in a vast number of �elds, from multimedia retrieval to ma
hinelearning, 
lassi�
ation and Web sear
hing, a lot of pra
ti
al algorithms havebeen proposed. Those algorithms are e�e
tive in some metri
 spa
es (e.g. ve
torspa
es of intrinsi
 low dimension), but perform poorly in some other spa
es (e.g.DNA subsequen
es, and text 
olle
tions with the edit distan
e).It has been suggested that the histogram of distan
es between database el-ements is an important measure of how diÆ
ult it is to sear
h for proximityqueries in a parti
ular instan
e of metri
 spa
e. Under this point of view, theeasy instan
es would have a 
at histogram, while the hard spa
es have a sharphistogram [1℄.For ve
tor spa
es, it has been suspe
ted for a long time that no algorithm
ould break the so 
alled \
urse of dimensionality". Despite that the problem
an be trivially solved in O(1) time using spa
e exponential on the dimension,the resear
h fo
uses on the more realisti
 
ase of polynomial spa
e. Under this
ase, one version of the 
urse of dimensionality has been re
ently proved fornearest neighbor sear
hing on the Hamming 
ube (f0; 1gd) in the worst 
asesense. Chakrabarti et al. [2℄ obtain 
(log log d= log log log d) for approximate al-gorithms, while Borodin et al. [3℄ give a lower bound of 
(log d) for exa
t algo-rithms, even allowing randomization. On the other hand, there exist O(log log d)approximate randomized algorithms [4℄. There exist also previous 
(n�) worst
ase lower bounds for orthogonal range sear
hing on a set of n real d-dimensionalpoints by Melhorn [5℄, but this does not 
onsider the dimension d.? This proje
t has been partially supported by CYTED VII.13 AMYRI Proje
t,Fonde
yt Grant 1-000929 and CONACyT Proje
t R-28923A.



For general metri
 spa
es, on the other hand, there are no known lowerbounds, neither in the average nor in the worst 
ase sense. In most 
ases eventhe analyses of parti
ular algorithms seem so diÆ
ult that the authors validatetheir 
omplexity 
laims just by experiments [6, 7℄ A few authors attempt toformally analyze their algorithms [8{11, 1℄, but they need to make simplifyingassumptions that have to be experimentally validated anyway.In [12℄ we presented a framework able to unify the existing approa
hes undera unique theoreti
al model. This paper is aimed at dis
overing a measure of theintrinsi
 sear
h diÆ
ulty (whi
h is independent of the sear
h algorithm) of ametri
 spa
e. To this end we analyze the 
omplexity of a large 
lass of proximitysear
h algorithms and prove lower bounds in terms of this measure of intrinsi
sear
h diÆ
ulty.2 Basi
 Con
eptsThe set X will denote the universe of valid obje
ts. A �nite subset of it, U, of sizen = jUj, is the set of obje
ts, or database, where we sear
h. A distan
e fun
tiond : X�X �! R, satisfying the usual properties of triangle inequality, re
exiv-ity, symmetry and positiveness, will measure the 
loseness between points. Themetri
 spa
e is the pair (X; d).There are basi
ally two types of queries of interest in metri
 spa
es:Range query: Retrieve all elements whi
h are within distan
e r to q.This is, retrieve (q; r)d = fu 2 U = d(q; u) � rg.(k) Nearest neighbor query: Retrieve the k 
losest elements to q in U.This is, retrieve nnd(q; k) � U su
h that jnnd(q; k)j = k and 8u 2 nnd(q; k); v 2U� nnd(q; k); d(q; u) � d(q; v).In this work we 
on
entrate on range queries for simpli
ity. Many of theresults, however, 
an be extended to nearest neighbor sear
hing as well, sin
ethe 
orresponding algorithms are normally built over those for range queries [13℄.Sin
e the operation of leading 
omplexity is 
omputing distan
es, we willmeasure the 
omplexity of the sear
hing algorithms in terms of the number ofdistan
es 
omputed.3 Proximity Sear
h AlgorithmsDi�erent data stru
tures have been proposed to �lter out elements based on thetriangular inequality (see [13℄ for a 
omplete survey). We divide the expositiona

ording to the two main te
hniques used.Pivot-based algorithms are built on a single general idea: sele
t some el-ements from U (
alled pivots), and identify all the other elements with theirdistan
es to (some of) the pivots. The methods di�er in how they sele
t thepivots, how mu
h information they store about the distan
es among elementsand pivots, et
. The simplest variant works as follows: k pivots are sele
ted andea
h obje
t v is mapped to k 
oordinates whi
h are its distan
es to the pivots:



�(v) = (d(v; p1); : : : ; d(v; pk)). Later, the query q is also mapped to �(q) and ifit di�ers from an obje
t in more than r along some 
oordinate then the elementis �ltered out by the triangle inequality. That is, if for some pivot pi and someelement v of the set it holds jd(q; pi)�d(v; pi)j > r, then we know that d(q; v) > rwithout need to evaluate d(v; q). The elements that 
annot be �ltered out usingthis rule are dire
tly 
ompared.An interesting feature of most of these algorithms is that they 
an redu
ethe number of distan
e evaluations by in
reasing the number of pivots. De�neDk(x; y) = L1(�(x); �(y)) = max1�j�k jd(x; pj)� d(y; pj)j. Using the pivotsp1; :::; pk is equivalent to dis
arding elements u su
h that Dk(q; u) > r. As morepivots are added we need to perform more distan
e evaluations (exa
tly k) to
ompute Dk(q; �) (these are 
alled internal evaluations), but on the other handDk(q; �) in
reases its value and hen
e it has a higher 
han
e of �ltering outmore elements (those 
omparisons against elements that 
annot be �ltered ourare 
alled external). It follows that there exists an optimum k. This optimum,however, 
annot be normally rea
hed be
ause it is too high in terms of spa
erequirements: kn distan
es have to be pre
omputed and stored in order to usek pivots. Hen
e, in general these methods use as many pivots as they 
an, andthey are normally well below their optimum.Clustering algorithms try to divide the spa
e in zones as 
ompa
t as pos-sible. They sele
t a set of 
enters, whi
h are elements from U, and divide thespa
e so that ea
h 
enter has its zone of in
uen
e. Ea
h zone is normally dividedre
ursively. The algorithms di�er in how the 
enters are sele
ted, how the zonesare delimited, et
.4 The Intrinsi
 Sear
h DiÆ
ulty of a Metri
 Spa
eFor the spe
i�
 goal of predi
ting the behavior of an indexing data stru
ture,the authors of [14℄ propose a measure 
alled the distan
e exponent, based onan empiri
al power law observed in many data sets. They note that the averagenumber of sites within distan
e r to a database element is proportional to r�. Ex-trapolating this feature, they derive formulas for sele
tivity estimation of rangequeries, and relate � to the intrinsi
 dimension of the metri
 data set. Otherarti
les relevant to the relationship between intrinsi
 dimension and sear
h 
ostare [15, 16, 1℄.Despite all the e�orts, no de�nition of \dimension" in metri
 spa
es has pro-vided a lower bound for the sear
h 
omplexity, as they have been obtained formetri
 spa
es. Our goal is to de�ne a measure of the intrinsi
 sear
h diÆ
ultywhi
h, albeit not ne
essarily related to a 
on
ept of dimension, permits us de-riving those lower bounds.Many authors [6, 17, 1℄ have proposed to use the histogram of distan
es to
hara
terize the diÆ
ulty of sear
hing in an arbitrary metri
 spa
e, but no quan-titative de�nition has been attempted. We present now a quantitative measurein this line and study its suitability.



Let us start with a well-known example. Consider a distan
e su
h thatd(x; x) = 0 and d(x; y) = 1 for all x 6= y. Under this distan
e (in fa
t anequality test), we do not obtain any information from a 
omparison ex
ept thatthe element 
onsidered is or is not our query. It is 
lear that it is not possibleto avoid a sequential sear
h in this 
ase, no matter how smart is our indexingte
hnique.Let us 
onsider the histogram of distan
es between points in the metri
 spa
eX. This 
an be approximated by using the di
tionary U as a random sample ofX. The idea is that, as the spa
e is more diÆ
ult to sear
h, the mean � of thehistogram grows and/or its varian
e �2 is redu
ed. Our previous example is anextreme 
ase.Figure 1 gives an intuitive explanation of why the sear
h problem is harderwhen the histogram is 
on
entrated. If we 
onsider a random query q and anindexing s
heme based on random pivots, then the possible distan
es betweenq and a pivot p are distributed a

ording to the histogram of the �gure. Theelimination rule says that we 
an dis
ard any point u su
h that d(p; u) 62 [d(p; q)�r; d(p; q) + r℄. The grayed areas in the �gure show the points that we 
annotdis
ard. As the histogram is more and more 
on
entrated around its mean, lessand less points 
an be dis
arded using the information given by d(p; q). Moreover,in many 
ases (e.g. to retrieve a �xed fra
tion of the database) the sear
h radius rmust grow as the mean distan
e � grows, whi
h makes the problem even harder.
2r

d(p,q)

2r

d(p,q)

d(p,x) d(p,x)Fig. 1. An easy (left) and hard (right) histogram of distan
es, showing that on hardhistograms virtually all the elements be
ome 
andidates for exhaustive evaluation.Note that in general the histogram 
an have more than one peak, espe
iallywith 
lustered data. However, after using just one pivot we remove from 
onsid-eration all the peaks non relevant to the query. Hen
e, the diÆ
ult part of thesear
h starts when the histogram of (remaining) elements has just one peak.This phenomenon is independent of the nature of the metri
 spa
e (ve
torialor not, in parti
ular) and gives us a way to quantify how hard is to sear
h on anarbitrary metri
 spa
e.De�nition. The intrinsi
 sear
h diÆ
ulty of a metri
 spa
e is de�ned as � = �22�2 ,where � and �2 are the mean and varian
e of its histogram of distan
es.



The te
hni
al 
onvenien
e of the exa
t de�nition is made 
lear shortly. Ob-serve that the intrinsi
 sear
h diÆ
ulty grows with the mean and with the inverseof the varian
e of the histogram. Moreover, measuring this intrinsi
 diÆ
ulty onan arbitrary and unknown metri
 spa
e 
an be a

omplished by simple statisti-
al means via a reasonable number of distan
e evaluations among random pointsof the set. This is mu
h simpler and 
heaper than all previous approa
hes, inparti
ular those based on a de�nition of dimension.On multimodal distributions we 
an 
onsider one peak of the histogram at atime and obtain a sear
h diÆ
ulty for queries lying in ea
h 
orresponding 
luster,or 
onsider the whole histogram and obtain a general lower bound (lower thanthe separate bounds).Let us 
he
k our de�nition on ve
tor spa
es. As shown in [18℄, a uniformlydistributed `-dimensional ve
tor spa
e under the Ls distan
e has mean �(`1=s)and standard deviation �(`1=s�1=2). Therefore its intrinsi
 diÆ
ulty is �(`) (al-though the 
onstant is not ne
essarily 1). So the intuitive 
on
ept of dimension-ality in ve
tor spa
es mat
hes our general 
on
ept of intrinsi
 sear
h diÆ
ulty.After all, there is a relation to dimension, where it 
an be de�ned.We have generated random uniformly distributed points in the real `-dimensionalve
tor spa
e [0; 1)` for ` between 2 and 20, using three di�erent distan
es L1, L2and L1. We have sele
ted one million pairs of points for ea
h 
ombination ofdimension ` and distan
e Ls and have 
omputed the intrinsi
 diÆ
ulty �2=(2�2)of the resulting histogram of distan
es. The intrinsi
 diÆ
ulty grows linearlywith the representational dimension when the points are 
hosen at random. Wehave in
luded a table with the least squares estimations, whi
h shows that ave
tor spa
e of dimension ` has intrinsi
 diÆ
ulty from 1:00 � ` to 1:43 � `,depending on the Ls distan
e used (any Ls with s � 3 generates a line betweenthose of L2 and L1). Distan
e Intrinsi
 Per
entDiÆ
ulty ErrorL1 �0:314 + 1:003` 0.34%L2 �1:182 + 1:346` 1.66%L1 �1:631 + 1:425` 3.27%5 Lower Bounds in Terms of the Intrinsi
 DiÆ
ulty5.1 A Lower Bound for Pivoting AlgorithmsOur main result in this se
tion is a lower bound on the range sear
h 
ost witha given sear
h radius r using a pivoting s
heme that 
hooses k global pivots atrandom. As we show next, the 
omplexity of the sear
h is related to r and theintrinsi
 diÆ
ulty �.We are 
onsidering independent identi
ally distributed (i.i.d.) random vari-ables for the distribution of distan
es between points. Although not a

urate,this simpli�
ation is optimisti
 and hen
e 
an be used to lower bound the per-forman
e of the indexing algorithms. We 
ome ba
k to this shortly.



Let (q; r)d be a range query over a metri
 spa
e indexed by means of krandom pivots, and let u be an element of U. The probability that u 
annot beex
luded from dire
t veri�
ation after 
onsidering the k pivots is exa
tlyPr(jd(q; p1)� d(u; p1)j � r; : : : ; jd(q; pk)� d(u; pk)j � r) (1)Sin
e all the pivots are assumed to be random and their distan
e distributionsi.i.d. random variables, this expression is the produ
t of probabilitiesPr(jd(q; p1)� d(u; p1)j � r) � : : : � Pr(jd(q; pk)� d(u; pk)j � r) (2)whi
h for the same reason 
an be simpli�ed toPr(not dis
arding u) = Pr(jd(q; p) � d(u; p)j � r)k (3)for a random pivot p.If X and Y are two i.i.d. random variables with mean � and varian
e �2, thenthe mean of X � Y is 0 and its varian
e is 2�2. Using Chebys
hev's inequality1we have that Pr(jX � Y j > ") < 2�2="2. Therefore,Pr(jd(q; p) � d(u; p)j � r) � 1� 2�2r2where �2 is pre
isely the varian
e of the distan
e distribution in our metri
 spa
e.The argument that follows is valid for 2�2=r2 < 1, or r > p2� (large enoughradii), otherwise the lower bound is zero. Then, we havePr(not dis
arding u) � �1� 2�2r2 �kWe have now that the total sear
h 
ost is the number of internal distan
eevaluations (k) plus the external evaluations (those to 
he
k the remaining 
an-didates), whose number is on average n� Pr(not dis
arding u). ThereforeCost � k + n �1� 2�2r2 �kis a lower bound to the average sear
h 
ost by using pivots. Optimizing we obtainthat the best k is k� = lnn + ln ln(1=t)ln(1=t)where t = 1 � 2�2=r2. Using this optimal k�, we obtain an absolute (i.e. in-dependent on k) lower bound for the average 
ost of any random pivot-basedalgorithm:Cost � lnn + ln ln(1=t) + 1ln(1=t) � lnnln(1=t) � r22�2 lnn1 For an arbitrary distribution Z with mean �z and varian
e �2z , Pr(jZ � �zj > ") <�2z="2.



whi
h shows that the 
ost depends strongly on �=r. As r in
reases t tends to 1and rea
hing the optimum requires more and more pivots, yet it gets more andmore 
ostly.Another way to represent this result is to assume that we are interested inretrieving at most a �xed fra
tion f of the elements, in whi
h 
ase r 
an bewritten as r = � � �=pf by Chebys
hev's inequality. In this 
ase the lowerbound be
omesr22�2 lnn = (�� �=pf)22�2 lnn = �p�� 1p2f�2 lnnwhi
h is valid for f � 1=(2�). We have just provedTheorem 1. Any pivot based algorithm using random pivots has a lower bound(p�� 1=p2f)2 lnn in the average number of distan
e evaluations performed fora random range query retrieving at most a fra
tion f of the set, where � is theintrinsi
 sear
h diÆ
ulty of the metri
 spa
e.This result mat
hes that of [19, 20℄ on FHQTs, about obtaining �(logn)sear
h time using �(logn) pivots, but here we are more interested in the \
on-stant" term, whi
h depends on the metri
 spa
e itself and not on the databasesize n.The theorem shows 
learly that the parameters governing the performan
eof range sear
hing algorithms are � and f . As � grows and f stays �xed, thistends to � lnn.We have 
onsidered i.i.d. random variables for ea
h pivot and the query. Thisis a reasonable approximation, as we do not expe
t mu
h di�eren
e betweenthe \view points" from the general distribution of distan
es to the individualdistributions, a subje
t dis
ussed in depth in [1℄. The expression given in Eq. (3)
annot be obtained without this simpli�
ation.A stronger assumption 
omes from 
onsidering all the variables as indepen-dent. This is an optimisti
 
onsideration equivalent to assuming that in orderto dis
ard ea
h element u of the set we take k new pivots at random. The realalgorithm �xes k random pivots and uses them to try to dis
ard all the elementsu of the set. The latter alternative 
an su�er from dependen
ies from a point uto another, whi
h 
annot happen in the former 
ase (for example, if u is 
lose toa pivot p and u0 is 
lose to u then the distan
e from u0 to p 
arries less informa-tion). Sin
e the assumption is optimisti
, using it to redu
e the joint distributionin Eq. (1) to the expression given in Eq. (2) keeps the lower bound valid.5.2 The Target Spa
eIt is interesting to study whi
h is the behavior of the mapped spa
e after sele
tingk pivots. Let us start with the mean of the distan
e Dk in the target spa
e. Asalready seen, Dk(u; v) is the maximum of k random variables jd(u; pi)�d(v; pi)j,and thereforePr(Dk(u; v) � ") = Pr(jd(u; p) � d(v; p)j � ")k � �1� 2�2"2 �k



where the last inequality 
omes from applying Chebys
hev as in the previousse
tion. Calling Z the random variable asso
iated to Dk, we have that its 
umu-lative probability fun
tion isFz(x) = Pr(Dk(u; v) � x) � �1� 2�2x2 �kif x � p2�. Fz(x) 
an be optimisti
ally assumed to be zero otherwise (\opti-misti
ally" means that we will obtain an upper bound on E(Z)). To obtain thedensity fun
tion fz(x) we di�erentiate the 
umulative distribution and getfz(x) = k(1� 2�2=x2)k�14�2=x3if x � p2� and zero otherwise. Now to obtain the mean we 
omputeE(Z) � Z 1p2� xfz(x) dx = 4k�2 Z 1p2�(1� 2�2=x2)k�1=x2 dxNow doing the 
hange y = 2�2=x2 (and hen
e dy = �4�2=x3 dx) we haveE(Z) � p2k� Z 10 (1� y)k�1y�1=2 dy = p2k��k + 1212 �This is the exa
t solution (re
all that �k+1=21=2 � = (k + 1=2)(k � 1=2)(k �3=2) � � � (5=2)(3=2)). For large k this 
onverges toE(Z) � �p2�kThis means that the mean value of Dk is independent on the mean � of theoriginal metri
 spa
e. Rather, it is proportional to the standard deviation (thisis reasonable be
ause it is a maximum of di�eren
es between distan
es). On theother hand, this mean grows with the square root of the number of pivots. Re
allthat, sin
e this 
omes from using Chebys
hev's inequality, the result is just anupper bound on the mean of Dk.It is 
lear that Dk, as a lower bound for d, should be as 
lose to d as possiblein order to �lter out most of the irrelevant elements. Therefore, we 
ould likethat both means be equal. Solving � = �p2�k yields k = �=�, whi
h means thatwe must have at least a number of pivots proportional to the intrinsi
 diÆ
ultyof the spa
e. This is an optimisti
 bound and in pra
ti
e k has to be mu
h larger(as shown in Theorem 1, the optimum is indeed larger).We have tried to obtain an upper bound on the varian
e of Dk, but theintegral R x2fz(x) dx does not 
onverge. This does not mean that Dk does nothave varian
e, be
ause ours is just an upper bound.This also shows that we 
ould sear
h in the mapped spa
e with radius r0 =rp2k��k+1=21=2 �=� = rk�k+1=21=2 �=p� � p�kr=p� and still get most of the results.This opens the door to probabilisti
 algorithms whi
h, with the penalty of asmall error probability, are mu
h faster than the exa
t versions [21℄.



5.3 A Lower Bound for Clustering AlgorithmsWith a similar pro
edure we 
an prove a lower bound for 
lustering algorithms.For spa
e limitations we do not give a proof of the theorem. The te
hni
al report
ontains all the details [22℄.Theorem 2. Any 
lustering based algorithm using random 
enters has a lowerbound CI(2(p� � 1=p2f)2) in the average number of distan
e evaluations per-formed for a random range query retrieving a fra
tion of at most f of thedatabase, where � is the intrinsi
 dimension of the spa
e and CI() is the internal
omplexity to �nd the relevant 
lasses, satisfying 
(logm) = CI(m) = O(m).This result is weaker than Theorem 1 be
ause of our inability to give a goodlower bound on CI , so we 
annot ensure more than a logarithmi
 in
rease withrespe
t to �. However, even assuming CI(m) = �(m) (i.e. exhaustive sear
hof the 
lasses), when the theorem be
omes very similar to Theorem 1, there isan important reason that explains why the 
lustering based algorithms 
an inpra
ti
e be better than pivot based ones. We 
an in this 
ase a
hieve the optimalnumber of 
entersm�, whi
h is impossible in pra
ti
e for pivot-based algorithms.The reason is that it is mu
h more e
onomi
al to represent the Voronoi partitionusing m 
enters than the pivot partition using k pivots.6 Con
lusions and Future WorkWe have proposed a new quantitative measure of the intrinsi
 sear
h diÆ
ultyof a general metri
 spa
e. It is simple and, unlike previous attempts, it permitsderiving lower bounds on the sear
h 
ost of large 
lasses of proximity sear
halgorithms.Future work involves tuning this measure so as to in
rease its predi
tivepower (
urrently it serves only as a lower bound), therefore giving a pra
ti
aland extremely useful tool to predi
t the diÆ
ulty of sear
hing on an unknownmetri
 spa
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