Lempel-Ziv Compression of Structured Text”

Joaquin Adiego', Gonzalo Navarro? and Pablo de la Fuente!

"Dpto. de Informatica, Universidad de Valladolid, Valladolid, Espafa.
{jadiego, pfuente}Qinfor.uva.es
2Dpto. de Ciencias de Computacion, Universidad de Chile, Santiago, Chile.

gnavarro@dcc.uchile.cl

Abstract

We describe a novel Lempel-Ziv approach suitable for compressing struc-
tured documents, called LZCS, which takes advantage of redundant informa-
tion that can appear in the structure. The main idea is that frequently repeated
subtrees may exist and these can be replaced by a backward reference to their
first ocurrence. The main advantage is that compressed documents generated
by LZCS are easy to display, access at random, and navigate. In a second
stage, processed documents can be further compressed using some semiadap-
tive technique, so that random access and navigability remain possible. LZCS
is especially efficient to compress collections of highly structured data, such as
XML forms, invoices, e-commerce and web-service exchange documents. The
comparison against structure-based and standard compressors shows that LZCS
is a competitive choice for this type of documents, while the others are not well-
suited to support navigation or random access.

Keywords: Ziv-Lempel, XML Data, Text Compression.

1 Introduction

The storage, exchange, and manipulation of structured text as a device to represent
semistructured data is spreading across all kinds of applications, ranging from text
databases and digital libraries to web-services and electronic commerce. Structured
text, and in particular the XML format, is becoming a standard to encode data with
simple or complex, fixed or varying structure. Although XML has been envisioned as
a mechanism to describe structured data from some time ago, it has been the recent
explosion of “electronic business” that has shown its potential to describe all sorts

*This work was partially supported by CYTED VII.19 RIBIDI project (all authors), Millen-
nium Nucleus Center for Web Research, Grant P01-029-F, Mideplan, Chile (second author) and the
TI1C2003-09268 project from MCyT, Espafia (first and third authors)

of documents exchanged between organizations and stored inside an organization.
Examples are invoices, receipts, orders, payments, accounting, and other forms.

Although the information stored by an organization is usually kept in relational
databases and/or data warehouses, it is important to store digital copies, in XML
format, of all the documents that have been exchanged and/or produced along time.
A structured text retrieval engine should provide random access to those structured
documents, so that they should be easily searched, visualized, and navigated. On the
other hand, as usual, we would like this repository to take as little space as possible.

In this paper we focus on the compression of structured text. We aim specifically
at compression of highly structured data, such as forms where there is little text in
each field. Collections formed by those types of forms contain a lot of redundancy
that is not captured well enough by classical compression methods. At the same time,
we want the compressed collection to be easily accessed, visualized and navigated.
Existing structure-aware compression methods do not account for these capabilities:
texts have to be uncompressed first before they can be accessed.

We develop a compression method, LZCS, inspired in Lempel-Ziv compression,
where repeated substructres are factored out. We obtain very good compression
ratios, much better than those of classical methods, and competitive against other
structure-aware methods. Only XMLPPM compresses better than our LZCS. How-
ever, text collections compressed with LZCS are easily accessed at random, visualized
and navigated, which is not possible with XMLPPM, which is adaptive and hence
needs to uncompress the whole collection before extracting a single document.

Moreover, LZCS algorithm is one-pass, which means that it can output the com-
pressed text almost immediately after seeing the source text. This makes it suitable
for use over a communication network without introducing any delay in the trans-
mission. The output of LZCS is still plain text, which easies transmission over plain
ASCII channels. In a second pass, the output of LZCS can be further compressed
using a coding method that retains navigability and random access.

2 Text compression

2.1 Compressing plain text

In general, classic methods of text compression do not take into account the structure
of the documents they compress. At the end of the seventies, Lempel and Ziv designed
new technologies of data compression based on replacing text substrings by previous
repeated ocurrences. Their two most famous algorithms are called LZ77 [13] and
LZ78 [14], as well as the later variant LZW [11]. Depending on the variants, different
previous strings can be referenced, while others cannot. These techniques do not
consider the semantic meaning of sequences replaced. The Lempel-Ziv family is the
most popular to compress text because it combines good compression ratios with fast
compression and decompression.

n

With regard to compressing natural language texts in order to permit efficient

retrieval from the collection, the most successful techniques are based on models
where the text words are taken as the source symbols |7|, as opposed to the traditional
models where the characters are the source symbols.

Words reflect much better than characters the true entropy of the text [2]. For
example, a semiadaptive Huffman coder over the model that considers characters as
symbols typically obtains a compressed file whose size is around 60% of the original
size, on natural language. A Huffman coder when words are the symbols obtains 25%
[15]. Another example is the WLZW algorithm, which uses Ziv-Lempel on words
3, 5].

On the other hand, most information retrieval systems use words as their main
information atoms, so a word-based compression easies the integration with an infor-
mation retrieval system. Some examples of successful integration are |12, 9, 8|.

2.2 Compressing Structured Text

SCM [1] is a generic model used to compress semistructured documents, which takes
advantage of the context information usually implicit in the structure of the text.
The idea is to use a separate model to compress the text that lies inside each different
structure type (e.g., each different XML tag). The idea is that the distribution of all
the texts that belong to a given structure type should be similar, and different from
that of other structure types.

Another compression method that considers the document structure is XMill [6],
developed in AT&T Labs. XMill is an XML-specific compressor designed to exchange
and store XML documents, and its compression approach is not intended for directly
supporting querying or updating of the compressed document. XMill is based on the
zlib library, which combines Ziv-Lempel compression with a variant of Huffman.

Yet another XML compressor is XGrind |10|, which directly supports queries
over the compressed files. An XML document compressed with XGrind retains the
structure of the original document, permitting reuse of the standard XML techniques
for processing the compressed document. It does not, however, take full advantage of
the structure.

Other approaches to compress XML data exist, based on the use of a PPM-
like coder, where the context is given by the path from the root to the tree node
that contains the current text. One example is XMLPPM |4, which is an adaptive
compressor based on PPM, where the context is given by the structure.

3 LZCS description

LZCS is a new technique to compress structured text (such as XML and HTML)
that allows one to easily navigate the compressed structure. Thus, LZCS can be
integrated into a structured text retrieval system without loss of efficiency in the
search or visualization of results. The main idea is based on the Ziv-Lempel concept,
so that repeating substructures and text blocks are replaced by a backward reference
to their first ocurrence in the processed document. The result is a valid structured

text with additional special tags (backward reference tags), which can be transmitted,
handled or visualized in a conventional way, or further compressed using some existing
COMpPressor.

These documents are visualized in the usual way up to meeting a backward ref-
erence. When a backward reference appears, we push current text position in a
stack and move to the indicated text position. If the referenced text begins with a
start-tag, then the backward reference will finalize when the corresponding end-tag
appears. Otherwise, it will finalize when a start-tag appears. When the referenced
text finishes we pop previous text position from the stack and continue. Further
backward references can appear in referenced text, in which case we repeat the same
process. A similar procedure can be used to traverse or navigate the structure in tree
form.

Since the documents generated by LZCS are navigable, a good idea is to further
compress them using a semiadaptive compression method, like word-based Huffman.
After this process, the documents cannot anymore be visualized as plain text (a word-
wise decompression is needed), but they are still navigable and accessible at random
positions.

In the following we formally define the LZCS transformation.

3.1 Formal definition

Definition 1 (Text Block) A text block will be any mazimal consecutive alphanu-
meric character sequence not containing structure or backward reference tags.

Definition 2 (Structural Element) A structural element will be any consecutive
character sequence that begins with a start-tag and finalizes with its corresponding
end-tag.

Bearing in mind last definition, a structural element can contain one or more text
blocks, one or more structural elements and/or one or more backward reference tags.
For simplicity, other types of valid tags (e.g. comment tags, autocontained tags and
so on) will be treated as conventional text, and only start-tags and end-tags will be
used to identify structural elements.

The structure induces a hierarchy that can be represented as a tree. Let us regard
documents in tree form. Text blocks will be represented by leaves, and structural
elements by subtrees.

Definition 3 (Node) A node will be either a text block or a structure element.

The main point of LZCS is to replace some subtrees by references to equivalent
subtrees seen before.

Definition 4 (Equivalent Nodes) Let N; and Ny be two nodes that appear in a

collection. We will say that node Ny is equivalent to node Ny iff Ny is textually equal
to NQ.

Definition 5 (LZCS Transformation) LZCS replaces each mazimal node that is
equivalent to a previous node by a backward reference to its first occurrence in the text.
Other elements are left unchanged. “Maximal” means that the node replaced does not
descend from another that can be replaced.

A backward reference is represented by a special tag in the output. The special
tag is constructed by means of the symbols <@ and > that mark the beginning and
end of the backward reference tag. The content of this tag will be formed by digits
that express an unsigned integer indicating the absolute position where the referenced
element begins. For space optimization, this number will be expressed in base 62,
using 0..9, A..Z and a. .z as digits.

It may happen that a referenced text block is smaller than the reference itself (for
example, when the text block is formed only by character >\n’). In these circum-
stances, replacing it by a reference is not a good choice. Hence we do not replace text
blocks that are shorter than a user-specified parameter [. The choice of [influences
compression ratio, but not correctness.

For lack of space we do not show the compression algorithm, which runs in linear
expected time, 2.5 times slower than gzip in practice.

3.2 Example

Assume that we are going to compress a collection of three documents using LZCS.
The documents are represented in Figure 1. In the figure, there exist three different
structural elements represented by circles. The structural element of type 1 has the
circle drawn with a continuous line, that of type 2 with a dashed line, and that of type
3 with a dotted line. Text blocks are represented by squares. Letters and numbers in
the figure represent node identifiers.

(A

Figure 1: Three example documents. Equivalent subtrees are marked.

To cover all the possibilities, suppose that text blocks numbered 1, 4, 7 and 9 in
the figure are equivalent. Also text blocks numbered 3 and 10 are equivalent, as well
as those numbered 6 and 8. With this, the documents share repeating parts (that
is, equal subtrees). Furthermore, Figure 1 shows graphically these correspondences.
Finally Figure 2 shows the collection transformed with LZCS.

SN\ ﬂ, N\

AN AN
ﬁ ﬁ ﬁ @

Figure 2: Example documents after applying the LZCS transformation. Backward
references are represented by triangles.

vm\
VO\

(9

4 FEvaluation

The LZCS model was tested using different XForms collections, which correspond to
real documents in use in small and medium Chilean companies. XForms', an XML
dialect, is a W3C Candidate Recommendation for a specification of Web forms that
clearly separate semantic from presentation aspects. In particular, XForms is becom-
ing quite common in the representation and exchange of information and transactions
between companies.

For privacy reasons we cannot use actual XForms databases, but we can get rather
close. We have obtained five different types of forms (e.g., invoices). Each such form
has several fields. Each field has a controlled vocabulary (e.g., names of parts) we have
access to. Hence, we have generated actual forms by randomly choosing the contents
of each field from their controlled vocabulary. We remark that this is pessimistic,
since actual data may contain more regularities than randomly generated data.

A brief description of the five types of forms used follows.

e XForms type 1: Centralization of Remunerations. It represents the accounting
of the monthly remunerations, both for total quantities and with itemization.
This is a frequently used document.

e XForms type 2: Sales Invoice. It is a legal Chilean document.

e XForms type 3: Purchase Invoice. It is a legal Chilean document, similar to the
previous one.

e XForms type 4: Work Order. It is the document used in companies that install
heating systems, to register the account detail of contracted work.

e XForms type 5: Work Budget. It is the document used in companies that build
signs and publicity by request, to determine the parts and costs of works to
carry out. Construction companies use a similar document.

thttp://www.w3.org/MarkUp /Forms.

For the experiments we selected different size collections of XForms types 1, 2 and
3. Collections of XForms types 4 and 5 were smaller so we used them as a whole.

In all cases, LZCS was tested with different [values. Value [= 0 means that all
possible substitutions are made, whereas [= oo means that no text block is replaced,
just structural elements.

Figure 3 shows how compression ratios evolve when different values for [are used,
for XForms type 3. Other XForms collections give similar results. Compression ratio
is defined as the compressed text size divided by the uncompressed text size. We do
not yet apply further compression after the LZCS transformation.

1 T T T T T T T T
LZC:
A LzC:
) LzC: -
Wl v LZCS (=8) —-o- |
LzCs (i=infinity) -~

" lzcs [
LZCS (I1=4) ---x---
LZCS (I1=5) -~

1265 (1-8) --o- |
LZCs (i=infinity) e

Figure 3: Compression ratios using different values for [, for XForms type 3. Right
representation is a zoom of left plot.

As can be seen, the worst compression has been obtained in all cases for [= 0, this
is, when all possible text blocks are replaced. Compression for [= oc has obtained
intermediate results, obtaining on large collections reductions in text size of 28%
compared to the option [= 0. However, choice | = oo is still much worse than
intermediate choices. Different intermediate values for [yield similar compression,
with very small variations. Their compression improves upon [= oo by 18% and
upon [= 0 by 42% for large collection sizes.

Next, we compared LZCS against the basic word-based Huffman method |7|. Fig-
ure 4 shows the best compression ratio obtained for each method and for each docu-
ment type. Column “LZCS (first stage)” indicates the compression obtained when the
LZCS transformation is applied alone, while column “LZCS (complete)” indicates the
compression obtained after applying Word Huffman to the output of the first stage.

Collection / Method | Word Huffman | LZCS (first stage) | LZCS (complete)
XForms 1 9.693% 0.0374% 0.0215%
XForms 2 12.646% 4.3111% 0.9220%
XForms 3 11.550% 6.0872% 1.3294%
XForms 4 13.994% 4.8861% 0.8928%
XForms 5 12.441% 3.6245% 0.8393%

Figure 4: Best compression ratios for each method and collection.

In all cases the compression obtained by LZCS transformation alone is surprisingly
good. Let us remark that the output obtained by the transformation is still a plain
text document. When Word Huffman codification is aplied over the transformed text
the compression is still better, reducing the LZCS transformed text to 20% 60% of
its size.

Finally, we compared LZCS against other compression systems that allow neither
navigation nor random access on compressed file.

These compression systems either are structure-aware (like XMill and XMLPPM
explained in Section 2), or they are standard. Most standard systems are based on
classical LZ-schemes. Standard systems used to compare against LZCS are (1)zip and
(2) gzip, using LZ77 plus a variant of Huffman algorithm; (3) UNIX’s compress, that
implements LZW algorithm; (4)bzip2, which uses the Burrows-Wheeler block sorting
text compression algorithm, plus Huffman coding.

Bzip2 compression is generally considerably better than that achieved by more
conventional LZ77/LZ78-based compressors, and approaches the performance of the
PPM family of statistical compressors.

L4y 9 sh T e

i

LZCs (1=4)
12 LZCS (1=8) ——] 2
zip —--- gzip

XMill -
XMLPPM --o--

5 10 15 20 25 30 35 40 5
Collection size (Mbytes) Collection size (Mbytes)

Method / Size | T.4 (7.19 Mb) | T.5 (5.74 Mb)

A S S— zip 2.105% 4.435%
e e gzip 2.104% 4.433%
o I — compress 10.300% 10.396%
e bzip2 0.952% 0.843%

£ F XMill 0.942% 0.924%
£°r 2] XMLPPM 0.712% 0.553%
Word Huffman 13.994% 12.441%
L LZCS 1 =0 0.892% 0.939%
N B - LZCS 1 =4 0.893% 0.847%
ot | LZCS 1 =5 0.896% 0.846%
""""""""""""""""""""""""") LZCS 1 =6 0.904% 0.839%
e LZCS 1 =7 0.897% 0.839%
Colecionsize (1) LZCS | =8 0.893% 0.841%

LZCS | = 0o 1.953% 1.256%

Figure 5: Comparison between LZCS and others, for XForms types 1 (upper left), 2
(upper right), 3 (bottom left), 4 and 5 (bottom right).

We compressed our collections with all the systems described. Compression ratios
are shown in Figure 5.

Let us first consider the general compressors. Word Huffman and compress ob-
tained the worst compression ratios, and they are not competitive in this experiment.
They are followed by zip and gzip, both with very similar compression ratios. The

best by far in this category is bzip2, which is still inferior to LZCS, in most cases by
a slight margin. The reason for these results is that these four methods do not con-
sider the structure of the documents, from which LZCS takes significant advantage.
Also, we stress that LZCS allows navigation and random access over compressed text,
which is not easy for bzip2.

Let us now consider the structure-aware methods. In general, LZCS is significantly
better than XMill in all collections, producing compressed texts from just 5% smaller
to as much as 25 times smaller. XMLPPM, on the other hand, obtains by far the
best compression in most cases, except for the notable exception of XForms type 1,
where LZCS is largely unbeaten. The problem of XMLPPM is that its compression
is adaptive, and hence it is not suitable for navigation or random access on the
compressed text.

5 Conclusions

We have presented LZCS, a compression scheme based on Lempel-Ziv which is aimed
at compressing highly structured data. The main idea of LZCS is to replace whole
substructures by previous occurrences thereof. The main advantages of LZCS are (1)
very good compression ratios, outperforming all classical methods and most structure-
aware methods; (2) easy random access, visualization and navigation of compressed
collections; (3) fast and one-pass compression and decompression. Only XMLPPM
compressed better than LZCS in our experiments, but random access to a particular
document is impossible with XMLPPM, since it is adaptive and needs to decompress
first all the documents that precede the desired one. This outrules XMLPPM for use
in a compressed text database scenario.

One of the most challenging problems faced was the efficiency problem of the
compression stage, which is quadratic if one follows the definition. We managed to
overcome this problem and designed a linear average-time compression algorithm, by
using a particular hashing scheme.

In many scenarios, new documents are added to the document collection, but these
are never deleted or modified. LZCS can easily cope with insertion of new documents,
but more research is needed in order to accomodate deletions and modifications of
documents. It would also be interesting to design indexing schemes for fast searching
of documents containing some given words or substructures, keeping in mind that the
collection is compressed.

Acknowledgement. We thank Pablo Palma, from Hypernet Ltd. (Chile), for pro-
viding us with massive samples of almost-real data for the experiments.
References

[1] J. Adiego, G. Navarro, and P. Fuente. SCM: Structural contexts model for
improving compression in semistructured text databases. In Proc. 10th Intl.

2]

3]

4]

5]

6]

17l

18]

19]

[10]

[11]

[12]

13

[14]

[15]

Symp. on String Processing and Information Retrieval (SPIRE’03), LNCS 2857,
pages 153-167. Springer, 2003.

T. Bell, J. Cleary, and 1. Witten. Text Compression. Prentice Hall, Englewood
Cliffs, N.J., 1990.

J. Bentley, D. Sleator, R. Tarjan, and V. Wei. A locally adaptive data compres-
sion scheme. Communications of the ACM, 29:320 330, 1986.

J. Cheney. Compressing XML with multiplexed hierarchical PPM models. In
Proc. Data Compression Conference (DCC 2001), pages 163 , 2001.

J. Dvorsky, J. Pokorny, and V. Snésel. Word-based compression methods and
indexing for text retrieval systems. In Proc. ADBIS’99, LNCS 1691, pages 75-84.
Springer, 1999.

H. Liefke and D. Suciu. XMill: an efficient compressor for XML data. In Proc.
ACM SIGMOD 2000, pages 153-164, 2000.

A. Moffat. Word-based text compression. Software - Practice and Experience,
19(2):185-198, 1989.

A. Moffat and R. Wan. RE-store: A system for compressing, browsing and
searching large documents. In Proc. 8th Intl. Symp. on String Processing and
Information Retrieval (SPIRE 2001), pages 162-174, 2001.

G. Navarro, E. Silva de Moura, M. Neubert, N. Ziviani, and R. Baeza-Yates.
Adding compression to block addressing inverted indexes. Information Retrieval,
3(1):49-77, 2000.

P. Tolani and J. Haritsa. XGRIND: A query-friendly XML compressor. In Proc.
of 18th International Conference of Data Engineering (ICDE’02), pages 225-234,
2002.

Terry A. Welch. A technique for high-performance data compression. [EEFE
Computer, 17(6):8-19, 1984.

[. Witten, A. Moffat, and T. Bell. Managing Gigabytes. Morgan Kaufmann
Publishers, second edition, 1999.

J. Ziv and A. Lempel. An universal algorithm for sequential data compression.
IEEE Trans. on Information Theory, 23(3):337 343, 1977.

Jacob Ziv and Abraham Lempel. Compression of individual sequences via
variable-rate coding. IEEE Transactions on Information Theory, 1T-24(5):530—
536, 1978.

N. Ziviani, E. Moura, G. Navarro, and R. Baeza-Yates. Compression: A key for
next-generation text retrieval systems. IEEE Computer, 33(11):37-44, November
2000.

10

