
Two-Dimensional Block Trees

Nieves R. Brisaboa∗, Travis Gagie†, Adrián Gómez-Brandón∗, and Gonzalo Navarro‡

∗Database Laboratory †EIT ‡Dept. of Computer Science
Universidade da Coruña Diego Portales University University of Chile

A Coruña, Spain Santiago, Chile Santiago, Chile
brisaboa@udc.es travis.gagie@mail.udp.cl gnavarro@dcc.uchile.cl

adrian.gbrandon@udc.es

Abstract

The Block Tree (BT) is a novel compact data structure designed to compress sequence
collections. It obtains compression ratios close to Lempel-Ziv and supports efficient direct
access to any substring. The BT divides the text recursively into fixed-size blocks and those
appearing earlier are represented with pointers. On repetitive collections, a few blocks can
represent all the others, and thus the BT reduces the size by orders of magnitude. In
this paper we extend the BT to two dimensions, to exploit repetitiveness in collections of
images, graphs, and maps. This two-dimensional Block Tree divides the image regularly into
subimages and replaces some of them by pointers to other occurrences thereof. We develop
a specific variant aimed at compressing the adjacency matrices of Web graphs, obtaining
space reductions of up to 50% compared with the k2-tree, which is the best alternative
supporting direct and reverse navigation in the graph.

Introduction

In many applications, image collections contain identical sub-images, for example
two-dimensional slices of three-dimensional scans, video frames, and periodical sky
surveys. This is an important source of redundancy that can be exploited for com-
pression. Such an approach is two-dimensional Lempel-Ziv[1] (2D-LZ), which stores
only the first occurrence of each sub-image on the dictionary and the others are rep-
resented as pointers to the reference. However, 2D-LZ does not support efficient
random access to individual images or arbitrary regions thereof. This is a relevant
problem when storing large image collections in compressed form. Some proposals
[2, 3] provide direct access by splitting the image into different partitions, and solv-
ing range queries by decompressing only those parts that intersect with the queried
region. This induces, however, a tradeoff between extraction time and compression
ratio, driven by the size of those partitions.

Other data like matrices, maps, and graphs, are also modeled as images and
may contain similar areas. A particular case of repetitive two-dimensional data are
Web graphs, which are directed graphs of pages pointing to other pages on the Web.
The adjacency matrix of a Web graph can be seen as a bilevel image, where the
link between pages a and b is represented with a 1 at position (a, b), which has a 0
otherwise. Web graphs are sparse, so this matrix has large zones of 0s and a few 1s.

Funded in part by European Unions Horizon 2020 Marie Sk lodowska-Curie grant agreement No 690941;
MINECO (PGE and FEDER) [TIN2016-78011-C4-1-R;TIN2013-46238-C4-3-R]; CDTI, MINECO [ITC-20161074;IDI-
20141259;ITC-20151305]; Xunta de Galicia (co-founded with FEDER) [ED431G/01; ED431C 2017/58]; and Fondecyt
Grants 1-171058 and 1-170048, Chile.

Since the adjacency matrix is huge and needs efficient random access, the design
of compact data structures to represent Web graphs is a relevant topic. A well-known
such structure is the k2-tree [4]. The k2-tree is very efficient at representing large zones
of 0s of the adjacency matrix and supporting direct and reverse neighbor queries.
While there are other representations that exploit other properties of Web graphs
(locality, similarity of adjacency lists, etc.) [5–7], the k2-tree offers the best space-
time trade-off when considering both direct and reverse neighbor queries. However,
the k2-tree does not directly exploit repetitiveness.

The k2-tree is, in essence, a compressed quad-tree of the matrix. Bille et al. [8]
show how to replace subtrees of such structure by pointers to other identical subtrees,
thereby turning the tree into a DAG. This, however, requires that two fixed subtrees
are identical, which likely misses most repeated submatrices. We seek a way to capture
such repetitiveness, while retaining fast queries.

A recent compact data structure called Block Tree (BT) [9] compresses repetitive
collections of (one-dimensional) strings. It obtains compression ratios close to Lempel-
Ziv [10] while supporting efficient direct access to any substring. The BT overcomes
the inability of Lempel-Ziv in providing direct access by imposing a regular structure
to the targets of string copies. The BT reduces the size of repetitive collections by
orders of magnitude.

In this paper we extend the BT to two dimensions. The result, Two-Dimensional
Block Tree (2D-BT), can replace any subtree by a pointer to an arbitrary area where
it is repeated, and still supports fast extraction of subimages. We then adapt the
2D-BT to Web graph adjacency matrices, by combining it with k2-trees in order to
exploit sparseness as well. Our experimental results on Web graphs show that the
2D-BT is typically 1.5–2 times smaller than the k2-tree at the price of being 3–6 times
slower. Although we develop the variant adapted to Web graphs in detail, the general
2D-BT can also be applied to images, matrices, maps, and other kinds of graphs.

Background

k2-tree

The k2-tree is a compact data structure designed to compress adjacency matrices of
size n2. It exploits the compression of large zones of 0s and the clustering of 1s.

The structure corresponds to a k2-ary tree built by recursively splitting the ad-
jacency matrix into k2 submatrices of the same size. The construction algorithm
first subdivides the whole adjacency matrix into k2 submatrices of size n2/k2. These
submatrices are sorted in row-major order, left to right and top to bottom. The al-
gorithm then checks each submatrix, adding a 1 as a child of the root if there is some
1 inside the submatrix, and otherwise adding a 0. The process continues recursively,
splitting the submatrices with 1s into other k2 submatrices. A submatrix is not split
further when it is full of 0s or corresponds with a cell of the adjacency matrix.

As shown in Figure 1, the k2-tree is represented with two bitvectors: T and L.
Bitvector T [0..] stores all the bits of the k2-tree except the last level. The bits are
placed following a levelwise traversal of the tree. Bitvector L[0..] stores the bits of
the last level of the k2-tree and each bit is the value of a cell.

Figure 1: The k2-tree of an adjacency matrix.

It is possible to obtain any cell, row, column, or region of the matrix very effi-
ciently, by traversing the appropriate subtrees. The traversal is simulated with rank
operations on the bitvector T, where rankb(T, p) is the number of occurrences of
bit b ∈ [0, 1] up to position p. For example, given a value 1 at position p in T, its
k2 children will start at position p′ = rank1(T, p) × k2 of T :L, so that their range
is children(p) = [p′..p′ + k2 − 1]. Similarly, the parent of a position p in T :L is
parent(p) = select1(T, bp/k2c), where selectb(T, j) is the position of the j-th b in T.
Both rank and select are implemented in constant time using o(|T |) further bits [11].

Block Trees

The Block Tree (BT) [9] of a string S[1..n] over an alphabet [1..σ] usesO(z lg(n/z) lg n)
bits, where z is the number of phrases produced by the Lempel-Ziv parse. We de-
scribe a simplified variant that is suitable for our purposes. We define a parameter
r as the arity of the BT. We start at level l = 0, splitting S into r blocks of size
n/r. Each of these blocks corresponds to a node of the tree. The nodes can be of two
types: internal or leaves. A node v is marked as internal if it contains or overlaps the
first occurrence of the substring of a later block (or of itself). Otherwise, the node is
a leaf. Each leaf stores a pointer ptr to the node, or the first of the two nodes, that
contain the leaf substring, and an offset off that indicates the starting position of the
occurrence within the pointed block. Once the first level is built, we split the internal
nodes into r of size n/r2 and continue replacing each node’s substring by a pointer
wherever it first occurs in the same tree level. We recursively repeat these steps for
each level until storing the substring is cheaper than storing the pointers and offsets.

To specify the type of the nodes, we use for each level d a bitmap Dd whose 0s
represent the leaves of d and the 1s are the internal nodes. A rank structure is built
over each bitmap Dd. Thus, running j = rank0(Dd, p) we can compute efficiently
how many leaves are there up to p. The pointers of the leaves are stored into an
array Pd[0..] per depth d, so that Pd[j − 1] is the pointer of the j-th leaf. The offsets
are similarly stored in arrays Od. Instead, the 1s in Dd are used to map the internal

nodes to their position in level d + 1, where only the internal nodes of level d exist
and are stored contiguously.

The symbol at S[i] can be found with a top-down traversal of the BT, going to
the child node that contains S[i], then the grandchild with S[i], and so on. If the
node is a leaf at the last level, we can access S[i]. Otherwise, the leaf has a pointer
i′ to the internal node that contains the start of the first occurrence of the substring
and an offset off. Thus we translate i to i′ = i+off and look for S[i′] instead. The BT
guarantees that the node containing i′ is internal, so we can now descend. In total,
any S[i] is obtained in time O(logr n)

Two-Dimensional Block Trees

Our new structure, Two-Dimensional Block Tree (2D-BT), can be seen as an exten-
sion of a Block Tree to two dimensions. It is designed to compress two-dimensional
elements like matrices, images, or graphs. We first present a general 2D-BT struc-
ture. Then, we introduce a specific 2D-BT variant to compress Web graphs. This is
a hybrid with the k2-tree that exploits the clustering of 0s and, at the same time, the
repetitiveness of the adjacency matrix.

Conceptual description

Given a matrix M of size |M | = n2 over an alphabet [1..σ], the matrix is subdivided
into k2 submatrices of size n2/k2. Each of these submatrices is called a block and
represents a node of the 2D-BT. The nodes can be classified into internal or leaves.
Consider any submatrix order, such as the row-major one used by the k2-tree. Then
nodes whose submatrix overlaps the first occurrence of a block (including themselves)
are internal nodes; the others are leaves. The submatrix of any leaf node is said to
be the target of a copy, whose source is its first occurrence. A source may overlap
up to four adjacent blocks. Each leaf stores a pointer ptr to the top-left block that
includes its source and two offsets Ox and Oy, one by axis, where the source starts in
that block. Once the first level is built, we split the internal nodes into k2 new nodes,
and add them as children of the corresponding internal node. This step is repeated
recursively until storing a pointer and its offsets is more expensive than storing the
submatrix of a node. At this point, the submatrix content is stored verbatim. The
2D-BT has a maximum height of height = logk n.

To handle, in particular, Web graphs, we specialize this general 2D-BT structure
so as to exploit clustering and sparseness, not only repetitiveness. We regard the
adjacency matrix as a binary image. We define a new kind of leaf called empty node,
which represents a block of all 0s. Therefore, leaves in this 2D-BT may be empty
nodes, pointers to sources, or last-level nodes storing individual cells.

An example of a 2D-BT for Web graphs, with k = 2, can be observed on the left
of Figure 2. It is built over the adjacency matrix of Figure 1. The nodes with a 1
specify an internal node and they are divided into k2 nodes in the next level. Empty
nodes are represented with a 0, and leaf nodes with a 0 and a pointer. The pointers
are arrows to an earlier node in the same level and they are labeled with an offset
〈Ox, Oy〉. Only internal nodes are further split. An example of a node with pointer

Figure 2: The 2D-BT, for k = 2, of the adjacency matrix of Figure 1

is the last one of the second level, which points to the fifth node with Ox = 1 and
Oy = 0. Since the target submatrix is [(2, 6), (3, 7)]1 and the source is [(1, 4), (2, 5)],
we add the offsets 〈1, 0〉 to the coordinates of the pointed node, [(0, 4), (1, 5)].

The existence of empty nodes makes less obvious whether it is convenient or not
to store a pointer to replace a target. We must consider its representation using
empty nodes (i.e., as a k2-tree) and compare it with the space used by the pointer
and offsets. An area that is better represented as a k2-tree should not be used as a
source, so its first occurrence should not be used to mark nodes as internal.

Data structure

As shown on the right of Figure 2, we represent and navigate the 2D-BT much as
a k2-tree, using bit arrays T and L. The difference is that some leaves in T (0s)
represent empty nodes and others represent pointers. These are matched with 0s and
1s, respectively, in another bit array N [0..m − 1], where T has m 0s. Then a leaf
T [p] = 0 is a pointer iff N [rank0(T, p)− 1] = 1.

The pointers and offsets are stored in different arrays, one per depth. For each
depth d, except the last one where there are no pointers, an array Pd stores the
pointers ptr of that depth. The values Pd are stored as backward offsets: the position
in T pointed from T [i] by Pd[q] is i− Pd[q]. We store only the maximum of the bits
needed for the cells of each array Pd. The offsets are stored into arrays Od. The even
positions are the x-offsets Ox, and the odd positions are y-offsets Oy. For the cells in
Od we only need dlogk(n/kd)e = logk(n)− d bits. Let a leaf p at level d be a pointer,
i.e., T [p] = 0 and N [p′ − 1] = 1 with p′ = rank0(T, p). The pointer is stored at
position Pd[rank1(N, p′)−D[d]], where D is a small array accumulating the number
of positions in previous levels. Its offsets are accessed similarly.

In Figure 2, at position p = 11 (p′ = rank0(T, 11) = 6) and d = 2, there is a
pointer because T [11] = 0 and N [5] = 1. We know that the number of cells in arrays

1The submatrix is represented with the top-left and the bottom-right corners in (x, y) format.

Algorithm 1: access(R, p, d, r, c)

1 if d = height then
2 if L[p− |T |] = 1 then
3 result[r][c] = 1

4 else
5 if p is internal then
6 for p′ in children(p) do
7 Q← region(p′)
8 if Q ∩R 6= ∅ then
9 access(Q ∩R, p′, d+ 1, c, r)

10 r, c← next()

11 else
12 if p is a pointer then
13 pptr, Ox, Oy ← pointer(p)
14 R′, p′, d′ ← back(pptr, Ox, Oy, d)
15 access(R′, p′, d′, r, c)

Algorithm 2: back(pptr,Ox,Oy,d)

1 R′ ← region(pptr) + (Ox, Oy)
2 while R′ * region(pptr) do
3 pptr ← parent(pptr)
4 d← d− 1

5 return R′, pptr, d

Pd in previous levels is D[2] = 1. We then compute q = rank1(N, 5)−D[2] = 3−1 = 2,
thus the pointer is at Pd[2 − 1]. Therefore, ptr = 11 − P2[1] = 8 and offsets 〈1, 0〉
because O2[2] = 1 and O2[3] = 0.

Access to a region

Given a region R = [(xmin, ymin), (xmax, ymax)] the operation access(R, 0, 0, 0, 0) in
Algorithm 1 writes the values of the region into an initially zeroed matrix result.
These values are retrieved by descending the 2D-BT from the root through all the
nodes p whose area, region(p), intersect R, until finding the 1s at the tree leaves.
The algorithm uses two non-obvious notations:

• region(p) is the region Q covered by the node at position p in T . The region is
easily maintained as we traverse the tree. At depth d, given the top-left corner
〈xp, yp〉 and size side × side of Q, the i-th child of p (i = 0...k2 − 1) starts at
x-offset xp +(i mod k) · (side/k) and y-offset yp +(bi/kc) · (side/k). Similarly, if
p is the i-th child of p′ = parent(p), then the region p′ starts at x-offset xp − (i
mod k) · side and y-offset yp − (bi/kc) · side.
The only case where we cannot obtain region(p) from the navigation is for
region(pptr) in the first line of Algorithm 2. In fact, instead of explicitly com-
puting region(p), we always use R relative to the current region(p). Thus,
when we move from region R relative to p to region R′ relative to pptr in the
first line of Algorithm 2, all we have to do is R′ ← R + (Ox, Oy).

• r, c← next(): obtains the top-left position of the next child in the result matrix,
in row-major order. It is computed analogously to the child region.

The most interesting part of the algorithm is how we handle the pointers. Given
the target node pptr and the offset 〈Ox, Oy〉, the problem is how to find the other (up

to) 3 nodes that contain parts of the target. Algorithm 2 goes up until finding an
ancestor at depth d′ that contains the target. Then the process continues from that
ancestor. Note that, although we are going higher in the 2D-BT, such recursive call
will eventually go back to level d only for the (up to) 4 desired nodes, entering into
(up to) 4 children at level d′ and then into only one child in levels d′ + 1 to d− 1.

Therefore, the cost to find the desired neighbors of pptr is O(d− d′). On average,
the probability of the target not being contained in one node at level d−h is < 2/kh;
therefore on average d − d′ is O(1). Still, we can obtain an O(h) time guarantee by
storing two pointers to the node at the right and the bottom of all nodes at depth
d ≤ height− h. This requires a total extra space of O(n2

k2h
log n) bits.

Construction

In order to build a 2D-BT, we need to efficiently identify the first occurrence of the
submatrix of every block. We use an algorithm based on the technique of Karp and
Rabin [12], which obtains a fingerprint of a string. Given a substring S[i, j], the
Karp-Rabin algorithm computes the fingerprint, called the KR-fingerprint, in time
O(j− i+ 1). However, given the fingerprint of S[i, j], the fingerprint of S[i+ 1, j+ 1]
is computed in time O(1). We extend this scheme to two dimensions, in the style of
Bird [13] and Baker [14].

Let side be size of a block side in a given level. In the first phase we compute a
matrix KRmatrix, where KRmatrix[row][col] is the KR-fingerprint of the substring
M [row, ..., row+side−1][col]. In the second phase we compute a second KRmatrix′,
whereKRmatrix′[row][col] is the KR-fingerprint ofKRmatrix[row][col, ..., col+side−
1], thus it is a KR-fingerprint of the submatrix M [row, ..., row+side−1][col, ..., col+
side− 1]. This algorithm takes linear time on the size of M , O(n2), and O(n2) space.

After computing KRmatrix′, we add the fingerprints KRmatrix′[i×side][j×side]
to a hash table, for every 0 ≤ i, j < n/side. These are the fingerprints of all the
possible targets in the current level. Associated with each KR-fingerprint in the hash
table we store a list with the submatrices we found with that fingerprint, and for
each distinct submatrix, a list of the targets containing that submatrix. Note that
we must not insert targets whose k2-tree representation is smaller than our pointers,
since replacing them is more expensive than continuing the k2-tree deployment.

Once the hash table is built, we go through the cells of KRmatrix′ checking if
each fingerprint is contained in the hash table. For every cell h = KRmatrix′[i][j] we
find in the hash table, we check if R = M [i, ..., i+ side− 1][j, ..., j + side− 1] is one
of the submatrix contents associated with h. If it is, then R is the first occurrence
of all the associated targets. All those are removed from the hash table, and their
nodes are converted into a leaf pointing to R. The (up to) 4 nodes covered by R are
marked to ensure they are internal nodes (in particular, if the target overlaps R, it
will not be converted into a leaf). Further, we must exclude as possible source any
area R that overlaps nodes that have been converted into leaves.

 0

 2

 4

 6

 8

 10

CNR EU Indochina UK

B
it
s
 p

e
r

e
d

g
e

 (
b

p
e

)

Dataset

k2-tree
2D-BT

Figure 3: The bits per edge (bpe) of k2-tree and 2D-BT on four Web subgraphs.

Experimental Evaluation

Two-Dimensional Block Trees were coded in C++, using several data strucures from
the SDSL library [15]. As a baseline, we include the SDSL implementation of k2-
trees. We used four real datasets of the WebGraph framework [7]: CNR (2000),
EU (2005), Indochina (2002) and UK (2002). These are avaliable from the site http:

//webgraph.dsi.unimi.it. The experiments ran on an Intel R© Xeon R© CPU E5-2407
v2 @ 2.40GHz (8 cores) with 10MB of cache and 256GB of RAM, over SMP Debian
3.16.43-2 with kernel 3.16.0-4-amd64 (64 bits), using gcc 4.6.4 with -O9.

We use k = 2 and compare the size of both structures and the average time to
retrieve direct neighbors and reverse neighbors. Extracting the direct neighbors of a
node i is equivalent to retrieving the i-th row of the adjacency matrix, whereas its
reverse neighbors correspond to the i-th column. Since our construction takes much
time and memory space, we limited the number of nodes of our structure to 100, 000
and collected the induced subgraphs.

As we can observe in Figure 3, the 2D-BT outperforms k2-tree in space, since the
2D-BT exploits the repetitiveness of patterns, not only the clustering of zeros: the
2D-BT uses 50%-65% of the space in all datasets except CNR (80%).

Figure 4 shows the average access times to direct and reverse neighbors. We
observe that the behavior is similar between both structures. Increasing the number
of nodes of each dataset, the heights of the 2D-BT and the k2-tree increase, and
the average times are higher. Since traversing the 2D-BT is more expensive, our
structure obtains worst access times compared to k2-tree. We observe that 2D-BTs
are 3–6 times slower than k2-trees.

We measured the average difference d − d′ when using Algorithm 2, to find out

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 20000 30000 40000 50000 60000 70000 80000 90000 100000

A
v
e
ra

g
e
 A

c
c
e
s
s
 T

im
e
 (

m
s
)

Nodes

2D-BT-direct
2D-BT-reverse

k2-tree-direct
k2-tree-reverse

(a) Dataset CNR

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 20000 30000 40000 50000 60000 70000 80000 90000 100000

A
v
e
ra

g
e
 A

c
c
e
s
s
 T

im
e
 (

m
s
)

Nodes

2D-BT-direct
2D-BT-reverse

k2-tree-direct
k2-tree-reverse

(b) Dataset EU

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 20000 30000 40000 50000 60000 70000 80000 90000 100000

A
v
e
ra

g
e
 A

c
c
e
s
s
 T

im
e
 (

m
s
)

Nodes

2D-BT-direct
2D-BT-reverse

k2-tree-direct
k2-tree-reverse

(c) Dataset Indochina

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 20000 30000 40000 50000 60000 70000 80000 90000 100000

A
v
e
ra

g
e
 A

c
c
e
s
s
 T

im
e
 (

m
s
)

Nodes

2D-BT-direct
2D-BT-reverse

k2-tree-direct
k2-tree-reverse

(d) Dataset UK

Figure 4: Average access times on the the four Web subgraphs. The times on k2-trees are
very similar and thus look superimposed.

if the effect of finding the right ancestor is significative. Our experiments show that,
on average, we go up only 1.5 levels, so this is not a concern in practice.

Conclusions and Future Work

We have proposed a new structure that extends Block Trees [9] to two dimensions,
and combined them with k2-trees [4] to handle in particular Web graphs. On those, we
obtained up to 50% of the space of k2-trees (the best structure that allows navigating
the graph in both directions). The price is that we are 3–6 times slower. This price
can be irrelevant when the lower space allows fitting the whole graph in a faster
memory (e.g., RAM vs disk).

Our most immediate future work is to improve the construction, in order to han-
dle full Web graph adjacency matrices. The current construction takes too much
space and time. We plan to replace the 2D signature based scheme by a randomized
method based on sampling positions in the submatrix. We also plan to explore other
application areas where the values of the matrix display a good deal of repetitiveness.

References

[1] A. Lempel and J. Ziv, “Compression of two-dimensional data,” IEEE Transactions on
Information Theory, vol. 32, no. 1, pp. 2–8, 1986.

[2] R. Pajarola and P. Widmayer, “Spatial indexing into compressed raster images: how
to answer range queries without decompression,” in Proc. International Workshop on
Multimedia Database Management Systems, 1996, pp. 94–100.

[3] E. Ageenko and P. Fränti, “Lossless compression of large binary images in digital spatial
libraries,” Computers & Graphics, vol. 24, no. 1, pp. 91–98, 2000.

[4] N. R. Brisaboa, S. Ladra, and G. Navarro, “Compact representation of Web graphs
with extended functionality,” Information Systems, vol. 39, no. 1, pp. 152–174, 2014.

[5] C. Hernández and G. Navarro, “Compressed representations for Web and social
graphs,” Knowledge and Information Systems, vol. 40, no. 2, pp. 279–313, 2014.

[6] S. Grabowski and W. Bieniecki, “Merging adjacency lists for efficient Web graph com-
pression,” in Man-Machine Interactions 2. Springer, 2011, pp. 385–392.

[7] P. Boldi and S. Vigna, “The WebGraph framework I: Compression techniques,” in
Proc. 13th International Conference on World Wide Web (WWW), 2004, pp. 595–602.

[8] P. Bille, I. L. Gørtz, and S. Vind, “Compressed data structures for range searching,”
in Proc. 42nd International Conference on Language and Automata Theory and Ap-
plications (ICALP). Springer, 2015, pp. 577–586.

[9] D. Belazzougui, T. Gagie, P. Gawrychowski, J. Kärkkäinen, A. Ordónez, S. J. Puglisi,
and Y. Tabei, “Queries on LZ-bounded encodings,” in Proc. Data Compression Con-
ference (DCC), 2015, pp. 83–92.

[10] J. Ziv and A. Lempel, “A universal algorithm for sequential data compression,” IEEE
Transactions on Information Theory, vol. 23, no. 3, pp. 337–343, 1977.

[11] D. Clark, “Compact, PAT trees,” Ph.D. dissertation, University of Waterloo, Canada,
1996.

[12] R. M. Karp and M. O. Rabin, “Efficient randomized pattern-matching algorithms,”
IBM Journal of Research and Development, vol. 31, no. 2, pp. 249–260, 1987.

[13] R. S. Bird, “Two dimensional pattern matching,” Information Processing Letters,
vol. 6, no. 5, pp. 168–170, 1977.

[14] T. P. Baker, “A technique for extending rapid exact-match string matching to arrays
of more than one dimension,” SIAM Journal on Computing, vol. 7, no. 4, pp. 533–541,
1978.

[15] S. Gog, T. Beller, A. Moffat, and M. Petri, “From theory to practice: Plug and play
with succinct data structures,” in Proc. 13th International Symposium on Experimental
Algorithms (SEA), 2014, pp. 326–337.

