
A grammar compressor for collections of reads with
applications to the construction of the BWT

Diego Dı́az-Domı́nguez and Gonzalo Navarro

CeBiB, Dept. of Computer Science, University of Chile, Santiago, Chile
{diediaz,gnavarro}@dcc.uchile.cl

Abstract

We describe a grammar for DNA sequencing reads from which we can compute the BWT
directly. Our motivation is to perform in succinct space genomic analyses that require
complex string queries not yet supported by repetition-based self-indexes. Our approach
is to store the set of reads as a grammar, but when required, compute its BWT to carry
out the analysis by using self-indexes. Our experiments in real data showed that the space
reduction we achieve with our compressor is competitive with LZ-based methods and better
than entropy-based approaches. Compared to other popular grammars, in this kind of data,
we achieve, on average, 12% extra compression and require less working space and time.

Introduction

Grammar compression of a text T [1..n] consists of building a context-free grammar G
that generates (only) T [1]. Efficient grammar constructions, like RePair [2], achieve
very good compression ratios in practice. When T is a repetitive text collection, in
particular, the produced grammar G can be much smaller than T , even breaking the
statistical entropy lower bound [3].

One of the benefits of this technique compared to other compression schemes
that succeed on repetitive texts, like Lempel-Ziv, is that we can directly access any
substring of T from G with only an additive logarithmic time penalty [4], thereby
enabling manipulation of the data always in compressed form. Further, it is possible
to develop self-indexes of size O(|G|), which support indexed string searches [5].

Still, this functionality is limited compared to the complex sequence analyses
required in computational biology scenarios [6]. Many of those problems, for example
computing maximal repeats, maximal unique matches [7], or suffix-prefix overlaps [8],
rely on the Burrows-Wheeler Transform (BWT) [9], a permutation of T that can be
compressed significantly [10], even for highly repetitive text collections [11, 12].

The so-called Run-Length BWT (RLBWT) [11, 12] exploits the fact that, on
highly repetitive text collections, the BWT consists of a small number of long runs of
the same letter. It can then enable complex sequence analyses on genome collections
in very little space. Still, this is not the most common type of sequence collection one
finds in bioinformatic applications. Genomes are reconstructed from huge multisets
of short and overlapping DNA strings called sequencing reads. Assembling genomes
is expensive as it requires extensive computations of suffix-prefix overlaps between
the reads, or align them to a reference genome. As a consequence, those large col-
lections of reads, which are the form in which sequencing technologies deliver their

Funded with ANID Basal Funds FB0001, and ANID Ph.D. Scholarship 21171332, Chile.

output, are also the most common form of sequence data, and much more common
than assembled genomes.

On these multisets of short sequences, the RLBWT does not compress signifi-
cantly [13], whereas grammars and Lempel-Ziv still obtain good space reductions; in
particular, grammars permit manipulating the reads directly in compressed form.

Some authors have tried to implement regular bioinformatic analyses on top of the
BWT of the reads [13–15], as this representation retains more information and uses
less space than typical plain genomic-tailored data structures. The problem, however,
is that decompressing the collection and then building its BWT requires significant
storage and processing resources. A more efficient alternative for conducting bioinfor-
matic analyses would be to build the transform directly from the compressed reads.
As far as we know, this idea has been implemented only from Lempel-Ziv compression
and is considerably slow [16]. As discussed, the Lempel-Ziv format does not enable,
on the other hand, direct access to the reads for other purposes.

Our contribution. We propose a new grammar aimed for collections of reads that
(i) compresses them at high ratios, (ii) provides fast direct access to the reads in
compressed form, and (iii) efficiently computes the BWT for string multisets [15]
directly from the representation. The working space of our compressor is 50%–60%
of the input, which is far less than most grammar construction algorithms. On top
of the grammar, we devise an algorithm for building the BWT that requires space
proportional to the number of rules plus the number of runs in the BWT.

Related concepts

Suffix Array and Burrows-Wheeler Transform (BWT). Consider a string
T [1..n− 1] over alphabet Σ[2..σ], and the sentinel symbol Σ[1] = $, which we append
at the end of T . The suffix array (SA) [17] of T is a permutation of [n] that enumerates
the suffixes T [i..n] of T in increasing lexicographic order, T [SA[i]..n] < T [SA[i+1]..n].
The BWT [9] is a permutation of the symbols of T obtained by extracting the symbol
that precedes each suffix in SA, that is, BWT [i] = T [SA[i] − 1] (assuming T [0] =
T [n] = $). A run-length compressed representation of the BWT [11] adds sublinear-
size structures that compute, in logarithmic time, the so-called LF step and its inverse:
if BWT [j] corresponds to T [i] and BWT [j′] to T [i−1] (or to T [n] = $ if i = 1), then
LF(j) = j′ and LF−1(j′) = j. Note that LF regards T as a circular string.

Let T = {T1,T2, ...Tm} be a collection of m strings of average size k. We then
define the string T [1..n] = T1$T2$..Tm$. The extended BWT (eBWT) of T [15]
regards it as a set of independent circular strings: the BWT of T is slightly modified
so that, if eBWT [j] corresponds to Ti[1] inside T , then LF(j) = j′, so that eBWT [j′]
corresponds to the sentinel $ at the end of Ti, not of Ti−1.

Induced suffix sorting (ISS). ISS [18] is a technique that computes the lexico-
graphical ranks of a subset of suffixes in a string T and then it uses the result to
induce the order of the rest. This method is the underlying procedure in several
algorithms that build the SA [18] and the BWT [19] in linear time. For this article,

the part of the ISS algorithm that computes the lexicographical ranks of a subset of
suffixes is of interest. The authors give the following definitions:

Definition 1. A character T [i] is called L-type if T [i] > T [i+ 1] or if T [i] = T [i+ 1]
and T [i+1] is also L-type. On the other hand, T [i] is said to be S-type if T [i] < T [i+1]
or if T [i] = T [i+ 1] and T [i+ 1] is also S-type. By default, symbol T [n], the one with
the sentinel, is S-type.

Definition 2. T [i] is called LMS-type if T [i] is S-type and T [i− 1] is L-type.

Definition 3. A LMS substring is (i) a substring T [i..j] with both T [i] and T [j] being
LMS characters, and there is no other LMS character in the substring, for i 6= j; or
(ii) the sentinel itself.

The algorithm only computes the ranks of the suffixes prefixed by LMS substrings.
It obtains the ranks by sorting the substrings lexicographically. When an LMS
substring is prefix of another, the smallest one gets the greatest rank [18]. If there
are at least two LMS substrings with the same sequence in T , the algorithm replaces
all the substrings by their orders and applies recursively the same idea until all the
characters in T are distinct.

Recently, Nunes et al. [20] showed that this procedure can be used to build a
grammar of the text. In every recursive step of ISS, they get the set of distinct
LMS substrings to create new rules. The ranks of the strings in the set are used to
produce nonterminal symbols while their sequences become the replacements for those
nonterminals. In the last recursion step, the input text T becomes the replacement
for the start symbol of the grammar.

Level-Order Unary Degree Sequence (LOUDS). LOUDS [21] is a succinct
representation that encodes an ordinal tree T with t nodes into a bitmap B[1..2t+ 1],
by traversing its nodes in levelwise order and writing down its arities in unary. The
nodes are identified by the position where their description start in B. Adding o(t)
bits on top of B enables constant-time operations like parent(u) (the parent of node u),
child(u, i) (the i-th child of u), psibling(u) (the sibling preceding u), nodemap(u) (the
level-wise rank of node u), leafrank(u) (the number of leaves in level-order up to leaf
u), internalrank(u) (the rank of the internal node u in level-order), and internalselect(r)
(the identifier of the r-th internal node in level order).

Building the grammar

Let G = {V , Σ, S,R} be a context free grammar built from T and that only produces
strings in T . V is the set of nonterminals, Σ is the alphabet of terminals, S is the
start symbol and R is the set of rules. Additionally, denoted the number of rules as
r = |R|. The grammar size g is defined as the sum of the lengths of the right-hand
sides of R. We refer to the string C in the right-hand side of the rule of S as the
compressed string of G, and its size is denoted as c = |C|.

We propose an iterative algorithm called LMSg for producing G. In every step
i, we partition the input text T i (T 1 = T) and create a dictionary Di with all the

distinct LMS substrings. Then, for every F ∈ Di, we create a new rule X → F ,
where X = p+ o is the number of rules built before step i and o is the order of F in
Di. Finally, we create another text T i+1 in which we replace the phrases with their
nonterminal symbols, and if there is at least one symbol repeated in T i+1, then we
perform another iteration i + 1 using T i+1 as input. The algorithm ends when no
more new phrases are created from the input text. This procedure is similar to that
of Nunes et al. [20]. Still, we go further and try to reduce the grammar size without
losing information for inferring the eBWT of T .

By using ISS to build G we can determine the relative order of the suffixes of T
prefixed by LMS substrings just by looking at their nonterminal symbols. This idea
is formally stated with the following lemma:

Lemma 1. For two different nonterminals X, Y ∈ V produced in the same iteration
of LMSg, if X < Y, then the suffixes of T whose prefixes are compressed as X are
lexicographically smaller than the suffixes whose prefixes are compressed as Y.

The only problem is that the occurrences of the phrases in T i overlap by one
character, and that produces redundancy in R. We solve it by discarding the first
symbol of every LMS substring.

Lemma 2. The suffix F [j..|F |] of an LMS substrings F can still be used to get the
lexicographical rank of a suffix in T i prefixed with it as long as |F | − j + 1 > 1.

Proof. Let a string D′ over the alphabet [0, 1] be the description of an LMS string
F . If F [j] is L-type, then D′[j] = 1 and if F [j] is S-type or LMS-type, then D′[j] = 0.
Now consider the set U with the descriptions of all the phrases of Di. As the pattern
LS = 10 only appears as a suffix in the descriptions, U is a prefix-free set. Therefore,
if an LMS string is a prefix of another LMS substring, then we can decide their
relative orders by looking at their descriptions as explained in [18].

We also ensure that no X ∈ V recursively expands to the suffix-prefix concatena-
tion of two or more strings of T . We call this property string independence of G. To
guarantee it, the string partition must also be independent.

Definition 4. The partition of T i in the i-th iteration of LMSg is string-independent
iff the recursive expansion of every symbol T i[u] spans at most one string Tj ∈ T .

During the execution of LMSg, we ensure the string independence of the partition
by cutting each LMS substring F in p > 1 segments if the symbols of F cover p
different strings of T . We call those segments where the last character recursively
expands to a suffix of some Tj ∈ T suffix phrases. Although the suffix phrases do not
meet Lemma 2 (they do not necessarily have the LS suffix in their descriptions), it
is still possible to assign them unique lexicographical ranks.

Lemma 3. A suffix phrase S generated in a string independent partition cannot be a
prefix of any other string in Di.

Proof. Assume F is a prefix of another string F ′. Also assume that F recursively
expands to the substring A$ of T . As F is a prefix, it means that F ′ must expand
to a substring A$B, with B also being a substring of T . This implication contradicts
the definition of string independence as F ′ spans two consecutive strings.

Reducing the number of nonterminals. We discard the phrases that are not
useful for either compressing or producing the eBWT of T . The symbols in these
phrases are transferred to subsequent iterations of LMSg hoping they will be encap-
sulated within more useful contexts. We do not consider a substring as a phrase for
Di in two cases; (i) all its symbols appear once in T i or (ii) its length is less than two.

With this modification, the partition of T i now yields two sets, Di and a set I i

with the symbols of T i to be transferred. If Di is empty, then we stop LMSg and
return G. If not, then we sort the phrases of I i ∪ Di in lexicographical order. Once
we finish, we update the left-hand side in R of every nonterminal s ∈ I i to p + r′,
where p is the size of R before iteration i and r′ is the rank of s in I i ∪ Di. We also
update the previous references to s in the right-hand sides of R. For the phrases in
Di, we create new nonterminals using their ranks in I i ∪ Di.

Reducing the grammar size. We scan R and change every left-hand charac-
ter with the smallest unused symbol (the nonterminals produced by LMSg are non-
consecutive due to the transfer of symbols). As we do the replacement, we keep track
of the changes so we can update the references of the characters in the right-hand
sides of R. Once the grammar is collapsed, we recursively create new rules from the
suffixes of size two that appear in more than one distinct right-hand side, and we stop
when all such suffixes are unique. We refer to these new nonterminals as SP (suffix
pairing). It might happen that the complete sequence F of an LMSg rule X → F
appears as a proper suffix in one or more right-hand sides. In such situation, we
do not create a new rule but reuse the value of X to replace those proper suffixes.
When this happens, we consider X to have a dual context as it occurs as an LMSg
nonterminal but also as an SP nonterminal.

Encoding the grammar. We use the grammar tree data structure proposed by
Claude et al. [22] (denoted here as P) to store G. We make, however, some modifica-
tions to compute the eBWT of T in a more efficient way. The procedure is as follows;
we create a root node labeled with the start symbol S and with c children, one for
every symbol in the right-hand of its rule in R. Then, we create the nodes in the
subtrees of the root by visiting in level-order the rules of the nonterminals to which
C recursively expands. During this process, when we reach a rule X → F for the
first time, we create a new internal node v with |F | children and labeled with x+ σ,
where x is the number of internal nodes in level-order up to v. Nevertheless, if the
symbol has a dual context, then we create v only if the occurrence of X in the visit
corresponds to an LMSg nonterminal. When this is not the case, we create a leaf v′

with an empty label instead. We refer to x+ σ as the identifier of X in P . The next
time we reach this rule in the traversal, we create a leaf v′ labeled with x+ σ. In the
case the identifier is still unknown (i.e., X has dual context and all the occurrences
we have visited so far are SP), we leave the label of v′ empty. Later, when we reach
the first occurrence of X as LMSg, we create a new internal node v and label with
x+ σ all the empty leaves that should point to this identifier. Finally, when we visit
a terminal symbol, we create a leaf labeled with its value. We encode the topology

of the resulting tree in a bitmap K using LOUDS. Additionally, the leaf labels are
stored in a vector Z using Canonical Huffman codes [23].

For simulating in P a traversal of the parse tree of G we use the constant-time
navigational functions child and parent defined for LOUDS, but also an extra func-
tion label(v) that returns the label of a node v. If v is a leaf, then the function
returns Z[leafrank(v)]. On the other hand, if v is an internal node, then it returns
internalrank(v) + σ. When we reach a leaf u, if label(u) ≤ σ, then we stop descending
as we reach a terminal symbol. If that is not the case, then we continue the traversal
from the subtree rooted at v = internalselect(K, label(v)− σ).

Building the eBWT from the grammar

Our framework for building the eBWT of T consists of two algorithms, GLex and
infBWT. The first one computes the original lexicographical ranks of the nonterminals
generated by LMSg and the second uses these ranks to produce the eBWT.

Computing the ranks of the nonterminals. GLex is an iterative method that
reconstructs the steps of LMSg. In every iteration, the algorithm produces a set
Li ∈ [1..r + σ] with the identifiers in P for the phrases in Di. Then, it computes
another set Ri with the lexicographical ranks of these phrases. Finally, it creates
a function f i : Li → Ri that maps the identifier l ∈ Li of a phrase in Di with its
lexicographical rank. The result of GLex is a set of h distinct triplets (Li,Ri, f i),
where h is the number of iterations of LMSg.

For computing Li, we visit the internal nodes of P in level-order and check which
of them encode phrases of Di. For this task we use the following lemma:

Lemma 4. Let X → F ∈ R be a nonterminal rule generated by LMSg. If all the
suffixes of F up to position 1 < k ≤ |F | − 1 appear in more than one right-hand side
in R, then after reducing the grammar size, every subtree rooted at some node labeled
with X in the parse tree will have the original last |F |−k+1 children of X recursively
encapsulated from right to left inside new internal nodes.

Proof. Consider a node v in the parse tree of G that represents the occurrence of an
LMSg nonterminal. After reducing the grammar size, its subtree adopts a stair-like
shape as the SP rules are recursively built from right to left.

By using the stair-like pattern described in Lemma 4, we can recognize occurrences
of LMSg nonterminals just by looking at the topology of the parse tree of G.

Lemma 5. A node v of P encodes the occurrence of a nonterminal produced in the
iteration i of LMSg if the leftmost child of v in the parse tree is labeled with a symbol
l ∈ Li−1 and either v if the leftmost child of its parent or the left sibling of v is labeled
with a symbol l′ /∈ Li−1.

Proof. A nonterminal v whose first child has a label l ∈ Li−1 is either an LMSg
nonterminal of the iteration i or an SP nonterminal. If it is SP, then, due to the stair-
like pattern, the label of its left sibling must be in Li−1, otherwise v is LMSg.

Once we compute the symbols in Li, we decompress and sort their associated
phrases to generate Ri. For that end, we regard Li−1 as a set of logical leaves
in the parse tree of G. Thus, if during the decompression of an internal node
v = internalselect(l − σ), with l ∈ Li, we reach a node v′ with label(v′) ∈ Li−1,
then we do not visit its subtree but spell its symbol f i−1(label(v′)) ∈ Ri−1. After de-
compressing Di, we apply the same string sorting mechanism of LMSg. The function
f i is implemented by encoding Li as a bitmap L[1..r + σ] where L[l] is set to 1 if
l ∈ Li and 0 otherwise. Additionally, we augment L with constant-time rank support
[24, 25], so that rank(L, l) is the number of 1s in L[1..l], and we store at position
Ri[rank(L, l)] the lexicographical rank associated to l. Finally, we pass the triplet
(Li,Ri, f i) to the next iteration i+ 1 to compute Li+1, Ri+1 and f i+1.

Inferring the eBWT. infBWT is also an iterative process of h steps. In the first
one, we produce the eBWT Bh of the compressed string C by sorting the nodes at
depth one of P in (circular) lexicographical order. For this task, we insert them in an
array A[1..c] such that if a node v has order o in Rh, then we store it in the bucket
o of A. Subsequently, we sort the buckets of A independently. During the process, if
two nodes have the same rank in Rh, then we walk through their right siblings until
finding nodes with different labels. It might happen that one of the siblings we reach
in the walk represents a suffix of a string in T . In such a case we move backward
until finding the first left sibling encoding the suffix of another string. The idea is to
simulate the circularity of the elements in T . Once we finish the sorting, we insert in
Bh the orders in Rh of the (circular) left siblings of the nodes in A.

In the next iterations, we descend over the levels of LMSg from i = h to i = 2. In
each step, we receive as inputs the eBWT Bi of T i and the triplet (Li−1,Ri−1, f i−1).
We scan Bi from left to right to decompress the occurrences of the phrases in Di−1.
As we spell a phrase F ∈ Di−1 from some position Bi[j], we push every possible pair
(F [k],S), with k ∈ [1..|F | − 1], into a semi-external vector Q, where S is a proper
suffix F [j + 1..|F |] of size at least two. To reduce the space usage, we store S using
a specific node v of P from which we decompress it later (an SP node in most of the
cases). When S = F [|F |], we first obtain the right context symbol s of Bi[j] in T i.
Then, we associate (F [|F |], s) to a new identifier q > g and push (F [|F | − 1], q) to Q.

After scanning Bi, we sort the distinct right elements of Q by decompressing
them from P . Once we finish, we rearrange Q according to the resulting ranks, and
without changing the relative order of the elements with the same value. We thus
extract Bi−1 by concatenating the left symbols of Q. In the last step of infBWT, the
resulting B1 is in fact the eBWT of T .

Experiments

We implemented our framework as a tool called LPG (https://bitbucket.org/
DiegoDiazDominguez/lms_grammar/src/bwt_imp2). The software is written in C++

and uses the SDSL-lite library [26]. We compared the performance of LPG against
BigRepair [27], 7-zip and the FM-index [10]. BigRepair (BR) is a space-efficient vari-
ation of RePair for large repetitive collections. We encoded the BigRepair grammars

C
om

pr
es

si
on

 ra
tio

M
em

or
y

pe
ak

 (G
B

)

E
la

ps
ed

 ti
m

e
(h

ou
rs

)

A) B) C)

0

100

200

300

1 2 3 4 5

M
em

or
y

Pe
ak

 (G
B) Method

LPG
BR
7Z
FM
RLFM

0

20

40

60

1 2 3 4 5

El
ap

se
d

tim
e

(h
ou

rs
) Method

LPG
BR
7Z
FM
RLFM

Input dataset

2

3

4

5

6

1 2 3 4 5

C
om

pr
es

si
on

 ra
tio Method

LPG
BR
7Z
FM
RLFM

Figure 1: Performance of the different compressors. The compression ratio is measured as
the size of the plain text divided by the size of the final compressed representation.

with the recent representation of Gagie et al. [28], which allows fast random acces-
sion to substrings of the text. For the FM-Index, we considered both the regular
version (FM) and the Run-Length compressed version (RLFM). The BWTs for the
FM-indexes were calculated using egap [29]. When parallelization was possible, we
ran the experiments with 10 threads.

We used as input five distinct collections of reads produced from different human
individuals. This data was obtained from the Human Genome Diversity Project. The
datasets were identified with the number of individuals they contained. Their sizes
in GB were 1=12.77, 2=23.43, 3=34.30, 4=45.89 and 5=57.37. All the reads were
152 characters long and had an alphabet of six symbols (A,C,G,T,N,$). The instance
of BR with collection 5 returned an error and therefore it was not included in the
analyses. For dataset 1, we allowed BR to use at most 72GB (6x the input size) of
working memory. However, with the rest of the collections we had to increase that
value to 275.36 GB as the program was taking too long to finish. The performance
of the compressors is shown in Figure 1.

We measured the time for randomly accessing the reads from the compressed
representations. To support fast accession in the FM-indexes, we sampled reads in
the text at regular intervals. For every sampled element, we stored the BWT position
of its last character. The sampling rate for RLFM was 0.05 while for FM was 1. In
addition, we augmented the LPG instances with a bitmap B[1..c] that mark in P
the nodes at depth one that recursively expand to string suffixes. We also encoded
the leaf labels of P using arrays of log r-bit cells. The results are depicted in the left
side of Table 1. We implemented GLex and measured its space and time consumption.
The results are shown on the right side of Table 1. All the experiments were carried
out on a machine with Debian 4.9, 736 GB of RAM and processor Intel(R) Xeon(R)
Silver @ 2.10GHz, with 32 cores.

Results and discussion. The average compression ratio of LPG was 4.65. This re-
sult was better than the one obtained by BR and RLFM (2.96 and 2.54, respectively),
but worse than that of 7Z (6.47). Although 7Z outperformed the other methods at
reducing the space, the difference was reduced as the inputs grew and became more
repetitive. For instance, the gap in the compression ratio between 7Z and LPG for
collection 1 was 2.44, while for collection 5 was 1.37. The poor performance of BR

Random access GLex

Input LPG BR RLFM FM Elap. time Space usage

1 104.30 98.67 6,699.06 90.40 0.25 0.49
2 111.35 101.59 6,694.38 101.78 0.12 0.45
3 124.04 98.56 7,422.91 109.68 0.08 0.42
4 128.58 104.72 7,280.12 113.31 0.07 0.39

Table 1: LPG experiments. The left side depicts the average time in µsecs to randomly
access a read. The right side shows the running time and space usage of GLex. The time is
expressed as µsecs per byte and the space as the fraction of the uncompressed input.

may be due to its prepossessing step (Prefix-Free Parsing) did not capture well the
repetitiveness in the reads. BR produced, on average, 322 million more grammar
rules than LPG. On the other hand, the small compression ratios obtained by RLFM
can be due to the number of BWT runs. In reads, this value is usually not as small
as in other text families. The run heads represented, on average, 23% of our inputs.
Regarding the memory peaks, the consumption of 7Z was negligible (0.7 GB). In con-
trast, LPG required a much more considerable amount of working space (about 58%
of the input size). Still, this value was far less than that of BR and RLBWT, that used
7 and 3 times the input size, respectively. In elapsed time, LPG outperformed all the
other methods. The instance of BR with collection 2 took much more time compared
to collection 3 and 4 (63.18 hours versus 15.31 and 26.08 hours, respectively). We
assume this behavior is a bug in the implementation. The performance for randomly
accessing the reads was similar between LPG and BR and FM (between 90 and 128
µsecs), and slow for RLBWT (mainly because of the small sampling). Still, in all the
cases the mean space overhead over the compressed representation was small (16.80%
for LPG, 6.95% for FM and less than 1% for RLFM). Finally, GLex required about
0.26 µsecs per input byte and used an amount of working space proportional to half
the space of the uncompressed collection in the worst case.

References

[1] J. C. Kieffer and E.-H. Yang, “Grammar-based codes: A new class of universal lossless
source codes,” IEEE Trans. Inf. Theory, vol. 46, no. 3, pp. 737–754, 2000.

[2] J. Larsson and A. Moffat, “Off-line dictionary-based compression,” Proc. of the IEEE,
vol. 88, no. 11, pp. 1722–1732, 2000.

[3] S. Kreft and G. Navarro, “On compressing and indexing repetitive sequences,” Theor.
Comp. Sci., vol. 483, pp. 115–133, 2013.

[4] P. Bille, G. M. Landau, R. Raman, K. Sadakane, S. R. Satti, and O. Weimann, “Ran-
dom access to grammar-compressed strings and trees,” SIAM J. Comp., vol. 44, no.
3, pp. 513–539, 2015.

[5] F. Claude and G. Navarro, “Self-indexed grammar-based compression,” Fund. Inf.,
vol. 111, no. 3, pp. 313–337, 2011.

[6] V. Mäkinen, D. Belazzougui, F. Cunial, and A. Tomescu, Genome-Scale Algorithm
Design, Camb. U. Press, 2015.

[7] D. Belazzougui, F. Cunial, J. Kärkkäinen, and V. Mäkinen, “Versatile succinct repre-
sentations of the bidirectional Burrows-Wheeler transform,” in Proc. 21st ESA, 2013,
pp. 133–144.

[8] N. Välimäki, S. Ladra, and V. Mäkinen, “Approximate all-pairs suffix/prefix overlaps,”
in Proc. 21st CPM, 2010, pp. 76–87.

[9] M. Burrows and D. Wheeler, “A block sorting lossless data compression algorithm,”
Tech. Rep. 124, Digital Equipment Corporation, 1994.

[10] P. Ferragina and G. Manzini, “Indexing compressed text,” J. ACM, vol. 52, no. 4, pp.
552–581, 2005.

[11] V. Mäkinen, G. Navarro, J. Sirén, and N. Välimäki, “Storage and retrieval of highly
repetitive sequence collections,” J. Comp. Biol., vol. 17, no. 3, pp. 281–308, 2010.

[12] T. Gagie, G. Navarro, and N. Prezza, “Fully-functional suffix trees and optimal text
searching in BWT-runs bounded space,” J. ACM, vol. 67, no. 1, pp. article 2, 2020.

[13] D. Dolle, Z. Liu, M. Cotten, J. Simpson, Z. Iqbal, R. Durbin, S. McCarthy, and
T. Keane, “Using reference-free compressed data structures to analyze sequencing
reads from thousands of human genomes,” Genome Res., vol. 27, no. 2, pp. 300–309,
2017.

[14] J. Simpson and R. Durbin, “Efficient de novo assembly of large genomes using com-
pressed data structures,” Genome Res., vol. 22, no. 3, pp. 549–556, 2012.

[15] A. Cox, M. Bauer, T. Jakobi, and G. Rosone, “Large-scale compression of genomic
sequence databases with the Burrows–Wheeler transform,” Bioinformatics, vol. 28,
no. 11, pp. 1415–1419, 2012.

[16] A. Policriti and N. Prezza, “From LZ77 to the run-length encoded Burrows-Wheeler
transform, and back,” in Proc. 28th CPM, 2017, vol. 78, p. article 17.

[17] U. Manber and G. Myers, “Suffix arrays: a new method for on-line string searches,”
SIAM J. Comp., vol. 22, no. 5, pp. 935–948, 1993.

[18] G. Nong, S. Zhang, and W. H. Chan, “Linear suffix array construction by almost pure
induced-sorting,” in Proc. 19th DCC, 2009, pp. 193–202.

[19] D. Okanohara and K. Sadakane, “A linear-time Burrows-Wheeler transform using
induced sorting,” in Proc. 16th SPIRE, 2009, pp. 90–101.

[20] D. S. N. Nunes, F. Louza, S. Gog, M. Ayala, and G. Navarro, “A grammar compression
algorithm based on induced suffix sorting,” in Proc. 28th DCC, 2018, pp. 42–51.

[21] G. Jacobson, “Space-efficient static trees and graphs,” in Proc. 30th FOCS, 1989, pp.
549–554.

[22] F. Claude and G. Navarro, “Improved grammar-based compressed indexes,” in Proc.
19th SPIRE, 2012, pp. 180–192.

[23] E. Schwartz and B. Kallick, “Generating a canonical prefix encoding,” Communications
of the ACM, vol. 7, no. 3, pp. 166–169, 1964.

[24] D. Clark, Compact PAT Trees, Ph.D. thesis, University of Waterloo, Canada, 1996.
[25] G. Navarro, Compact Data Structures: A Practical Approach, Camb. U. Press, 2016.
[26] S. Gog, T. Beller, A. Moffat, and M. Petri, “From theory to practice: Plug and play

with succinct data structures,” in Proc. 13th SEA, 2014, pp. 326–337.
[27] T. Gagie, I. Tomohiro, G. Manzini, G. Navarro, H. Sakamoto, and Y. Takabatake,

“Rpair: Rescaling RePair with rsync,” in Proc. 26th SPIRE, 2019, pp. 35–44.
[28] T. Gagie, I. Tomohiro, G. Manzini, G. Navarro, H. Sakamoto, L. Benkner, and Y. Tak-

abatake, “Practical random access to SLP-compressed texts,” in Proc. 27th SPIRE,
2020, pp. 221–231.

[29] L. Egidi, F. Louza, G. Manzini, and G. Telles, “External memory BWT and LCP
computation for sequence collections with applications,” Alg. Mol. Biol., vol. 14, no.
1, pp. 6, 2019.

