
Towards Measuring the Searhing Complexity ofMetri Spaes ?Edgar Ch�avez1 and Gonzalo Navarro21 Es. Cs. F��sio-Matem�atiasUniversidad Mihoaana elhavez�fismat.umih.mx2 Depto. de Cienias de la Computai�onUniversidad de Chile gnavarro�d.uhile.lAbstrat. In this paper we introdue a new measure of the intrinsisearhing omplexity of a general metri spae. This measure reets theexpeted behavior of the searh algorithms on the metri spae, yet itis easy to estimate and independent of the searh algorithm. We proveaverage ase lower bounds, in terms of this omplexity measure, for alarge lass of proximity searh algorithms. This gives some new insighton the intrinsi diÆulty of the searh problem in metri spaes.1 IntrodutionProximity searhing in metri spaes onsists in �nding either the (k) nearestneighbors or the set of points within a �xed distane (r) to a query element. Dueto its relevane in a vast number of �elds, from multimedia retrieval to mahinelearning, lassi�ation and Web searhing, a lot of pratial algorithms havebeen proposed. Those algorithms are e�etive in some metri spaes (e.g. vetorspaes of intrinsi low dimension), but perform poorly in some other spaes (e.g.DNA subsequenes, and text olletions with the edit distane).It has been suggested that the histogram of distanes between database el-ements is an important measure of how diÆult it is to searh for proximityqueries in a partiular instane of metri spae. Under this point of view, theeasy instanes would have a at histogram, while the hard spaes have a sharphistogram [1℄.For vetor spaes, it has been suspeted for a long time that no algorithmould break the so alled \urse of dimensionality". Despite that the probleman be trivially solved in O(1) time using spae exponential on the dimension,the researh fouses on the more realisti ase of polynomial spae. Under thisase, one version of the urse of dimensionality has been reently proved fornearest neighbor searhing on the Hamming ube (f0; 1gd) in the worst asesense. Chakrabarti et al. [2℄ obtain 
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For general metri spaes, on the other hand, there are no known lowerbounds, neither in the average nor in the worst ase sense. In most ases eventhe analyses of partiular algorithms seem so diÆult that the authors validatetheir omplexity laims just by experiments [6, 7℄ A few authors attempt toformally analyze their algorithms [8{11, 1℄, but they need to make simplifyingassumptions that have to be experimentally validated anyway.In [12℄ we presented a framework able to unify the existing approahes undera unique theoretial model. This paper is aimed at disovering a measure of theintrinsi searh diÆulty (whih is independent of the searh algorithm) of ametri spae. To this end we analyze the omplexity of a large lass of proximitysearh algorithms and prove lower bounds in terms of this measure of intrinsisearh diÆulty.2 Basi ConeptsThe set X will denote the universe of valid objets. A �nite subset of it, U, of sizen = jUj, is the set of objets, or database, where we searh. A distane funtiond : X�X �! R, satisfying the usual properties of triangle inequality, reexiv-ity, symmetry and positiveness, will measure the loseness between points. Themetri spae is the pair (X; d).There are basially two types of queries of interest in metri spaes:Range query: Retrieve all elements whih are within distane r to q.This is, retrieve (q; r)d = fu 2 U = d(q; u) � rg.(k) Nearest neighbor query: Retrieve the k losest elements to q in U.This is, retrieve nnd(q; k) � U suh that jnnd(q; k)j = k and 8u 2 nnd(q; k); v 2U� nnd(q; k); d(q; u) � d(q; v).In this work we onentrate on range queries for simpliity. Many of theresults, however, an be extended to nearest neighbor searhing as well, sinethe orresponding algorithms are normally built over those for range queries [13℄.Sine the operation of leading omplexity is omputing distanes, we willmeasure the omplexity of the searhing algorithms in terms of the number ofdistanes omputed.3 Proximity Searh AlgorithmsDi�erent data strutures have been proposed to �lter out elements based on thetriangular inequality (see [13℄ for a omplete survey). We divide the expositionaording to the two main tehniques used.Pivot-based algorithms are built on a single general idea: selet some el-ements from U (alled pivots), and identify all the other elements with theirdistanes to (some of) the pivots. The methods di�er in how they selet thepivots, how muh information they store about the distanes among elementsand pivots, et. The simplest variant works as follows: k pivots are seleted andeah objet v is mapped to k oordinates whih are its distanes to the pivots:



�(v) = (d(v; p1); : : : ; d(v; pk)). Later, the query q is also mapped to �(q) and ifit di�ers from an objet in more than r along some oordinate then the elementis �ltered out by the triangle inequality. That is, if for some pivot pi and someelement v of the set it holds jd(q; pi)�d(v; pi)j > r, then we know that d(q; v) > rwithout need to evaluate d(v; q). The elements that annot be �ltered out usingthis rule are diretly ompared.An interesting feature of most of these algorithms is that they an reduethe number of distane evaluations by inreasing the number of pivots. De�neDk(x; y) = L1(�(x); �(y)) = max1�j�k jd(x; pj)� d(y; pj)j. Using the pivotsp1; :::; pk is equivalent to disarding elements u suh that Dk(q; u) > r. As morepivots are added we need to perform more distane evaluations (exatly k) toompute Dk(q; �) (these are alled internal evaluations), but on the other handDk(q; �) inreases its value and hene it has a higher hane of �ltering outmore elements (those omparisons against elements that annot be �ltered ourare alled external). It follows that there exists an optimum k. This optimum,however, annot be normally reahed beause it is too high in terms of spaerequirements: kn distanes have to be preomputed and stored in order to usek pivots. Hene, in general these methods use as many pivots as they an, andthey are normally well below their optimum.Clustering algorithms try to divide the spae in zones as ompat as pos-sible. They selet a set of enters, whih are elements from U, and divide thespae so that eah enter has its zone of inuene. Eah zone is normally dividedreursively. The algorithms di�er in how the enters are seleted, how the zonesare delimited, et.4 The Intrinsi Searh DiÆulty of a Metri SpaeFor the spei� goal of prediting the behavior of an indexing data struture,the authors of [14℄ propose a measure alled the distane exponent, based onan empirial power law observed in many data sets. They note that the averagenumber of sites within distane r to a database element is proportional to r�. Ex-trapolating this feature, they derive formulas for seletivity estimation of rangequeries, and relate � to the intrinsi dimension of the metri data set. Otherartiles relevant to the relationship between intrinsi dimension and searh ostare [15, 16, 1℄.Despite all the e�orts, no de�nition of \dimension" in metri spaes has pro-vided a lower bound for the searh omplexity, as they have been obtained formetri spaes. Our goal is to de�ne a measure of the intrinsi searh diÆultywhih, albeit not neessarily related to a onept of dimension, permits us de-riving those lower bounds.Many authors [6, 17, 1℄ have proposed to use the histogram of distanes toharaterize the diÆulty of searhing in an arbitrary metri spae, but no quan-titative de�nition has been attempted. We present now a quantitative measurein this line and study its suitability.



Let us start with a well-known example. Consider a distane suh thatd(x; x) = 0 and d(x; y) = 1 for all x 6= y. Under this distane (in fat anequality test), we do not obtain any information from a omparison exept thatthe element onsidered is or is not our query. It is lear that it is not possibleto avoid a sequential searh in this ase, no matter how smart is our indexingtehnique.Let us onsider the histogram of distanes between points in the metri spaeX. This an be approximated by using the ditionary U as a random sample ofX. The idea is that, as the spae is more diÆult to searh, the mean � of thehistogram grows and/or its variane �2 is redued. Our previous example is anextreme ase.Figure 1 gives an intuitive explanation of why the searh problem is harderwhen the histogram is onentrated. If we onsider a random query q and anindexing sheme based on random pivots, then the possible distanes betweenq and a pivot p are distributed aording to the histogram of the �gure. Theelimination rule says that we an disard any point u suh that d(p; u) 62 [d(p; q)�r; d(p; q) + r℄. The grayed areas in the �gure show the points that we annotdisard. As the histogram is more and more onentrated around its mean, lessand less points an be disarded using the information given by d(p; q). Moreover,in many ases (e.g. to retrieve a �xed fration of the database) the searh radius rmust grow as the mean distane � grows, whih makes the problem even harder.
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d(p,x) d(p,x)Fig. 1. An easy (left) and hard (right) histogram of distanes, showing that on hardhistograms virtually all the elements beome andidates for exhaustive evaluation.Note that in general the histogram an have more than one peak, espeiallywith lustered data. However, after using just one pivot we remove from onsid-eration all the peaks non relevant to the query. Hene, the diÆult part of thesearh starts when the histogram of (remaining) elements has just one peak.This phenomenon is independent of the nature of the metri spae (vetorialor not, in partiular) and gives us a way to quantify how hard is to searh on anarbitrary metri spae.De�nition. The intrinsi searh diÆulty of a metri spae is de�ned as � = �22�2 ,where � and �2 are the mean and variane of its histogram of distanes.



The tehnial onveniene of the exat de�nition is made lear shortly. Ob-serve that the intrinsi searh diÆulty grows with the mean and with the inverseof the variane of the histogram. Moreover, measuring this intrinsi diÆulty onan arbitrary and unknown metri spae an be aomplished by simple statisti-al means via a reasonable number of distane evaluations among random pointsof the set. This is muh simpler and heaper than all previous approahes, inpartiular those based on a de�nition of dimension.On multimodal distributions we an onsider one peak of the histogram at atime and obtain a searh diÆulty for queries lying in eah orresponding luster,or onsider the whole histogram and obtain a general lower bound (lower thanthe separate bounds).Let us hek our de�nition on vetor spaes. As shown in [18℄, a uniformlydistributed `-dimensional vetor spae under the Ls distane has mean �(`1=s)and standard deviation �(`1=s�1=2). Therefore its intrinsi diÆulty is �(`) (al-though the onstant is not neessarily 1). So the intuitive onept of dimension-ality in vetor spaes mathes our general onept of intrinsi searh diÆulty.After all, there is a relation to dimension, where it an be de�ned.We have generated random uniformly distributed points in the real `-dimensionalvetor spae [0; 1)` for ` between 2 and 20, using three di�erent distanes L1, L2and L1. We have seleted one million pairs of points for eah ombination ofdimension ` and distane Ls and have omputed the intrinsi diÆulty �2=(2�2)of the resulting histogram of distanes. The intrinsi diÆulty grows linearlywith the representational dimension when the points are hosen at random. Wehave inluded a table with the least squares estimations, whih shows that avetor spae of dimension ` has intrinsi diÆulty from 1:00 � ` to 1:43 � `,depending on the Ls distane used (any Ls with s � 3 generates a line betweenthose of L2 and L1). Distane Intrinsi PerentDiÆulty ErrorL1 �0:314 + 1:003` 0.34%L2 �1:182 + 1:346` 1.66%L1 �1:631 + 1:425` 3.27%5 Lower Bounds in Terms of the Intrinsi DiÆulty5.1 A Lower Bound for Pivoting AlgorithmsOur main result in this setion is a lower bound on the range searh ost witha given searh radius r using a pivoting sheme that hooses k global pivots atrandom. As we show next, the omplexity of the searh is related to r and theintrinsi diÆulty �.We are onsidering independent identially distributed (i.i.d.) random vari-ables for the distribution of distanes between points. Although not aurate,this simpli�ation is optimisti and hene an be used to lower bound the per-formane of the indexing algorithms. We ome bak to this shortly.



Let (q; r)d be a range query over a metri spae indexed by means of krandom pivots, and let u be an element of U. The probability that u annot beexluded from diret veri�ation after onsidering the k pivots is exatlyPr(jd(q; p1)� d(u; p1)j � r; : : : ; jd(q; pk)� d(u; pk)j � r) (1)Sine all the pivots are assumed to be random and their distane distributionsi.i.d. random variables, this expression is the produt of probabilitiesPr(jd(q; p1)� d(u; p1)j � r) � : : : � Pr(jd(q; pk)� d(u; pk)j � r) (2)whih for the same reason an be simpli�ed toPr(not disarding u) = Pr(jd(q; p) � d(u; p)j � r)k (3)for a random pivot p.If X and Y are two i.i.d. random variables with mean � and variane �2, thenthe mean of X � Y is 0 and its variane is 2�2. Using Chebyshev's inequality1we have that Pr(jX � Y j > ") < 2�2="2. Therefore,Pr(jd(q; p) � d(u; p)j � r) � 1� 2�2r2where �2 is preisely the variane of the distane distribution in our metri spae.The argument that follows is valid for 2�2=r2 < 1, or r > p2� (large enoughradii), otherwise the lower bound is zero. Then, we havePr(not disarding u) � �1� 2�2r2 �kWe have now that the total searh ost is the number of internal distaneevaluations (k) plus the external evaluations (those to hek the remaining an-didates), whose number is on average n� Pr(not disarding u). ThereforeCost � k + n �1� 2�2r2 �kis a lower bound to the average searh ost by using pivots. Optimizing we obtainthat the best k is k� = lnn + ln ln(1=t)ln(1=t)where t = 1 � 2�2=r2. Using this optimal k�, we obtain an absolute (i.e. in-dependent on k) lower bound for the average ost of any random pivot-basedalgorithm:Cost � lnn + ln ln(1=t) + 1ln(1=t) � lnnln(1=t) � r22�2 lnn1 For an arbitrary distribution Z with mean �z and variane �2z , Pr(jZ � �zj > ") <�2z="2.



whih shows that the ost depends strongly on �=r. As r inreases t tends to 1and reahing the optimum requires more and more pivots, yet it gets more andmore ostly.Another way to represent this result is to assume that we are interested inretrieving at most a �xed fration f of the elements, in whih ase r an bewritten as r = � � �=pf by Chebyshev's inequality. In this ase the lowerbound beomesr22�2 lnn = (�� �=pf)22�2 lnn = �p�� 1p2f�2 lnnwhih is valid for f � 1=(2�). We have just provedTheorem 1. Any pivot based algorithm using random pivots has a lower bound(p�� 1=p2f)2 lnn in the average number of distane evaluations performed fora random range query retrieving at most a fration f of the set, where � is theintrinsi searh diÆulty of the metri spae.This result mathes that of [19, 20℄ on FHQTs, about obtaining �(logn)searh time using �(logn) pivots, but here we are more interested in the \on-stant" term, whih depends on the metri spae itself and not on the databasesize n.The theorem shows learly that the parameters governing the performaneof range searhing algorithms are � and f . As � grows and f stays �xed, thistends to � lnn.We have onsidered i.i.d. random variables for eah pivot and the query. Thisis a reasonable approximation, as we do not expet muh di�erene betweenthe \view points" from the general distribution of distanes to the individualdistributions, a subjet disussed in depth in [1℄. The expression given in Eq. (3)annot be obtained without this simpli�ation.A stronger assumption omes from onsidering all the variables as indepen-dent. This is an optimisti onsideration equivalent to assuming that in orderto disard eah element u of the set we take k new pivots at random. The realalgorithm �xes k random pivots and uses them to try to disard all the elementsu of the set. The latter alternative an su�er from dependenies from a point uto another, whih annot happen in the former ase (for example, if u is lose toa pivot p and u0 is lose to u then the distane from u0 to p arries less informa-tion). Sine the assumption is optimisti, using it to redue the joint distributionin Eq. (1) to the expression given in Eq. (2) keeps the lower bound valid.5.2 The Target SpaeIt is interesting to study whih is the behavior of the mapped spae after seletingk pivots. Let us start with the mean of the distane Dk in the target spae. Asalready seen, Dk(u; v) is the maximum of k random variables jd(u; pi)�d(v; pi)j,and thereforePr(Dk(u; v) � ") = Pr(jd(u; p) � d(v; p)j � ")k � �1� 2�2"2 �k



where the last inequality omes from applying Chebyshev as in the previoussetion. Calling Z the random variable assoiated to Dk, we have that its umu-lative probability funtion isFz(x) = Pr(Dk(u; v) � x) � �1� 2�2x2 �kif x � p2�. Fz(x) an be optimistially assumed to be zero otherwise (\opti-mistially" means that we will obtain an upper bound on E(Z)). To obtain thedensity funtion fz(x) we di�erentiate the umulative distribution and getfz(x) = k(1� 2�2=x2)k�14�2=x3if x � p2� and zero otherwise. Now to obtain the mean we omputeE(Z) � Z 1p2� xfz(x) dx = 4k�2 Z 1p2�(1� 2�2=x2)k�1=x2 dxNow doing the hange y = 2�2=x2 (and hene dy = �4�2=x3 dx) we haveE(Z) � p2k� Z 10 (1� y)k�1y�1=2 dy = p2k��k + 1212 �This is the exat solution (reall that �k+1=21=2 � = (k + 1=2)(k � 1=2)(k �3=2) � � � (5=2)(3=2)). For large k this onverges toE(Z) � �p2�kThis means that the mean value of Dk is independent on the mean � of theoriginal metri spae. Rather, it is proportional to the standard deviation (thisis reasonable beause it is a maximum of di�erenes between distanes). On theother hand, this mean grows with the square root of the number of pivots. Reallthat, sine this omes from using Chebyshev's inequality, the result is just anupper bound on the mean of Dk.It is lear that Dk, as a lower bound for d, should be as lose to d as possiblein order to �lter out most of the irrelevant elements. Therefore, we ould likethat both means be equal. Solving � = �p2�k yields k = �=�, whih means thatwe must have at least a number of pivots proportional to the intrinsi diÆultyof the spae. This is an optimisti bound and in pratie k has to be muh larger(as shown in Theorem 1, the optimum is indeed larger).We have tried to obtain an upper bound on the variane of Dk, but theintegral R x2fz(x) dx does not onverge. This does not mean that Dk does nothave variane, beause ours is just an upper bound.This also shows that we ould searh in the mapped spae with radius r0 =rp2k��k+1=21=2 �=� = rk�k+1=21=2 �=p� � p�kr=p� and still get most of the results.This opens the door to probabilisti algorithms whih, with the penalty of asmall error probability, are muh faster than the exat versions [21℄.



5.3 A Lower Bound for Clustering AlgorithmsWith a similar proedure we an prove a lower bound for lustering algorithms.For spae limitations we do not give a proof of the theorem. The tehnial reportontains all the details [22℄.Theorem 2. Any lustering based algorithm using random enters has a lowerbound CI(2(p� � 1=p2f)2) in the average number of distane evaluations per-formed for a random range query retrieving a fration of at most f of thedatabase, where � is the intrinsi dimension of the spae and CI() is the internalomplexity to �nd the relevant lasses, satisfying 
(logm) = CI(m) = O(m).This result is weaker than Theorem 1 beause of our inability to give a goodlower bound on CI , so we annot ensure more than a logarithmi inrease withrespet to �. However, even assuming CI(m) = �(m) (i.e. exhaustive searhof the lasses), when the theorem beomes very similar to Theorem 1, there isan important reason that explains why the lustering based algorithms an inpratie be better than pivot based ones. We an in this ase ahieve the optimalnumber of entersm�, whih is impossible in pratie for pivot-based algorithms.The reason is that it is muh more eonomial to represent the Voronoi partitionusing m enters than the pivot partition using k pivots.6 Conlusions and Future WorkWe have proposed a new quantitative measure of the intrinsi searh diÆultyof a general metri spae. It is simple and, unlike previous attempts, it permitsderiving lower bounds on the searh ost of large lasses of proximity searhalgorithms.Future work involves tuning this measure so as to inrease its preditivepower (urrently it serves only as a lower bound), therefore giving a pratialand extremely useful tool to predit the diÆulty of searhing on an unknownmetri spae.Referenes1. Ciaia, P., Patella, M., Zezula, P.: A ost model for similarity queries in metrispaes. In: Pro. 17th ACM SIGACT-SIGMOD-SIGART Symposium on Priniplesof Database Systems (PODS'98). (1998)2. Chakrabarti, A., Chazelle, B., Gum, B., Lyov, A.: A lower bound on the omplexityof approximate nearest-neighbor searhing on the hamming ube. In: 31st AnnualACM Symp. Theory of Computing. (1999) 305{3113. Borodin, A., Ostrovsky, R., Rabani, Y.: Lower bounds for high dimensional nearestneighbor searh and related problems. In: 31st Annual ACM Symp. Theory ofComputing. (1999)4. Indyk, P., Motwani, R.: Approximate nearest neighbors: towards removing theurse of dimensionality. In: 30th Annual ACM Symp. Theory of Computing. (1998)604{613
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