
Fast Fully-Compressed Suffix Trees

Gonzalo Navarro ∗

Department of Computer Science
University of Chile, Chile

gnavarro@dcc.uchile.cl

Lúıs M. S. Russo †

INESC-ID / Instituto Superior Técnico
Technical University of Lisbon, Portugal

lsr@kdbio.inesc-id.pt

Abstract

We speed up the fully-compressed suffix tree representation (FCST), which is
the only one using asymptotically optimal space. Classical representations of
suffix trees are fast, but require too much space (O(n log n) bits for a string
of length n over an alphabet of size σ, which is considerably more than the
n log σ bits needed to represent the string). Modern compressed suffix tree rep-
resentations are smaller, getting close to the compressed string size, and achieve
constant to sublogarithmic time for most operations. However, their space is
not fully optimal. An exception is the FCST, which achieves fully optimal space
but its times are superlogarithmic. Our contribution significantly accelerates
the FCST representation, achieving for many operations log-logarithmic times
on typical texts. The resulting FCST variant becomes very attractive in terms
of space and time, and a promising alternative in practice.

1 Introduction and Related Work

Suffix trees are extremely important for a large number of string processing problems
[2]. Their combinatorial properties have a profound impact in the bioinformatics
field, which needs to analyze large strings of DNA and proteins with no predefined
boundaries [7]. This partnership has produced several key results, but it has also
exposed the main shortcoming of suffix trees. Their large space requirements, together
with their need to operate in main memory to be useful in practice, renders them
inapplicable in the cases where they would be most useful, that is, on large texts.

∗Funded by Fondecyt grant 1-110066, Chile.
†Funded by FCT, under projects PEst-OE/EEI/LA0021/2013, NetDyn PTDC/EIA-

EIA/118533/2010 and DataStorm EXCL/EEI-ESS/0257/2012.

1

The space problem is so important that it has originated a plethora of research
results, ranging from space-engineered implementations [6] to novel data structures
to simulate it, most notably suffix arrays [8]. Some of those space-reduced variants
give away some functionality in exchange. For example suffix arrays miss the im-
portant suffix link navigational operation. Yet, all these classical approaches require
O(n log n) bits, while the indexed string requires only n log σ bits1, where n is the
string length and σ the alphabet size. For example the human genome requires 700
Megabytes, while even a space-efficient suffix tree on it requires at least 40 Giga-
bytes [13], and the reduced-functionality suffix array requires 12 Gigabytes. This
problem is particularly evident in DNA because log σ = 2 is much smaller than log n.

Those representations are also much larger than the size of the compressed string.
Recent approaches [11] combining data compression and succinct data structures have
achieved spectacular compression on suffix arrays. For example Ferragina et al. [3]
presented a compressed suffix array that requires nHk + o(n log σ) bits and computes
occ in time O(m(1+ log σ

log logn
)), where m is the size of the pattern, occ the number of its

occurrences in the string, and nHk the k-th order empirical entropy of the string [9],
a lower bound on the space achieved by any compressor using k-th order modeling.

It turns out that it is possible to use this kind of data structures, that we will
call compressed suffix arrays2, and, by adding a few extra structures, support all
the operations provided by suffix trees. Sadakane was the first to present such a
compressed suffix tree (CST) [13], adding 6n bits to the size of the compressed suffix
array. This Θ(n) extra-bits space barrier was later removed by the fully-compressed
suffix tree (FCST) representation [12], and by the entropy-bounded compressed suffix
tree (EBCST) [5, 4].

Table 1 clearly shows that FCSTs are the only ones achieving asymptotically
optimal space, but also that they should be fairly slow. This is not a consequence
of pessimistic bounds: A recent experimental comparison [1] has shown that FCSTs
indeed use much less space, but also are an order of magnitude slower than other
CSTs. Indeed, they compete only for the Child operation or on full traversals, that
is, precisely when the other modern representations also require a lot of time. The
FCST representation is paying a steep price for its tiny space requirements.

In this paper we propose faster algorithms for navigating the FCST representation,
and a modified FCST representation to support it. The last column of Table 1 shows
that, on typical texts, our new FCST requires polylog-log time for most operations,
which makes it an excellent candidate for a practical alternative dominating most of
the space/time tradeoff map.

We start by recalling the basic FCST we build on [12]. Then we show how to speed
up operation LCA in Section 3, and operation SDep in Section 4. Many others are
then speeded up as a consequence, or with analogous means, in Section 5.

1In this paper log stands for log2.
2These are also called compact suffix arrays, FM-indexes, etc. [11].

2

Table 1: Comparison between compressed suffix tree representations. The ’=’ sign
in the last column indicates that the time is the same of the previous column. The
instantiation we show assumes σ = O(polylog(n)), and uses the CSA of Grossi et
al. for CST and EBCST, and the FM-index of Ferragina et al. for FCST. The space
given holds for any k ≤ α logσ n and any constant 0 < α < 1. The o(n) space term
in this instantiation is O(n/ log log n). The times in the last column hold for typical
texts, where SDep = O(log n).

CST [13] EBCST [5, 4] FCST [12] New FCST

Space in bits (1+1
ε)nHk (1+1

ε)nHk+o(n) nHk + o(n) nHk + o(n)
+6n+ o(n)

Root O(1) O(1) O(1) =

Count O(1) O(1) O(1) =

Ancestor O(1) O(1) O(1) =

Parent O(1) O(logε n) O(log n log log n) O(log log n)

FChild O(1) O(logε n) O(log n log log n) O((log log n)2)

NSib O(1) O(logε n) O(log n log log n) O((log log n)2)

LCA O(1) O(logε n) O(log n log log n) O(log log n)

TDep O(1) No support O(log n log log n) O((log log n)3)

TLAQ O(1) No support O(log n log log n) O((log log n)3)

Letter(v, i, `) O(`+ logε n) O(`+ logε n) O(`+ log n log logn) =

Child O(logε n) O(logε n) O(log n(log log n)2) =

Locate O(logε n) O(logε n) O(log n log log n) =

SLink O(1) O(logε n) O(log n log log n) O(log log n)

SLinki O(logε n) O(logε n) O(log n log log n) =

WeinerLink O(log n) O(log n) O(1) =

SDep O(logε n) O(logε n) O(log n log log n) O((log log n)2)

SLAQ No support O(log1+ε n) O(log n log log n) O((log log n)2)

2 Basic Concepts

We denote by T a string; by Σ the alphabet of size σ; by T [i] the symbol at position
(i mod n); by T.T ′ concatenation; by T = T [..i − 1].T [i..j].T [j + 1..] respectively
a prefix, a susbtring and a suffix; by Parent(v) the parent node of node v; by
TDep(v) its tree-depth; by FChild(v) its first child; by NSib(v) the next child of
the same parent; by TLAQ(v, d) its level-d ancestor; by Ancestor(v, v′) whether
v is an ancestor of v′; by LCA(v, v′) the lowest common ancestor.

The path-label of a node v in a labeled tree is the concatenation of the edge-labels
from the root down to v. We refer indifferently to nodes and to their path-labels,
also denoted by v. The i-th letter of the path-label is denoted as Letter(v, i) = v[i].
The string-depth of a node v, denoted by SDep(v), is the length of its path-label.
SLAQ(v, d) is the highest ancestor of node v with SDep ≥ d. Child(v,X) is the
node that results of descending from v by the edge whose label starts with symbol X,

3

if it exists. The suffix tree of T is the compact labeled tree for which the path-labels
of the leaves are the suffixes of T$, where $ is a terminator symbol not belonging to Σ.
Moreover no two children out of a node share the initial letter. We will assume n is the
length of T$. For a detailed explanation see Gusfield’s book [7]. The suffix-link of a
node v 6= Root of a suffix tree, denoted SLink(v), is a pointer to node v[1..], and we
denote SLinki(v) the iterated suffix link operation from node v. The Weiner link,
denoted WeinerLink(a, v), is a pointer to node a.v, if it exists. Note that SDep(v)
of a leaf v identifies the suffix of T$ starting at position n− SDep(v) = Locate(v).
The suffix array A[0, n−1] stores the Locate values of the leaves in lexicographical
order. The suffix tree nodes can be identified with suffix array intervals: each node
corresponds to the range of leaves that descend from v. Hence the node v will be
represented by the interval [vl, vr]. Leaves are also represented by their left-to-right
index (starting at 0). For example by vl − 1 we refer to the leaf immediately before
vl, i.e.[vl − 1, vl − 1]. With this representation we can Count in constant time the
number of leaves that descend from v. We can also compute Ancestor in O(1) time:
Ancestor(v, v′) ⇔ vl ≤ v′l ≤ v′r ≤ vr. The Ranka(T, i) operation over a string T
counts the number of times that the letter a occurs in T up to position i. Likewise
the Selecta(T, i) operation gives the position of the i-th occurrence of a in T .

A compressed suffix array (CSA) supports access to any suffix array cell,
A[i], and to the inverse permutation, A−1[i]. It also implements operations Ψ(i) =
A−1[A[i] + 1] in time O(ψ) and LF(a, [l, r]) = WeinerLink(a, [vl, vr]) in time O(τ).
The actual values of ψ and τ depend on the underlying CSA. We generalize the LF
notation to a string s; the expression LF(s, [l, r]) represents the iteration of LF by
using the letters of s from right to left.

The FCST [12] implements the operations in Table 1 by using a CSA and o(n)
bits on top of it. Those o(n) bits include a parentheses representation (e.g., [14]) of
a sampled suffix tree. The sampling contains O(n/δ) nodes, for some parameter
δ, and ensures that, if we take successive SLink steps from any node v, we will find
a sampled node before δ iterations. The reason why such a sampling is useful is that
suffix trees are self-similar, as explained by the following lemma, where LCSA stands
for the LCA operation restricted to the sampled tree.

Lemma 1 ([12]) Consider nodes v, v′ such that SLinkr(LCA(v, v′)) = Root and
d = min(δ, r + 1). Then

SDep(LCA(v, v′)) = max
0≤i<d

{i+ SDep(LCSA(SLinki(v),SLinki(v′)))}.

They use this relation to solve the kernel operations LCA, SDep, and SLink,
and then derive the others from those.

3 Faster Lowest Common Ancestors

In this section we speed up operation LCA. We start from Lemma 1, which is more
an observation about the structure of suffix trees than an operational scheme. A

4

detailed discussion about how to actually use the lemma is given by Russo et al. [12].
We now explain how to adapt it to compute LCA without computing SDep. The
following lemma is useful for this purpose.

Lemma 2 Let v, v′ be nodes such that SLinkr(LCA(v, v′)) = Root. Then there is
an i with 0 ≤ i < d = min(δ, r + 1) such that

LF(v[0..i− 1],LCSA(SLinki(v),SLinki(v′))) = LCA(v, v′).

Proof. According to Lemma 1, there is an i in the interval such that SDep(LCA(v, v′))
= i+SDep(LCSA(SLinki(v),SLinki(v′))). Let w = LCSA(SLinki(v),SLinki(v′))
and u = SLinki(LCA(v, v′)) = LCA(SLinki(v),SLinki(v′)). Thus w is an ancestor
of u, and its string depth is SDep(w) = SDep(LCA(v, v′))− i = SDep(u), therefore
we conclude that u = w. Now, by definition, LF(v[0..i− 1], w) = LF(v[0..i− 1], u) =
LCA(v, v′). �

The lemma can be used as follows to obtain LCA(v, v′) without computing any SDep
information. Let us define the sequence of nodes ui = SLinki(LCA(v, v′)) (which
we will not compute) and wi = LCSA(SLinki(v),SLinki(v′)). We will compute
the wi nodes for all i, and retain the lowest one in the SLinki path, by computing
w′d−1 = wd−1 and, for i = d − 2 . . . 0, w′i as the lowest between wi and LF(v[i], w′i+1)
(since these two nodes are one an ancestor of the other, we can use just Ancestor to
determine w′i). By the proof above, at least one wi will be equal to ui, and we will spot
it in w′i = wi and bring it back to w′0, thus at the end we will have LCA(v, v′) = w′0.

This procedure is essentially what was computed in the original FCST approach,
but now we use the Ancestor operation instead of comparing the numerical SDep
values. There may seem to be little or no gain from this change: the time to
compute LCA operation is still O((ψ + τ)δ). However, since we do not need to
store SDep information, we can reduce the δ value to O(log log n) and still use
O((n log log log n)/ log log n) = o(n) extra bits of space, hence speeding up the LCA
operation. This space bound is determined by the underlying compressed bitmap
used to map intervals to the parenthesis tree.

4 Faster String Depth

In this section we explain how to compute SDep in O(ψ logSDep(v) log log n) time.
The idea is to store the SDep information in sampled nodes, using b1+logSDep(v)c
bits instead of log n bits. Our current sampled tree uses parameter δ = dlog log ne and
requires o(n) bits, but it includes no SDep information. We store this information in
another sampled tree, with a sampling that is larger and varies with the string depth
of the nodes.

Our basic sampling technique, with parameter δ, is to sample any node v such that
SDep(v) is a multiple of δ/2 and there is another node v′ such that v = SLinkδ/2(v′).
This guarantees that there are O(n/δ) sampled nodes and that any other node is at
most δ suffix links away from a sampled node [12].

5

`v SDep(v)

1 1
2 3 2
3 7 6 5 4
4 15 14 13 12 11 10 9 8
5 23 22 21 20 19 18 17 16

31 30 29 28 27 26 25 24

Figure 1: Schematic representation of the SDep(v) values that yield sampled nodes,
according the band sampling criterion. On the left, the table contains the `v values.
On the right we show the SDep(v) values that correspond to the same `v value. We
assume (δ/2) = 1 and that there is a chain of suffix links that starts with SDep 30
and passes through all the values to SDep 0. The numbers in bold correspond to
sampled nodes, according to the band criterion; the numbers in italics correspond to
nodes that are not sampled because they fail the second condition.

For the second sampling, we will divide the tree into bands where the logarithm
of SDep does not change, that is, node v will belong to band `v = b1+logSDep(v)c.
The sampling rule will be that v is sampled iff SDep(v) is a multiple of (δ/2)`v and
there is another node v′ such that `v = `v′ and v = SLink(δ/2)`v(v′). An illustration
of this rule is shown in Figure 1.

This guarantees that we sample at most one out of (δ/2)` nodes at each band
`. Thus, if we spend O(logSDep(v)) bits to store SDep(v) for sampled nodes v,
we spend O(1/δ) bits per node of any level, maintaining the total space in O(n/δ)
bits. The underlying bitmap that identifies those sampled nodes is sparser than the
original one that uses sampling value δ for all the bands, and thus it adds up to
O(n log δ/δ) = o(n) bits overall.

On the other hand, the maximum distance that we may traverse from a node v
of band ` occurs when we change band after traversing `δ− 1 suffix links (just at the
point where the node would have been sampled if it belonged to band `), and then we
traverse other (`−1)δ suffix links in band `−1. We cannot change band again before
carrying out 2`−2 suffix links, so if 2`−2 > δ`, we are sure to complete the process in
band ` − 1. If ` is small, however, it might be that 2`−2 ≤ δ` and we change band
again without finding a sampled node. But in this case the whole number of suffix
links towards the root is at most 2`−2+2`−3+ . . .+21 ≤ 2`−1 ≤ 2δ` anyway. Therefore
we carry out O(δ`) = O(δ logSDep(v)) steps to compute SDep(v). For example, in
Figure 1 no node is sampled for the band `v = 2.

Finally, we note that now our vector of sampled SDep values requires a variable
number of bits per value. By concatenating, say, the binary representation of the
values, omitting initial 0’s, we need O(logSDep) bits to encode each value SDep. A
further bitmap of the same total length of the concatenation, marking the beginnings
of the numbers, and with sublinear-sized structures to support Select operations in
constant time [10], gives constant-time access within the desired space bounds.

6

5 Speeding up other Operations

Operation SLAQ. Russo et al. [12] solve operation SLAQ(v) in a sophisticated
way, which involves a binary search among the ancestors of a node in the sampled
tree (which was said to cost O(log n) but it can be refined to O(logSDep(v)), the
computation of SDep on O(δ) sampled tree nodes, plus the traversal of O(δ) nodes
with operations Ψ and LF. Since we need to know SDep on the sampled nodes,
we carry out this process on the tree with varying sampling we have described in
Section 4, therefore we have δ = O(logSDep(v) log log n). Therefore, the cost of this
operation becomes O((ψ + τ) logSDep(v) log log n) time on our new structures.

Basic navigation. Operations Parent and SLink are solved with a constant
number of LCA operations [12], and therefore can now be solved in time O((ψ +
τ) log log n). Similarly, operations FChild and NSib are solved with a constant
number of applications of operations SLAQ, SDep, and Parent; therefore these
operations require now time O((ψ + τ) logSDep(v) log log n).

Tree depth and operation TLAQ. Operation TDep(v) is solved in the original
FCST with a different sampling of the suffix tree, which guarantees that if we take
Parent successively from a node v, we will find a sampled node before δ iterations.
The sampled nodes store their tree depths in the original suffix tree. Thus we per-
form i < δ Parent operations until reaching a marked node v′, and the answer is
TDep(v′) + j. The time is dominated by the O(δ) Parent operations.

Since we have to store tree depths in this sampled tree, we use a varying sampling
analogous to the one used to store the SDep information. Here we sample nodes
whose depth within the band ` is a multiple of (δ/2)` and have a descendant in
the same band at distance (δ/2)`. By the same arguments as in Section 4, the
sampled nodes require o(n) bits, and the number of Parent operations to carry out
is O(logTDep(v) log log n) = O(logSDep(v) log log n). By multiplying this by the
O((ψ+τ) log log n) time used by Parent (which is carried out in the denser sampled
tree), we have a final cost of O((ψ + τ) logSDep(v)(log log n)2) time.

For TLAQ(v), we find the least sampled ancestor of v in this tree and then binary
search for the two sampled nodes whose (stored) TDep values contain the target
depth. Then we sequentially find the right node with successive Parent operations
from the lower node enclosing the target value. The time is the same as for TDep(v).

6 Discussion and Conclusions

In the previous sections we described how to speed up the FCST representation.
Namely we improved the worst-case performance of the LCA, SLink and Parent
operations to just O(log log n) steps, by detaching their computation from that of
string depths, SDep, and thus freeing the FCST from the need to store string depth
information at sampled nodes. Thus the sampling can be made much denser, boosting
the operations within the same asymptotic space.

7

The operations still involve the computation of string depths or similar values.
We showed how to store SDep(v) within O(logSDep(v)) bits, which enabled us to
compute it in O(logSDep(v) log log n) steps, still within o(n) bits of space. This is to
be compared to the O(log n log log n) time of the original FCST. The other operations
are speeded up analogously.

How significant is the speedup from O(log n) to O(logSDep(v)) depends on how
large is SDep(v). Szpankowski [15] shows that, for “typical” texts, the maximum
string depth is at most c · log n for some constant c “almost surely” [15, Thm.
1(ii) and Remark 2(iv)]. His definition of typical texts is texts sampled from a
stationary mixing ergodic source (more precisely, type A2 in his categorization),
a quite general assumption including Bernoulli and Markovian models. The “al-
most surely” (a.s.) term is a very strong convergence, stronger than “on average”,
“with high probability”, and “infinitely often”.3 Therefore, on typical texts, we have
that logSDep(v) ≤ log log n + O(1) and, for example, SDep(v) is computed in
O((log log n)2) steps and TDep(v) in O((log log n)3) steps.

Theorem 3 A suffix tree of a text of size n can be represented in nHk + o(n log σ)
bits, which includes the space to store a CSA that implements operations Ψ in O(ψ)
time, LF in O(τ) time, and access to the suffix array and its inverse in within time
O(min(ψ, τ) log n log log n). Then the suffix tree carries out the operations listed in
Table 1, in the time bounds given in the last column multiplied by O(ψ + τ), almost
surely on typical texts.

There are other scenarios, especially in Computational Biology, that are not well
described by the ergodic source models implied in “typical” texts. For example, in a
collection of genomes of individuals of the same species, we might have that each new
genome is almost identical to a previous one, with a mutation rate of p, where p is
typically in the range 10−2 to 10−4. If a substring of the current genome of length `
is equal to a previous one, we will have SDep(v) = ` for the corresponding suffix tree
node. The average value of ` is 1/p, and if we regard the distribution as geometric,

we expect that the longest match between any two strings be 2 lnn+O(1)

ln 1
1−p

. In this case

we expect logSDep to be bounded by log log n− log log 1
1−p +O(1). When p is close

to zero, this is approximated by log log n + log 1
p

+ O(1). This adds a nonnegligible,
yet still manageable, constant for the typical values of p. A similar case occurs when
the sequences are built from chunks extracted at arbitrary positions from a few base
sequences.

Our results are a significant improvement over the FCSTs representation, which
is currently the smallest (yet slowest) compressed suffix tree representation, both in
theory and in practice. The speedups are significant and can potentially bring the
FCST representation much closer to the time performance of the other compressed
representations. Future work is to implementing these new techniques, making com-
monsense engineering decisions where necessary.

3A sequence Xn tends to a value β almost surely if, for every ε > 0, the probability that |XN/β−
1| > ε for some N > n tends to zero as n tends to infinity, limn→∞ supN>n Pr(|XN/β− 1| > ε) = 0.

8

Acknowledgments

We are thankful to Djamal Belazzougui for useful comments.

References

[1] A. Abeliuk, R. Cánovas, and G. Navarro. Practical compressed suffix trees.
Algorithms, 6(2):319–351, 2013.

[2] A. Apostolico. The myriad virtues of subword trees. In Combinatorial Algorithms
on Words, NATO ISI Series, pages 85–96. Springer-Verlag, 1985.

[3] P. Ferragina, G. Manzini, V. Mäkinen, and G. Navarro. Compressed represen-
tations of sequences and full-text indexes. ACM Transactions on Algorithms,
3(2):article 20, 2007.

[4] J. Fischer. Wee LCP. Information Processing Letters, 110:317–320, 2010.

[5] J. Fischer, V. Mäkinen, and G. Navarro. Faster Entropy-Bounded Compressed
Suffix Trees. Theoretical Computer Science, 410(51):5354–5364, 2009.

[6] R. Giegerich, S. Kurtz, and J. Stoye. Efficient implementation of lazy suffix trees.
Software Practice and Experience, 33(11):1035–1049, 2003.

[7] D. Gusfield. Algorithms on Strings, Trees and Sequences. Cambridge University
Press, 1997.

[8] U. Manber and E. Myers. Suffix arrays: A new method for on-line string searches.
SIAM Journal on Computing, 22(5):935–948, 1993.

[9] G. Manzini. An analysis of the Burrows-Wheeler transform. Journal of the ACM,
48(3):407–430, 2001.

[10] I. Munro. Tables. In Proc. 16th FSTTCS, LNCS 1180, pages 37–42, 1996.

[11] G. Navarro and V. Mäkinen. Compressed full-text indexes. ACM Computing
Surveys, 39(1):article 2, 2007.

[12] L. S. Russo, G. Navarro, and A. Oliveira. Fully-compressed suffix trees. ACM
Transactions on Algorithms, 7(4):article 53, 2011.

[13] K. Sadakane. Compressed suffix trees with full functionality. Theory of Com-
puting Systems, 41(4):589–607, 2007.

[14] K. Sadakane and G. Navarro. Fully-functional succinct trees. In Proc. 21st
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 134–
149, 2010.

[15] W. Szpankowski. A generalized suffix tree and its (un)expected asymptotic be-
haviors. SIAM Journal on Computing, 22(6):1176–1198, 1993.

9

