
Interleaved K2-tree: Indexing and Navigating

Ternary Relations ∗

Sandra Álvarez-Garćıaa Nieves R. Brisaboaa Guillermo de Bernardoa

Gonzalo Navarrob

aDatabase Laboratory,
University of A Coruña,Spain

{brisaboa,sandra.alvarez,gdebernardo}@udc.es

bDepartment of Computer Science,
University of Chile
gnavarro@dcc.uchile.cl

Abstract: We propose a new compressed and self-indexed data structure that
we call Interleaved K2-tree (IK2-tree), designed to compactly represent and
efficiently query general ternary relations. The IK2-tree is an evolution of
the K2-tree [8], initially designed to represent Web graphs but later used to
represent general binary relations. The IK2-tree represents at the same time
the three dimensions in the ternary relation and provides indexing capabilities
over the three of them, but it also offers other interesting features to improve
some types of queries over one of the three dimensions, the dimension used in
the nodes of the trees instead of in the organization of the branches.

1 Introduction
Graphs are a natural way to represent complex data. They can be seen as binary
relations, and have been intensively studied [9, 18] especially in specific domains such
as Web graphs [5, 3]. The K2-tree is a compressed and self-indexed structure initially
designed for Web graphs [8, 10] and later used in other domains [2, 12] for the compact
representation and efficient querying of binary relations.

Ternary relations did not receive so much attention, but they also appear ev-
erywhere. For example any dynamic binary relation has a temporal dimension and
therefore becomes a ternary relation (we call them temporal graphs in this paper).
Images and raster data can be seen as the relations among rows, columns and values.
Linked Data uses RDF representations, where a set of triples (S,P,O) represents the
relations among subjects, objects and predicates. However, little attention has been
paid to the efficient representation and management of general ternary relations [4];
most of the approaches are domain oriented such as Geotiff [16] for the representation
of raster data or RDF-3X [15] for RDF.

A usual strategy for the representation of ternary relations is to create a vertical
partitioning [1] which reduces the problem to efficiently store and query several binary
relations, one for each value of the partitioning variable.

In this paper we propose the Interleaved K2-tree (IK2-tree), a compressed and
self-indexed structure to represent and query general ternary relations that gathers
in a single tree the three dimensions, providing indexing capabilities over all of them.
We also experimentally evaluate the IK2-tree on RDF and temporal graphs.

∗SAG, NB and GdB were founded by MICINN (PGE and FEDER) grants TIN2009-14560-C03-
02, TIN2010-21246-C02-01 and Xunta de Galicia (co-funded with FEDER) ref. GRC2013/053. GN
was partially funded by Millennium Nucleus Information and Coordination in Networks ICM/FIC
P10-024F

00000001
00000000
00000100
00000000

00000000
00000000
00000000
00000000

00010000
10000000
00000000
00000000

00000000
00000000
00000000
00000000

00000000
00000000
00000000
00000000

00000011
00000001
00000000
00000000

00000000
00000000
00000000
00000000

00000000
00000000
00000000
00000000

K=2
87654321 161514131211109

8
7

6
5

4
3

2
1

16
15

14
13

12
11

10
9

1 0 0 1

1 0 0 1 1 0 0 0

1 0 0 1 1 1 0 0

1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1

1 0 0 0

1 1 1 0

DirectNeighbors(5)

1 0 0 1 1 0 0 1 1 0 0 0 1 0 0 1 1 1 0 0 1 0 0 0

1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 1 1 1 0

T

L

Figure 1: An example of a binary relation represented with a K2-tree

2 Previous Work: The K2-Tree

The K2-tree [8] is a compact data structure to represent binary relations, conceptually
represented by a binary adjacency matrix M , where M [i, j] is 1 if element i is related
with element j and 0 otherwise. It was originally designed to represent Web graphs.
The K2-tree takes advantage of the sparsity of the matrix (large areas of zeros) and
the clustering (proximity) of the ones. It achieves very low space (less than 5 bits per
link) over Web graphs, allowing large graphs to fit in main memory. It also supports
efficient navigation over the compressed graph [8], efficiently answering direct and
reverse neighbor queries, individual cell and range queries.

The K2-tree conceptually subdivides the adjacency matrix into K2 submatrices
of equal size. Each of the K2 submatrices is represented with one bit in the first level
of the tree, following a left to right and top to bottom order. The bit that represents
each submatrix will be 1 if the submatrix contains at least one cell with value 1.
Otherwise, if it is an empty area, the bit will be a 0. The next level of the tree is
created by expanding the 1 elements of the current level, subdividing the submatrix
they represent. In this way, K2 children are created in the next level to represent the
new subdivisions. This method continues recursively until the subdivision reaches
the cell-level. Fig. 1 shows an example of this tree for K = 2. The first 1 of the first
level (root) means the upper-left 8×8 submatrix has at least a cell with value 1. The
second bit of the root is a 0, which shows that the upper-right submatrix does not
contain any relation between nodes, and so on.

The K2-tree is stored with only two bitmaps: T for the intermediate levels of the
K2-tree, following a levelwise traversal, and L for the bits of the last level (Fig. 1).

Retrieving direct or reverse neighbors requires obtaining the cells with value 1 for
a given row or column in the adjacency matrix. Both operations are symmetric. They
are solved in the K2-tree by a top-down traversal over the tree for the two appropriate
branches of each node. The example shows the bits of the tree traversed in order to
obtain the direct neighbors of row 5 (i.e., the ones in the 5th matrix row).

This navigation over the K2-tree is efficiently performed over the bitmaps T and
L. Given a 1 at position x in T , the children of x are K2 bits placed in T : L
starting at position rank1(T, x) × K2, where rank1 counts the number of ones in
T [1..x]. Rank operations are performed in constant time by using an additional rank
structure, created over the bitmap T , that requires sublinear space in addition to T
[14].

In the worst case the space in bits is K2e(logK2
n2

e
+O(1)), where n is the number

of nodes and e the number of ones. Retrieving direct or reverse neighbors in the
worst case is O(n) time, although the time is much better in practice.

The implementation of the K2-tree allows using different K values depending on
the level of the tree (hybrid approach) or compressing the last levels of the conceptual
tree using a vocabulary of submatrices encoded with a statistically compressor. Direct
Access Codes [6] are used to provide direct access to each code. A dynamic variant of
the K2-tree that combines good compression ratios with fast query and update times
has been proposed [7]. Other variants compress efficiently not only large regions of
zeros but also regions of ones [11].

3 Interleaved K2-tree

We define a ternary relation as a set of triples T = {(xi, yj, zk)} ⊆ X × Y × Z. An
approach to represent a ternary relation uses vertical partitioning to transform T into
|Y | binary relations Tj, one for each different value yj ∈ Y . Each Tj will contain the
pairs (xi, zk) that are related with yj. The dimension Y is called partitioning variable.
Each of the binary relations can be stored in a structure designed for managing binary
relations, such as the K2-tree. In this way, the set of K2-trees composes a complete
system, that can efficiently answer the relevant queries.

In this work we propose the Interleaved K2-tree (IK2-tree), that is an evolution
of this vertical partitioning approach. It represents ternary relations by gathering |Y |
K2-trees in the same tree, providing indexing capabilities also on the variable Y .

3.1 Data structure

Given the decomposition of a ternary relation into |Y | adjacency matrices, the IK2-
tree represents all those matrices simultaneously. Each node of the IK2-tree repre-
sents, just as in the K2-tree, a submatrix containing the relations between the rows
(values of X) and the columns (values of Z), but instead of using only one bit to
know whether the matrix is empty or not, it contains a variable number (from 1 to
|Y |) of bits. Root nodes contain |Y | bits, one per yj ∈ Y . For a node Ni with m
ones, each of its children nodes will contain m bits, one per submatrix that contains
a one in Ni.

Fig. 2 shows an example IK2-tree, where the partitioning variable Y can take
three distinct values. The figure shows three adjacency matrices, one per value of Y .
The first node of the first level of the IK2-tree (N0) has a zero at the first position,
because the top-left submatrix of the adjacency matrix y0 does not contain any one.

00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

00000000
00000000
00000100
00000000
00000001
00000000
00000100
00000000

00000001
00100000
00000000
00000000
00000001
00000000
00000000
00000000

110 100 110 000

00 00 1 0 0 0 11 00 00 01

1 0 0 0 1 0 0 0 0 0 0 1 11 00 00 00 1 0 0 0

y0

(X0,Y2,Z0)

y1 y2

y0 y1 y2

y1 y2

y2

N0

N1

N2

y1 y2

(X2,Y1,Z2)

0110

110 100 110 000 10 00 00 01 1 0 0 0 11 00 00 01

1 0 0 0 1 0 0 0 0 0 0 1 11 00 00 00 1 0 0 0

T

L

N5

N3

N4 y1

N6

N7

y0 y1 y2

y1 y2

y1

0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

Figure 2: An example of a ternary relation represented with the IK2-tree

The second bit of N0 is a one because the adjacency matrix corresponding to y1 has
a one in the top-left submatrix. Thus, we have a first level of the tree with |Y | ×K2

bits representing the submatrices of the first division of the adjacency matrix.
Each node in an intermediate level of the IK2-tree will have K2 children nodes

in the next level (like the original K2-tree), but the number of bits of the children
is given by the number of ones of the parent, that is, the number of active Y values
in the parent node. For instance, node N0 in Fig. 2 has K2 children of 2 bits each,
since only the values y1 and y2 are ones. If all the bits of a node are zero, it has no
children. Otherwise the construction continues recursively down to the leaves, where
each bit corresponds exactly to a cell of one of the possible adjacency matrices in the
vertical partition. The resulting tree is stored, using the same scheme of the original
K2-tree, in two bitmaps: T for the intermediate levels and L for the last level.

Although the number of bits per node changes, a one in a level i produces always
K2 bits in level i+1, even if those bits are not consecutive. As a result, the navigation
over the tree is as in the original K2-tree. For a node starting at position x and having
at least a one in its bitmap, its first child starts at position rank1(T, x − 1) ×K2 +
adjust, in T : L, where adjust = (|Y |)×K2 is the number of bits at the first level.

Notice that the IK2-tree is an aggregation and reorganization of the same bits
used by the set of K2-trees representing the |Y | relations. While using similar space,
this reorganization supports efficient queries even when the variable Y is unbounded.

Although the three dimensions are represented in the same tree, X and Z dimen-
sions have a more efficient indexing than the dimension Y , since they directly support
the navigation over the tree by pruning the branches according to the queried values
for X and Z. Pruning the tree by the Y dimension implies more complex operations,
like having into account the active values for each node. Therefore, in general, the
most convenient partitioning variable will be the smallest one, although this criterion
can change depending on the typical queries of the domain.

3.2 Basic navigation

3.2.1 Query patterns with bounded partitioning variable

Some queries specify a fixed value that the partitioning variable has to take. The
query patterns that belong to this group are (xi, yj, zk), (∗, yj, zk), (xi, yj, ∗), and
(∗, yj, ∗), where ∗ means the variables are unbounded, i.e., they can take any value.

Fig. 2 shows the nodes involved to solve the query (x6, y1, z0). In the root of the
tree, we explore the third node (N5) because (x6, z0) is in the bottom-left submatrix.
Since all nodes in the root have |Y | bits we know that N5 is in positions [6..8] in
T . The second bit of N5, corresponding to y1, is a one, therefore we go down to the
children of N5. They start at position rank1(T, 5)×K2 + adjust = 24 in T and have
2 bits each (the number of ones in N5). The second bit in N5 is the first one in
this node, so the bit corresponding to y1 will be the first in each child. To find the
values for (x6, z0) we go to the fourth child (N6) and, because we want to check y1,
we check its first bit. Following the same idea, we check the first bit of N7, that is a
one, therefore the triple (x6, y1, z0) exists. The other three query patterns are solved
in a similar way. The process is exactly as it would be in the individual K2-tree of
yj, using X and Z to drive the traversal, but also tracing the bit corresponding to
the desired value of variable Y in the bitmaps of the nodes.

3.2.2 Queries with unbounded partitioning variable

The IK2-tree allows the efficient execution of queries with the variable Y unbounded.
The patterns of those queries are (xi, ∗, zk), (∗, ∗, zk), (xi, ∗, ∗), and (∗, ∗, ∗).

The operation starts from the top of the tree. For each chosen node Nj in the
root level (depending on the variables X and Z), we store a list Aj with the active
values for variable Y in node Nj. In the next levels, the active list is built, from the
parent list, by storing only its elements having value 1 in the current node.

For instance, using again Fig. 2, if we want to answer the query (x2, ∗, z2) we
check the first node of the tree, N0. The list of active values for N0 is A0 = {y1, y2}.
Therefore when we go to the children of N0, we know that the two bits of each node
correspond to y1 and y2 respectively. The child that maps (x2, ∗, z2) is N3, so we
create a new list of active values A3 = {y1} (because node N3 has a 0 in the position
corresponding to y2). Then we look for the children of N3. Each child contains only
one bit, which corresponds to the only active value in A3 (that was y1). The child
corresponding to the cell (x2, z2) is the first one, and it has a value 1, therefore we
can answer the query with the triple (x2, y1, z2). The other queries of this group are
implemented in the same way by maintaining the correspondence of each bit position
with the values of Y, that is, the active values of Y for each node.

4 Using the IK2-tree to Represent RDF Databases

The Resource Description Framework (RDF) is a W3C standard [13] for representing
information about Web resources. It models the information in the form of triples

Dataset |Triples| |Predicates| M K2-tree IK2-tree RDF-3X

Jamendo 1,049,639 28 0.74 0.74 37.73
Dblp 46,597,620 27 82.48 84.04 1,643.31
Geonames 112,235,492 26 152.20 156.01 3,584.80
DBpedia 232,542,405 39,672 931.44 788.19 9,757.58

Table 1: Space comparison for different RDF datasets (in MB)

(subject, predicate, object), in which the subject represents a resource, the predicate
is a property of the subject and the object represents the value of that property for
the given subject. Some approaches to represent RDF triples are based in relational
databases [17] but multi-indexing native solutions are more frequently used [15]. Ver-
tical partitioning is a usual strategy in this domain. Since the predicate variable has
a moderate size, it is used as the partitioning variable. Following this idea, a multiple
K2-tree approach for RDF was already studied and shown to be competitive with the
state of the art [2]. In this section we experimentally evaluate the behavior of the
IK2-tree in RDF against the multiple K2-tree approach and RDF-3X [15], a highly
efficient structure for RDF that was shown to be the most competitive alternative [2].

Simple triple patterns explained in Section 3 are the basis of SPARQL, the stan-
dard query language for RDF. Therefore, we evaluate how fast simple patterns are
solved. We follow a hybrid approach using K = 4 in the first five levels of the tree
and K = 2 in the rest of the levels, for the IK2-tree and for the multiple K2-tree. The
last levels of the trees (submatrices of size 8 × 8) are statistically compressed using
DACs [6]. Notice that the multiple K2-tree approach compresses each matrix using an
independent vocabulary, which can model the distribution of each adjacency matrix
better than the single vocabulary of submatrices 8×8 used in the IK2-tree. However,
the single vocabulary of the IK2-tree is an advantage if the number of predicates is
large because it avoids storing too many vocabularies.

4.1 Experimental framework and results

We include datasets from different domains: Jamendo (dbtune.org/jamendo) is a
repository of music; Dblp (dblp.l3s.de/dblp++.php) stores Computer Science jour-
nals and proceedings; Geonames (download.geonames.org/all-geonames-rdf.zip)
is a geographic database; and DBpedia (wiki.dbpedia.org/Downloads351) is an en-
cyclopedic dataset extracted from Wikipedia. Our machine is an AMD-PhenomTM-II
X4 955@3.2 GHz, quad-core, 8GBDDR2, running Ubuntu 9.10. The code was devel-
oped in C, and compiled using gcc (version 4.4.1) with optimization -O9.

Table 1 shows the size of the different RDF datasets and the compression re-
sults obtained by the IK2-tree, the multiple K2-tree (MK2-tree) and RDF-3X. First
columns show the number of triples and the number of predicates that each dataset
contains. It determines the maximum number of bits of the nodes in the IK2-tree and
the number of individual K2-trees that have to be created for the multiple K2-tree.

We can observe that the multiple K2-tree approach is the most compressed struc-
ture for Jamendo, DBLP and Geonames; while for the DBpedia dataset the IK2-tree
achieves the best compression. Since the IK2-tree contains just a reordering of the

Geonames DBpedia
Category Pattern MK2-tree IK2-tree RDF-3X MK2-tree IK2-tree RDF-3X

(S,P,O) 1.8 3.9 2,346.5 3.2 6.2 2,532.4
(S,P,*) 64.9 110.4 4,882.3 358.7 608.5 4,117.3
(*,P,O) 0.1 0.3 0.6 0.6 1.6 143.9

Bounded
Predicate

(*,P,*) 0.4 0.5 0.7 0.7 1.6 0.9
(S,*,O) 5.3 4.4 6,118.6 7,186.1 155.2 6,330.6
(S,*,*) 95.0 69.7 229.7 3,925.2 911.2 272.3

Unbounded
Predicate

(*,*,O) 240.0 187.0 2,473.1 10,918.1 1,444.6 1,377.9

Table 2: Time evaluation of simple patterns for RDF, in µs per result

bits of the individual K2-tree, their space differences occur because the multiple K2-
tree compresses the last levels of each tree independently, and IK2-tree uses a global
vocabulary, as explained. In DBpedia, the unique vocabulary saves some redundancy,
but in the smaller datasets the specific vocabularies obtain better compression. Both
representations based on K2-trees are much more compressed than RDF-3X.

Regarding query efficiency, we test all the basic triple patterns: Table 3 shows
the results for Geonames (as a representative domain with few predicates) and for
DBpedia (as an example with many predicates). For each simple pattern, we show
the average time per query (500 queries were executed for each pattern).

Results show that, for bounded predicates, the multiple K2-tree is the fastest,
and the IK2-tree is about twice as slow. This is expected, because the navigation in
the IK2-tree is slightly more costly: it must execute additional rank operations to
compute the number of active bits in each child. In general, RDF-3X is slower.

For patterns with unbounded predicates, instead, the IK2-tree clearly outperforms
the multiple K2-tree, especially for datasets with many predicates like DBpedia, be-
cause it partially solves the problem of the vertical partitioning. RDF-3X only obtains
better results for some patterns in DBpedia, but in general it is far less efficient.

4.2 Lazy evaluation

A problem of the navigation algorithms over the IK2-tree with unbounded predicate
is that we have to maintain at each step the list of active predicates. To do this we
must check all the bits of each node, and for each one, compute its corresponding
value using the list of active values of the previous level. For nodes containing many
predicates, this mapping can be very expensive. Worse than that, it may not produce
any result, because this branch may be discarded in lower levels of the tree. To solve
this problem, we propose a lazy evaluation strategy that delays the computation of
active values of the predicate in each node until a result is found in the branch.
This navigation strategy is designed to optimize the performance of queries with
unbounded predicate in datasets with many predicates.

In the lazy approach we perform the top-down traversal over the tree without
knowing which are the currently active values of predicates (only how many). A later
bottom-up mapping will be performed only for the leaves that contain some result.
When we reach a leaf we know that we have a result for some values of the predicate.
To obtain the actual values for the predicates we start by obtaining the list of active

Simple pattern Multiple K2-tree Interleaved K2-tree Lazy IK2-tree RDF-3X
(S,*,*) 3,925.2 911.2 232.7 272.3
(*,*,O) 10,918.1 1,444.6 430.8 1,377.9

Table 3: Time, in µs per result, of basic and lazy evaluation in patterns with unbounded predicate
on DBpedia

values A in the leaf. Then we recursively update the list of active values, mapping
each value with its position in the parent, until we reach the root. At this moment,
the elements in A will be the valid predicates for the results of that leaf node.

In addition, we note that for queries where dimensions X or Z are unbounded, we
can take advantage of the fact that multiple leaves involved in a query have common
ancestors at some level of the tree. When an internal node needs to map several lists
of active values from different children we merge them so as to check that intermediate
node only once. Thus, we start from many lists of active values in the leaves, which are
merged when common ancestors are checked in order to avoid redundant mappings.

Table 3 shows how this approach improves the results obtained in RDF for patterns
with unbounded predicate in DBpedia. Lazy evaluation improves significantly the
results for those queries, achieving better results than RDF-3X in all cases.

5 Representing Temporal Graphs with IK2-trees

Temporal graphs model the evolution of a binary relation over time, that is, a ternary
relation over X×Y ×T , where T (time) is our partitioning variable. A first approach
to this problem by using multiple K2-trees was proposed, where complete snapshots
of the graph (or with some kind of differential encoding) were stored [12]. We propose
instead to represent each time instant (except t0) as a change log. At t0 we store a
complete snapshot of the graph (all triples (x, y, t0)). At tk, for k > 0, we store
(xi, yj, tk) iff the relation between xi and yj changed between tk−1 and tk, that is, we
store for each edge of the graph the time instants when the edge appears or disappears.
Using this representation, a relation exists between xi and yj at time tk iff there is an
odd number of triples (xi, yj, tm), where m ∈ [0..k].

Typical queries ask whether elements x and y are related at a given time tk or
during a given interval (t`, tr). We use two semantics for intervals: strong interval
queries ask if the relation existed during the complete interval (in our representation,
that means that the relation existed at t` and no changes occurred in the interval);
weak interval queries ask if the relation existed at any point within the interval (in
our representation, we need to check if any change occurred within the interval or
if the conditions for strong queries are fulfilled). All the operations can be easily
solved taking into account that each one found (except the first bit of each node) is
a change, and a relation exists at any time if the number of changes until that time
is odd. Using the IK2-tree, the changes for each (xi, yj) are placed in consecutive
positions along the bitmap, so fast rank operations can be used in order to count the
number of ones before a given time and within a given interval. Leaves compressed
with DAC are not convenient in this domain since we perform rank operation in all
levels.

Dataset |Snapshots| |Average relations| Multiple K2-tree Interleaved K2-tree

Monkey contact 220 2.500.000 281,11 281,03
Power Law 1.000 2.900.000 4,55 4,54
CommNet 10.000 20.000 137,28 136,51

Table 4: Space comparison on different temporal graphs (in MB)

CommNet Monkey Contact Power Law
Simple patterns MK2-tree IK2-tree MK2-tree IK2-tree MK2-tree IK2-tree
Dir. Instant 86,78 1,7 0,27 0,14 17,60 1,28
Dir. Weak 87,19 1,84 0,27 0,14 20,72 1,56
Dir. Strong 88,02 1,82 0,26 0,16 19,73 1,44
Rev. Instant 89,07 1,79 0,28 0,15 19,86 1,43
Rev. Weak 90,96 2,07 0,26 0,15 18,36 1,46
Rev. Strong 93,75 2,05 0,26 0,16 19,98 1,50

Table 5: Time comparison on temporal graphs (in msec per query)

5.1 Experimental framework and results

We analyze the temporal evolution of the Monkey Contact dataset (a real social
network), CommNet (a random graph where relations exist during a short period of
time) and a power-law degree distributed graph. We represent these datasets using
our IK2-tree, and also using multiple K2-trees that encode the same change logs.
Table 4 shows the number of snapshots and the average number of changes (edges)
per snapshot, and the size of the representations obtained with the IK2-tree and the
multiple K2-tree. These are almost identical (small differences are due to redundant
information stored in each of the K2-trees).

Table 5 shows the query performance achieved for the three datasets with the
IK2-tree, in contrast with the multiple K2-tree approach. We ask for direct and
reverse neighbors of a given node at a time instant or time interval with strong and
weak semantics. We run sets of 2000 queries of each type, where nodes and time
instants are chosen randomly, while the length of the intervals is fixed (100). The
experimental results show the superiority of the Interleaved K2-tree regarding the
multiple K2-tree approach in terms of querying efficiency in the context of temporal
graphs.

6 Conclusions

IK2-tree is a promising data structure for ternary relation representation providing,
in very compact space storage, indexing capabilities over the three dimensions. Our
experimental results on real-world applications show its superiority over the state-of-
the-art vertical partitioning schemes.

The full potential of IK2-tree is still unexplored. For example, fact that each
node of the tree stores a bitmap instead of a single bit is interesting in cases, such as
temporal graphs, where counting the number of bits (1 or 0) between two positions
(changes between two instants) provides useful information. We plan to pursue on
further functionality and other applications of this data structure.

References

[1] D. J. Abadi, A. Marcus, S. R. Madden, and K. Hollenbach. Scalable semantic
web data management using vertical partitioning. In Proc. 33rd VLDB, pages
411–422, 2007.

[2] S. Álvarez-Garćıa, N. R. Brisaboa, J. D. Fernández, and M. A. Mart́ınez Prieto.
Compressed k2-triples for full-in-memory RDF engines. In Proc. 17th AMCIS,
2011.

[3] A. Apostolico and G. Drovandi. Graph compression by BFS. Algorithms,
2(3):1031–1044, 2009.

[4] J. Barbay, L. C. Aleardi, M. He, and J. I. Munro. Succinct representation of
labeled graphs. Algorithmica, 62(1-2):224–257, 2012.

[5] Paolo Boldi and Sebastiano Vigna. The webgraph framework i: compression
techniques. In Proceedings of the 13th international conference on World Wide
Web, pages 595–602. ACM, 2004.

[6] N. Brisaboa, S. Ladra, and G. Navarro. DACs: Bringing direct access to variable-
length codes. Inf. Proc. Manag., 49(1), 2013.

[7] N. R. Brisaboa, G. de Bernardo, and G. Navarro. Compressed dynamic binary
relations. In Proc. 22nd DCC, pages 52–61, 2012.

[8] N. R. Brisaboa, S. Ladra, and G. Navarro. K2-trees for compact Web graph
representation. In Proc. 16th SPIRE, pages 18–30, 2009.

[9] D. Chakrabarti and C. Faloutsos. Graph mining: Laws, generators, and algo-
rithms. ACM Computing Surveys (CSUR), 38(1):2, 2006.

[10] F. Claude and G. Navarro. Fast and compact web graph representations. ACM
Trans. Web, 4(4):16, 2010.

[11] G. de Bernardo, S. Álvarez-Garćıa, N. Brisaboa, G. Navarro, and O. Pedreira.
Compact querieable representations of raster data. In Proc. 20th SPIRE, pages
96–108, 2013.

[12] G. de Bernardo, N. R. Brisaboa, D. Caro, and M. Andrea Rodŕıguez. Compact
data structures for temporal graphs. In Proc. 23rd DCC, 2013.

[13] F. Manola and E. Miller, editors. RDF Primer. W3C Recommendation. 2004.
http://www.w3.org/TR/rdf-primer/.

[14] J. I. Munro. Tables. In Proc. 16th FSTTCS, pages 37–42, 1996.

[15] T. Neumann and G. Weikum. The RDF-3X engine for scalable management of
RDF data. The VLDB J., 19:91–113, 2010.

[16] N. Ritter and M. Ruth. The GeoTiff data interchange standard for raster geo-
graphic images. Int. J. Remote Sensing, 18(7):1637–1647, 1997.

[17] S. Sakr and G. Al-Naymat. Relational processing of RDF queries: a survey.
SIGMOD Rec., 38(4):23–28, 2010.

[18] X. Yan, P. S. Yu, and J. Han. Graph indexing: a frequent structure-based
approach. In Proc. 2004 ACM SIGMOD, pages 335–346. ACM, 2004.

