
Lempel-Ziv Compression of Stru
tured Text�Joaquín Adiego1, Gonzalo Navarro2 and Pablo de la Fuente11Dpto. de Informáti
a, Universidad de Valladolid, Valladolid, España.{jadiego, pfuente}�infor.uva.es2Dpto. de Cien
ias de Computa
ión, Universidad de Chile, Santiago, Chile.gnavarro�d

.u
hile.
lAbstra
tWe des
ribe a novel Lempel-Ziv approa
h suitable for
ompressing stru
-tured do
uments,
alled LZCS, whi
h takes advantage of redundant informa-tion that
an appear in the stru
ture. The main idea is that frequently repeatedsubtrees may exist and these
an be repla
ed by a ba
kward referen
e to their�rst o
urren
e. The main advantage is that
ompressed do
uments generatedby LZCS are easy to display, a

ess at random, and navigate. In a se
ondstage, pro
essed do
uments
an be further
ompressed using some semiadap-tive te
hnique, so that random a

ess and navigability remain possible. LZCSis espe
ially e�
ient to
ompress
olle
tions of highly stru
tured data, su
h asXML forms, invoi
es, e-
ommer
e and web-servi
e ex
hange do
uments. The
omparison against stru
ture-based and standard
ompressors shows that LZCSis a
ompetitive
hoi
e for this type of do
uments, while the others are not well-suited to support navigation or random a

ess.Keywords: Ziv-Lempel, XML Data, Text Compression.1 Introdu
tionThe storage, ex
hange, and manipulation of stru
tured text as a devi
e to representsemistru
tured data is spreading a
ross all kinds of appli
ations, ranging from textdatabases and digital libraries to web-servi
es and ele
troni

ommer
e. Stru
turedtext, and in parti
ular the XML format, is be
oming a standard to en
ode data withsimple or
omplex, �xed or varying stru
ture. Although XML has been envisioned asa me
hanism to des
ribe stru
tured data from some time ago, it has been the re
entexplosion of �ele
troni
 business� that has shown its potential to des
ribe all sorts�This work was partially supported by CYTED VII.19 RIBIDI proje
t (all authors), Millen-nium Nu
leus Center for Web Resear
h, Grant P01-029-F, Mideplan, Chile (se
ond author) and theTIC2003-09268 proje
t from MCyT, España (�rst and third authors)1

of do
uments ex
hanged between organizations and stored inside an organization.Examples are invoi
es, re
eipts, orders, payments, a

ounting, and other forms.Although the information stored by an organization is usually kept in relationaldatabases and/or data warehouses, it is important to store digital
opies, in XMLformat, of all the do
uments that have been ex
hanged and/or produ
ed along time.A stru
tured text retrieval engine should provide random a

ess to those stru
tureddo
uments, so that they should be easily sear
hed, visualized, and navigated. On theother hand, as usual, we would like this repository to take as little spa
e as possible.In this paper we fo
us on the
ompression of stru
tured text. We aim spe
i�
allyat
ompression of highly stru
tured data, su
h as forms where there is little text inea
h �eld. Colle
tions formed by those types of forms
ontain a lot of redundan
ythat is not
aptured well enough by
lassi
al
ompression methods. At the same time,we want the
ompressed
olle
tion to be easily a

essed, visualized and navigated.Existing stru
ture-aware
ompression methods do not a

ount for these
apabilities:texts have to be un
ompressed �rst before they
an be a

essed.We develop a
ompression method, LZCS, inspired in Lempel-Ziv
ompression,where repeated substru
tres are fa
tored out. We obtain very good
ompressionratios, mu
h better than those of
lassi
al methods, and
ompetitive against otherstru
ture-aware methods. Only XMLPPM
ompresses better than our LZCS. How-ever, text
olle
tions
ompressed with LZCS are easily a

essed at random, visualizedand navigated, whi
h is not possible with XMLPPM, whi
h is adaptive and hen
eneeds to un
ompress the whole
olle
tion before extra
ting a single do
ument.Moreover, LZCS algorithm is one-pass, whi
h means that it
an output the
om-pressed text almost immediately after seeing the sour
e text. This makes it suitablefor use over a
ommuni
ation network without introdu
ing any delay in the trans-mission. The output of LZCS is still plain text, whi
h easies transmission over plainASCII
hannels. In a se
ond pass, the output of LZCS
an be further
ompressedusing a
oding method that retains navigability and random a

ess.2 Text
ompression2.1 Compressing plain textIn general,
lassi
 methods of text
ompression do not take into a

ount the stru
tureof the do
uments they
ompress. At the end of the seventies, Lempel and Ziv designednew te
hnologies of data
ompression based on repla
ing text substrings by previousrepeated o
urren
es. Their two most famous algorithms are
alled LZ77 [13℄ andLZ78 [14℄, as well as the later variant LZW [11℄. Depending on the variants, di�erentprevious strings
an be referen
ed, while others
annot. These te
hniques do not
onsider the semanti
 meaning of sequen
es repla
ed. The Lempel-Ziv family is themost popular to
ompress text be
ause it
ombines good
ompression ratios with fast
ompression and de
ompression.nWith regard to
ompressing natural language texts in order to permit e�
ient2

retrieval from the
olle
tion, the most su

essful te
hniques are based on modelswhere the text words are taken as the sour
e symbols [7℄, as opposed to the traditionalmodels where the
hara
ters are the sour
e symbols.Words re�e
t mu
h better than
hara
ters the true entropy of the text [2℄. Forexample, a semiadaptive Hu�man
oder over the model that
onsiders
hara
ters assymbols typi
ally obtains a
ompressed �le whose size is around 60% of the originalsize, on natural language. A Hu�man
oder when words are the symbols obtains 25%[15℄. Another example is the WLZW algorithm, whi
h uses Ziv-Lempel on words[3, 5℄.On the other hand, most information retrieval systems use words as their maininformation atoms, so a word-based
ompression easies the integration with an infor-mation retrieval system. Some examples of su

essful integration are [12, 9, 8℄.2.2 Compressing Stru
tured TextSCM [1℄ is a generi
 model used to
ompress semistru
tured do
uments, whi
h takesadvantage of the
ontext information usually impli
it in the stru
ture of the text.The idea is to use a separate model to
ompress the text that lies inside ea
h di�erentstru
ture type (e.g., ea
h di�erent XML tag). The idea is that the distribution of allthe texts that belong to a given stru
ture type should be similar, and di�erent fromthat of other stru
ture types.Another
ompression method that
onsiders the do
ument stru
ture is XMill [6℄,developed in AT&T Labs. XMill is an XML-spe
i�

ompressor designed to ex
hangeand store XML do
uments, and its
ompression approa
h is not intended for dire
tlysupporting querying or updating of the
ompressed do
ument. XMill is based on thezlib library, whi
h
ombines Ziv-Lempel
ompression with a variant of Hu�man.Yet another XML
ompressor is XGrind [10℄, whi
h dire
tly supports queriesover the
ompressed �les. An XML do
ument
ompressed with XGrind retains thestru
ture of the original do
ument, permitting reuse of the standard XML te
hniquesfor pro
essing the
ompressed do
ument. It does not, however, take full advantage ofthe stru
ture.Other approa
hes to
ompress XML data exist, based on the use of a PPM-like
oder, where the
ontext is given by the path from the root to the tree nodethat
ontains the
urrent text. One example is XMLPPM [4℄, whi
h is an adaptive
ompressor based on PPM, where the
ontext is given by the stru
ture.3 LZCS des
riptionLZCS is a new te
hnique to
ompress stru
tured text (su
h as XML and HTML)that allows one to easily navigate the
ompressed stru
ture. Thus, LZCS
an beintegrated into a stru
tured text retrieval system without loss of e�
ien
y in thesear
h or visualization of results. The main idea is based on the Ziv-Lempel
on
ept,so that repeating substru
tures and text blo
ks are repla
ed by a ba
kward referen
eto their �rst o
urren
e in the pro
essed do
ument. The result is a valid stru
tured3

text with additional spe
ial tags (ba
kward referen
e tags), whi
h
an be transmitted,handled or visualized in a
onventional way, or further
ompressed using some existing
ompressor.These do
uments are visualized in the usual way up to meeting a ba
kward ref-eren
e. When a ba
kward referen
e appears, we push
urrent text position in asta
k and move to the indi
ated text position. If the referen
ed text begins with astart-tag, then the ba
kward referen
e will �nalize when the
orresponding end-tagappears. Otherwise, it will �nalize when a start-tag appears. When the referen
edtext �nishes we pop previous text position from the sta
k and
ontinue. Furtherba
kward referen
es
an appear in referen
ed text, in whi
h
ase we repeat the samepro
ess. A similar pro
edure
an be used to traverse or navigate the stru
ture in treeform.Sin
e the do
uments generated by LZCS are navigable, a good idea is to further
ompress them using a semiadaptive
ompression method, like word-based Hu�man.After this pro
ess, the do
uments
annot anymore be visualized as plain text (a word-wise de
ompression is needed), but they are still navigable and a

essible at randompositions.In the following we formally de�ne the LZCS transformation.3.1 Formal de�nitionDe�nition 1 (Text Blo
k) A text blo
k will be any maximal
onse
utive alphanu-meri

hara
ter sequen
e not
ontaining stru
ture or ba
kward referen
e tags.De�nition 2 (Stru
tural Element) A stru
tural element will be any
onse
utive
hara
ter sequen
e that begins with a start-tag and �nalizes with its
orrespondingend-tag.Bearing in mind last de�nition, a stru
tural element
an
ontain one or more textblo
ks, one or more stru
tural elements and/or one or more ba
kward referen
e tags.For simpli
ity, other types of valid tags (e.g.
omment tags, auto
ontained tags andso on) will be treated as
onventional text, and only start-tags and end-tags will beused to identify stru
tural elements.The stru
ture indu
es a hierar
hy that
an be represented as a tree. Let us regarddo
uments in tree form. Text blo
ks will be represented by leaves, and stru
turalelements by subtrees.De�nition 3 (Node) A node will be either a text blo
k or a stru
ture element.The main point of LZCS is to repla
e some subtrees by referen
es to equivalentsubtrees seen before.De�nition 4 (Equivalent Nodes) Let N1 and N2 be two nodes that appear in a
olle
tion. We will say that node N1 is equivalent to node N2 i� N1 is textually equalto N2. 4

De�nition 5 (LZCS Transformation) LZCS repla
es ea
h maximal node that isequivalent to a previous node by a ba
kward referen
e to its �rst o

urren
e in the text.Other elements are left un
hanged. �Maximal� means that the node repla
ed does notdes
end from another that
an be repla
ed.A ba
kward referen
e is represented by a spe
ial tag in the output. The spe
ialtag is
onstru
ted by means of the symbols <� and > that mark the beginning andend of the ba
kward referen
e tag. The
ontent of this tag will be formed by digitsthat express an unsigned integer indi
ating the absolute position where the referen
edelement begins. For spa
e optimization, this number will be expressed in base 62,using 0..9, A..Z and a..z as digits.It may happen that a referen
ed text blo
k is smaller than the referen
e itself (forexample, when the text blo
k is formed only by
hara
ter '\n'). In these
ir
um-stan
es, repla
ing it by a referen
e is not a good
hoi
e. Hen
e we do not repla
e textblo
ks that are shorter than a user-spe
i�ed parameter l. The
hoi
e of l in�uen
es
ompression ratio, but not
orre
tness.For la
k of spa
e we do not show the
ompression algorithm, whi
h runs in linearexpe
ted time, 2.5 times slower than gzip in pra
ti
e.3.2 ExampleAssume that we are going to
ompress a
olle
tion of three do
uments using LZCS.The do
uments are represented in Figure 1. In the �gure, there exist three di�erentstru
tural elements represented by
ir
les. The stru
tural element of type 1 has the
ir
le drawn with a
ontinuous line, that of type 2 with a dashed line, and that of type3 with a dotted line. Text blo
ks are represented by squares. Letters and numbers inthe �gure represent node identi�ers.
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����

���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

A

B

C D

E

1 2

3

M

N

O P

Q

98

10

F

G

H I

J

K L

4 5 6 7

(C)(B)(A)Figure 1: Three example do
uments. Equivalent subtrees are marked.To
over all the possibilities, suppose that text blo
ks numbered 1, 4, 7 and 9 inthe �gure are equivalent. Also text blo
ks numbered 3 and 10 are equivalent, as wellas those numbered 6 and 8. With this, the do
uments share repeating parts (thatis, equal subtrees). Furthermore, Figure 1 shows graphi
ally these
orresponden
es.Finally Figure 2 shows the
olle
tion transformed with LZCS.5

A

B

C D

E

1 2

3

F

G

I

J

K

5 6

C C

M

QJ

3

(A) (B) (C)Figure 2: Example do
uments after applying the LZCS transformation. Ba
kwardreferen
es are represented by triangles.4 EvaluationThe LZCS model was tested using di�erent XForms
olle
tions, whi
h
orrespond toreal do
uments in use in small and medium Chilean
ompanies. XForms1, an XMLdiale
t, is a W3C Candidate Re
ommendation for a spe
i�
ation of Web forms that
learly separate semanti
 from presentation aspe
ts. In parti
ular, XForms is be
om-ing quite
ommon in the representation and ex
hange of information and transa
tionsbetween
ompanies.For priva
y reasons we
annot use a
tual XForms databases, but we
an get rather
lose. We have obtained �ve di�erent types of forms (e.g., invoi
es). Ea
h su
h formhas several �elds. Ea
h �eld has a
ontrolled vo
abulary (e.g., names of parts) we havea

ess to. Hen
e, we have generated a
tual forms by randomly
hoosing the
ontentsof ea
h �eld from their
ontrolled vo
abulary. We remark that this is pessimisti
,sin
e a
tual data may
ontain more regularities than randomly generated data.A brief des
ription of the �ve types of forms used follows.� XForms type 1: Centralization of Remunerations. It represents the a

ountingof the monthly remunerations, both for total quantities and with itemization.This is a frequently used do
ument.� XForms type 2: Sales Invoi
e. It is a legal Chilean do
ument.� XForms type 3: Pur
hase Invoi
e. It is a legal Chilean do
ument, similar to theprevious one.� XForms type 4: Work Order. It is the do
ument used in
ompanies that installheating systems, to register the a

ount detail of
ontra
ted work.� XForms type 5: Work Budget. It is the do
ument used in
ompanies that buildsigns and publi
ity by request, to determine the parts and
osts of works to
arry out. Constru
tion
ompanies use a similar do
ument.1http://www.w3.org/MarkUp/Forms. 6

For the experiments we sele
ted di�erent size
olle
tions of XForms types 1, 2 and3. Colle
tions of XForms types 4 and 5 were smaller so we used them as a whole.In all
ases, LZCS was tested with di�erent l values. Value l = 0 means that allpossible substitutions are made, whereas l =1 means that no text blo
k is repla
ed,just stru
tural elements.Figure 3 shows how
ompression ratios evolve when di�erent values for l are used,for XForms type 3. Other XForms
olle
tions give similar results. Compression ratiois de�ned as the
ompressed text size divided by the un
ompressed text size. We donot yet apply further
ompression after the LZCS transformation.
 6

 7

 8

 9

 10

 11

 5 10 15 20 25 30 35 40

C
om

pr
es

si
on

 r
at

io
 (

%
)

Collection size (Mbytes)

LZCS (l=0)
LZCS (l=4)
LZCS (l=5)
LZCS (l=6)
LZCS (l=7)
LZCS (l=8)

LZCS (l=infinity)

 6.1

 6.12

 6.14

 6.16

 6.18

 6.2

 20 25 30 35 40

C
om

pr
es

si
on

 r
at

io
 (

%
)

Collection size (Mbytes)

LZCS (l=0)
LZCS (l=4)
LZCS (l=5)
LZCS (l=6)
LZCS (l=7)
LZCS (l=8)

LZCS (l=infinity)

Figure 3: Compression ratios using di�erent values for l, for XForms type 3. Rightrepresentation is a zoom of left plot.As
an be seen, the worst
ompression has been obtained in all
ases for l = 0, thisis, when all possible text blo
ks are repla
ed. Compression for l = 1 has obtainedintermediate results, obtaining on large
olle
tions redu
tions in text size of 28%
ompared to the option l = 0. However,
hoi
e l = 1 is still mu
h worse thanintermediate
hoi
es. Di�erent intermediate values for l yield similar
ompression,with very small variations. Their
ompression improves upon l = 1 by 18% andupon l = 0 by 42% for large
olle
tion sizes.Next, we
ompared LZCS against the basi
 word-based Hu�man method [7℄. Fig-ure 4 shows the best
ompression ratio obtained for ea
h method and for ea
h do
u-ment type. Column �LZCS (�rst stage)� indi
ates the
ompression obtained when theLZCS transformation is applied alone, while
olumn �LZCS (
omplete)� indi
ates the
ompression obtained after applying Word Hu�man to the output of the �rst stage.Colle
tion / Method Word Hu�man LZCS (�rst stage) LZCS (
omplete)XForms 1 9.693% 0.0374% 0.0215%XForms 2 12.646% 4.3111% 0.9220%XForms 3 11.550% 6.0872% 1.3294%XForms 4 13.994% 4.8861% 0.8928%XForms 5 12.441% 3.6245% 0.8393%Figure 4: Best
ompression ratios for ea
h method and
olle
tion.7

In all
ases the
ompression obtained by LZCS transformation alone is surprisinglygood. Let us remark that the output obtained by the transformation is still a plaintext do
ument. When Word Hu�man
odi�
ation is aplied over the transformed textthe
ompression is still better, redu
ing the LZCS transformed text to 20%�60% ofits size.Finally, we
ompared LZCS against other
ompression systems that allow neithernavigation nor random a

ess on
ompressed �le.These
ompression systems either are stru
ture-aware (like XMill and XMLPPMexplained in Se
tion 2), or they are standard. Most standard systems are based on
lassi
al LZ-s
hemes. Standard systems used to
ompare against LZCS are (1)zip and(2)gzip, using LZ77 plus a variant of Hu�man algorithm; (3)UNIX's
ompress, thatimplements LZW algorithm; (4)bzip2, whi
h uses the Burrows-Wheeler blo
k sortingtext
ompression algorithm, plus Hu�man
oding.Bzip2
ompression is generally
onsiderably better than that a
hieved by more
onventional LZ77/LZ78-based
ompressors, and approa
hes the performan
e of thePPM family of statisti
al
ompressors.
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 5 10 15 20 25 30 35 40

C
om

pr
es

si
on

 r
at

io
 (

%
)

Collection size (Mbytes)

LZCS (l=8)
zip

gzip
bzip2
XMill

XMLPPM

 0

 1

 2

 3

 4

 5

 5 10 15 20 25 30 35 40 45

C
om

pr
es

si
on

 r
at

io
 (

%
)

Collection size (Mbytes)

LZCS (l=4)
zip

gzip
bzip2
XMill

XMLPPM

 0

 1

 2

 3

 4

 5

 5 10 15 20 25 30 35 40 45

C
om

pr
es

si
on

 r
at

io
 (

%
)

Collection size (Mbytes)

LZCS (l=5)
zip

gzip
bzip2
XMill

XMLPPM

Method / Size T.4 (7.19 Mb) T.5 (5.74 Mb)zip 2.105% 4.435%gzip 2.104% 4.433%
ompress 10.300% 10.396%bzip2 0.952% 0.843%XMill 0.942% 0.924%XMLPPM 0.712% 0.553%Word Hu�man 13.994% 12.441%LZCS l = 0 0.892% 0.939%LZCS l = 4 0.893% 0.847%LZCS l = 5 0.896% 0.846%LZCS l = 6 0.904% 0.839%LZCS l = 7 0.897% 0.839%LZCS l = 8 0.893% 0.841%LZCS l =1 1.953% 1.256%Figure 5: Comparison between LZCS and others, for XForms types 1 (upper left), 2(upper right), 3 (bottom left), 4 and 5 (bottom right).We
ompressed our
olle
tions with all the systems des
ribed. Compression ratiosare shown in Figure 5.Let us �rst
onsider the general
ompressors. Word Hu�man and
ompress ob-tained the worst
ompression ratios, and they are not
ompetitive in this experiment.They are followed by zip and gzip, both with very similar
ompression ratios. The8

best by far in this
ategory is bzip2, whi
h is still inferior to LZCS, in most
ases bya slight margin. The reason for these results is that these four methods do not
on-sider the stru
ture of the do
uments, from whi
h LZCS takes signi�
ant advantage.Also, we stress that LZCS allows navigation and random a

ess over
ompressed text,whi
h is not easy for bzip2.Let us now
onsider the stru
ture-aware methods. In general, LZCS is signi�
antlybetter than XMill in all
olle
tions, produ
ing
ompressed texts from just 5% smallerto as mu
h as 25 times smaller. XMLPPM, on the other hand, obtains by far thebest
ompression in most
ases, ex
ept for the notable ex
eption of XForms type 1,where LZCS is largely unbeaten. The problem of XMLPPM is that its
ompressionis adaptive, and hen
e it is not suitable for navigation or random a

ess on the
ompressed text.5 Con
lusionsWe have presented LZCS, a
ompression s
heme based on Lempel-Ziv whi
h is aimedat
ompressing highly stru
tured data. The main idea of LZCS is to repla
e wholesubstru
tures by previous o

urren
es thereof. The main advantages of LZCS are (1)very good
ompression ratios, outperforming all
lassi
al methods and most stru
ture-aware methods; (2) easy random a

ess, visualization and navigation of
ompressed
olle
tions; (3) fast and one-pass
ompression and de
ompression. Only XMLPPM
ompressed better than LZCS in our experiments, but random a

ess to a parti
ulardo
ument is impossible with XMLPPM, sin
e it is adaptive and needs to de
ompress�rst all the do
uments that pre
ede the desired one. This outrules XMLPPM for usein a
ompressed text database s
enario.One of the most
hallenging problems fa
ed was the e�
ien
y problem of the
ompression stage, whi
h is quadrati
 if one follows the de�nition. We managed toover
ome this problem and designed a linear average-time
ompression algorithm, byusing a parti
ular hashing s
heme.In many s
enarios, new do
uments are added to the do
ument
olle
tion, but theseare never deleted or modi�ed. LZCS
an easily
ope with insertion of new do
uments,but more resear
h is needed in order to a

omodate deletions and modi�
ations ofdo
uments. It would also be interesting to design indexing s
hemes for fast sear
hingof do
uments
ontaining some given words or substru
tures, keeping in mind that the
olle
tion is
ompressed.A
knowledgement. We thank Pablo Palma, from Hypernet Ltd. (Chile), for pro-viding us with massive samples of almost-real data for the experiments.Referen
es[1℄ J. Adiego, G. Navarro, and P. Fuente. SCM: Stru
tural
ontexts model forimproving
ompression in semistru
tured text databases. In Pro
. 10th Intl.9

Symp. on String Pro
essing and Information Retrieval (SPIRE'03), LNCS 2857,pages 153�167. Springer, 2003.[2℄ T. Bell, J. Cleary, and I. Witten. Text Compression. Prenti
e Hall, EnglewoodCli�s, N.J., 1990.[3℄ J. Bentley, D. Sleator, R. Tarjan, and V. Wei. A lo
ally adaptive data
ompres-sion s
heme. Communi
ations of the ACM, 29:320�330, 1986.[4℄ J. Cheney. Compressing XML with multiplexed hierar
hi
al PPM models. InPro
. Data Compression Conferen
e (DCC 2001), pages 163�, 2001.[5℄ J. Dvorský, J. Pokorný, and V. Snásel. Word-based
ompression methods andindexing for text retrieval systems. In Pro
. ADBIS'99, LNCS 1691, pages 75�84.Springer, 1999.[6℄ H. Liefke and D. Su
iu. XMill: an e�
ient
ompressor for XML data. In Pro
.ACM SIGMOD 2000, pages 153�164, 2000.[7℄ A. Mo�at. Word-based text
ompression. Software - Pra
ti
e and Experien
e,19(2):185�198, 1989.[8℄ A. Mo�at and R. Wan. RE-store: A system for
ompressing, browsing andsear
hing large do
uments. In Pro
. 8th Intl. Symp. on String Pro
essing andInformation Retrieval (SPIRE 2001), pages 162�174, 2001.[9℄ G. Navarro, E. Silva de Moura, M. Neubert, N. Ziviani, and R. Baeza-Yates.Adding
ompression to blo
k addressing inverted indexes. Information Retrieval,3(1):49�77, 2000.[10℄ P. Tolani and J. Haritsa. XGRIND: A query-friendly XML
ompressor. In Pro
.of 18th International Conferen
e of Data Engineering (ICDE'02), pages 225�234,2002.[11℄ Terry A. Wel
h. A te
hnique for high-performan
e data
ompression. IEEEComputer, 17(6):8�19, 1984.[12℄ I. Witten, A. Mo�at, and T. Bell. Managing Gigabytes. Morgan KaufmannPublishers, se
ond edition, 1999.[13℄ J. Ziv and A. Lempel. An universal algorithm for sequential data
ompression.IEEE Trans. on Information Theory, 23(3):337�343, 1977.[14℄ Ja
ob Ziv and Abraham Lempel. Compression of individual sequen
es viavariable-rate
oding. IEEE Transa
tions on Information Theory, IT-24(5):530�536, 1978.[15℄ N. Ziviani, E. Moura, G. Navarro, and R. Baeza-Yates. Compression: A key fornext-generation text retrieval systems. IEEE Computer, 33(11):37�44, November2000. 10

