Compressing Semistructured Text Databases*

Joaquin Adiego', Gonzalo Navarro?, and Pablo de la Fuente!

'Departamento de Informatica, Universidad de Valladolid, Valladolid, Espaiia.
{jadiego, pfuente}@infor.uva.es
2Departamento de Ciencias de la Computacion, Universidad de Chile, Santiago,
Chile. gnavarro@dcc.uchile.cl

Abstract We describe a compression model for semistructured docu-
ments, called Structural Conterts Model, which takes advantage of the
context information usually implicit in the structure of the text. The
idea is to use a separate semiadaptive model to compress the text that
lies inside each different structure type (e.g., different XML tag). The
intuition behind the idea is that the distribution of all the texts that
belong to a given structure type should be similar, and different from
that of other structure types. We test our idea using a word-based Huff-
man coding, which is the standard for compressing large natural language
textual databases, and show that our compression method obtains signif-
icant improvements in compression ratios. We also analyze the possibility
that storing separate models may not pay off if the distribution of dif-
ferent structure types is not different enough, and present a heuristic to
merge models with the aim of minimizing the total size of the compressed
database. This technique gives an additional improvement over the plain
technique. The comparison against existing prototypes shows that our
method is a competitive choice for compressed text databases.
Keywords: Text Compression, Compression Model, Semistructured Doc-
uments, Text Databases.

1 Introduction

The process of data compression can be split into two parts: an encoder that
generates the compressed bitstream and a modeler that feeds information to it
[TCB90]. These two separate tasks are called coding and modeling, respectively.
Modeling assigns probabilities to symbols depending on the source data, while
coding translates these probabilities into a sequence of bits. In order to work
properly, the decoder must have access to the same model as the encoder.
Compression of large document collections not only reduces the amount of
disk space occupied by the data, but it also decreases the overall query process-
ing time in text retrieval systems. Improvements in processing times are achieved
thanks to the reduced disk transfer times necessary to access the text in com-
pressed form. Also, recent research on “direct” compressed text searching, i.e.,

* This work was partially supported by CYTED VII.19 RIBIDI project (all authors)
and Fondecyt Project 1-020831 (second author).

searching a compressed text without decompressing it, has led to a win-win sit-
uation where the compressed text takes less space and is searched faster than
the plain text [WMB99,ZMNBY00].

Compressed text databases pose some requirements that outrule some com-
pression methods. The most definitive is the need for random access to the text
without the possibility of decompressing it from the beginning. This outrules
most adaptive compression methods such as Ziv-Lempel compression and arith-
metic coding. On the other hand, semiadaptive models —which uses a different
model for each text encoded, building it before performing the compression and
storing it in the compressed file— such as Huffman [Huf52] yield poor compres-
sion. In the case of compressing natural language texts, it has been shown that an
excellent choice is to consider the words, not the characters, as the source sym-
bols [Mof89]. Finally, the fact that the alphabet and the vocabulary of the text
collections coincide permits efficient and highly sophisticated searching, both in
the form of sequential searching and in the form of compressed inverted indexes
over the text [WMB99,ZMNBY00,NMN*00,MNZB00].

Although the area of natural language compressed text databases has gone
a long way since the end of the eighties, it is interesting that little has been
done about considering the structure of the text in this picture. Thanks to the
widespread acceptance of SGML, HTML and XML as the standards for stor-
ing, exchanging and presenting documents, semistructured text databases are
becoming the standard.

Our goal in this paper is to explore the possibility of considering the text
structure in the context of a compressed text database. We aim at taking ad-
vantage of the structure, while still retaining all the desirable features of a word-
based Huffman compression over a semiadaptive model. The idea is then to use
separate semiadaptive models to compress the text that lies inside different tags.

While the possible gain due to this idea is clear, the price is that we have
to store several models instead of just one. This may or may not pay off. Hence
we also design a technique to merge the models if we can predict that this is
convenient in terms of compressed file length. Although the problem of finding
the optimal merging looks as a hard combinatorial problem, we design a heuristic
to automatically obtain a reasonably good merging of an initially separate set
of models, one per tag.

This model, which we call Structural Contexts Model, is general and does not
depend on the coder. We plug it to a word-based Huffman coder to test it. Our
experimental results show significant gains over the methods that are insensitive
to the structure and over the current methods that consider the structure. At
the same time, we retain all the features of the original model that makes it
suitable for compressed text databases.

2 Related Work

With regard to compressing natural language texts in order to permit efficient
retrieval from the collection, the most successful techniques are based on models

where the text words are taken as the source symbols [Mof89], as opposed to
the traditional models where the characters are the source symbols. On the one
hand, words reflect much better than characters the true entropy of the text
[TCB90]. For example, a Huffman coder when words are the symbols obtains
25% versus 60% when characters are the symbols [ZMNBY00]. Another example
is the WLZW algorithm (Ziv-Lempel on words) [BSTWS&6].

On the other hand, most information retrieval systems use words as the
main information atoms, so a word-based compression easies the integration
with an information retrieval system. Some examples of successful integration
are [WMB99,NMN*00|. The text in natural language is not only made up of
words. There are also punctuation, separators, and other special characters. The
sequence of characters between every pair of consecutive words will be called a
separator. In [BSTWS86] they propose to create two alphabets of disjoint symbols:
one for coding words and another for separators. Encoders that use this model
consider texts as a strict alternation of two independent data sources and encode
each one independently. Once we know that the text starts with a word or a
separator, we know that after a word has been coded we can expect a separator
and vice versa. This idea is known as the separate alphabets model.

A compression method that considers the document structure is XMill [LS00],
developed in AT&T Labs. XMill is an XML-specific compressor designed to ex-
change and store XML documents, and its compression approach is not intended
for directly supporting querying or updating of the compressed document. An-
other XML compressor is XGrind [TH02], which directly supports queries over
the compressed files. Other approaches to compress XML data exist, based on
the use of a PPM-like coder, where the context is given by the path from the
root to the tree node that contains the current text. One example is XMLPPM
[Che01], which is an adaptive compressor pased on PPM, where the context is
given by the structure.

3 Structural Contexts Model

Let us, for this paper, to focus on a semiadaptive Huffman coder, as it has given
the best results on natural language texts. Our ideas, however, can be adapted
to other encoders. Let us call dictionary the set of source symbols together with
their assigned codes.

An encoder based on the separate alphabets model (see Section 2) must use
two source symbol dictionaries: one for all the separators and the other for all
the words in the texts. This idea is still suitable when we handle semistructured
documents —like SGML or XML documents—, but in fact we can extend the
mechanism to do better.

In most cases, natural language texts are structured in a semantically mean-
ingful manner. This means that we can expect that, at least for some tags, the
distribution of the text that appears inside a given tag differs from that of an-
other tag. In cases where the words under one tag have little intersection with
words under another tag, or their distribution is very different, the use of sep-

arate alphabets to code the different tags is likely to improve the compression
ratio. On the other hand, there is a cost in the case of semiadaptive models,
as we have to store several dictionaries instead of just one. In this section we
assume that each tag should use a separate dictionary, and will address in the
next section the way to group tags under a single dictionary.

3.1 Compressing the Text

We compress the text with a word-based Huffman [Huf52,BSTWS86]. The text
is seen as an alternating sequence of words and separators, where a word is
a maximal sequence of alphanumeric characters and a separator is a maximal
sequence of non-alphanumeric characters.

Besides, we will take into account a special case of words: tags. A tag is a
code embedded in the text which represents the structure, format or style of
the data. A tag is recognized from surrounding text by the use of delimiter
characters. A common delimiter character for an XML or SGML tag are the
symbols <’ and ’>’. Usually two types of tags exist: start-tags, which are the
first part of a container element, ’<...>’; and end-tags, which are the markup
that ends a container element, '</...>".

Tags will be wholly considered (that is, including their delimiter characters)
as words, and will be used to determine when to switch dictionaries at compres-
sion and decompression time.

3.2 Model Description

The structural contexts model (as the separate alphabets model) uses one dic-
tionary to store all the separators in the texts, independently of their location.
Also, it assumes that words and separators alternate, otherwise, it must insert
either an empty word or an empty separator. There must be at least one word
dictionary, called the default dictionary. The default dictionary is the one in use
at the beginning of the encoding process. If only the default dictionary exists for
words then the model is equivalent to the separate alphabets model.

We can have a different dictionary for each tag, or we can have separate
dictionaries for some tags and use the default for the others, or in general we
can have any grouping of tags under dictionaries. As explained, we will assume
for now that each tag has its own dictionary and that the default is used for the
text that is not under any tag.

The compression algorithm written below makes two passes over the text. In
the first pass, the text is modeled and separate dictionaries are built for each tag
and for the default and separators dictionary. These are based on the statistics of
words under each tag, under no tag, and separators, respectively. In the second
pass, the texts are compressed according to the model obtained.

At the begining of the modeling process, words are stored in the default
dictionary. When a start-structure tag appears we push the current dictionary
in a stack and switch to the appropriate dictionary. When an end-structure tag

is found we must return to the previous dictionary stored in the stack. Both,
start-structure and end-structure tags, are stored and coded using the current
dictionary and then we switch dictionaries. Likewise, the encoding and decoding
processes use the same dictionary switching technique.

3.3 Entropy Estimation

The entropy of a source is a number that only depends on its model, and is
usually measured in bits/symbol. It is also seen as a function of the probability
distribution of the source (under the model), and refers to the average amount
of information of a source symbol. The entropy gives a lower bound on the size
of the compressed file if the given model is used. Successful compressors get very
close to the entropy.

The fundamental theorem of Shannon establishes that the entropy of a prob-
ability distribution {p;} is), p;log,(1/p;) bits. That is, the optimum way to
code symbol i is to use log,(1/p;) bits. In a zero-order model, the probability
of a symbol is defined independently of surrounding symbols. Usually one does
not know the real symbol probabilities, but rather estimate them using the raw
frequencies seen in the text.

Definition 1 (Zero-order entropy estimation with multiple dictionaries)
Let N be the total number of dictionaries. The zero-order entropy for all dic-
tionaries, H, is computed as the weighted average of zero-order entropies con-
tributed by each dictionary (H?,d € 1...N):

_ Zfivz1 nt H?

n

H (1)
where n is the total number of text terms in dictionary d and n is the total
number of terms that appear in the text.

4 Merging Dictionaries

Up to now we have assumed that each different tag uses its own dictionary.
However, this may not be optimal because of the overhead to store the dictio-
naries in the compressed file. In particular, if two dictionaries happen to share
many terms and to have similar probability distributions, then merging both
tags under a single dictionary is likely to improve the compression ratio.

In this section we develop a general method to obtain a good grouping of tags
under dictionaries. For efficiency reasons we will use the entropy as the estimation
of the size of the text compressed using a dictionary, instead of actually running
the Huffman algorithm and computing the exact size.

If V¢ is the size in bits of the vocabulary that constitutes dictionary d and
H? is its estimated zero-order entropy, then the estimated size contribution of
dictionary d is given by 7% = V?4+n?H?. Considering this equation, we determine
to merge dictionaries ¢ and j when the sum of their contributions is larger than

the contribution of their union. In other words, when 7477 > T To compute
T we have to compute the union of the vocabularies and the entropy of that
union. This can be done in time linear with the vocabulary sizes.

Our optimization algorithm works as follows. We start with one separate
dictionary per tag, plus the default dictionary (the separators dictionary is not
considered in this process). Then, we progressively merge pairs of dictionaries
until no further merging promises to be advantageous. Obtaining the optimal
division into groups looks as a hard combinatorial problem, but we use a heuristic
which produces good results and is reasonably fast.

We start by computing 7 for every dictionary i, as well as 7“7 for all pairs
i, j of dictionaries. With that we compute the savings A7 = T¢ 477 — T for
all pairs. Then, we merge the pair of dictionaries ¢ and j that maximizes A7,
if this is positive. Then, we erase ¢ and j and introduce ¢ U j in the set. This
process is repeated until all the A7 values are negative.

5 Evaluation of the Model

We have developed a prototype implementing the Structural Contexts Model
with a word-oriented Huffman coding, and used it to empirically analyze our
model and evaluate its performance. Tests were carried out on Linux Red Hat
7.2 operating system, running on a computer with a Pentium 4 processor at 1.4
GHz and 128 Mbytes of RAM. For the experiments we selected different size
collections of WSJ, ZIFF and AP, from TREC-3 [Har95].

The average speed to compress all collections is around 128 Kbytes/sec. In
this value we include the time needed to model, merge dictionaries and compress.
The time for merging dictionaries is included in this figure, and it ranges from
4.37 seconds for 1 Mb to 40.27 seconds for 100 Mb. The impact of merging times
is large for the smallest collection (about 50% of the total time), but it becomes
much less significant for the largest collection (about 5%). The reason is that it
is O(vs®) to O(vs®) time, where v is the vocabulary size and s the number of
different tags. Although it depends heavily on s, this number is usually small
and does not grow with the collection size but depends on the DTD/schema.
The vocabulary size v, on the other hand, grows sublinearly with the collection
size [HeaT78|, typically close to O(y/n).

In Figure 1 we can see a comparison for WSJ, of the compression performance
using the plain separate alphabets model (SAM) and the structural context
model (SCM) with and without merging dictionaries. For short texts, the vo-
cabulary size is significant with respect to the text size, so SCM without merging
pays a high price for the separate dictionaries and does not improve over SAM.
As the text collection grows and the impact of the dictionaries gets reduced and
we obtain nearly 11% additional compression. The SCM with merging obtains
similar results for large collections (12.5% additional compression), but its per-
formance is much better on small texts, where it starts obtaining 10.5% even for
1 Mbyte of text.

r T

Structural Contexts Model with Merge ——

Structural Contexts Model without Merge ~--x---
Separate Alphabets Model -

Size|SCM+merge| SCM | SAM

1221659 45.82% |51.34%|51.20%
5516592| 35.42% |38.57%|39.09%
10510481 32.73% |35.06%]|36.03%
21235547 30.59% (32.23%|33.66%
42113697 29.15% |30.27%|32.10%
62963963| 28.58% (29.45%|31.49%
104942941 27.93% |28.54%]30.90%
210009482 27.24% |27.64%|31.03%

Compression rate (%)

50 100 150 200
Collection size (Mbytes)

Figure 1. Compression ratios using different models, for WSJ.

Aprox.|TREC-WSJ|TREC-ZIFF| TREC-AP
Size(Mb)|Initial|Final|Initial| Final |Initial|Final

1] 11 8 10 4 9 5

5 11 8 10 4 9 5

10| 11 8 10 4 9 7

201 11 9 10 6 9 7

40(11 9 10 6 9 7

60| 11 9 10 6 9 7

100 11 9 10 7 9 7

Table 1. Number of dictionaries used.

Table 1 shows the number of dictionaries merged. Column “Initial” tells how
many dictionaries are in the beginning: The default and separators dictionary
plus one per tag, except for <DOC>, which marks the start of a document and uses
the default dictionary. Column “Final” tells how many different dictionaries are
left after the merge. For example, for small WSJ subsets, the tags <DOCNO> and
<DOCID>, both of which contain numbers and internal references, were merged.
The other group that was merged was formed by the tags <HL>, <LP> and <TEXT>,
all of which contain the text of the news (headlines, summary for teletypes, and
body). On the larger WSJ subsets, only the last group of three tags was merged.
This shows that our intuition that similar-content tags would be merged is cor-
rect. The larger the collection, the less the impact of storing more vocabularies,
and hence the fewer merges will occur. The method to predict the size of the
merged dictionaries from the vocabulary distributions was quite accurate: our
prediction was usually 98%—-99% of the final value.

6 Conclusions and Future Work

We have proposed a new model for compressing semistructured documents based
on the idea that texts under the same tags should have similar distributions. This

is enriched with a heuristic that determines a good grouping of tags so as to code
each group with a separate model.

We have shown that the idea actually improves compression ratios by more
than 10% with respect to the basic technique. The prototype is a basic im-
plementation and we are working on several obvious improvements, which will
make it even more competitive, especially for small collections. One is the use of
canonical Huffman codes, which reduce the size of the dictionary representation.
Another is a character-based compression of the vocabularies.

Other improvements would affect the results for every collection size. We
can tune our method to predict the outcome of merging dictionaries: Since we
know that usually our prediction is 1%—2% off, we could add a mean value to our
prediction. With respect to the study of the method itself, we have to investigate
more in depth the relationship between the type and density of the structuring
and the improvements obtained with our method, since its success is based on a
semantic assumption and it would be interesting to see how this works on other
text collections.

References

[BSTWS86] J. Bentley, D. Sleator, R. Tarjan, and V. Wei. A locally adaptive data
compression scheme. Communications of the ACM, 29:320-330, 1986.

[Che01] J. Cheney. Compressing XML with multiplexed hierarchical PPM models.
In Proc. Data Compression Conference (DCC 2001), pages 163—, 2001.

[Har95] D. Harman. Overview of the Third Text REtrieval Conference. In Proc.
Third Text REtrieval Conference (TREC-8), pages 1-19, 1995. NIST Spe-
cial Publication 500-207.

[Hea78| H. S. Heaps. Information Retrieval - Computational and Theoretical As-
pects. Academic Press, 1978.

[Huf52] D.A. Huffman. A method for the construction of minimum-redundancy
codes. Proc. Inst. Radio Engineers, 40(9):1098-1101, 1952.

[LS00] H. Liefke and D. Suciu. XMill: an efficient compressor for XML data. In

Proc. ACM SIGMOD 2000, pages 153-164, 2000.

[MNZB00] E. Silva de Moura, G. Navarro, N. Ziviani, and R. Baeza-Yates. Fast
and flexible word searching on compressed text. ACM Transactions on
Information Systems, 18(2):113-139, 2000.

[Mof89] A. Moffat. Word-based text compression. Software - Practice and Ezpe-
rience, 19(2):185-198, 1989.

[NMN*00] G. Navarro, E. Silva de Moura, M. Neubert, N. Ziviani, and R. Baeza-
Yates. Adding compression to block addressing inverted indexes. Infor-
mation Retrieval, 3(1):49-77, 2000.

[TCB90] Ian H. Witten Timothy C. Bell, John G. Cleary. Text Compression. Pren-
tice Hall, Englewood Cliffs, N.J., 1990.

[THO2] P. Tolani and J.R. Haritsa. XGRIND: A query-friendly XML compressor.
In ICDE, 2002. citeseer.nj.nec.com/503319.html.

[WMB99] IH. Witten, A. Moffat, and T.C. Bell. Managing Gigabytes. Morgan
Kaufmann Publishers, Inc., second edition, 1999.

[ZMNBY00] N. Ziviani, E. Moura, G. Navarro, and R. Baeza-Yates. Compression: A
key for next-generation text retrieval systems. IEEE Computer, 33(11):37—
44, November 2000.

