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Abstract
The Burrows-Wheeler Transform (BWT) has become an essential tool for compressed text
indexing. Computing it efficiently and within little space is essential for the practicality of
the indexes that build on it. A recent algorithm (Munro, Navarro & Nekrich, SODA 2017)
computes the BWT in O(n) time using O(nlgσ) bits of space for a text of length n over an
alphabet of size σ. The result is of theoretical nature and its practicality is far from obvious.
In this paper we engineer their solution and show that, while a basic implementation is slow
in practice, the algorithm is amenable to parallelization. For a wide range of alphabet sizes,
our resulting implementation outperforms all the compact constructions in the space/time
tradeoff map. On the smallest alphabets we are outperformed in time, but nevertheless
achieve the least space within reasonable time. For example, in DNA sequences, the most
widely used application of BWTs, our construction uses 4.84 bits per base and builds the
BWT at a rate of 2.13 megabases per second, whereas the closest previous alternative uses
around 7.09 bits per base and runs at 4.17 megabases per second.

Introduction
The Burrows-Wheeler Transform (BWT) [1] has become in a key tool for areas such
as bioinformatics and text searching [2]. For example, it is the kernel component of
BowTie (bowtie-bio.sourceforge.net) and BWA (bio-bwa.sourceforge.net).

Given a sequence S[1..n] and the suffix array SA[1..n] of S [3], the BWT B[1..n]
of S is defined as B[i]=S[SA[i]−1], taking S[0]=S[n]. Note that, on an alphabet of
size σ, either S or B can be stored in nlgσ bits (lg is the logarithm with base 2 by
default), whereas SA requires nlgn bits in plain form. Compact text indexes use B
as a replacement of both S and SA, thus significantly reducing space requirements.

It is easy to compute the BWT by first building SA, which can be done in linear
time and space (e.g., [4–7]). However, this requires at least nlgn bits of intermediate
space to build a smaller data structure, whose main advantage is, precisely, that it
can fit in main memory whenever the nlgn bits of SA do not. Compact solutions
for the BWT computation, without building SA as an intermediate structure, have
been proposed. Kärkkäinen [8] showed how to build it in O(nlgn+

√
vn) average time

(O(nlgn+vn) worst case) and O(nlgn/
√
v) bits of space, excluding S, for v∈[3,n2/3].

Hon et al. [9] built it in O(nlgn) time and within O(nlgσ) bits of space; improved
later to O(nlglgσ) time [10]. Okanohara and Sadakane [11] built it in O(n) time,
using O(nlgσlglgσn) bits. Belazzougui [12] obtained O(n) randomized time within
O(nlgσ) bits of space, making the time linear worst-case in the extended version [12].
The recent work of Munro et al. [13] also achieves linear O(n) worst-case time within
O(nlgσ) bits of space. Their presentation, however, is theoretical and leaves open
how would the construction perform in practice, both in space and time.
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In this work we focus on in-memory algorithms for the BWT construction. Specif-
ically, we engineer the recent algorithm of Munro et al. [13]. We manage to retain
the theoretical complexities for the case σ=O( lgn

lglgn
). Since our main focus is to use

O(nlgσ) instead of O(nlgn) bits, we are indeed interested in small and moderate al-
phabet sizes (say, up to σ=256). Our experiments show that it is indeed possible
to build the BWT within little space in practice, around nlgσ to 2nlgσ bits, but a
sequential implementation, even if optimized, is too slow. We show, however, that the
algorithm allows for significant parallelization, developing a multithreaded version of
the construction. This multithreaded version shows to be competitive for interesting
cases, such as DNA sequences (the most common application of the BWT).

Preliminaries. Given a sequence S[1..n] and its alphabet Σ of size σ, rankc(S ,i)
reports the number of occurrences of c in the prefix S[1..i], whereas insertc(S ,i) moves
all the symbols in the suffix S[i..n] one position to the right and inserts c at S[i].

The suffix array SA[1..n] of sequence S[1..n] is a permutation of [1..n] so that,
for all 1≤i<n, S[SA[i]..n]<S[SA[i+1]..n] in lexicographic order [3]. To make lexico-
graphic comparison of suffixes well defined, it is assumed that S ends with a special
terminator character $ that is smaller than the others.

By default, we assume the RAM model of computation, with a word w of Θ(lgn)
bits supporting the typical operations. For parallel algorithms, we use the Dynamic
Multithreading Model (Dym) [14], which provides two basic measures: The work (T1),
which corresponds to the running time of the multithreaded computation using only
one thread, and the span (T∞), which can be interpreted as the best running time
we can obtain, no matter the number of available threads. With both measures, the
model provides an upper bound Tp=O(T1/p+T∞) using p threads.

Related Work
In this work we design a practical version of the algorithm of Munro et al. [13].
Theirs is an iterative algorithm that divides the input sequence S into subsequences
of size ∆=lgσn, constructing the BWT B in ∆ steps. They add enough $ symbols
to make n divisible by ∆. For the first and second steps, the algorithm concatenates
the sequences S1 and S2, where Sj is obtained by rotating S j symbols to the right,
copying the last j symbols of S to the beginning of Sj. The concatenation S1◦S2 is
represented as a sequence of 2n

∆
meta-symbols over a meta-alphabet of size σ∆, by

grouping ∆ consecutive symbols of S1◦S2. Then, the algorithm computes the suffix
array of S1◦S2 using a linear time and space algorithm [6]. The resulting suffix array is
equivalent to the suffix array of the suffixes of S starting at positions i∆−1 and i∆−2,
with 1≤i≤ n

∆
. With the suffix array, the symbols at positions i∆−2 and i∆−3 are

inserted in B. Two arrays, W and Acc, are needed to store tracking information. W
stores the position of the suffixes i∆−2 in B (i∆−j, in general) and Acc[a] stores the
number of occurrences of symbols c<a in B. For the remaining steps j=3,4,...,∆, the
symbols S[i∆−j−1] are inserted at positions pi=Acc[a]+ranka(B ,W [i ])+ci, where
a=S[i∆−j] and ci corresponds to the number of S1 suffixes appearing before the
suffix S[i∆−j..n] in the suffix array of S1◦Sj. On each step, n

∆
new symbols are

inserted in B. Batches of n
∆

rank and insert operations are done in O( n
∆

) time,
spending O(1) amortized time per operation. On polylogarithmic-sized alphabets,



this is achieved by using the dynamic wavelet tree of Navarro and Nekrich [15]; more
sophisticated solutions are used for larger σ. At the end of each step, the arrays W
and Acc are updated considering the new inserted symbols. Once the ∆th step is
completed, the array B is the BWT of S.

Engineering the Algorithm
Rotations. In the jth step, the algorithm needs to compute the rotation Sj of S.
We can simulate any rotation of S without storing it explicitly, by prepending the
last ∆ symbols of S at its beginning, using ∆lgσ extra bits. Thus, given any jth
step, we can recover the ith meta-symbol of Sj by reading ∆ consecutive symbols of
S starting at position (i−1)∆−j, with 1≤i≤ n

∆
and 1≤j≤∆.

Suffix Array. To compute the suffix array of the rotations, we first need to reduce
the meta-alphabet of size σ∆ to a continuous alphabet of size 2n

∆
. For that, we store

a temporal array R[1..2n
∆

] of O( n
∆

lg n
∆

) bits, with R[i]=i, to represent the indexes of
the concatenation. Instead of sorting an array of meta-symbols, we sort the indexes
representing them in R. The sorting is carried out in O( n

εlgn
) time and O(nεlg n

∆
)

bits using radix sort with radix nε, for any constant 0<ε<1 (note that we sort O( n
∆

)
symbols but need Θ( ∆

lgn
) passes of radix sort). After the sorting, we replace the meta-

symbols by their new representations in the continuous alphabet. Each meta-symbol
is replaced by the position of its index in the sorted array. In the case of indexes
representing equal meta-symbols, we take the smallest position among those indexes.

Batches of operations. The crux of the theoretical algorithm [13] is a (complicated)
data structure to perform a batch of O( n

∆
) rank or insert operations in time O( n

∆
). For

polylogarithmic-size alphabets, this boils down to a dynamic multiary wavelet tree
[15], but this is still difficult to implement. We present a simple alternative for the
case σ=O( lgn

lglgn
). Let Q={rankb1 (B ,i1 ),...,rankbm (B ,im)} be the set of rank operations

to be solved and let A be an array of size m=O( n
∆

) where the answers will be stored.
The set Q comes already sorted by increasing indexes. We allocate two arrays, Fl and
Fg, of 2σlglgn and σlgn bits, respectively, to store the symbol frequencies during the
queries processing. We traverse B left-to-right, counting in constant time the number
of occurrences of all the symbols in lgn

2
consecutive bits, by using a lookup table of

2
√
nσlglgn=o(n) bits. With the symbol frequencies from the lookup table, we update

Fl in time O(σlglgn
lgn

), by adding various fields in parallel on a machine word of Θ(lgn)

bits. After reading lg2nlgσ consecutive bits, we update the array Fg by adding to it
the accumulated frequencies of Fl, in time O(σ), and then all the entries of Fl are
set to zero. Thus, the total time used to update the arrays Fl and Fg is O(nσlgσlglgn

lg2n
).

Once we reach the position ik of an operation rankbk (S ,ik), we compute its answer as
A[k]=Fg[bk]+Fl[bk]+c, where Fg[bk] and Fl[bk] represent the accumulated frequency
of the symbol bk in Fg and Fl, and c represents the number of occurrences of bk in
the range B[b 2ik

lgn
c lgn

2
...ik], computed by the lookup table described above. This adds

O(m)=O( n
∆

) time, which is absorbed by the cost of traversing B. Note that the total

cost is O( n
∆

) whenever σ=O( lgn
lglgn

). The extra space is O(σlgn) bits.

For a batch of inserts, Q={insertb1 (B ,i1 ),. . . ,insertbm (B ,im)}, the increasing in-
dexes i1,i2,... correspond to their final positions after all the insertions have been done.



Input: S, n=|S| and alphabet size σ
Output: Burrows-Wheeler Transform B

1: ∆←lgσn; nms←dn/∆e
2: W [1..nms] is an array of pairs
3: Acc[1..σ] is an array of integers
4: B[1..n] is the output BWT
5: step12(S1◦S2, W , Acc, B)
6: for j←3 to ∆ do
7: batchOps(B, S1◦Sj , W , Acc)
8: countS1(S1◦Sj , W )
9: sort(W )

10: batchInsert(B, S1◦Sj , W )
11: updateAcc(Acc)
12: sort2(W )

1: function step12(S1◦Sj , W , Acc, B)
2: Tc← contAlphabet(S1◦Sj)
3: SA← sa(Tc)
4: for i←1 to 2nms do
5: j←SA[i]−1
6: if SA[i]=1 or SA[i]=nms+1 then
7: j←j+nms
8: B[i]← Rm(Tc[j])
9: if SA[i]>nms then

10: x←SA[i]−nms
11: W [x].f←i
12: W [x].s←x
13: countSymbols(B, Acc)

Algorithm 1: BWT Computation Function 2: Steps 1 and 2

1: function batchOps(B, S1◦Sj , W , Acc)
2: sort(W )
3: batchRank(B, W )
4: for i←1 to nms do
5: s← Lm(S1◦Sj [nms+W [i].s])
6: W [i].f←W [i].f+Acc[s]

1: function countS1(S1◦Sj , W )
2: Tc← contAlphabet(S1◦Sj)
3: SA← sa(Tc); k←0
4: for i←1 to 2nms do
5: if SA[i]>nms then
6: x←SA[i]−nms
7: W [x].f←W [x].f+k
8: else k←k+1

Function 3: Batch of operations Function 4: Count suffixes of S1

We start moving entries of B to the right to make room for the insertions. The range
B[im−m+1..n−1] is moved to B[im+1..n+m−1] and the ranges B[ik−1−k+2..ik−k]
are moved to B[ik−1+1..ik−1], for m≥k≥2. The ranges must be copied right-to-left
to avoid overwriting entries. Finally, we set B[ik]=bk, for 1≤k≤m. Using the RAM
model, we can move all the entries to the right in O(nlgσ

lgn
+m) time and the time to

insert the new symbols is O(m), giving a total time of O(nlgσ
lgn

+ n
∆

) for the n
∆

inserts.

The algorithm. We use the constant time operations Lm(M) and Rm(M) to obtain
the leftmost and rightmost symbol of the meta-symbol M , respectively. Algorithm
1 shows the general idea. It proceeds in ∆=lgσn steps, and in each step it inserts
nms=d n∆e new symbols to the BWT B. The algorithm allocates two arrays, W [1..nms]
and Acc[1..σ]. Given the ith meta-symbol Mi at step j≥3, W is an array of pairs,
where the first W [i].f stores the position where Rm(Mi) was inserted in B in the step
j−1, and the second component W [i].s=i. During the execution of the algorithm, W
will be sorted by W [i].f in order to perform the batches of rank and insert operations,
and by W [i].s to restore the order among the meta-symbols. Acc[a] stores the number
of occurrences of symbols c<a in B. At the beginning, we allocate the nlgσ bits of
the output BWT B (line 5). The notation S1◦Sj to represent the concatenation of
the rotations S1 and Sj, yet such rotations are not stored explicitly.

The steps 1 and 2 are processed together (Function 2). First, the continuous
alphabet of S1◦S2 and its suffix array are computed (lines 2–3). Then, the first 2nms
symbols of B are inserted by extracting the rightmost symbol of each meta-symbol
(lines 4–8). The position of the symbols of S2 in B are stored in W (lines 9–12) and
the array Acc is filled with the accumulated frequency of the symbols (line 13).



For the remaining 3≤j≤∆ steps, let Sj[k] be the kth meta-symbol of Sj. The
position of the new symbol Rm(Sj[k−1]) is Acc[s]+ranks(B ,W [k ])+ck, where s is
Lm(Sj[k]), Acc[s] is already stored, and ck is the number of suffixes of S1 appearing
before the suffixes of Sj[k] in the suffix array of S1◦Sj. The values ranks(B ,W [k ])
and ck are computed in Functions 3 and 4, respectively. Function 3 sorts the rank
operations by their indexes, and then it uses the solution described previously to
answer the batch of ranks. The answer of each rank is stored in the first component
of W . Finally, the algorithm adds the corresponding values of Acc (lines 4–6). In
Function 4, the continuous alphabet of S1◦Sj and its suffix array are computed (lines
2 and 3 of Function 4). Then, a scanning over the suffix array counting the suffixes
of S1 is performed (lines 4–10). The answers are added to the first component of
W . With the final position of the new symbols, they are sorted by such positions
(line 10 of Algorithm 1). Then, the sorted symbols are inserted and Acc is updated
(lines 11 and 12). Finally, the new symbols and their positions are restored to their
original positions by sorting W by its second components (line 13). This last sorting
is necessary to maintain the relative order of the meta-symbols across all the steps.

Complexity analysis. We omit the analysis of Function 2, since it is subsumed by
the cost of the last ∆−3 steps. For one step, Function 3 is dominated by the batch of
rank operations, taking O(nσlgσlglgn

lg2n
) time and O(nlgσ) bits of extra space. Function

4 takes O( n
lgn

) time and O( n
∆

lg n
∆

) bits for the continuos alphabet, and O( n
∆

) time and

O( n
∆

lg n
∆

) bits of extra space for the suffix array construction, using the algorithm
of Kärkkäinen et al. [6] and a radix sort with radix

√
n
∆

in their internal working.
All the other sorting algorithms take O( n

∆
) time and O(nεlg n

∆
) bits using radix sort.

The batch of inserts is done in O(nlgσ
lgn

+ n
∆

) time, using O(nlgσ) bits. Finally, the

update of Acc takes O( n
∆

) time and no extra space. Thus, repeated ∆ times, the final

complexity is O(n+n∆lgσ
lgn

+n∆σlgσlglgn
lg2n

), the last two terms dominated by batchInsert

and batchRank. Note that our complexity grows linearly with ∆ and σ. Choosing
any ∆=Θ(lgσn), it simplifies to O(n+nσlglgn

lgn
), which when σ=O( lgn

lglgn
) is O(n).

The working space is O( n
∆

lgn) bits, which decreases with ∆ and is O(nlgσ) for
∆=Θ(lgσn). The peak of space consumption is 18 n

∆
lgn+o(n) bits. It occurs in line

3 of Function 4, where the 2 n
∆

lgn bits of W , the 2 n
∆

lg n
∆

bits of Tc, the 2 n
∆

lg n
∆

bits
of the output SA, the 12 n

∆
lg n

∆
+o(n) bits of the suffix array computation, and the

o(n) bits of Acc are allocated at the same time. The factor 12 of the suffix array
computation comes from the fact that the algorithm [8] performs (in the worst case)
lg3/2n recursive calls, allocating two arrays of 2(2

3
)i n

∆
lg n

∆
bits in the ith recursive call,

and performing a radix sort of radix
√

n
∆

. We reduce this peak in the next section.

Parallelization and Implementation
Despite the good time complexity of our algorithm for σ=O( lgn

lglgn
), in practice it turned

out to be slow. We found, however, that the algorithm is amenable to parallelization,
and thus we designed a multithreaded version. Besides, we further engineer the
algorithm, giving up on some theoretical guarantees in favor of faster solutions. We
focus on reducing space, since the constant in the space bound (O( n

∆
lgn) bits) is

rather high. Our code will be publicly at https://github.com/jfuentess/bwt.



Parameter ∆. Our analysis shows that the space decreases with ∆. In our experi-
ments, we use values of ∆ up to b4096

lgσ
c symbols, at the cost of increasing linearly the

time complexity, but we will take some measures to reduce this impact.

Parallel sorting. We used a parallel implementation of radix sort [16] to sort W
(lines 10 and 13 of Algorithm 1 and line 2 of Function 3). The continuous alphabet was
computed with a parallel quicksort, since the cost of radix sort increases linearly with
∆. This corresponds to the traditional recursive algorithm, where the two recursive
calls are executed concurrently. For the split step of the quicksort, the array is divided
into p equal-size segments sharing a global pivot. Then, on each segment a sequential
split function is applying. Finally, the outputs of the sequential split functions are
merged into one array by using prefix sums to compute the position of each entry.
To compare meta-symbols of ∆lgσ bits, the algorithm must read them by words of w
bits, starting from the most significant bits. For large values of ∆, quicksort is faster
than radix sort since it requires fewer memory accesses to decide which of two meta-
symbols is smaller (reading the first word suffices most of the times). With p threads,
quicksort takes O(( n

p∆
+lgp)lgn) parallel average time and 2plg n

∆
bits of space. The

resulting average work is O( n
∆

lg n
∆

) and the span is O(lg2 n
∆

). Notice that the parallel
algorithm needs O( n

∆
lgσ) bits to copy the elements at the end of the parallel split, but

we can reuse one of the two arrays of the parallel suffix array algorithm (see next).

Suffix array on integers. After using the parallel quicksort to compute the contin-
uous alphabet, we use the parallel range algorithm [16] to compute the suffix array of
an array of meta-symbols. On its implementation, the parallel range algorithm uses
two temporal integer arrays besides the input and output arrays, spending 2 n

∆
lg n

∆
bits

of extra space, O( n
∆

lg n
∆

) work and O(( n
∆

)ε) span, for 0<ε<1. Besides being practical,
this reduces the peak of space consumption from 18 n

∆
lgn+o(n) to 8 n

∆
lgn+o(n) bits.

Rotations. In favor of reducing running time, we store explicitly the starting position
of each meta-symbol in the input sequence. We store only the positions of the current
rotation, since the first rotation S1 can be derived from the current one. This requires
n
∆

lgn further bits, leading to the final peak memory consumption of 9 n
∆

lgn+o(n).

Function 2. The continuous alphabet (line 2 of Function 2) is computed with parallel
quicksort. The suffix array (line 3 of Function 2) is built using the parallel range
algorithm. The for loop of lines 4–11 can be parallelized straightforwardly, since each
new symbol can be processed independently, giving O(n/∆) work, O(lg n

∆
) span and

no extra space. Finally, for the frequency counting of line 13, B is divided into p
equal-sized segments, and the frequency counting is performed concurrently in all the
segments. Then, the result of the segments are aggregated by performing σ parallel
prefix sums, one for each symbol. The result of the prefix sums are stored in Acc. A
final prefix sum is performed over Acc in order to obtain the accumulated frequency.
The space used by the arrays of each segment is O(pσlg n

∆
) bits. The work is O(n/∆)

and the span is O(lg n
∆

). This analysis is also valid for Function 4.

Function 3. The batch of rank operations is sorted with parallel radix sort. The
operations are supported by dividing the input sequence S into p subsequences of
equal size. All the subsequences are concurrently traversed left-to-right using a global



array, Fg, and a local array, Fl, per subsequence, similarly to the sequential case.

During the traversal of a subsequence S[ jn
p

+1... (j+1)n
p

], each operation ranks(S ,i)

with jn
p
<i≤ (j+1)n

p
is partially answered by counting the number of occurrences of the

symbol s in the subsequence S[ jn
p

+1...i]. After the traversal, the p Fg arrays contain
the frequency counting in the p subsequences. We apply σ parallel prefix sums over
the Fg arrays, and then correct the partial answers of the operations by adding the
values of the Fg arrays. For the operation ranks(S ,i), we sum the occurrences of the

symbol s in the (b (i−1)p
n
c+1)-th Fl array. The space usage is O(pσlgn) bits for the Fg

and Fl arrays. The parallel time is O(nσlgσlglgn
plg2n

), plus O(σ) for the partial sums (by

using p/lgp threads per partial sum and then summing σ/lgp groups of lgp symbols
in parallel). This yields the same work of the sequential algorithm and O(σ∆) span.

Batches of insertions. Allocating a temporary array, insertions can be parallelized
by moving independently all the ranges described in the sequential case. However,
we decided to avoid increasing the space, performing the insertions sequentially.

Algorithm 1. The for loop of lines 6–12 is carried out sequentially. Note, however,
that Function 3 and lines 2–3 of Function 4 can be executed concurrently, since they
execute independent procedures. The integer sortings of lines 10 and 13 use parallel
radix sort. The update of Acc (line 12) can be done in parallel as the last step of
Function 2 by storing the frecuency counting of the recently inserted symbols in a
temporary array of σ entries and then adding them to Acc in parallel for each symbol.

Complexity. The average complexity of our algorithm, with p threads, is then
O(n

p
lg n

∆
+n∆σlgσlglgn

plg2n
+∆σ+polylog n), with an average work of O(nlg n

∆
+n∆σlgσlglgn

lg2n
+

∆σ). The first term replaces the original O(n+n∆
lgn

) complexity terms, which is more
convenient for the large ∆ values we use. Note that we preserve a linear dependence on
∆ in the second term, coming from the batches of ranks. The span is O(∆σ+∆1−εnε).
We exclude the batches of inserts, which are done sequentially to save space, adding
O(n∆lgσ

lgn
) time, but they could be done in O(n∆lgσ

plgn
) parallel time, O(n∆lgσ

lgn
) work, and

O(∆lg n
∆

) span. The space is 9 n
∆

lgn+o(n) bits, to which parallelization adds O(pσlgn)
bits. This extra space is negligible for practical values of p.

Experiments
Setup. We implemented our algorithm in C++ and compiled with GCC 6.3 and
option -O3. We compare against Okanohara and Sadakane [11] (os), Kärkkäinen [8]
(kar)1, the SA algorithm divSufSort implemented by Mori (dss), and the parallel SA
algorithm of Labeit et al. [17] (pdss). We only consider one parallel algorithm, pdss,
since it is the parallel version of dss and, as reported in [17], it outperforms a parallel
version of kar. A parallelization of os is far from trivial, since it exhibits several data
dependencies. We could avoid such dependencies by storing temporal data during the
computation, but it will increase the working space. Baseline were compiled with their
best optimization. We tried to include the algorithm of Hayashi and Taura [18], but

1We used the parameter v=7. We tried increasing v to reduce space, but the time increases fast
and makes it not competitive



had problems to compile it. Yet, according to [18], os is more competitive both in
space and time. The experiments ran on a machine with two Intel R© Xeon R© Silver
4110 Processors with 16 physical cores clocked at 2.1GHz, with per-core L1 and L2
caches of 32KB and 1MB respectively, a per-processor L3 cache of 11MB and 252GB of
DDR3 RAM memory (126GB per NUMA node). Hyperthreading was enabled. Run-
ning time was measured with the functions in <time.h>. The memory consumption
was measured using malloc count (http://panthema.net/2013/malloc_count). We
report the median running time of 10 repetitions. Different values of n, σ and ∆ were
tested. In particular, we tested ∆=b 2z

lgσ
c symbols, for 6≤z≤12.

Datasets. Table 1: Datasets.

Dataset n σ

gen-x 1,073,741,824 x
dna 403,919,018 4
prot 1,073,741,824 27
xml 294,724,056 97
eng 1,073,741,824 239

Table 1 shows our datasets. The datasets gen-x are
sequences with σ=x, x∈{3,7,15,31,63,127}, generated
with the random generator of Pizza&Chili, which dis-
tributes the symbols uniformly and independently.
We also include real datasets dna, prot, dblp (xml),
and eng, which correspond to sequences of the same
name from the Pizza&Chili corpus. We left only the
four symbols A, C, G, T from dna.2 We remind that, during the computation of the
BWT, a special symbol $ is inserted, which increases the alphabet size by one.

Results. Figure 1a shows the effect of ∆ and σ over the memory consumption of
our algorithm. In the figure, the peak of memory does not consider the size of the
output. The size of the arrays SA, Tc, W and rotation, and the memory usage of the
suffix array algorithm, SA(), depend on ∆ and σ. The segment other corresponds to
additional arrays needed during the computation. The size of such arrays is negligible.

Figure 1b shows the space/time tradeoff for the gen-x datasets. The reported
running time of the two parallel algorithms, ours and pdss, considers 32 threads.
Using ∆=b256

lgσ
c symbols, our algorithm uses less memory than all the competitors for

all values of σ. The algorithms pdss, dss and kar store each symbol of the input in
an 8-bit variable, allowing a maximum alphabet of size 256. This is why they are not
affected by the increasing values of σ. The algorithm kar is slightly faster than ours,
but still uses much space. The fastest of all the algorithms is pdss, but it is also the
one with the highest memory consumption. For σ≤30, our closer competitor is os.
For those, our algorithm with ∆=b256

lgσ
c is slower than os but it is the one using the

least space. For σ>30, our algorithm dominates os both in time and space.
Figure 1c shows the results for dna, the most common application of BWT con-

struction (e.g., in bioinformatics). In this case, we need to use ∆≥128 to outperform
os in space. With ∆=256 we use 68% of the space of os while being twice as slow.
The price of further reducing space by increasing ∆ is an increase in the computa-
tion time, lead by the functions batchRank and batchInsert. With ∆=1024, for
example, our algorithm uses 49% of the space of os, but it is almost 3 times slower.

Considering compressible texts, our algorithm does benefit from compressibility,
using less space than on the random text of similar σ, since not all the possible

2The use of 15 meta-symbols representing uncertainty by means of subsets of these letters is now
less common; instead, explicit probabilities of certainty are separately stored in some cases.
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Figure 1: Time and memory usage to construct the BWT.

distinct meta-symbols occur. However, the algorithm os benefits much more, as it
uses induced sorting to compute the BWT. Induced sorting classifies the suffixes of
a sequence S into A, B and A∗. A suffix S[i..n] is called A-type if S[i..n]<S[i+1..n],
B-type if S[i..n]>S[i+1..n], and A∗-type if it is A-type and S[i−1..n] is B-type. By
defining meta-symbols as the substrings between two consecutive A∗-type suffixes,
induced sorting captures repeated suffixes in the input S and produces a smaller
alphabet of meta-symbols [19]. Figures 1d–1f show this effect for the datasets prot,
xml and eng, where os dominates. On those texts, our algorithm needs higher values
of ∆ to beat os in terms of space: ∆≥102 (prot), 292 (xml), and 512 (eng). The
performance of os on those texts seems indeed related to their high-order entropy H,
performing as σ=2H=10.29 for prot, 1.78 for xml and 3.69 for eng.

In general, our algorithm offers the best option, or at least the best space within
reasonable time, for texts that are close to random (such as DNA sequences), whereas
os is preferable on well-compressible texts. With respect to scalability, our algorithm
exhibits a good speedup (we omit a figure for the speedup for lack of space). For
16 threads, our algorithm shows an efficiency (speedup/number of threads) of 50%,
decreasing to 30% for 32 threads. The reason is that the used machine has 16 phys-
ical cores, which hyperthreading increases to 32 logical cores. The speedup slightly
decreases with ∆, which is in line of our analysis, where the span increases with ∆.

Since the main point is to limit the consumption of main memory, external memory
constructions of the BWT and SA are an interesting alternative to consider. We leave
as future work a formal comparison against external memory algorithms, such as the
recent work of Kärkkäinen et al. [20] and the parallel algorithm Kärkkäinen et al.[21]

The slowest functions in our implementation are contAlphabet, batchRank,



batchInsert, and sa. In particular, implementations of batchRank and batchIn-
sert that do not scale linearly with ∆ would allow us using large ∆ values, reducing
space, without a sharp impact on construction time. We leave it as future work.
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