
Exploiting Computation-Friendly
Graph Compression Methods for
Adjacency-Matrix Multiplication

Alexandre P Francisco∗, Travis Gagie†, Susana Ladra‡, and Gonzalo Navarro§

∗INESC-ID / IST †EIT, Diego Portales University
Universidade de Lisboa and CeBiB

Portugal Chile
aplf@ist.utl.pt travis.gagie@gmail.com

‡Facultade de Informática / CITIC §Department of Computer Science
Universidade da Coruña University of Chile

Spain Chile
sladra@udc.es gnavarro@dcc.uchile.cl

Abstract

Computing the product of the (binary) adjacency matrix of a large graph with a real-valued
vector is an important operation that lies at the heart of various graph analysis tasks, such as
computing PageRank. In this paper we show that some well-known Web and social graph
compression formats are computation-friendly, in the sense that they allow boosting the
computation. In particular, we show that the format of Boldi and Vigna allows computing
the product in time proportional to the compressed graph size. Our experimental results
show speedups of at least 2 on graphs that were compressed at least 5 times with respect to
the original. We show that other successful graph compression formats enjoy this property
as well.

Introduction

Let A be an n×n binary matrix and x ∈ IRn a vector. Matrix vector multiplication,
either x ·A or A · x>, is not only a fundamental operation in mathematics, but also
a key operation in various graph-analysis tasks, when A is their adjacency matrix. A
well-known example, which we use as a motivation, is the computation of PageRank
on large Web graphs. PageRank is a particular case of many network centrality mea-
sures that can be approximated through the power method [1]. Most real networks,
and in particular Web and social graphs, have very sparse adjacency matrices [2].
While it is straightforward to compute a matrix-vector product in time proportional
to the nonzero entries of A, the most successful Web and social graph compression
methods exploit other properties that allow them to compress the graphs well beyond
what is possible by their mere sparsity. It is therefore natural to ask whether those
more powerful compression formats allow us, as sparsity does, to compute the product
in time proportional to the size of the compressed representation. This is an instance
of computation-friendly compression, which seeks for compression formats that not
only reduce the size of the representation of objects, but also speeds up computations
on them by directly operating on the compressed representations. Other examples

of computation-friendly compression are pattern matching in compressed strings [3],
computation of edit distance between compressible strings [4], speedups for multiply-
ing sequences of matrices and the Viterbi algorithm [5], building small and shallow
circuits [6], among other tasks [7].

In this paper we exploit compressed representations of Web and social networks
and show that matrix-vector products can be carried out much faster than just oper-
ating on all the nonzero entries of the matrix. Although our approach can be extended
to other compressed representations of graphs and binary matrices, we mostly con-
sider the representation proposed by Boldi and Vigna [8]. The relevant observation
for us is that adjacency lists, i.e., rows in A, are compressed differentially with re-
spect to other similar lists, and thus one can reuse and “correct” the result of the
multiplication of a previous similar row with x>.

We describe previous work in the next section. The following sections describe
PageRank and the compression format of Boldi and Vigna. We then describe how
we exploit that compression format to speed up matrix multiplication. The following
section contains experimental results, and we conclude with a discussion of other
compression formats that favor matrix multiplications, and future work directions.

Previous Work

Matrix multiplication is a fundamental problem in computer science; see, e.g., [9]
for a recent survey of results. Computation-friendly matrix compression has been
already considered by others, even if indirectly. Karande et al. [10] addressed it by
exploiting a structural compression scheme, namely by introducing virtual nodes. Al-
though their results were similar to the ones presented in this paper, their approach
was more complex and it could not be used directly, requiring the correction of com-
putation results. On the other hand, contrary to their belief, we show in this paper
that representational compression schemes do not always require the same amount of
computation, providing a much simpler approach that can be used directly without
requiring corrections.

Another interesting approach was proposed by Nishino et al. [11]. Although they
did not exploit compression in the same way we do, they observed that intermediate
computational results for the matrix multiplication of equivalent partial rows of a
matrix are the same. They used then an adjacency forest where rows are represented
by sharing common suffixes. We should note that the authors consider general real
matrices, and not only Boolean matrices as we do. Nevertheless they presented results
for computing the PageRank over adjacency matrices as we do, achieving similar
results. Their approach implied preprocessing the graph, however, while we start
from an already compressed graph. An interesting question is how their approach
could be exploited on top of k2-trees [12].

The question addressed here can also be of interest for the problem of Online
Matrix-Vector (OMV) multiplication. Given a stream of binary vectors, x1,x2,x3, . . .,
the results of matrix-vector multiplications xi·A can be computed faster than comput-
ing them independently, with most approaches making use of previous computations
xj · A, for j < i, to speed up the computation of each new product xi · A [13, 14].

Nevertheless, none of those approaches preprocess matrix A to exploit its redundan-
cies. Hence, by exploiting a suitable succinct representation of A as we do here, an
improvement for OMV can be easily obtained, with computational time depending
on the length of the succinct representation of A instead.

PageRank

Given G = (V,E) a graph with n = |V | vertices and m = |E| edges, let A be its
adjacency matrix; Auv = 1 if (u, v) ∈ E, and Auv = 0 otherwise. The normalized
adjacency matrix of G is the matrix M = D−1 · A, where D is an n × n diagonal
matrix with Duu the degree du of u ∈ V , i.e., Duu = du =

∑
v Auv. Note that M

is the standard random walk matrix, where a random walker at vertex u jumps to a
neighbor v of u with probability 1/du. Moreover the k-power of M, Mk, is the random
walk matrix after k steps, i.e., Mk

uv is the probability of the random walker being at
vertex v after k jumps, having started at vertex u. PageRank is a typical random
walk on G with transition matrix M. Given a constant 0 < α < 1 and a probability
vector p0, the PageRank vector pα is given by the following recurrence [15]:

pα = αp0 + (1− α)pα ·M .

The parameter α is called the teleport probability or jumping factor, and p0 is the
starting vector. In the original PageRank [16], the starting vector p0 is the uniform
distribution over the vertices of G, i.e., p0 = 1/n. When p0 is not the stationary
distribution, pα is called a personalized PageRank. Intuitively, pα is the probability
of a lazy Web visitor to be at each page assuming that he/she surfs the Web by
either randomly starting at a new page or jumping through a link from the current
page. The parameter α ensures that such a surfer does not get stuck at a dead end.
PageRank can be approximated iteratively through the power iteration method by
iterating, for t ≥ 1:

pt = αp0 + (1− α)pt−1 ·M . (1)

We show how to speed up these matrix-vector multiplications when the adjacency
matrix A is compressible.

Our Approach

Our main idea is to exploit the copy-property of adjacency lists observed in some
graphs, such as Web graphs [8]. The adjacency lists of neighbor vertices tend to be
very similar and, hence, the rows in the adjacency matrix are also very similar. More-
over these networks reveal also strong clustering effects, with local groups of vertices
being strongly connected and/or sharing many neighbors. The copy-property effect
can then be further amplified through clustering and suitable vertex reordering, an
important step for achieving better graph compression ratios [17]. Most compressed
representations for sparse graphs rely on these properties [18–20]. In this paper, we
consider the WebGraph framework, a suite of codes, algorithms and tools that aims
at making it easy to manipulate large Web graphs [8]. Among several compression
techniques used in Webgraph, our approach makes use of list referencing.

Let A be an n× n binary sparse matrix,

A =

v1
...
vn


where vi ∈ {0, 1}n is the i-th row, for i = 1, . . . , n. Let r ∈ {0, 1, . . . , n}n be a
referencing vector such that, for i ∈ {1, . . . , n}, ri < i and vri is some previous row
used for representing vi. Let also v0 = 0 and r1 = 0. The reference ri is found in the
WebGraph framework within a given window W , i.e., ri ∈ {max(1, i −W), . . . , i},
and it is optimized to reduce the length of the representation of vi. The line vi is then
represented by adding missing entries and marking spurious ones, with respect to vri ,
and encoded using several techniques, such as differential compression and codes for
natural numbers [8, 21].

Proposition 1. Given an n × n matrix A, x ∈ IRn, and a referencing vector r for
A, let A′ and w be defined as follows:

A′ =

v1 − vr1
...

vn − vrn


wi = vri · x>

Then we have that:
A · x> = A′ · x> + w>

Proof. By definition,

A′ · x> + w> =

v1 · x> − vr1 · x>
...

vn · x> − vrn · x>

 +

vr1 · x
>

...
vrn · x>

 =

v1 · x>
...

vn · x>

 = A · x>

�

Let us compute y> = A · x> by iterating over i = 1, . . . , n. Then w can be
incrementally computed because ri < i and wi = yri , ensuring that wi is already
computed when required to compute yi. Given inputs A′, r and x, the algorithm to
compute y is as follows:

1. Set y = 0 and y0 = 0.

2. For i = 1, . . . , n, set yi = yri +
∑

j A
′
ijxj.

3. Return y.

Note that the number of operations to obtain y> = A · x> is proportional to the
number of nonzeros in A′, that is, to the compressed representation size. Depending
on the properties of A discussed before, this number may be much smaller than the
number of nonzeros in A. We present in the next section experimental results for Web
graphs, where we indeed obtain considerable speedups the computation of PageRank.

Table 1: Datasets used in the experimental evaluation, where n is the number of vertices,
m is the number of edges (i.e., nonzeros in A), m′ is the number of nonzeros in A′, t is the
average time in seconds to compute a matrix-vector product with A, t′ is the average time in
seconds to compute a matrix-vector product with A′, and S is the speedup observed in the
computation of PageRank. The first five datasets are Web crawls and the remaining ones
are social networks. All datasets are available at http://law.di.unimi.it/datasets.php.
Times and speedups were only computed for web graphs.

Graph n m m′ m/m′ t t′ S

eu-2015-hc 1.07×109 9.17×1010 1.11×1010 8.26 3244.0 1099.0 2.95
eu-2015-host-hc 1.13×107 3.87×108 1.10×108 3.52 11.55 8.15 1.42
gsh-2015-hc 9.88×108 3.39×1010 7.08×109 4.78 1803.6 953.4 1.89
it-2004-hc 4.13×107 1.15×109 2.27×108 5.08 24.65 12.0 2.05
uk-2014-hc 7.88×108 4.76×1010 6.26×109 7.58 2034.0 665.8 3.05

twitter-2010-hc 4.17×107 1.47×109 1.44×109 1.02 – – –
amazon-2008-hc 7.35×105 5, 16×106 4.48×106 1.15 – – –
enwiki-2013 4.21×106 1.01×108 9.62×107 1.05 – – –
wordassoc.-2011 1.06×104 7.22×104 7.15×104 1.01 – – –

Experimental Evaluation

We computed the number of nonzeros m′ in A′ for the adjacency matrix A of several
graphs available at http://law.di.unimi.it/datasets.php [8, 17, 22]. Whenever
|vi − vri| ≥ |vi|, we kept vi as the row in A′, since it resulted in fewer nonzeros.
Results are presented in Table 1, including the number of vertices n and the number
of edges m, for each graph. Both A′ and r were obtained directly from the Web-
graph representation using high compression, which uses stronger referencing among
adjacencies and thus favors our approach.

As expected, our approach works extremely well for Web graphs, with the number
of nonzeros in A′ being less than 20% for page graphs and less than 30% for host
graphs. Note that Web graphs are known to verify the copy-property among adja-
cencies. Other networks we tested, instead, seem not to verify this property in the
same degree, and therefore our approach is not beneficial. This was expected, as so-
cial networks are not as compressible as Web graphs [23]. There may exist, however,
other representations for these networks that may benefit from other compression
approaches (see the next section).

We implemented PageRank using the algorithm above to compute matrix vector
products. Since Eq. (1) uses left products and our representation is row-oriented,
we use the transposed adjacency matrix and right products. The implementation is
in Java and based on the Webgraph representation, where A′ is represented as two
graphs: a positive one for edges with weight 1, and a negative one for edges with
weight −1. All tests were conducted on a machine running Linux, with an Intel(R)
Xeon(R) CPU E5-2630 v3 @ 2.40GHz (8 cores, cache 32KB/4096KB) and with 32GB
of RAM. Java code was compiled and executed with OpenJDK 1.8.0 131.

We ran 10 iterations for the Web graphs in Table 1, starting with the uniform
distribution. Let us consider the graphs eu-2015-host-hc and it-2004-hc. Our

implementation took 81.5 and 120.0 seconds for eu-2015-host-hc and it-2004-hc,
respectively. An equivalent implementation of PageRank, using the adjacency ma-
trix A instead of A′, represented with WebGraph, took 115.5 seconds and 246.5 for
eu-2015-host-hc and it-2004-hc, respectively. Hence, we achieved speedups of
1.42 and 2.05, respectively, as presented in Table 1. Observed speedups are lower
than what we would expect given that A′ has 3.52 times fewer nonzeros than A for
eu-2015-host-hc, and 5.08 times fewer for it-2004-hc. After profiling we could
observe that, although A′ had much fewer nonzeros than A, the nonzeros in A′ are
more dispersed than those in A, with A benefiting from contiguous memory accesses.
The speedups are nevertheless significant, namely when we are dealing with larger
graphs like eu-2015-hc. Our implementation took 1h30m for this graph, about 3
times less than the equivalent implementation using matrix A instead of matrix A′.

We replicated the experiments with code written in C using a plain representation
for sparse matrices, for both A and A′. The operations became 10 times faster, but
the difference between operating with both A and A′ remained similar.

Final Remarks

We have shown that the adjacency matrix compression scheme of Boldi and Vigna [8]
allows for computing matrix-vector products in time proportional to the compressed
matrix size. Therefore, compression not only saves space but also speeds up an
operation that is key for graph analysis tasks.

This is not a property unique to that compression format. Another suitable format
is the biclique extraction method of Hernández and Navarro [24]. They decompose
the edges of G into a number of bicliques (Sr, Cr), so that every node from Sr points
to every node from Cr, plus a residual set of edges. The |Sr| · |Cr| edges of each
biclique are represented in |Sr| + |Cr| words, by just listing both sets. This format
is shown to be competitive to compress both Web and social graphs. In order to
compute A · x>, we compute for each biclique r the value cr =

∑
j∈Cr

xj. We then
initialize n counters yj = 0 and, for each biclique r and each i ∈ Sr, we add cr to yi.
Finally, for each residual edge Aij = 1, we add xj to yi. The final answer is the vector
y>, which is obtained in time proportional to the size of the compressed matrix.

We plan to study the practical speedup obtained with this compression format.
We also plan to improve the results on Boldi and Vigna’s algorithm by varying the
size of the window and splitting the input matrix into submatrices of consecutive
columns so matches are more flexible and need not span entire rows. We will also
consider other formats where it is less clear how to translate the reduction in space
into a reduction in computation time [18–20, 24], and study which other relevant
matrix operations can be boosted by which compression formats.

Acknowledgments

This research has received funding from the European Union’s Horizon 2020 research
and innovation programme under the Marie Sk lodowska-Curie [grant agreement No
690941], namely while the first author was visiting the University of Chile, and while

the second author was affiliated with the University of Helsinki and visiting the Uni-
versity of A Coruña. The first author was funded by Fundação para a Ciência e
a Tecnologia (FCT) [grant number UID/CEC/50021/2013]; the second author was
funded by Academy of Finland [grant number 268324] and Fondecyt [grant number
1171058]; the third author was funded by Ministerio de Economı́a y Competitividad
(PGE and FEDER) [grant number TIN2016-77158-C4-3-R] and Xunta de Galicia
(co-founded with FEDER) [grant numbers ED431C 2017/58; ED431G/01]; and the
fourth author was funded by Millennium Nucleus Information and Coordination in
Networks [grant number ICM/FIC RC130003].

[1] Newman, M.: Networks: An introduction. Oxford University Press (2010).

[2] Chung, F.R. and Lu, L.: Complex graphs and networks. Number 107 in CBMS –
Regional Conference Series in Mathematics. American Mathematical Society (2006).

[3] Travis Gagie, Pawel Gawrychowski, and Simon J. Puglisi. Approximate pattern match-
ing in LZ77-compressed texts. Journal of Discrete Algorithms, 32:64–68, 2015.

[4] Danny Hermelin, Gad M. Landau, Shir Landau, and Oren Weimann. Unified
compression-based acceleration of edit-distance computation. Algorithmica, 65(2):339–
353, 2013.

[5] Yury Lifshits, Shay Mozes, Oren Weimann, Michal Ziv-Ukelson. Speeding up HMM
decoding and training by exploiting sequence repetitions. Algorithmica, 54(3):379–399,
2009.

[6] Moses Ganardi, Danny Hucke, Artur Jez, Markus Lohrey, Eric Noeth. Constructing
small tree grammars and small circuits for formulas. Journal of Computer and System
Sciences, 86: 136–158, 2017.

[7] Markus Lohrey. Algorithmics on SLP-compressed strings: A survey. Groups Complex-
ity Cryptology, 4(2): 241–299, 2012.

[8] Boldi, P. and Vigna, S.: The WebGraph framework I: Compression techniques. In
Proceedings of the 13th International Conference on World Wide Web, 595–602, ACM
(2004).

[9] Josh Alman and Virginia Vassilevska Williams. Further limitations of the known ap-
proaches for matrix multiplication. Proceedings of the 2018 Conference on Innovations
in Theoretical Computer Science, 25:1–25:15 (2018).

[10] Karande, C., Chellapilla, K. and Andersen, R.: Speeding Up Algorithms on Com-
pressed Web Graphs. Internet Mathematics, 6(3):373–398 (2009).

[11] Nishino, M., Yasuda, N., Minato, S.-i. and Nagata, M.: Accelerating Graph Adja-
cency Matrix Multiplications with Adjacency Forest. Proceedings of the 2014 SIAM
International Conference on Data Mining, 1073–1081 (2014).

[12] Brisaboa, N., Ladra, S. and Navarro, G.: Compact Representation of Web Graphs
with Extended Functionality. Information Systems, 39:152–174 (2014).

[13] Henzinger, M., Krinninger, S., Nanongkai, D. and Saranurak, T.: Unifying and
Strengthening Hardness for Dynamic Problems via the Online Matrix-Vector Mul-
tiplication Conjecture. Proceedings of the forty-seventh annual ACM Symposium on
Theory of Computing, 21–30 (2015).

[14] Larsen, K.-G. and Williams, R.: Faster Online Matrix-Vector Multiplication. Proceed-
ings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms,
2182–2189 (2017).

[15] Chung, F.: The heat kernel as the pagerank of a graph. Proceedings of the National
Academy of Sciences, 104(50):19735-19740 (2007).

[16] Page, L., Brin, S., Motwani, R. and Winograd, T.: The PageRank citation ranking:
Bringing order to the web. Stanford InfoLab (1999).

[17] Boldi, P., Rosa, M., Santini, M. and Vigna, S.: Layered Label Propagation: A Mul-
tiResolution Coordinate-Free Ordering for Compressing Social Networks. In Proceed-
ings of the 20th International Conference on World Wide Web, 587–596, ACM (2011).

[18] Brisaboa, N., Ladra, S. and Navarro, G.: Compact Representation of Web Graphs
with Extended Functionality. Information Systems, 39(1):152–174 (2014).

[19] Grabowski, S. and Bieniecki, W.: Merging adjacency lists for efficient Web graph
compression. In Man-Machine Interactions 2 AISC 103, 385–392 (2011).

[20] Claude, F. and Navarro, G.: Fast and Compact Web Graph Representations. ACM
Transactions on the Web (TWEB), 4(4):16 (2010).

[21] Boldi, P. and Vigna, S.: Codes for the World-Wide Web. Internet Mathematics,
2(4):407–429 (2005).

[22] Boldi, P., Marino, A., Santini, M. and Vigna, S.: BUbiNG: Massive Crawling for
the Masses. In Proceedings of the Companion Publication of the 23rd International
Conference on World Wide Web, 227–228 (2014).

[23] Chierichetti F., Kumar R., Lattanzi S., Mitzenmacher M., Panconesi A. and Ragha-
van P.: On compressing social networks. Proceedings of the 15th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, 219–228 (2009).

[24] Hernández, C. and Navarro, G.: Compressed Representations for Web and Social
Graphs. Knowledge and Information Systems, 40(2):279–313 (2014).

