
Compact Representation of Spatial Hierarchies and
Topological Relationships

José Fuentes-Sepúlveda1, Diego Gatica1,3, Gonzalo Navarro2,3,
M. Andrea Rodŕıguez1,3 and Diego Seco1,3

1Department of Computer Science, Universidad de Concepción, Chile
2Department of Computer Science, University of Chile, Chile

3Millennium Institute for Foundational Research on Data, Chile

Abstract

The topological model for spatial objects identifies common boundaries between regions,
explicitly storing adjacency relations, which not only improves the efficiency of topology-
related queries, but also provides advantages such as avoiding data duplication and facili-
tating data consistency. Recently, a compact representation of the topological model based
on planar graph embeddings was proposed. In this article, we provide an elegant generaliza-
tion of such a representation to support hierarchies of vector objects, which better fits the
multi-granular nature of spatial data, such as the political and administrative partition of a
country. This representation adds a small space on top of the succinct base representation
of each granularity, while efficiently answering new topology-related queries between objects
not necessarily at the same level of granularity.

Introduction
An object-oriented model for spatial objects is the topological model [1, 2], where
common boundaries between regions are identified to avoid duplication and to facili-
tate data consistency, and where the queries of interest are topological in nature such
as “What provinces are adjacent to or inside of a particular region?”. Topological
databases consist of a finite set of labeled points, curves, and areas, and where points
are typically associated with coordinates in the Euclidean plane. Although much re-
search has focused on indexing structures to optimize spatial queries [3–5], to the best
of our knowledge not much work addresses the optimization of queries in topological
data models. Given the sheer volume of data in the spatial domain, we approach this
problem with Compact Data Structures (CDSs) [6].

A recent work [7] presents a planar-graph compact data structure to support a
topological data model. We built upon this structure by extending it to account for
answering inclusion, disjoint, and adjacency topological queries in a multi-granular
context of spatial hierarchical structures, such as the political and administrative
partition of a country. Granularity defines units that quantitatively measure data with
respect to the dimensions of the domain they represent [8, 9]. Multiple granularities
can be organized in a partial order structure, such as the political subdivisions of
a country, which are useful to associate spatial references with non spatial data in
traditional databases, and also to define dimensions in data warehousing systems.

This work was funded by ANID: Millennium Science Initiative Program - Code ICN17 002; also
by PAI grant 77190038 (1st author), PFCHA/Doctorado Nacional/2020-21201986 (2nd author),
FONDECYT Grant 1-200038 (3rd author), and CYTED grant 519RT0579 (4th and 5th authors).

Our structure starts with the geometric representation of regions as a partition of
the space and extracts common boundaries, which become edges of a planar graph.
Using planar graphs for spatial information [10, 11] allows us to use properties and
strategies well-studied in graph theory. In addition, our structure represents each
granularity and the inclusion relationships between regions at different levels of gran-
ularity using CDSs. This approach is complementary with the storage and indexing
of geometries in larger memories (usually secondary memory). However, with our ap-
proach most of the work is done in main memory using the compact topological index,
resorting to the geometric indexes stored in secondary memory only when necessary.
Our solution is limited to the case of regions composed by contiguous sub-regions.

Notation. Let R be a geographic area that can be divided into regions r1, r2, . . .,
such that all regions are disjoint and their union is R. The area R can be recursively
divided h times. All the regions obtained after i recursive divisions are part of the
i-th granularity level, Li. The highest granularity level, Lh, is composed of indivisible
regions and the lowest granularity level, L0, corresponds to R. We represent by ni the
number of regions at granularity level Li, and by dr the number of regions sharing a
boundary with region r. Relation contains(x, y) is true if the geographic boundaries
of region y are completely contained inside the boundaries of region x, with x ∈ Li,
y ∈ Lj, and i ≤ j. Thus, given a region y ∈ Lj, there always exists a unique region
x ∈ Li for which contains(x, y) is true, for any i ∈ [0..j]. For example, Figure 1a
shows an area divided into three granularity levels: region level (L1), state level (L2)
and county level (L3). From the figures, relation contains(state H , county n) is true,
whereas relation contains(state C , county o) is false.

Preliminaries. Our solution rests on well-studied compact data structures [6].
Through this work we use bitmaps, A[1..n], where interesting operations are rankc(A, i)
(the number of occurrences of symbol c in A up to position i) and selectc(A, i) (the
position of the i-th appearance of symbol c in A), both supported in constant time
using n+ o(n) bits. Using them, more complex operations can be implemented, such
as rightmostc(A, i) = selectc(A, rankc(A, i)), the position of the rightmost symbol c
before position i, and leftmostc(A, i) = selectc(A, rankc(A, i) + 1), the position of the
leftmost symbol c after position i.

Compact trees can be represented as a sequence of balanced parentheses, per-
forming a DFS traversal over the tree, writing an open parenthesis for each forward
edge, and a close parenthesis for each backward edge. Given a balanced parentheses
sequence B[1..2n′] representing the topology of a tree with n′ nodes, the operation
find close(B, i) returns the position of the matching closing parenthesis of the open-
ing parenthesis B[i]; and find open(B, i) returns the position of the matching opening
parenthesis of B[i]. Operation enclose(B, i) returns the position of the opening paren-
thesis that, together with its matching closing parenthesis, most tightly contains i.
Those operations are supported in constant time using 2n′ + o(n′) extra bits.

Related work
The notion of granularity in the spatio-temporal domain defines the units that quan-
titatively measure data with respect to the dimensions of the domain they represent.

(a) Planar graph at county level.

(b) Planar graph at state level.

(c) Planar graph at region level.

Figure 1: Geographic division with aggregation levels: Region, State and County, and
their planar graph representation. Spanning trees are represented with thick edges.

Temporal granularity was defined by [12], and later [9] defined spatial granularity as
a mapping function from a domain of indexes to portions of a space, called spatial
granules. One relevant property of the granules of a granularity is that they do not
overlap with each other. Associated with the concept of granularity, previous works
also define relations between granularities, which allows us to characterize structures
that organize the domain. One of them is the notion of spatial partition, meaning
that if granularity P is a partition of granularity Q, then for each granule g ∈ Q there
exists a subset S of granules in P such that g is the union of elements, which do not
overlap, of S [9, 12–14].

Regarding efficient processing, there exists a large number of proposed data struc-
tures for spatial data, which typically address spatial range, spatial join, and near-
est neighbor queries. Among them, two classical structures are the R-tree [3] and
the Quadtree [4], which when applied to spatial objects assume classical vector (or
Spaghetti) spatial representation of objects. These indexes can also solve topological
queries such as overlap, inclusion, and disjoint relationships, but such approach is
computationally expensive. Unlike the classical vector representation, a topological
spatial representation is tailored for topological queries.

In this work, we focus on the planar graph embedding representation of a geo-
graphic area divided into regions whose interiors do not overlap, i.e., a granularity.
The planar graph embedding induced by a geographic area is composed by nodes rep-
resenting geographic regions and edges representing two regions sharing a geographic
boundary. See examples of induced planar embeddings in Figures 1a-1c. Among
all compact representations of planar-graph embeddings [6, 15], Turán’s representa-
tion [16] stands out for its simplicity. The representation is built in two stages. First,
an arbitrary spanning tree T of the planar embedding is computed. Second, a DFS
traversal is performed, computing a sequence S of length 2m, where m is the number
of edges of the planar embedding. During the traversal, an edge in T is represented
either by ‘(’ or ‘)’, depending on whether it is the first or second time that the edge
is visited. Similarly, an edge not in T is represented by ‘[’ or ‘]’. Using two bits per
symbol of S, the representation uses 4m bits of space.

The main drawback of this representation is that it does not provide primitives
to navigate the graph. To overcome such limitation, Ferres et al. [17] augmented
Turán’s representation with o(m) extra bits, using compact representations of trees
and bitmaps. The new representation lists the incident edges of a vertex in O(1) time
per edge and the edges bounding a face in O(1) time per edge, finds the degree of a
vertex in O(f(m)) time for any f(m) ∈ ω(1), and determines whether two vertices
are neighbors in O(f(m)) time for any f(m) ∈ ω(logm). Later, Fuentes-Sepúlveda et
al. [7] improved the bounds of the operations and showed how to extend the represen-
tation to provide the first theoretical compact representation of the topological model.
In this work, we show how to generalize such a representation of the topological model
to support multi-granular hierarchies of spatial objects.

Data structure
A map with several levels of granularity can be seen as a collection of planar em-
beddings, one for each level, and the relations among levels. To obtain a compact
representation, the data structure in [7] can be used for the collection of planar em-
beddings. The main remaining challenge is to store a mapping among the regions
at different levels in order to support queries based on the relation contains(·, ·). For
that, we propose a new approach to compute the spanning tree needed for the com-
pact representation in [7], instead of the arbitrary spanning tree that they use. In the
next section we show how to compute a more suitable spanning tree, whose topology
implicitly encodes the mapping among consecutive granularity levels. Our represen-
tation encodes each granularity level using the following components (see Figure 2):

1. The planar graph embedding of each level is represented by the compact data
structure of Fuentes-Sepúlveda et al. [7]. Across the h granularity levels, the space
consumption of this component is 4

∑h
i=1 mi+o(

∑h
i=1mi) bits, where mi is the number

of edges in the planar graph embedding of level Li.

2. A bitmap Bi[1..2nh] with rank/select support, where nh is the number of regions
in the highest granularity Lh. The bitmap Bi is used to mark some vertices of
the balanced-parentheses representation Sh of the spanning tree at granularity level
Lh. Such a spanning tree is already stored in the compact planar graph embedding
of level Lh. By default, all entries of Bi are 0-bits. During the DFS traversal of
the spanning tree, if the k-th visited vertex is the first vertex for which relation
contains(x , k−th vertex of Lh) is true, where x is a region at granularity Li, then
Bi[p] = 1 and Bi[q] = 1, where p and q are the positions of the opening and closing
parentheses representing vertex k in Sh. For each region x at granularity Li, only one
region y of Lh fulfills the condition. The total space is 2nh(h−1) bits for the bitmaps
Bi, and o(hnh) bits for the rank/select data structures over them, with 1 ≤ i ≤ h− 1
(no bitmap is needed at level h).

Construction. To construct our representation, we adapt the classical DFS traversal
algorithm based on a stack. In the traditional algorithm, an edge (u, v) is traversed
when the target vertex v has not been visited before. In the adapted version, the DFS

S3 =

S2 =

B2 = 101010110110100001011010000001100101010001

S1 =

B1 = 100000100000000000000000000001000000000001

Figure 2: Compact representation of the geographic division of Figures 1a-1c.

traversal is performed on the planar graph of the highest granularity level, Lh. Now,
an edge (u, v) is traversed when the target vertex v and the regions containing it at
lower levels Li, i < h, have not been visited before, or when the target vertex v has
not been visited and both vertices, u and v, belong to the same region at granularity
level Li, i < h. We say that a region r at level Li, i < h, has not been visited when
none of the regions contained in r have been visited.

During the DFS traversal of the planar embedding at level Lh, when traversing the
j-th edge e with target region r for the first time,1 we check the region r′ containing
r at level Li, with i < h. If r′ has not been visited yet, we mark it as visited and set
Bi[j] = 1. Setting the j-th bit of Bi indicates that the target region of the j-th edge
e of the traversal is the entering point to the region r′ at granularity level Li. Notice
that the same edge e will be traversed again as the k-th edge of the DFS traversal.
We set Bi[k] = 1 to indicate that the source region of the k-th traversed edge is the
exiting point of the region r′, i.e., we complete the traversal of the whole region.

Each time the algorithm processes an edge e, two conditions must be checked: 1)
if the edge e meets the condition to be traversed, and 2) if it is the first time that
the edge e is processed. Depending on such conditions, the algorithm appends (,),
[or] to the output sequence Sh. After this, the algorithm checks for each level Li,
with i < h, if the edge e at level i meets the conditions to append the same symbol
previously appended to Sh to the sequence Si. Given an edge e = (p, q) at level Lh,
and the regions p′ and q′ containing regions p and q at level Li, respectively, the
conditions to check for each symbol are the following:

1. If region q′ has not been visited yet and it is different from region p′, then a (is
appended to Si.

2. If region q′ has been already visited and it is the first time that the pair of regions
(p′, q′) is processed, then a [is appended to Si.

3. If it is the second time that the pair (p′, q′) is processed, then a) or] is appended
to Si, depending on if its matching symbol is a (or [, respectively.

1We assume that the input graph is undirected, hence each edge is processed twice.

The complexity of computing the parenthesis sequence and the bitmap Bi is dom-
inated by the, at most, h comparisons per edge. Since each comparison takes loga-
rithmic time, the complexity of the construction algorithm is O(n+mh lgm′), where
m′ is the number of edges across all levels, the term lgm′ comes from a dictionary
data structure used to store edges processed at level Li, with i < h.

Primitive operations. Before explaining how to support the main operations, we
describe the basic primitives that are needed to navigate the hierarchy using the two
components described above. These primitives are based on the operations described
in the Preliminaries. Henceforth, each vertex in the planar embedding of level Li is
identified by its pre-order rank in the traversal of the spanning tree of the level.

• go up Lh(x, i): Find the position in Sh of the first region at level Lh that is contained
in the x-th region of level Li, with i ≤ h. To support this operation, we use the
bitmap Bi, which allows us to map regions of level Li into regions of level Lh. First,
we look for the position of the x-th opening parenthesis in Si by computing z =
select((Si, x). Then, we find the position of the 1-bit that represents the x-th region
in Bi by computing y = select1(Bi, rank()(Si, z)). Finally, the position of the output
region in Sh is computed by select()(Sh, y). Since go up Lh(x, i) depends on rank/select
operations, it takes constant time.

• go down Lh(x, d): For the x-th region of level Lh, find the position of the region at
level Lh−d that contains x. To support this operation, we first compute the position
p in Bh−d of the x-th region in level Lh, which can be done in constant time as p =
rank()(Sh, select((Sh, x)). The answer is the position in Sh−d of the nearest ancestor y
of x that is marked in Bh−d. For that, we compute q = select()(Sh−d, rank1(Bh−d, p)).
If Sh−d[q] = (, then q is the answer and the nearest ancestor is rank((Sh−d, q). Oth-
erwise, the answer is q′ = enclose(Sh−d, find open(Sh−d, q)). Since all operations take
constant time, go down Lh(x, d) also takes constant time.

• region id(Si, x): Given the x-th opening parenthesis of Si, it returns the position or
ID of the region represented by such parenthesis. This query can be implemented in
O(1) time as rank((Si, x).

• go level(x, i, j): Maps the x-th region of level Li into the level Lj. This query can
be implemented as a composition of the previous queries: First, map the x-th region
of level Li towards level Lh, and then map from level Lh towards level Lj. Thus,
this operation can be implemented in O(1) time as go down Lh(go up Lh(x, i), h− j).
Note that if j < i, we are going down in the hierarchy, and if j > i, we are going up.

Main operations. Given a region r1 at level Li, and a region r2 at level Lj, with i < j,
we study the following operations:

• contains: Does region r1 contain region r2? To solve it, we first compute the region z
that contains region r2 at level Li, which can be done as z = region id(Si, go level(r2, j, i)).
If r1 = z, we return true; otherwise, we return false. If r1 and r2 belong to the same
level of aggregation, and r1 = r2, we return true: otherwise, we return false. The
time complexity of this query is O(1).

• touches: Does region r1 share a boundary with region r2? To answer this operation,
we check all neighbors of r2 at level Lj. For each neighbor w of r2, we compute the
region z = region id(Si, go level(w, j, i)) that contains w at level Li. We distinguish
two cases: a) If region r2 is not contained into region r1 (contains(x, y) = false), we
must find one neighbor of r2 that is contained into region r1. Thus, if r1 = z, we
return true. If after checking all neighbors of r2 we cannot establish that r1 = z,
we return false; b) the second case is symmetric. If region r1 contains region r2
(contains(x, y)=true), then we must find one neighbor of r2 that is not contained into
r1. Therefore, if r1 6= z, we return true. If after checking all neighbors of r2 we cannot
establish that r1 6= z, we return false. The time complexity of this query is O(dr2),
where dr2 is the number of neighbors of region r2.

• contained: List all regions at level Lj contained into region r1. We compute the
range Sj[a..b] that contains all the regions at level j that are contained by the region r1,
where a = go level(r1, i, j) and b = find close(Sj, a). Then, we traverse the range left-
to-right reporting the regions that are contained into r1. The traversal is performed
as follows: 1) The first reported region is region id(Sj, a). Then, we set the position
p = leftmost((Sj, a), which returns the position of the leftmost open parenthesis after
position a. 2) If p ≥ b, we are done. If not, we check if the opening parenthesis
at position p is marked as the beginning of a new region. If it is marked, we set
p = leftmost((Sj, find close(Sj, p)) and repeat point 1. If not, we report region id(Sj, p),
set p = leftmost((Sj, p) and repeat point 1. To check if the opening parenthesis at
position p is marked, we need to compute c = rank()(Sj, p). If Bi[c] = 1, then the
parenthesis at position p is marked. The time complexity of this query is O(nj),
where nj is the number of regions at level Lj that are contained in region r1.

Experimental evaluation

Experimental setup. The experiments were carried out on a machine with an Intel
Core i7 (3820) processor clocked at 3.6 GHz. The machine runs Linux 3.13.0-86-
generic, in 64-bit mode. Each core has L1i, L1d and L2 caches of size 32 KB, 32 KB
and 256 KB, respectively. The shared L3 cache is of 10 MB. The machine has a 32
GB DDR3 RAM memory, clocked at 1334 MHz. The algorithms were implemented
in C++, using the library SDSL [18], and compiled with GCC version 4.8.4 and -O3
optimization flag.2 We measured the running time using the clock gettime function.
For the bitmaps Bi, we develop two implementations, ours and ours sd. The first
one uses plain bitmaps in all levels, and the second uses a plain bitmap in the Lh

level and SD-arrays in the rest. The compact planar embeddings of each granularity
level were implemented using the code of Ferres et al. [17].

Datasets. To test our data structure, we used the dataset TIGER3, provided by
the U.S. Census Bureau. The TIGER dataset provides geographic and cartographic
information of the administrative divisions of the territory in USA. The information
is hierarchically organized in granularity levels. For the current work, we generated

2Our implementation is available at https://github.com/Desidia/pemb
3TIGER dataset, version 2019. https://www2.census.gov/geo/tiger/TIGER2019/.

two datasets, tiger usa and tiger 8s, with the following hierarchy (from lowest, L1,
to highest, L6, granularity level): State, County, Census tract, Census block group,
Census block and Face (see Table 14). The dataset tiger 8s corresponds to the eight
neighboring states of Nevada, Utah, Arizona, Colorado, New Mexico, Kansas, Okla-
homa and Texas, and tiger usa corresponds to the whole continental part of USA.

Dataset Level Vertices (n) Edges (m)

tiger usa

L1 50 140
L2 3,110 9,095
L3 72,512 201,631
L4 216,243 597,784
L5 11,004,160 26,732,935
L6 19,735,874 43,837,150

tiger 8s

L1 9 20
L2 595 1,730
L3 11,626 31,412
L4 33,804 91,891
L5 2,233,031 5,429,483
L6 4,761,354 10,326,904

Table 1: Datasets used in our experiments.
Each level includes one node representing
the external face of the embedding.

Dataset Structure Embedding Hierarchy

tiger usa

Baseline 50.94 259.68
ours 50.94 37.54
ours sd 50.94 6.96

tiger 8s

Baseline 11.45 55.51
ours 11.45 12.21
ours sd 11.45 1.63

Table 2: Space consumed in MB.

Baseline. We compare our structure
against a pointer-based baseline that also
implements each level using the compact
planar embeddings in [17]. Additionally,
the baseline stores a vector for each level
i ∈ {0..h− 1}, in which each position j,
representing a region r′, stores the index
of the region r at level i+1 that contains
r′. For a region r at level Li, it also stores
pointers to the regions at level Li+1 that
are contained into r. In this representa-
tion, the operation go level(x, i, j) is sup-
ported in O(h) time, since in the worst
case we must traverse all levels. The
main operations were implemented using
a logic similar to the one of our structure.
Thus, contains, touches, and contained
are supported in O(h), O(dyh) and O(nj)
time, respectively.
Space Usage. Table 2 shows the space
consumption of the three approaches.
For both datasets, our data structure
uses about 29% the space consumed by
the baseline, and 19% when using SD-
arrays. In terms of bits per region, ours
and ours sd use 23.9 and 15.7 bits per
region resp., for the dataset tiger usa,

considering the regions of all the levels, while the baseline uses 84 bits. Similar values
were observed for the other datasets. Considering only the space of the hierarchy,
ours and ours sd use 15% and 3% of the space needed by the baseline, respectively.

Running time. To evaluate the running time of contains and touches, 200 ran-
dom operations were executed for each pair of aggregation levels (we omit the outer
face from the pool of candidates since it has as a large number of neighbors, which
may disturb the results). For contained, all possible queries between each pair of
aggregation levels were executed. For contains and contained, there are 15 valid
pairs ((Li, Lj), i ∈ [1, 5], j ∈ [i + 1, 6]), and for touches there are 21 valid pairs
((Li, Lj), i ∈ [1, 6], j ∈ [i, 6]). In total, we executed 3,000 operations of the first

4A more detailed description of the datasets is available at http://www.inf.udec.cl/

~jfuentess/datasets/graphs.php

 0

 0.3

 0.6

 0.9

 1.2

 1.5

 1 2 3 4 5

T
im

e
 (

n
s)

Distance level

Ours

Ours SD

Baseline

(a) Operation contains

 0

 1.2

 2.4

 3.6

 4.8

 6

 7.2

 1 2 3 4 5 6

Distance level

Ours

Ours SD

Baseline

(b) Operation touches

 0

 0.15

 0.3

 0.45

 0.6

 0.75

 0.9

 1 2 3 4 5

Distance level

Ours

Ours SD

Baseline

(c) Operation contained

Figure 3: Running time in nanoseconds using the dataset tiger usa.

Granularity
level

ours ours sd Baseline

L5 L4 L3 L2 L1 L5 L4 L3 L2 L1 L5 L4 L3 L2 L1

L6 0.21 0.20 0.26 0.20 0.10 0.34 0.25 0.26 0.25 0.24 0.03 0.01 0.01 0.01 0.01
L5 – 0.59 0.49 0.20 0.18 – 0.85 0.52 0.25 0.24 – 0.10 0.05 0.01 0.02
L4 – – 0.53 0.23 0.22 – – 1.18 0.31 0.29 – – 0.16 0.02 0.03
L3 – – – 0.36 0.28 – – – 0.40 0.36 – – – 0.03 0.04
L2 – – – – 0.43 – – – – 1.60 – – – – 0.29

Table 3: Running time in nanoseconds for dataset tiger usa and operation contained

type, 4,200 operations of the second, and 11,666,872 operations of third type. Each
operation was repeated 30 times and the average of those repetitions is reported.

Figure 3 shows the average running time for the three operations using the largest
dataset tiger usa (similar results were observed for the other dataset). In the figure,
the results were grouped by distance level, where all valid pairs (Li, Lj), i ∈ [1, 6 −
c], j = i+ c are grouped into the distance level c. In contained, the running time was
divided by the number of regions returned. As expected, our approach is slower than
the baseline, but still in the order of nanoseconds. Another important observation is
that the use of the SD-array does not significantly increase running times.

Table 3 shows in detail the results of executing contained between all valid pairs
for the dataset tiger usa. As in Figure 3c, we report query time per returned region.
As this query lists all the regions at a specific level that are contained into the queried
region, the number of results per query is drastically affected by the targeted region
and level. Each point in the plots of Figure 3c aggregates the values of one diagonal
of these tables. As it can be seen in the rows of the tables, as the target level is
farther away from the original level, all the structures obtain faster times, which can
be explained by the amortization over the number of returned regions.

Conclusions and Future Work
We introduced a compact data structure for multi-granular topological hierarchies,
which is based on previous results on compact planar graph embeddings [7]. For a
hierarchy of h levels, the proposed structure uses only 4

∑h
i=1mi+2nh(h−1)+o(hnh)

bits, where ni and mi correspond to the number of vertices and edges of the i-th gran-
ularity level, respectively. In practice, our representation of the hierarchies use about

20% of the space needed by a baseline implementation, and less than 5% when using
compressed bitmaps. In combination with the compact planar graphs, this produces
a solution that uses 23.9 bits per region (or 15.7 when using SD-arrays), whereas
the baseline uses 84 bits. Regarding running time, as expected, our proposal is in
general slower than the baseline, but competitive, specially for operation touches. An-
other important conclusion is that the use of compressed bitmaps does not drastically
increase running time, providing even faster times for operation contains.

Our model assumes that all sub-regions composing a region at higher granularity
level are contiguous, which is the most common case (more than 99.7% of the faces
are contiguous in our dataset). In the full version, we will show how to adapt our
representation to support non-contiguous sub-regions.

References
[1] B. Kuijpers, J. Paredaens, and J. Van den Bussche, “Lossless representation of topo-

logical spatial data,” in SSD, 1995, pp. 1–13.
[2] Y. Deng and P. Z. Revesz, “Spatial and topological data models,” in Information

Modeling in the New Millennium, pp. 345–359. Idea Group, 2001.
[3] A. Guttman, “R-trees: A dynamic index structure for spatial searching,” SIGMOD

Rec., vol. 14, no. 2, pp. 47–57, 1984.
[4] H. Samet, “Bibliography on quadtrees and related hierarchical data structures,” in

Data Structures for Raster Graphics, 1986, pp. 181–201.
[5] M. Hadjieleftheriou, E. Hoel, and V. J. Tsotras, “Sail: A spatial index library for

efficient application integration,” Geoinformatica, vol. 9, no. 4, pp. 367–389, 2005.
[6] G. Navarro, Compact Data Structures – A Practical Approach, Camb. U. Press, 2016.
[7] J. Fuentes-Sepúlveda, G. Navarro, and D. Seco, “Implementing the topological model

succinctly,” in SPIRE, 2019, pp. 499–512.
[8] C. Bettini, X. Wang, and S. Jajodia, “A general framework for time granularity and its

application to temporal reasoning,” Ann.Math.Art. Intell., vol. 22, pp. 29–58, 1998.
[9] Sh. Wang and D. Liu, “Spatio-temporal database with multi-granularities,” in WAIM.

2004, vol. 3129, pp. 137–146, Springer.
[10] Z. Chen, M. Grigni, and Ch. H. Papadimitriou, “Planar map graphs,” in STOC, 1998,

pp. 514–523.
[11] Md. J. Alam, M. Kaufmann, S. G. Kobourov, and T. Mchedlidze, “Fitting planar

graphs on planar maps,” J. Graph Algorithms Appl., vol. 19, no. 1, pp. 413–440, 2015.
[12] C. Bettini, C. E. Dyreson, W. S. Evans, R. T. Snodgrass, and X. S. Wang, “A glossary

of time granularity concepts,” in Temporal Databases, Dagstuhl, 1997, pp. 406–413.
[13] E. Camossi, M. Bertolotto, and E. Bertino, “A multigranular object-oriented frame-

work supporting spatio-temporal granularity conversions,” Int. J. Geo. Inf. Sci., vol.
20, no. 5, pp. 511–534, 2006.

[14] M. A. Mach and M. L. Owoc, “Knowledge granularity and representation of knowledge:
Towards knowledge grid,” in IIP, 2010, vol. 340, pp. 251–258.

[15] J. I. Munro and P. K. Nicholson, “Compressed representations of graphs,” in Ency-
clopedia of Algorithms, pp. 382–386. 2016.

[16] G. Turán, “On the succinct representation of graphs,” Discr. Appl. Math., vol. 8, no.
3, pp. 289 – 294, 1984.

[17] L. Ferres, J. Fuentes-Sepúlveda, T. Gagie, M. He, and G. Navarro, “Fast and compact
planar embeddings,” Comput. Geom., vol. 89, pp. 101630, 2020.

[18] S. Gog, T. Beller, A. Moffat, and M. Petri, “From theory to practice: Plug and play
with succinct data structures,” in SEA, 2014, pp. 326–337.

