
LZ77-like Compression with Fast Random Access ∗

Sebastian Kreft and Gonzalo Navarro
Dept. of Computer Science, University of Chile, Santiago, Chile

{skreft,gnavarro}@dcc.uchile.cl

Abstract

We introduce an alternative Lempel-Ziv text parsing, LZ-End, that con-
verges to the entropy and in practice gets very close to LZ77. LZ-End forces
sources to finish at the end of a previous phrase. Most Lempel-Ziv parsings can
decompress the text only from the beginning. LZ-End is the only parsing we
know of able of decompressing arbitrary phrases in optimal time, while stay-
ing closely competitive with LZ77, especially on highly repetitive collections,
where LZ77 excells. Thus LZ-End is ideal as a compression format for highly
repetitive sequence databases, where access to individual sequences is required,
and it also opens the door to compressed indexing schemes for such collections.

1 Introduction

The idea of regarding compression as the default, instead of the archival, state of the
data is gaining popularity. Compressed sequence and text databases, and compact
data structures in general, aim at handling the data directly in compressed form,
rather than decompressing before using it [19, 15]. This poses new challenges, as
now it is required that the compressed data should, at least, be accessible at random.
In particular, the need to manage huge highly repetitive collections, rapidly arising
in fields like bioinformatics, temporal databases, versioned document and software
repositories, to name a few, is pushing in this direction. A recent work aiming at
indexing large DNA databases of the same species (and hence highly repetitive) [17]
found that LZ77 compression [18] was much superior than other techniques to capture
this repetitiveness, yet it was inadequate as a format for compressed storage, due to
its inability to retrieve individual sequences from the collection.

Decompressing LZ77-compressed data from the beginning is simple and fast. Yet,
extracting an arbitrary substring is expensive, with cost bounded only by the col-
lection size in general. Cutting the text into blocks allows decompressing individual
blocks, but compression ratio is ruined as long-range repetitions are not captured.
Statistical compressors allow relatively simple extraction of arbitrary substrings, but

∗Partially funded by Millennium Institute for Cell Dynamics and Biotechnology (ICDB), Grant
ICM P05-001-F, Mideplan, Chile and, the first author, by Conicyt’s Master Scholarship.

they do not capture long-range repetitions either. Only grammar-based compression
can allow extraction of substrings while capturing long-range repetitions [4].

In this paper we introduce an alternative Lempel-Ziv parsing, LZ-End, which
converges to the entropy and gets in practice very close to LZ77. LZ-End forces the
source of a phrase to finish where some previous phrase ends, and as a result it can
guarantee that a substring finishing at a phrase boundary can be extracted in optimal
time. It is easy to enforce that individual sequences in a collection end at a phrase
boundary, so that they can be extracted optimally and fast in practice.

As a byproduct, we introduce a variant called LZ-Cost that can perform similarly
while providing such guarantees, yet we have not devised an efficient parsing for it.

2 Basic Concepts

Definition 1 ([18]). The LZ77 parsing of text T1,n is a sequence Z[1, n′] of phrases
such that T = Z[1]Z[2] . . . Z[n′], built as follows. Assume we have already processed
T1,i−1 producing the sequence Z[1, p−1]. Then, we find the longest prefix Ti,i′−1 of Ti,n

which occurs in T1,i−1
1, set Z[p] = Ti,i′ and continue with i = i′ + 1. The occurrence

in T1,i−1 of prefix Ti,i′−1 is called the source of the phrase Z[p].

Note that each phrase is composed of the content of a source, which can be the
empty string ε, plus a trailing character. Note also that all phrases of the parsing
are different, except possibly the last one. To avoid that case, a special character $

is appended at the end, Tn = $. We use logarithms in base 2 throughout the paper.
The concept of coarse optimality captures the fact that the algorithm converges

to the entropy, as proved for various Lempel-Ziv variants [9].

Definition 2 ([9]). A parsing algorithm is said to be coarsely optimal if the com-
pression ratio ρ(T) differs from the k-th order empirical entropy Hk(T) by a quantity
depending only on the length of the text and that goes to zero as the length increases.
That is, ∀k ∃fk, limn→∞ fk(n) = 0, such that for every text T , ρ(T) ≤ Hk(T)+fk(|T |).

3 LZ-End Compression

Definition 3. The LZ-End parsing of text T1,n is a sequence Z[1, n′] of phrases such
that T = Z[1]Z[2] . . . Z[n′], built as follows. Assume we have already processed T1,i−1

producing the sequence Z[1, p− 1]. Then, we find the longest prefix Ti,i′−1 of Ti,n that
is a suffix of Z[1] . . . Z[q] for some q < p, set Z[p] = Ti,i′ and continue with i = i′ +1.

The LZ-End parsing is similar to that by Fiala and Green [6], in that theirs
restricts where the sources start, while ours restricts where the sources end. This is
the key feature that will allow us extract arbitrary phrases in optimal time.

1The original definition allows the source of Ti,i′−1 to extend beyond position i−1, but we ignore
this feature in this paper.

3.1 Encoding

The output of an LZ77 compressor is, essentially, the sequence of triplets z(p) =
(j, ℓ, c), such that the source of Z[p] = Ti,i′ is Tj,j+ℓ−1, ℓ = i′ − i, and c = Ti′. This
format allows fast decompression of T , but not expanding an individual phrase Z[p].

The LZ-End parsing, although potentially generating more phrases, permits a
shorter encoding of each, of the form z(p) = (q, ℓ, c), such that the source of Z[p] = Ti,i′

is a suffix of Z[1] . . . Z[q], and the rest is as above. We introduce a more sophisticated
encoding that will, in addition, allow us extract individual phrases in optimal time.

• char[1, n′] (using n′⌈log σ⌉ bits) encodes the trailing characters (c above).

• source[1, n′] (using n′⌈log n′⌉ bits) encodes the phrase identifier where the source
ends (q above).

• B[1, n] (using n log n
n′

+ O(n′ + n log log n

log n
) bits in compressed form) marks the

ending position of the phrases in T . This compressed representation [16] sup-
ports operations rank and select in constant time: rankB(i) is the number of
1s in B[1, i]; selectB(j) is the position of the j-th 1 in B.

Thus we have z(p) = (source[p], selectB(p + 1)− selectB(p)− 1, char[p]).

3.2 Coarse Optimality

Lemma 1. All the phrases generated by an LZ-End parse are different.

Proof. Say Z[p] = Z[p′] for p < p′. Then, when Z[p′] was generated, a possible source
yielding phrase Z[p′]c, longer than Z[p′], was indeed Z[p], a suffix of Z[1] . . . Z[p].

Theorem 2. The LZ-End compression is coarsely optimal.

The proof is easy following that given for LZ77 by Kosaraju and Manzini [9].

3.3 Extraction Algorithm

The algorithm to extract an arbitrary substring in LZ-End is self-explanatory and
given in Figure 1 (left). While the algorithm works for extracting any substring, we
can prove it is optimal when the substring ends at a phrase.

Theorem 3. Function Extract outputs a text substring T [start, end] ending at a
phrase in time O(end− start + 1).

Proof. If T [start, end] ends at a phrase, then B[end] = 1. We proceed by induction
on len = end − start + 1. The case len ≤ 1 is trivial by inspection. Otherwise, we
output T [end] at line 6 after a recursive call on the same phrase and length len− 1.
This time we go to line 8. The current phrase (now p+1) starts at pos. If start < pos,
we carry out a recursive call at line 10 to handle the segment T [start, pos − 1]. As

Extract(start, len)

1 if len > 0 then

2 end← start + len− 1
3 p← rankB(end)
4 if B[end] = 1 then

5 Extract(start, len− 1)
6 output char[p]
7 else

8 pos← selectB(p) + 1
9 if start < pos then

10 Extract(start, pos− start)
11 len← end− pos + 1
12 start← pos
13 Extract(selectB(source[p + 1])

−selectB(p + 1) + start + 1, len)

1 F ← {〈−1, n + 1〉}
2 i← 1, p← 1
3 while i ≤ n do

4 [sp, ep]← [1, n]
5 j ← 0, ℓ← j
6 while i + j ≤ n do

7 [sp, ep]← BWS(sp, ep, Ti+j)
8 mpos← arg maxsp≤k≤ep SA[k]
9 if SA[mpos] ≤ n + 1− i then break

10 j ← j + 1
11 〈q, fpos〉 ← Successor(F , sp)
12 if fpos ≤ ep then ℓ← j
13 Insert(F , 〈p, SA−1[n + 1− (i + ℓ)]〉)
14 output (q, ℓ, Ti+ℓ)
15 i← i + ℓ + 1, p← p + 1

Figure 1: Left: LZ-End extraction algorithm for T [start, start + len − 1]. Right: LZ-

End construction algorithm. F stores pairs 〈phrase identifier, text position〉 and answers

successor queries on the text position.

this segment ends phrase p, induction shows that this takes time O(pos− start + 1).
Now the segment T [max(start, pos), end] is contained in Z[p + 1] and it finishes one
symbol before the phrase ends. Thus a copy of it finishes where Z[source[p+1]] ends,
so induction applies also to the recursive call at line 13, which extracts the remaining
string from the source instead of from Z[p + 1], also in optimal time.

4 Construction Algorithm

We present an algorithm to compute the parsing LZ-End, inspired on algorithm CSP2
by Chen et al. [3]. We compute the range of all prefixes ending with a pattern P ,
rather than suffixes starting with P [6]. This is significantly more challenging.

We first build the suffix array [11] SA[1, n] of the reverse text, TR = Tn−1 . . . T2T1$,
so that TR

SA[i],n is the lexicographically i-th smallest suffix of TR. We also build its

inverse permutation: SA−1[j] is the lexicographic rank of TR
j,n; and the Burrows-

Wheeler Transform (BWT) [2] of TR, T bwt[i] = TR[SA[i]− 1] (or TR[n] if SA[i] = 1).
On top of the BWT we will apply backward search [5]. This allows determining

all the suffixes of TR that start with a given pattern P1,m by scanning P backwards,
as follows. Let C[c] be the number of occurrences of symbols smaller than c in T .
After processing Pi+1,m, indexes sp and ep will be such that SA[sp, ep] points to all
the suffixes of TR starting with Pi+1,m. Initially i = m and [sp, ep] = [1, n]. Now, if
the invariant holds for Pi+1,m, we have that the new indexes for Pi,m are sp′ = C[Pi]+
rankPi

(T bwt, sp − 1) + 1 and ep′ = C[Pi] + rankPi
(T bwt, ep). Operation rankc(L, i)

counts the occurrences of symbols c in L1,i. Let us call this a BWS(sp, ep, Pi) step.
Backward search over TR adapts very well to our purpose. By considering the

patterns P = (Ti,i′−1)
R for consecutive values of i′, we are searching backwards for

P in TR, and thus finding the ending positions of Ti,i′−1 in T , by carrying out one
further BWS step for each new i′ value.

Yet, only those occurrences that finish before position i are useful. Moreover, for
LZ-End, they must in addition finish at a previous phrase end. Translated to TR,
this means the occurrence must start at some position n+1− j, where some previous
Z[p] ends at position j in T . We maintain a dynamic set F where we add the ending
positions of the successive phrases we create, mapped to SA. That is, once we create
phrase Z[p] = Ti,i′, we insert SA−1[n + 1− i′] into F .

As we advance i′ in Ti,i′−1, we test whether SA[sp, ep] contains some occurrence
finishing before i in T , that is, starting after n+1−i in TR. If it does not, then we stop
looking for larger i′ as there are no matches preceding Ti. For this, we precompute
a Range Maximum Query (RMQ) data structure [7] on SA, which answers queries
mpos = arg maxsp≤k≤ep SA[k]. Then if SA[mpos] is not large enough, we stop.

In addition, we must know if i′ finishes at some phrase end, i.e., if F contains
some value in [sp, ep]. A successor query on F find the smallest value fpos ≥ sp in
F . If fpos ≤ ep, then it represents a suitable LZ-End source for Ti,i′. Otherwise, as
the condition could hold again later, we do not stop but recall the last j = i′ where it
was valid. Once we stop because no matches ending before Ti exist, we insert phrase
Z[p] = Ti,j and continue from i = j + 1. This may retraverse some text since we had
processed up to i′ ≥ j. We call N ≥ n the total number of text symbols processed.

The algorithm is depicted in Figure 1 (right). In theory it can work within bit
space 2n(Hk(T) + 1) + o(n log σ) and O(n log n⌈ log σ

log log n
⌉ + N log1+ǫ n) time (details

omitted). In practice, it works within byte space (1) n to maintain T explicitly; plus
(2) 2.02n for the BWT (following Navarro’s “large” FM-index implementation [14]
that stores T bwt explicitly; this supports BWS steps efficiently); plus (3) 4n for the
explicit SA; plus (4) 0.7n for Fischer’s implementation of RMQ [7]; plus (5) n for a
sampling-based implementation of inverse permutations [12] for SA−1; plus (6) 12n′

for a balanced binary tree implementing F . This adds up to ≈ 10n bytes. SA is
built in time O(n log n); other construction times are O(n). After this, the parsing
time is O(N log n′) = O(N log n). As we see soon, N is usually (but not always) only
slightly larger than n; we now prove it is O(n log n) under some assumptions.

Lemma 4. The amount of text retraversed at any step is < |Z[p]| for some p.

Proof. Say the last valid match Ti,j−1 was with suffix Z[1] . . . Z[p − 1] for some p,
thereafter we worked until Ti,i′−1 without finding any other valid match, and then
formed the phrase (with source p− 1). Then we will retraverse Tj+1,i′−1, which must
be shorter than Z[p] since otherwise Z[1] . . . Z[p] would have been a valid match.

Corollary 5. In the worst case, N ≤ nL, where L is the longest phrase of the parsing.
On a text coming from an ergodic Markov source, the expected value is N = O(n log n).

5 Experimental Results

We implemented two different LZ-End encoding schemes. The first is as explained
in Section 3.1. In the second (LZ-End2) we store the starting position of the source,
selectB(source[p]), rather than the identifier of the source, source[p]. This in theory
raises the nHk(T) term in the space to 2nHk(T) (and noticeably in practice, as seen
soon), yet we save one select operation at extraction time (line 13 in Figure 1 (left)),
which has a significant impact in performance. In both implementations, bitmap B is
represented by δ-encoding the consecutive phrase lengths. We store absolute samples
selectB(i · s) for a sampling step s, plus pointers to the corresponding position in the
δ-encoded sequence. Thus selectB(i) is solved within O(s) time and rankB(i), using
binary search on the samples, in time O(s + log(n′/s)), hence enabling a space-time
trade-off related to s. Note selectB(p) and selectB(p + 1) cost O(1) after solving
p← rankB(end), in Figure 1 (left), thus LZ-End2 does no selectB operations.

We compare our compressors with LZ77 and LZ78 implemented by ourselves.
Compared to P7Zip (http://www.7-zip.org), LZ77 differs in the final encoding
of the triples, which P7Zip does better. This is orthogonal to the parsing issue
we focus on in this paper. We also implemented LZB [1], which limits the dis-
tance at which the phrases can be from their original (not transitive) sources, so
one can decompress any window by starting from that distance behind; and LZ-
Cost, a novel proposal where we limit the number of times any text character can
be copied, thus directly limiting the maximum cost per character extraction. We
have found no efficient parsing algorithm for LZB and LZ-Cost, thus we test them
on small texts only. We also implemented LZ-Begin, the “symmetric” variant of
LZ-End, which also allows optimal random phrase extraction. LZ-Begin forces the
source of a phrase to start where some previous phrase starts, just like Fiala and
Green [6], yet phrases have a leading rather than a trailing character. Although
the parsing is much simpler, the compression ratio is noticeably worse than that of
LZ-End, as we see soon (discussion of reasons omitted, but the reader can note that
Lemma 1 does not hold). Finally, we tried Re-Pair [10], a grammar-based compressor
(http://www.cbrc.jp/~rwan/software/restore.html).

We used the texts of the Canterbury corpus (http://corpus.canterbury.ac.nz),
the 50MB texts from the PizzaChili corpus (http://pizzachili.dcc.uchile.cl),
and highly repetitive texts Para and Cere2, Coreutils3, Kernel4, CIA World Leaders5,
Wikipedia Einstein6, Fibonacci sequences, and Rich String sequences [8]. We use a

2From the Durbin Research Group, http://www.sanger.ac.uk/Teams/Team118/sgrp
3All 5.x versions without the binary files, ftp://mirrors.kernel.org/gnu/coreutils
4All 1.0.x, 1.1.x and 1.2.x Linux kernel versions, ftp://ftp.kernel.org/pub/linux/kernel
5All documents until July 2009, converted to plain text, https://www.cia.gov/library/

publications/world-leaders-1
6All versions of Einstein’s article until July 7th 2009 with the XML markup removed,

http://en.wikipedia.org/w/index.php?title=Special:Export&pages=Albert Einstein&

offset=1&action=submit&history

LZ77 LZ78 LZ-End LZ-Cost LZB LZ-Begin Re-Pair

Canterbury Size(kiB)
alice29.txt 148.52 47.17 49.91 49.32 48.51 61.75 59.02 72.29
asyoulik.txt 122.25 51.71 52.95 53.51 52.41 66.42 62.34 81.52
cp.html 24.03 43.61 53.60 45.53 46.27 66.26 56.93 78.65
fields.c 10.89 39.21 54.73 41.69 44.44 61.32 60.61 65.19
grammar.lsp 3.63 48.48 57.85 50.41 56.30 67.02 67.14 85.60
lcet10.txt 416.75 42.62 46.83 44.65 43.44 56.72 54.21 57.47
plrabn12.txt 470.57 50.21 49.34 52.06 50.83 63.55 59.15 74.32
xargs.1 4.13 57.87 65.38 59.56 59.45 86.37 73.14 107.33
aaa.txt 97.66 0.055 0.508 0.045 1.56 0.95 0.040 0.045
alphabet.txt 97.66 0.110 4.31 0.105 0.23 1.15 0.100 0.081
random.txt 97.66 107.39 90.10 105.43 107.40 121.11 106.9 219.24
E.coli 4529.97 34.13 27.70 34.72 - - 35.99 57.63
bible.txt 3952.53 34.18 36.27 36.44 - - 43.98 41.81
world192.txt 2415.43 29.04 38.52 30.99 - - 41.52 38.29
pi.txt 976.56 55.73 47.13 55.99 - - 57.36 108.08

Pizza Chili Size(MiB)
Sources 50 28.50 41.14 31.00 - - 41.95 31.07
Pitches 50 44.50 59.30 45.78 - - 57.22 59.90
Proteins 50 47.80 53.20 47.84 - - 54.95 71.29
DNA 50 31.88 28.12 32.76 - - 34.28 45.90
English 50 31.12 41.80 31.12 - - 38.54 30.50
XML 50 17.00 21.24 17.64 - - 25.49 18.50

Repetitive Size(MiB)
Wikipedia Einstein 357.40 0.0997 9.29 0.1009 - - 4.27 0.1038
CIA World Leaders 40.65 1.727 15.89 1.930 - - 7.97 1.887

Rich String 11 48.80 3.197×10−4 0.815 4.180×10−4 - - 0.01 3.752×10−4

Fibonacci 42 255.50 7.319×10−5 0.398 5.323×10−5 - - 6.07×10−5 2.128×10−5

Para 409.38 2.09 25.49 2.48 - - 7.29 2.74
Cere 439.92 1.48 25.33 1.74 - - 6.15 1.86
Coreutils 195.77 3.18 27.57 3.35 - - 7.33 2.54
Kernel 246.01 1.35 30.02 1.43 - - 3.43 1.10

Table 1: Compression ratio of different parsings, in percentage of compressed over original

size. We use parameter cost = (log2 n)/2 for LZ-Cost and dist = n/5 for LZB.

3.0 GHz Core 2 Duo processor with 4GB of main memory, running Linux 2.6.24 and
g++ (gcc version 4.2.4) compiler with -O3 optimization.

5.1 Compression Ratio

Table 1 gives compression ratios for the different collections and parsers. For LZ-End
we omit the sampling for bitmap B, as it can be reconstructed on the fly at load time.
LZ-End is usually 5% worse than LZ77, and at most 10% over it on general texts and
20% on the highly repetitive collections, where the compression ratios are nevertheless
excellent. LZ78 is from 20% better to 25% worse than LZ-End on typical texts, but
it is orders of magnitude worse on highly repetitive collections. With parameter
log2(n)/2, LZ-Cost is usually close to LZ77, yet some times it is much worse, and it
is never better than LZ-End except for negligible margins. LZB is not competitive at
all. Finally, LZ-Begin is about 30% worse on typical texts, and up to 40 times worse
for repetitive texts. This shows that LZ-End achieves very competitive compression
ratios, even in the challenging case of highly repetitive sequences, where LZ77 excells.

Re-Pair shows that grammar-based compression is a relevant alternative. Yet,
we note that it is only competitive on highly repetitive sequences, where most of
the compressed data is in the dictionary. This implementation applies sophisticated
compression to the dictionary, which we do not apply on our compressors, and which

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 19 20 21 22 23 24 25 26 27 28

tim
e(

µs
)/

le
n

log(len)

PizzaChili XML Database

LZ77
LZ-End

P7Zip
SA

 0

 0.5

 1

 1.5

 2

 2.5

 19 20 21 22 23 24 25 26 27 28

tim
e(

µs
)/

le
n

log(len)

Einstein’s Wikipedia Article Versions

LZ77
LZ-End

P7Zip
SA

Figure 2: Parsing times for XML and Wikipedia Einstein, in microseconds per character.

prevents direct access to the grammar rules, essential for extracting substrings.

5.2 Parsing Time

Figure 2 shows construction times on two files for LZ77 (implemented following
CSP2 [3]), LZ-End with the algorithm of Section 4, and P7Zip. We show sepa-
rately the time of the suffix array construction algorithm we use, libdivsufsort

(http://code.google.com/p/libdivsufsort), common to LZ77 and LZ-End.
Our LZ77 construction time is competitive with the state of the art (P7Zip),

thus the excess of LZ-End is due to the more complex parsing. Least squares fitting
for the nanoseconds/char yields 10.4 log n + O(1/n) (LZ77) and 82.3 logn + O(1/n)
(LZ-End) for Einstein text, and 32.6 log n + O(1/n) (LZ77) and 127.9 log n + O(1/n)
(LZ-End) for XML. The correlation coefficient is always over 0.999, which suggests
that N = O(n) and our parsing is O(n log n) time in practice. Indeed, across all of
our collections, the ratio N/n stays between 1.05 and 1.37, except on aaa.txt and
alphabet.txt, where it is 10–14 (which suggests that N = ω(n) in the worst case).

The LZ-End parsing time breaks down as follows. For XML: BWS 36%, RMQ
19%, tree operations 33%, SA construction 6% and inverse SA lookups 6%. For
Einstein: BWS 56%, RMQ 19%, tree operations 17%, and SA construction 8%.

5.3 Text Extraction Speed

Figure 3 shows the extraction speed of arbitrary substrings of increasing length. The
three parsings are parameterized to use approximately the same space, 550kiB for
Wikipedia Einstein and 64MiB for XML. It can be seen that (1) the time per character
stabilizes after some extracted length, as expected, (2) LZ-End variants extract faster
than LZ77, especially on very repetitive collections, and (3) LZ-End2 is faster than
LZ-End, even if the latter invests its better compression in a denser sampling.

We now set the length to 1,000 and measure the extraction speed per character,
as a function of the space used by the data and the sampling. Here we use bitmap
B and its sampling for the others as well. LZB and LZ-Cost have also their own

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 2 4 6 8 10 12 14 16 18

E
xt

ra
ct

io
n

sp
ee

d
(M

ch
ar

s/
s)

log(extraction length)

DBLP XML File(size=282MiB)

LZ77
LZEnd

LZEnd2

 0

 1

 2

 3

 4

 5

 6

 0 2 4 6 8 10 12 14 16 18

E
xt

ra
ct

io
n

sp
ee

d
(M

ch
ar

s/
s)

log(extraction length)

Wikipedia Einstein’s Article Version(size=357MiB)

LZ77
LZEnd

LZEnd2

Figure 3: Extraction speed vs extracted length, for XML and Wikipedia Einstein.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 50 60 70 80 90 100

E
xt

ra
ct

io
n

sp
ee

d
(M

ch
ar

s/
s)

Compression Ratio

plrabn12.txt(size=471kiB)

LZ77
LZEnd

LZEnd2
LZCost

LZB
LZ78

 0

 5

 10

 15

 20

 25

 30

 0 0.02 0.04 0.06 0.08 0.1

E
xt

ra
ct

io
n

sp
ee

d
(M

ch
ar

s/
s)

Compression Ratio

Fibonacci Sequence(size=502kiB)

LZ77
LZEnd

LZEnd2
LZCost

LZB

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 15 20 25 30 35 40 45 50

E
xt

ra
ct

io
n

sp
ee

d
(M

ch
ar

s/
s)

Compression Ratio

DBLP XML File(size=282MiB)

LZ77
LZEnd

LZEnd2
LZ78

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0.1 0.15 0.2 0.25 0.3 0.35

E
xt

ra
ct

io
n

sp
ee

d
(M

ch
ar

s/
s)

Compression Ratio

Wikipedia Einstein’s Article Version(size=357MiB)

LZ77
LZEnd

LZEnd2

Figure 4: Extraction speed vs parsing and sampling size, on different texts.

space/time trade-off parameter; we tried several combinations and chose the points
dominating the others. Figure 4 shows the results for small and large files.

It can be seen that LZB is not competitive, whereas LZ-Cost follows LZ77 closely
(while offering a worst-case guarantee). The LZ-End variants dominate all the trade-
off except when LZ77/LZ-Cost are able of using less space. On repetitive collections,
LZ-End2 is more than 2.5 times faster than LZ77 at extraction.

6 Future Work

LZ-End opens the door to compressed indexed schemes for highly repetitive collections
based on Lempel-Ziv, as advocated in previous work [17, 4]. Indeed, there exists
already a proposal [13] for a LZ77-based self-index, whose only drawback is that it

needs to extract random text substrings along the search process. This is now feasible
with LZ-End parsing, thus our next goal is to implement such a self-index. This would
provide not only access to the compressed data, but also efficient indexed search.

References

[1] M. Banikazemi. LZB: Data compression with bounded references. In Proc. DCC, page 436,
2009. Poster.

[2] M. Burrows and D. Wheeler. A block sorting lossless data compression algorithm. Technical
Report 124, Digital Equipment Corporation, 1994.

[3] G. Chen, S. Puglisi, and W. Smyth. Lempel-Ziv factorization using less time & space. Mathe-

matics in Computer Science, 1(4):605–623, June 2008.

[4] F. Claude and G. Navarro. Self-indexed text compression using straight-line programs. In Proc.

34th MFCS, pages 235–246, 2009.

[5] P. Ferragina and G. Manzini. Indexing compressed texts. JACM, 52(4):552–581, 2005.

[6] E. Fiala and D. Greene. Data compression with finite windows. CACM, 32(4):490–505, 1989.

[7] J. Fischer and V. Heun. A New Succinct Representation of RMQ-Information and Improve-
ments in the Enhanced Suffix Array. In Proc. 1st ESCAPE, pages 459–470, 2007.

[8] F. Franek, R. Simpson, and W. Smyth. The maximum number of runs in a string. In Proc.

AWOCA, pages 26–35, 2003.

[9] R. Kosaraju and G. Manzini. Compression of low entropy strings with Lempel-Ziv algorithms.
SIAM J. Comp., 29(3):893–911, 1999.

[10] J. Larsson and A. Moffat. Off-line dictionary-based compression. Proc. IEEE, 88(11):1722–1732,
2000.

[11] U. Manber and G. Myers. Suffix arrays: a new method for on-line string searches. SIAM J.

Comp., 22(5):935–948, 1993.

[12] J. Munro, R. Raman, V. Raman, and S. S. Rao. Succinct representations of permutations. In
Proc. 30th ICALP, pages 345–356, 2003.

[13] G. Navarro. Indexing LZ77: The next step in self-indexing. Keynote talk at the Third Workshop

on Compression, Text, and Algorithms, Melbourne, Australia, 2008.

[14] G. Navarro. Implementing the LZ-index: Theory versus practice. ACM JEA, 13(2), 2009.

[15] G. Navarro and V. Mäkinen. Compressed full-text indexes. ACM CSUR, 39(1):article 2, 2007.

[16] R. Raman, V. Raman, and S. Rao. Succinct indexable dictionaries with applications to encoding
k-ary trees and multisets. In Proc. 13th SODA, pages 233–242, 2002.

[17] J. Sirén, N. Välimäki, V. Mäkinen, and G. Navarro. Run-length compressed indexes are superior
for highly repetitive sequence collections. In Proc. 15th SPIRE, pages 164–175, 2008.

[18] J. Ziv and A. Lempel. A universal algorithm for sequential data compression. IEEE TIT,
23(3):337–343, 1977.

[19] N. Ziviani, E. Moura, G. Navarro, and R. Baeza-Yates. Compression: A key for next-generation
text retrieval systems. IEEE Computer, 33(11):37–44, 2000.

