HOLZ: High-Order Entropy Encoding
of Lempel-Ziv Factor Distances

Dominik Képpl*, Gonzalo Navarro', and Nicola Prezzat

* M&D Data Center "Dept. of Computer Science IDAIS
TMDU University of Chile Ca’ Foscari University
Tokyo, Japan Santiago, Chile Venice, Italy

koeppl.dsc@tmd.ac.jp |gnavarro@dcc.uchile.cl mnicola.prezza®@unive.it

Abstract

We propose a new representation of the offsets of the Lempel-Ziv (LZ) factorization based
on the co-lexicographic order of the text’s prefixes. The selected offsets tend to approach
the k-th order empirical entropy. Our evaluations show that this choice is superior to the
rightmost and bit-optimal LZ parsings on datasets with small high-order entropy.

1 Introduction

The Lempel-Ziv (LZ) factorization [1] is one of the most popular methods for lossless
data compression. It is a factorization, that is, splitting the text 1" into factors, each
being the longest string that appears before in T, and replacing each factor by a
reference to its preceding occurrence (called its source).

Most popular compression schemes such as zip or gzip use a variant called LZ77
[2], which finds sources only within a sliding window w. Though this restriction
simplifies compression and encoding, it misses repetitions with gaps larger than |w],
and thus compressing k copies of a sufficiently long text 7" results in a compressed file
being about k times larger than the compressed file of T'. Such long-spaced repetitions
are common in highly-repetitive datasets like genomic collections of sequences from
the same taxonomy group, or from documents managed in a revision control system.
Highly-repetitive datasets are among the fastest-growing ones in recent decades, and
LZ compression is one of the most effective tools to compress them [3]. This is one
of the main reasons why the original LZ factorization (i.e., without a window) moved
into the spotlight of recent research.

Although LZ catches even distant repetitions, the actual encoding of the factor-
ization is an issue. Each factor is usually represented by its length and the distance
to its source (called its offset). While the lengths usually exhibit a geometric dis-
tribution favorable for universal encoders, the offsets tend to approach a uniform
distribution and their codes are long. Since the sources are not uniquely defined,
different tie breaks have been exploited in order to improve compression, notably the
rightmost parsing (i.e., choosing the closest source) and the bit-optimal parsing [4]
(i.e., optimizing the size of the encoded file instead of the number of factors).

All previous LZ encodings have in common that they encode the text distance to
the source. In this paper we propose a variant that encodes the distances between

koeppl.dsc@tmd.ac.jp
gnavarro@dcc.uchile.cl
nicola.prezza@unive.it

(1,1) (5,4)

4)
ababbababbaaababhb
123456 7 8 9 10 11 12 13 14 15 16 17

N ¢\)

7.4)

N

|
oy
o | «

LZ-text(T):
(1,1)(3,1)(3,2)(3,3)(5,4) (1,2)(7,4)

Figure 1: LZ factorization of T' = ababbababbaaababb and its LZ-text(T") coding into pairs.

the co-lexicographically sorted prefixes of the processed text, and argue that this
choice for the offsets approaches the k-th order empirical entropy of the LZ factors.
Our experiments show that this encoding is competitive even with the bit-optimal
parsing [4], performing particularly well on texts whose high-order entropy is low.

2 LZ Factorization

Let T[l..n] € X" be a text of length n whose characters are drawn from an integer
alphabet ¥ = [0..0 — 1] with ¢ = n®1. The LZ factorization is a partitioning of
the text T into factors Fi---F, such that every factor F, is equal to the longest
substring that starts before F, in the text (its source). Here, we imagine the text
being prefixed by the characters of ¥ in non-positive positions, i.e. T'[—c|] = ¢ for each
¢ € X. Further, we compute the factorization on T[1..n] while taking the prefixes of
all suffixes starting in 7'[—o..p — 1] under consideration for previous occurrences of
a factor starting at T'[p]. In this setting, we always find a factor of length at least
one. Hence, each factor F, can be encoded as a pair (off!, £,), where ¢, = |F,| is the
length of F,, and offl is the textual offset of F,, that is, the distance of the starting
positions of F, and its source. Thus, the LZ factorization can be represented as a
sequence of these integer pairs of offsets and lengths, which we denote by LZ-text(T").
This representation is not unique with respect to the choice of the offsets in case
of a factor having multiple occurrences that start before it. The so-called rightmost
parsing selects always the smallest possible offset as a tie break.

Example. Let T' = ababbababbaaababb. Then the LZ factorization and its repre-
sentation as pairs are given in Fig. [I, Remember that we imagine the text as being
prefixed by all characters of ¥, being ba in this case; we only factorize T'[1..|T']], that
is, the non-underlined characters of baababbababbaaababb. [l

With the rightmost parsing it holds that, for a string drawn from a stationary
ergodic source, the minimum number of bits required to write the number ofFI,
which is [log,(off] + 1)], approaches the zero-order entropy of F, in T (see [5] or
[6l, Sec. 13.5.1]), with a probability approaching 1 as x grows. Intuitively, this hap-
pens because, being Pr(F, = S) the probability that the next LZ factor F, equals
the substring S, on expectation we need to visit off] = 1/Pr(F, = S) positions back

(1,1) (-1,1)

]
T=Dbal@bbalbb T=Dbal@bbabb
10123456 1012345 6

LZ-text(T): HOLZ(T):
(1,1)(3,1)(4,2)(3,2) (-1,1)(1,1)(4,2)(2,2)

Figure 2: LZ factorization of T = abbabb with its LZ-text (left) and HOLZ encoding (right). Since
the encodings only differ in the values of their offsets, they are equal in length.

(the log of which is F,’s entropy) before encountering an occurrence of S. The fact
that the factors are long (O (log, n) characters on average [I, Thm. 2]) can be used
to show that the size of LZ-text(T") approaches the k-th order entropy of 7', for small
enough k = o(log, n). In that light, we aim to reach the high-order entropy of the
factors F, by means of changing the encoding of the sources.

3 The HOLZ Encoding

We now give a different representation of the sources of the LZ factors, and argue
that this representation achieves high-order entropy. Broadly speaking, we compute
the offsets in co-lexicographic ordelﬂ of the text’s prefixes, rather than in text order.
We denote this new offset as off,, to distinguish it from the textual offset ofF; used
in LZ-text(7).

Definition 1. Let T; := T[—o + 1..i], for i € [—o0..n], be the prefizes of T, including
the empty preficr T_, = €. Assume we have computed the factorization of T[1..p — 1]
for a text position p € [1..n] and that a new factor F, of length ¢, starts at Tp).

Let T;, < Tj, < -+ < Tj,,, be the prefizes T_,,...,T, 1 sorted in the co-
lexicographic order <. Let r,_1 be the position of T,,_1 in that order, that is, j,,_, =
p—1, and let t,_1 be the position closest to r,_1 (i.e., minimizing |r,_1 — t,_1|) sat-
isfying Ty, +1..Js,_, + L) = . Then we define off, :=r,_; —t,_1; note off, can
be negative. We call HOLZ(T) the resulting encoding of pairs (off,, ¢,), where HO
stands for high-order entropy.

Example. We present a complete step-by-step factorization of the small sample
string 7 = abbabb. The HOLZ(T') factorization is given in Fig. 2| and Table
depicts the four factorization steps; remember that we do not factorize the added
prefix T'[—o + 1..0]. A detailed walk-through follows:

1. For the first factor F} = a starting at p = 1, the text prefix starting with F}
and being the closest to the ro-th co-lexicographically smallest prefix, has rank
to = 3, thus Fi’s length and offset are /; = 1 and off; =rqg —tg =2 -3 = —1,
respectively. We then represent F; = T'[1] = a by the pair (—1,1).

IThat is, the lexicographic order of the reversed strings.

Table 1: Step-by-step computation of HOLZ(T) with T' = abbabb = F; F5 F3F,. Underlined char-
acters represent the virtual text prefix containing all alphabet’s characters.

sorted | text to
sorted | text to prefixes | their right
prefixes | their right T-1.-2] = € baabbabb 1 =1t
T[-1..-2] = € baabbabb 1 T[—1..1] = baa bbabb 2=r
T[-1..0] = ba abbabb 2=rp T[-1..0] = ba abbabb 3
T[-1..-1 = b aabbabb 3=to T[-1..-1 = b aabbabb 4
Computing Fy = T'[1]. Computing F» = T[2].
sorted | text to
prefixes | their right
sorted | text to T-1.-2] = € baabbabb 1
prefixes | their right T[—-1..1] = baa bbabb 2=ty
—-1..-2] = € baabbabb 1 =9 T[-1..0] = ba abbabb 3
[—1..1] = baa bbabb 2 T[—1..4] = baabba bb 4=ry
[-1..0] = ba abbabb 3 T-1.-1 = b aabbabb 5
[-1..—-1] = b aabbabb 4 T[-1..2] = baab babb 6
[—1..2] = baab babb 5=rz T[-1..3] = baabb abb 7
Computing F3 = T'[3..4]. Computing Fy = T'[5..6).

2. Next, we update the table of the sorted prefixes, obtaining the order shown on
the top-right table. The next factor, starting at position p = 2, is F5 = b, so
0y =1 and offy = r; —t; =2 — 1 = 1. The second pair is thus (1,1).

3. We update the table of the sorted prefixes, obtaining the order shown on the
bottom-left table. This time, p = 3, F3 = ba, {3 = 2, and off; = ry — t5 =
5 — 1 = 4. The third pair is thus (4, 2).

4. We update the table of the sorted prefixes, obtaining the order shown on the
bottom-right table; the final pair is (2, 2).

Thus, we obtained HOLZ(T) = (-1,1) (1,1) (4,2) (2,2). O
Towards High-Order Entropy

Only for the purpose of formalizing this idea, let us define a variant of HOLZ,
HOLZ"(T), which precedes T with a (virtual) de Bruijn sequence of order k -+ 1,
so that every string of length k + 1 appears in T[—c*"! — k + 2..0] (i.e., classi-
cal HOLZ(T) is HOLZ"(T)). We modify the LZ factorization so that [}, starting
at T[p| and preceded by the string S, of length k, will be the longest prefix of
T|[p..] such that S, - F, appears in T starting before position p — k. The result-
ing factorization T' = F}F5, ... has more factors than the LZ factorization, but in
exchange, the offsets of the factors F, are encoded within their k-th order (em-
pirical) entropy. Let #S be the frequency of substring S in 7. Assuming that
the occurrences of S, F, distribute uniformly among the occurrences of S, in every
prefix of T, the distance |off,| between two consecutive sorted prefixes of T suf-
fixed by S, and followed by F, is in expectation E(|off,|) < #S,/#S.F,. Then,
E(log, |off.|) < log, E(|off,|) < logy(#S./#S.F,) and the total expected size of the
encoded offsets is E () _log, [off;]) = > E(log,|off;|) < > log, ##gf;z

In the empirical-entropy sense (i.e., interpreting probabilities as relative frequen-
cies in T), the definition of high-order entropy we can reach is restricted to the

factors we produce. Interpreting conditional probability as following in the text, this
is H, =), log, m = >, log, Pf{éf}l) = >, log, %, that is, the expected
length of our encoding is bounded by the k-th order empirical entropy of the factors.
This is also the k-th order empirical entropy of the text if we assume that the factors
start at random text positions.

Recall that, the longer k, the shorter the phrases, so there is an optimum for a
likely small value of k. While this optimum may not be reached by HOLZ (which
always chooses the longest phrase), it is reached by the bit-optimal variant of HOLZ
that we describe in the next section, simultaneously for every k.

Our experimental results validate our synthetic analysis, in the sense that HOLZ(T')

performs better than LZ-text(T') on texts with lower k-th order entropy, for small k.

Algorithmic Aspects

For space reasons, here we give only a high-level idea of our algorithm computing
HOLZ(T). The reader can find a more detailed description in the full version of
the paper [7]. Our idea follows the framework described in [8]: we build online the
Burrows-Wheeler transform [9] of the reversed text, by updating it with the text’s
characters from the first to last. For this, we use the dynamic compressed string data
structure of Munro and Nekrich [I0]. At the same time, we search in the BWT the
current LZ77 factor F,. This yields the BWT interval of all previous occurrences
of the factor in the text. One step before the interval becomes empty, we pick the
occurrence of F, being the closest (in co-lexicographic order) to the current text prefix
and compute the co-lexicographic rank of the text prefix preceding the factor (with
|F;| LF mapping steps on the BWT). Finally, a bitvector marking all BWT characters
contained in the new factor allows us skipping those characters while computing the
factor’s offset. As a result, we can compute HOLZ in n(1 + Hy) + o(nlog o) bits of
space, for any k € o(log, n), and O(nlogn/loglogn) time.

4 The Bit-Optimal HOLZ

Ferragina et al. [4] studied a generalization of the Lempel-Ziv parsing in the sense
that they considered for each text position all possible factor candidates (not just the
longest ones), optimizing for the representation minimizing a fixed encoding of the
integers (e.g. Elias-d). In other words, in their setting we are free to choose both the
offset and factor lengths, thus effectively choosing among all possible unidirectional
macro-schemes [I1]. Within their framework, LZ can be understood as a greedy
factorization that locally always chooses the longest factor among all candidates.
This factorization is optimal with respect to the number of computed factors, but
not when measuring the bit-size of the factors compressed by the chosen encoding
for the integers, in general. Given a universal code enc for the integers, a bit-optimal
parsing has the least number of bits among all unidirectional parsings using enc to
encode their pairs of lengths and offsets. In the setting of textual offsets, [4] proposed
an algorithm computing the bit-optimal LZ factorization in O(nlgn) time with O(n)
words of space, provided that the code enc transforms an integer in the range [1..n]

to a bit string of length O(lgn). In the following, we take this restriction of enc as
granted, as it reflects common encoders like Elias-6.

(1,1)(4,1)(3,1)(2,1)(1,1) (1,1)

Y
T—Db a a b b ab b $
-1 0 1 2 3 4 5 6

N N2

(4,2)(3,3)(2:2)

Figure 3: Graph of the factor candidates for LZ-text(T'). Every path from node 1 to node n + 1
gives us a sequence of pairs that can be used alternatively to LZ-text(T'), which is obtained by
always taking the locally longest edge. Although it is guaranteed that the path for LZ-text(T") has
the least number of edges, the compressed representation of the edge labels does not lead to the best
compression in general. Using Elias-y as our encoder enc with |enc(z)| = 1 for z = 1, |enc(z)| = 2
for z € {2,3}, and |enc(z)| = 3 for x € [4..7], the compressed size of LZ-text(T") taking the red and
the green edge is 1 +1+4+3+1+3+2+2+2 = 15 bits. If we exchange the red and green edge with
one blue edge and two black edges, we obtain 1 +1+3+1+1+1+4+2+4+2+1+ 1= 14 bits.

The idea of Ferragina et al. [4] is to build a factor graph (cf. Fig. [3) representing
all possible choices of factors: the nodes are the text positions, and an edge between
two positions indicates that the substring between those two positions has a previous
occurrence. The weight of the edge is the number of bits used by the chosen encoder
to encode the distance between the factor and its source. The bit-optimal LZ77
factorization corresponds to the minimum-weight path connecting the first and last
text position. Even though the number of edges of this graph could be quadratic,
Ferragina et al. [4] observed that edges leaving the same text position and having
equal weight are redundant, so we can keep the one spanning the largest number of
text positions. This edge is called mazimal. Since there are at most O(logn) distinct
weights, this observation allows to reduce the number of edges to just O(nlogn).

Our Algorithm

For space reasons, here we give only a high-level idea of how the strategy of Ferragina
et al. [] can be generalized to the HOLZ encoding. The reader can find a more
detailed description in the full version of the paper [7]. We define a factor graph
similarly to Ferragina et al., with the difference that, in our case, edge weights cor-
respond to the number of bits required by the chosen encoder to represent offsets in
the co-lexicographic order of the text’s prefixes. The major problem is finding the
maximal edges efficiently. We solve this problem by maintaining a dynamic wavelet
tree [12] (a two-dimensional grid) mapping the co-lexicographic ranks of the processed
text’s prefixes T'[—o..i] (that is, inverse suffix array values of the reversed text) to the
lexicographic ranks of the corresponding text’s suffixes T[i + 1..n] (that is, inverse
suffix array values of the text). These two-dimensional points are inserted in the grid
as the text is processed left-to-right. We also compute the longest-common prefix
(LCP) array and a range-minimum query (RMQ) data structure on the LCP array.
These two data structures are computed on the whole text in a preprocessing step.
Using these data structures, for any range [a..b] centered on the co-lexicographic rank

Table 2: 20 MB prefixes of the Pizza& Chili corpus datasets. H}, denotes the k-th order empirical
entropy. z is the length of LZ-text(T"), and r is the number of equal-letter runs in the BWT.

dataset o z r Hy H, Hsy Hj Hy
CERE 5 8492391 1060062 2.20 1.79 1.79 1.78 1.78
COREUTILS 235 3010281 910043 5.45 4.09 2.84 1.85 1.31
DBLP.XML 96 3042484 834349 5.22 3.26 1.94 1.26 0.89
DNA 14 12706704 1567099 1.98 1.93 192 192 191
E.COLI 11 8834711 1146785 1.99 198 196 195 1.94
ENGLISH 143 5478169 1277729 4.53 3.58 2.89 233 1.94
INFLUENZA 15 876677 210728 1.97 193 193 192 191
KERNEL 160 1667038 488869 5.38 4.00 2.87 1.98 1.47
PARA 5 8254129 1028222 2.17 1.83 1.83 1.82 1.82
PITCHES 129 10407645 2816494 5.62 4.85 4.28 3.50 2.18
PROTEINS 25 8499596 1958634 4.20 4.17 4.07 3.71 297
SOURCES 111 4878823 1361892 5.52 4.06 2.98 2.13 1.60

WORLDLEADERS 89 408308 129146 4.09 246 1.74 116 0.73

j of a given text prefix, one can find the source (in [a..b]) maximizing the factor’s
length. An exponential search on [a..b] — repeated for each 1 < j < n+ o — yields
maximal edges for each possible text position and edge weight.

An analysis of this algorithm reveals that the running time is O(nlg®n) and the
working space is O(nlgn) words. The space could be improved to O(n) words using
the same techniques discussed in [4]. Decompression works in both variants (HOLZ
or its bit-optimal variant) in the same way. The idea is to use a dynamic BWT
of the current reversed text prefix, and use it to extract the next factor. Overall,
using the dynamic string data structure of [10], the decompression algorithm runs in
O(nlogn/loglogn) time and uses nHy +o(n log o) bits of space (excluding the input,
which however can be streamed).

5 Experiments

For our experiments, we focused on the Canterbury (corpus.canterbury.ac.nz)
and Pizza&Chili (pizzachili.dcc.uchile.cl) datasets. For the latter, we only
processed the first 20 MB of each file. See Tables 2| and |3| for some characteristics of
these datasets. The datasets KENNEDY.XLS, PTTH, and SUM contain ‘0’ bytes, which
is a prohibited value for some used tools like suffix array construction algorithms. In
a precomputation step for these files, we escaped each ‘0’ byte with the byte pair
‘254" ‘17 and each former occurrence of ‘254’ with the pair ‘254" ‘254’.

For comparison, we used LZ-text(7") and the bit-optimal implementation of [13],
referred to as bitopt in the following. For the former, we remember that the choice
of the offsets can be ambiguous. Here, we select two different codings that break
ties in a systematic manner: The rightmost parsing discussed in the introduction,
and the output of an algorithm [14] [I5] computing LZ with next-smaller value (NSV)
and previous-smaller value (PSV) arrays built on the suffix array. Although the
compressed output is at least that of the rightmost parsing, this algorithm runs in

corpus.canterbury.ac.nz
pizzachili.dcc.uchile.cl

Table 3: Datasets from the Canterbury corpus; n is the number of text characters. See Table 2| for
a description of the other columns.

dataset n g z r HQ H1 H2 H3 H4

ALICE29.TXT 152089 74 66903 22897 456 3.41 248 1.77 1.32
ASYOULIK.TXT 125179 68 62366 21634 4.80 3.41 2.53 1.89 1.37

CP.HTML 24603 86 9199 4577 522 346 1.73 0.77 0.44
FIELDS.C 11150 90 3411 1868 5.00 295 1.47 0.86 0.62
GRAMMAR.LSP 3721 76 1345 863 4.63 280 1.28 0.67 0.44
KENNEDY.XLS 1486290 255 219649 145097 3.13 2.04 1.76 1.19 1.12
LCET10.TXT 426754 84 165711 52594 4.66 349 261 1.83 1.37
PLRABN12.TXT 481861 81 243559 72622 4.53 3.36 2.71 213 1.72
PTTH 961861 158 65867 25331 1.60 047 0.39 0.31 0.26
SUM 50503 254 13544 7826 4.76 2.52 1.61 1.15 0.90
XARGS.1 4227 74 2010 1172 490 3.19 155 0.72 0.42

linear time, whereas we are unaware of an algorithm computing the rightmost parsing
in linear time — the currently best algorithm needs O(n + nlogo/+/logn) time [16].
We call these two specializations of LZ-text(T') rightmost and nsvpsv, respectively.
We write holz and holz-opt for our original and bit-optimal algorithms computing
HOLZ(T), respectively. We selected Elias-0 encoding as the function enc, and present
the measured compression ratios in Fig. [

We observe that bitopt uses a different variant of the LZ factorization that does
not use the imaginary prefix T[—o..0] for references. Instead, it introduces literal
factors that catch leftmost occurrences characters appearing in 7. Their idea is
to store a literal factor S € X7 by its length |S| encoded in 32-bits, followed by
the characters byte-encoded. In the worst case, they pay 400 bits. Although this
overhead is noticeable for small files such as GRAMMAR.LSP — where 400 bits are
roughly 20% of their output size — or CP.HTML — where less than 4% of the output
size can be accounted for the literal factors — this fraction (400 /(8- 20 -10° - ¢) in
Table 2] and 400/(8n - ¢) in Table [3| where ¢ is the compression ratio shown in Fig. [4]
is vanishing for all larger datasets.

Discussion The overall trend that we observe is that our encoding scheme HOLZ
performs better than LZ on datasets characterized by a small high-order entropy.
More in detail, holz-bitopt compresses better than bitopt on all 8 datasets having
Hy <1, and on 11 over 14 datasets with Hy < 1.5. In general, holz-bitopt per-
formed no worse (strictly better in all cases except one) than bitopt on 14 over 24
datasets. The trend is similar when comparing the versions of the algorithms that
always maximize factor length: holz and rightmost. These results support the intu-
ition that HOLZ is able to exploit high-order entropy, improving — when it is small
enough — the compression ratio of the offsets with respect to LZ.

Compression on Pizza & Chili datasets with Elias-§
L L L L L L L L L L

80 | Nnbitopt 1

N insvpsv

I holz-opt

Inholz

60l |T¥rightmost

40 -

compression ratio (%)

20 -

70 |

60 -

50 -

30 -

compression ratio (%)

20 -

\

+Y’
Figure 4: Compression ratios of different encodings and parsings studied in this paper.

6 Open Problems

We wonder whether there is a connection between our proposed encoding HOLZ and
the Burrows-Wheeler transform (BWT) combined with move-to-front (MTF) coding,
which achieves the k-th order entropy of T" with k& = ©(log, n). Applying MTF to
BWT basically produces a list of pointers, where each pointer refers to the closest
previous occurrence of a character whose context is given by the lexicographic order of
its succeeding suffix. The difference is that this technique works on characters rather
than on factors. Also, we would like to find string families where the compressed
output of HOLZ(T') is asymptotically smaller than LZ-text(T"), or vice-versa.

Our current implementation using dynamic wavelet trees is quite slow. Alterna-
tively, for the encoding process we could use a static BWT and a dynamic prefix sum
structure to mark visited prefixes in co-lexicographic order, which should be faster
than a dynamic BWT. A more promising alternative would be to not use dynamic
structures. We are confident that a good heuristic by hashing prefixes according to

some locality-sensitive hash function (sensitive to the co-lexicographic order) will find
matches much faster. Note that using the context of length £ has the additional ben-
efit to reduce the search space (compared to standard LZ), therefore the algorithm
could be much faster and it could be easier to find potential matches.

Acknowledgements This research was funded by JSPS KAKENHI with grant
numbers JP21H05847 and JP21K17701, by Basal Funds FB0001 and Fondecyt Grant
1-200038 (Chile), and by Ca’ Foscari University under the funding scheme Ricerca
Base - Fondi Primo Insediamento EST (INCINTV). We are grateful to github user
Mitl_7 for some guidance regarding the dynamic wavelet tree implementation.

[1] A. Lempel and J. Ziv, “On the complexity of finite sequences,” IEEE Trans. Inf.
Theory, vol. 22, no. 1, pp. 75-81, 1976.
[2] J. Ziv and A. Lempel, “A universal algorithm for sequential data compression,” IEEE
Trans. Inf. Theory, vol. 23, no. 3, pp. 337-343, 1977.
[3] G. Navarro, “Indexing highly repetitive string collections, part I: Repetitiveness mea-
sures,” ACM Comput. Surv., vol. 54, no. 2, pp. 29:1-29:31, 2021.
[4] P. Ferragina, I. Nitto, and R. Venturini, “On the bit-complexity of Lempel-Ziv com-
pression,” SIAM J. Comput., vol. 42, no. 4, pp. 1521-1541, 2013.
[5] A. D. Wyner and J. Ziv, “The sliding-window Lempel-Ziv algorithm is asymptotically
optimal,” Proc. IEEFE, vol. 82, no. 6, pp. 872-877, 1994.
[6] T. M. Cover and J. A. Thomas, Elements of Information Theory, Wiley, 2012.
[7] D. Koppl, G. Navarro, and N. Prezza, “HOLZ: high-order entropy encoding of Lempel-
Ziv factor distances,” 2021, https://arxiv.org/abs/2111.02478.
[8] A. Policriti and N. Prezza, “LZ77 computation based on the run-length encoded
BWT,” Algorithmica, vol. 80, no. 7, pp. 1986-2011, 2018.
[9] M. Burrows and D. J. Wheeler, “A block sorting lossless data compression algorithm,”
Tech. Rep. 124, Digital Equipment Corporation, 1994.
[10] J.Ian Munro and Yakov Nekrich, “Compressed data structures for dynamic sequences,”
in Proc. ESA, 2015, vol. 9294 of LNCS, pp. 891-902.
[11] J. A. Storer and T. G. Szymanski, “Data compression via textural substitution,” .J.
ACM, vol. 29, no. 4, pp. 928-951, 1982.
[12] R. Grossi, A. Gupta, and J. S. Vitter, “High-order entropy-compressed text indexes,”
in Proc. SODA, 2003, pp. 841-850.
[13] A. Farruggia, P. Ferragina, A. Frangioni, and R. Venturini, “Bicriteria data compres-
sion,” SIAM J. Comput., vol. 48, no. 5, pp. 1603-1642, 2019.
[14] Maxime Crochemore, Lucian Ilie, and William F. Smyth, “A simple algorithm for
computing the lempel ziv factorization,” in Proc. DCC, 2008, pp. 482-488.
[15] E. Ohlebusch and S. Gog, “Lempel-Ziv factorization revisited,” in Proc. CPM, 2011,
pp. 15-26.
[16] D. Belazzougui and S. J. Puglisi, “Range predecessor and Lempel-Ziv parsing,” in
Proc. SODA, 2016, pp. 2053—-2071.

https://arxiv.org/abs/2111.02478

	Introduction
	LZ Factorization
	The HOLZ Encoding
	The Bit-Optimal HOLZ
	Experiments
	Open Problems

