Fast Multi-Dimensional
Approximate Pattern Matching *

Gonzalo Navarro and Ricardo Baeza-Yates

Dept. of Computer Science, University of Chile
Blanco Encalada 2120 - Santiago - Chile
{gnavarro,rbaeza}@dcc.uchile.cl

Abstract. We address the problem of approximate string matching in
d dimensions, that is, to find a pattern of size m® in a text of size n?
with at most & < m? errors (substitutions, insertions and deletions
along any dimension). We use a novel and very flexible error model,
for which there exists only an algorithm to evaluate the similarity be-
tween two elements in two dimensions at O(m4) time. We extend the
algorithm to d dimensions, at O(d!m?%) time and O(d'm??~!) space. We
also give the first search algorithm for such model, which is O(d!mdnd)
time and O(d!mdnd_l) space. We show how to reduce the space cost
to O(d'3%m??~1) with little time penalty. Finally, we present the first
sublinear-time (on average) searching algorithm (i.e. not all text cells are
inspected), which is O(kn?/m?™!) for k < (m/(d(log, m —log, d)))*~",
where o is the alphabet size. After that error level the filter still re-
mains better than dynamic programming for k < m®'/(d(log, m —
log,, d))(d_l)/d. These are the first search algorithms for the problem. As
side-effects we extend to d dimensions an already proposed algorithm for
two-dimensional exact string matching, and we obtain a sublinear-time
filter to search in d dimensions allowing k& mismatches.

1 Introduction

Approximate pattern matching is the problem of finding a pattern in a text
allowing errors (insertions, deletions, substitutions) of characters. A number of
important problems related to string processing lead to algorithms for approx-
imate string matching: text searching, pattern recognition, computational biol-
ogy, audio processing, etc. Two dimensional pattern matching with errors has
applications, for instance, in computer vision (i.e. searching a subimage inside
a large image).In three dimensions, our algorithms may be useful for searching
allowing errors in video data (where the time would be the third dimension) or
in some types of medical data (e.g. MRI brain scans).

For one dimension this problem is well-known, and is modeled using the
edit distance. The edit distance between two strings a and b, ed(a, b), is defined
as the minimum number of edit operations that must be carried out to make

* Supported in part by Fondecyt grant 1-990627.

them equal. The allowed operations are insertion, deletion and substitution of
characters in a or b. The problem of approzimate string matching is defined as
follows: given a text of length n, and a pattern of length m, both being sequences
over an alphabet X' of size o, find all segments (or “occurrences”) in text whose
edit distance to pattern is at most k, where 0 < k < m. The classical solution is
O(mn) time and involves dynamic programming [20].

Krithivasan and Sitalakshmi (KS) [17] proposed a simple extension to two
dimensions. Given two images of the same size, the edit distance is the sum of the
edit distance of the corresponding row images. This definition is justified when
the images are transmitted row by row and there are not too many communica-
tion errors (e.g. photocopy images, where most errors come from the mechanical
traction mechanism along one dimension only, or images transmitted by fax),
but it is not appropriate otherwise. Using this model they define an approximate
search problem where a subimage of size m X m is searched into a large image
of size n x n, which they solve in O(m?n?) time using a generalization of the
classical one-dimensional algorithm.

In [5], Baeza-Yates (BY) defined a more general extension (there called RC),
where the errors can occur along rows or columns at any time. This model is
much more robust and useful for more applications. We are interested in this
general model in this work. Figure 1 gives an example.

Rows (KS) General (BY)

Fig. 1. Alternative error models.

Although in [5] they give an O(m?) time algorithm to compute the edit
distance among two images of size m x m, they do not give any algorithm to
search a subimage inside a larger image allowing errors.

In this work, we first generalize the edit distance algorithm to d dimen-
sions with complexity O(d!m?¢). We then give an O(d!m?n?) time algorithm for
the search problem, matching the same complexity of the simpler K.S model
in two dimensions, and show how to reduce the space requirements so that
they depend only on the pattern size. We also give a new filtering algorithm
that allows to quickly discard large parts of the text that cannot contain a

match. This algorithm searches the pattern in average time O(kn?/m?-1) for
k < (m/(d(log, m — log, d)))¢~1, where o is the alphabet size. After that error
level the filter changes its cost but remains better than dynamic programming for
k< m?=1/(d(log, m — log, d))(¢=1)/4, These are the first searching algorithms
for this problem.

Two side-effects are obtained as well. First, we generalize to d dimensions
and analyze a previously proposed algorithm to search in two dimensions not
allowing errors. Second, we obtain a filter to search a pattern in d dimensions
allowing up to k& character substitutions.

2 Previous Work

The classical dynamic programming algorithm [20] to search a pattern in a text
allowing errors uses dynamic programming and is O(mn) time and O(m) space.

This solution was later improved by a number of algorithms, which we do not
cover here. The only one of interest to this work is a filtering algorithm [21, 8, 7].
It states that if a pattern is cut in k& + 1 pieces, then any occurrence with up to
k errors must contain one of the pieces unchanged. This is obvious since k errors
cannot alter the k + 1 pieces given the edit operations that we consider (which
cannot alter two pieces at the same time). The algorithm simply scans the text
using a multipattern exact search algorithm for all the pieces. Each time a piece
is found, it uses dynamic programming over an area of length m 4 2k where the
approximate occurrence can be found.

The multipattern search can be carried out in O(n) worst-case search time by
using an Aho-Corasick machine [1], or in O(n/m) best-case time using Commentz-
Walter [12] or another Boyer-Moore type algorithm adapted to multipattern
search. The total cost of verifications keeps below O(n) if k/m < 1/(3log, m).

Two dimensional string matching was first considered by Bird and Baker [11,
10], who obtain O(n?) worst-case time. Good average results are presented by
Zhu and Takaoka in [22]. The best average case result is due to Baeza-Yates and
Régnier [9], who obtain O(n?/m) time on average and O(n?) in the worst case.

The case of two dimensional approximate string matching usually consid-
ers only substitutions for rectangular patterns, which is much simpler than the
general case with insertions and deletions. For substitutions, the pattern shape
matches the same shape in the text (e.g. if the pattern is a rectangle, it matches
a rectangle of the same size in the text). For insertions and deletions, instead,
rows and/or columns of the pattern can match pieces of the text of different
length. Under the substitutions model, one of the best results on the worst case
is due to Amir and Landau [4], which achieves O((k + logo)n?) time but uses
O(n?) space. A similar algorithm is presented in [13]. Ranka and Heywood solve
the same problem in O((k+m)n?) time and O(kn) space. Amir and Landau also
present a different algorithm running in O(n?log nloglog nlog m) time. On aver-
age, the best algorithm is due to Karkkéinen and Ukkonen [15], with its analysis
and space usage improved by Park [19]. The expected time is O(n%k/m? log, m)

for k < m?/(4log, m) using O(m?) space (O(k) space on average). This time
result is optimal for the expected case.

Krithivasan and Sitalakshmi (KS) [17] defined the edit distance in two di-
mensions as the sum of the edit distance of the corresponding row images. Using
this model they search a subimage of size m X m into a large image of size
n X n, in O(m?n?) time using a generalization of the classical one-dimensional
algorithm. Krithivasan [16] presents for the same model an O(m(k + log m)n?)
algorithm that uses O(mn) space. Amir and Landau [4] give an O(k%n?) worst
case time algorithm using O(n?) space. Amir and Farach [3] also considered
non-rectangular patterns achieving O(k(k + v/mlog m+y/klogk)n?) time.

In [6] we use the same model and improve the expected case to O(n?klog, m/
m?) on average for k < m(m + 1)/(5log, m), using O(m?) space. This time
matches the optimal result allowing only substitutions, and is also optimal [15],
being the restriction on k only a bit stricter. For higher error levels, [6] presents
an algorithm with time complexity O(n%k/(1/clogn)), which works for k <
m(m + 1)(1 — e/+/o). It is also shown that this limit on k cannot be improved.

In [5], Baeza-Yates defined more general models, where the errors can occur
along rows or columns. Three distances R, C and L are defined, and for the first
two it is shown that the filters of [6] can be applied to obtain the same complexity
and slightly reduced tolerance to errors, i.e. k& < m(m + 1)/(7log, m). A fourth
model defined in [5] is called RC, which generalizes R and C since the errors
can occur along rows or columns at any time. This model is much more robust
and useful for more applications, and is the one we use in this work. We cover
this model in detail in the next section.

3 Multidimensional Approximate Searching

The classical dynamic programming algorithm [18] to compute the edit distance
between two one-dimensional strings A and B of length m; and m; computes
a matrix Co._m,,0..m,- The value C; ; holds the edit distance between A; ; and
Bi. ;. The construction algorithm is as follows

Ci,o —1 y Coyj —]
Ciyj —if A; = Bj then Ci—l,j—l else 1+ min(C’i_lyj_l, Ci—l,ja Ci,j—l)

and the distance ed(A,B) is the final value of Cp,, m,. The rationale of the
formula is that if A; = B; then the cost to convert A; ; into By ; is that of
converting A ;_; into By ;_;. Otherwise we have to make one error and select
among three choices: (a) convert A; ;_; into By j_1 and replace A; by B;, (b)
convert A; ;_i1 into By, ; and delete A;, and (¢) convert A; ; into By ;_; and
insert Bj;.

This algorithm takes O(mim2) space and time. It is easily adapted to search
a pattern P in a text T allowing up to k errors [20]. In this case we want to
report all the text positions j such that a suffix of 77, ; matches P with at most

k errors. This time the matrix is Co..»,0..m and the construction formula is

Ci,o «~0 , Coyj «~
Ciyj «—if P, = TJ then Ci—l,j—l else 1+ min(C’i_lyj_l, Ci—l,ja Ci,j—l)

where the only change is that a pattern of length zero matches with no errors
at any text position. All the positions ¢ such that C;,, < k are reported. This
takes O(mn) time. The space can be reduced to O(m) by noticing that only
the old and new column of the matrix need to be stored. We define led(T, P) as
the smallest edit distance among the pattern P and a suffix of 7', and therefore
led(Ty. i, P) = Ci .

In [5], a natural extension to the edit distance notion for two dimensional
strings (or “images”) A and B was defined (called RC in that paper, and ed;
in this work). It allows the errors to occur along any dimension. An algorithm
to compute the edit distance among two images is defined. For simplicity we
assume that they are square and of the same size m x m, although it is easy
to remove that limitation. The algorithm computes a four-dimensional matrix
Co..m,0..m,0..m,0..m, 50 that C; ;o = ed(A1.4,1.5, B1.p,1..q). C is built using the
formulas

Cio000 «— %, Cojo0 « 7

Coop0 < P, Cooo,q — ¢

Cijpg —min(Ci_1;p 14+ ed(Ai1.5,Bp1.q), Ci—1jpq+d Cijp-14+a
Cij-1,pq-1+e€d(A1.ij,B1.pq) Cij—1pq+% Cijpg-1+D)

which has a very similar rationale of the one-dimensional case: at each point we
can solve the last row (first line of the min() formula) or the last column (second
line of the min() formula). In each case, we either insert the whole row, delete
the whole row, or replace the row of 4 by the row of B (and ed() gives the
best way to do it). This algorithm is O(m®) time and O(m*) space. However, by
precomputing all the values

Horiz;,jp,g = ed(Ai,1.5, Bp,1..q) Vert; jpq = ed(A1.45, B1.p,q)

(i.e. all the row-wise and column-wise alignments), the search time drops to
O(m*) and the space does not change. This is because the ed() of the C formula
are obtained in constant time, and Horiz consists of m? one-dimensional edit
distance computations, among A; . and By .. The same holds for Vert.

The space can also be reduced to O(m?), as shown in [5]. We select, say, 7 as
the most external variable of the iteration to fill the matrix. Therefore, we need
only the values at iteration ¢ — 1 to compute the values at iteration z. Hence,
we do not need to store all the cells of all the i-th iterations, just the last one.
The same can be done with Horiz and Vert, by using ¢ as the most external
iteration variable.

In [5] they mention that this algorithm extends to d dimensions in time
O(m??) but they do not give the details. We give a detailed algorithm in the

next section and show that the exact complexity is O(d!m??). Also, no algo-
rithm was given in [5] to search a subimage in a larger image using the above
distance function. We do so in the following sections. We finally extend the
one-dimensional filtering algorithm to more dimensions.

4 Edit Distance in More Dimensions

The idea of the previous section can be extended to compute edg(), i.e. the
edit distance generalized to d dimensions. The algorithm is O(d!m??) time and
O(m?4~1) space.

A (2d)-dimensional matrix C' is computed (d dimensions for 4 and d di-
mensions for B), and the ed() of the above formula is replaced by edg_;. If the
values of edy_; are not precomputed then we have O(m?¢1) space (by using
the trick of selecting one variable as the most external in the iteration) plus the
space needed to compute edg_1 (only one at a time is computed). This gives the
recurrence
24-14 g o
which yields O(m2?~1) space. The time, on the other hand, involves to fill m2¢
cells, where each cell performs a minimum over 3d elements (i.e. insertion, dele-
tion and edq_1 in d dimensions). This makes it necessary to compute d times
the function edq_1(). That is

T = mz, T; = m*#3d + m>2d Ty,

which yields O(d!m®3t1). This matches the O(m®) result for two dimensions
mentioned in [5].

However, we may precompute all the necessary values of edq_1(). Along each
one of the d dimensions, we take all the m? (4, p) possible combinations of values
of the selected dimension in A and B, and compute edg_1() between the (d— 1)-
dimensional objects which result from restricting the selected dimension to 7 in
A and to j in B. Once this is done, the edy_; computations can be taken as
constants in the formula of ed4(). The time cost is now

T = mz, T; = m?*3d + dm?®Ty_,

which yields O(d!m??) time (which matches the improved O(m?) algorithm of
[5] for two dimensions). This is a big improvement over the naive algorithm. The
space requirements are, however, higher. We have to store, for the d-dimensional
object, m2? cells plus the precomputed values, along each dimension, of all the
m? combinations of (i, p) values for that dimension, and all the space for the

lower dimensions resulting for each pair (7, p). That is

Slzm, Sd:m

S1 = m, Sy = m?® + dm?S;
which yields
1,0, 2d 1 1 1 1,0, 2d 1,0, 2d
Sq = d'm ﬁ+5+"'+5 < dlm*%e = O(d!m*?)

and we can use the trick of the external variable to reduce this to O(d!mZd_l).

5 A Dynamic Programming Search Algorithm

We modify the edit distance algorithm so that instead of computing the edit
distance between two elements, it searches a small pattern P of size m¢ inside
a large text T of size n?. The idea is a simple modification of the edit distance
algorithm. For two dimensions the formula is as follows

Cio000 « 0, Cojo00 < O

Coopo < P, Coo04 < ¢

Cijpq —min(Ci 1, 14+ 1led(Ai1.5,Bp1.q), Cic15p,q¢+ @ Cigp-1,4+4,
Cij-1pq-1+1led(A15,B1.pq) Cij—1pq+ 0 Cijpe-1+D)

where the only differences are that the basic values are zero when the pattern is
of size zero, that we penalize insertions and deletions according to the pattern
size, and that instead of ed() we use led(), so that we select the best suffix of
the text along each dimension. If we are searching allowing up to % errors, then
we report all text (4, j) positions such that C; j mm < k.

The form to extend this to more dimensions is immediate. By repeating the
analysis of the above section, we see that the naive algorithm is O(d!(mn)ﬂ%l)
time and O(m%n?~1) space (since n is much larger than m, we select one of the
text coordinates as the most external variable). By precomputing the distances
in lower dimensions, the search algorithm is O(d!m?n?¢) time and O(d!mdn?—1)
space.

5.1 Correctness

We now prove that the above algorithm is correct (in two dimensions). This
extends easily to more dimensions.

Lemma: For each text position (¢, j), it is possible to perform C; ; n, m edit
operations in the pattern P (converting it into P’) so that the pattern P’ matches
the text suffix T..7,..7, and this is not possible with less operations.

Proof: We prove the Lemma for any C; ; , .. The Lemma is obviously true
for the base case of the formula. For the recursive case, we inductively assume
that the Lemma is true for the subproblems. We consider the first line of the
update formula, which corresponds to the rows (the other cases are equivalent).

If the value for C; ; , , is obtained using a row insertion in the pattern, then
we can inductively align Py , 1.4 at T ;_;; with cost C;_1 ; p 4, and then insert
the text segment T;;_,41.; in P at the cost of p more errors so as to align
Pl..p,l..q at T.i,j-

If the value for C; ; , ; is obtained using a row deletion in the pattern, then
we can inductively align Py ,_11.4 at T ;; with cost C; ;,_1 4, and then delete
the pattern row P, 1. 4 from P at the cost of p more errors so as to align Py, 1.4
at T ; ;.

Finally, if we obtain C;;, , by replacing P, 1 4 with a row suffix of T; _;,
then the led() of the formula gives the optimal way to do it, so that we align

Py p_11.gat T ;_1; with cost C;_1; 514, and then convert the pattern row
P, 1.4 to some text row suffix of T; _;, at led(T; 1., Pp,1..4) cost.

Alternatively, we can use the recursion on the column values. It is also clear
that this cannot be done better. On the other hand, we can use induction over the
number of dimensions to show that the Lemma is correct for any d-dimensional
problem.

5.2 Reducing the Space Requirements

The space requirement of the algorithm is O(d!m?n?~1), which is too high. This
is awkward since the problem exhibits high locality. That is, the fact that a text
position matches or not depends only on the last (m+k)%-size text “suffix” that
ends at that point. In fact, if £ > m we just need to start 2m positions behind
the subtext at each dimension, since if more than m errors are made along a
given line, it is better to just perform m replacements.

Therefore, if we cut the text in (n/s)¢ subtexts (of d dimensions) of size s¢, we
can work separately at each subtext provided we start, at each dimension, m +
min(m, k) positions behind the cube so as to have the context properly initialized
when we reach the cube. The total time is (n/s)?d!m?(m +min(m, k) + s)¢, and
the total space is d!m?(m + min(m, k) + s)¢~1.

For instance, we may select s = m, and then we obtain an algorithm which
is at most O(d!3¥mn?) time and O(d!3¢m?¢~1) space (and less if k& < m),
which is much more reasonable. The minimum possible space requirement is
0(d'29m??-1), at time cost O(d!29m?In?) (that is, s = 1).

6 Multidimensional Exact String Matching

In [9], they allow to search, in two dimensions, a pattern in a text in O(n?/m)
average time. They traverse only the text rows of the form ¢ X m searching for
all the pattern rows at the same time (using Aho-Corasick [1]), and verify all
potential matches. Clearly, no match can be missed with the filter.

In [9], the authors briefly mention that their technique can be extended to
more dimensions by selecting one dimension and recursively using an algorithm
for (d — 1) dimensions on the m-th “rows” of such text. However no more details
are given, nor any analysis.

We give now a more detailed version of the algorithm and analyze it. We select
one dimension (say, coordinate 7) and obtain n/m different (d — 1) dimensional

objects of the form Tm,l..n,l..n,...a T2m,1..n,1..n,...a sy CZ—%m,l..n,l..n,...a and so on. On
the other hand, we obtain m patterns of (d—1) dimensions, namely P1 1.5, 1..m,...,
Py1.m1.m,s oy Pp1.m,1..m,... and so on. All the m subpatterns are searched

in each one of the (d — 1) dimensional subtexts. See Figure 2. Each time one
of the (d — 1) dimensional subpatterns is found in a text position, the complete
d-dimensional pattern is checked.

An important part of the analysis of [9] for two dimensions is that the total
cost to verify potential matches is not too large. It is not immediate that this

3-d pattern 34 text

2-d text

2-d pattern

2-d pattern 3-d pattern

I

N

Fig. 2. Algorithm for exact searching. All the pattern “rows” are searched in n/m text
“rows” at the same time.

is still valid for more dimensions, since a very large number of verifications are
finally triggered.

The cost to verify a potential match in d dimensions is always O(1) on aver-
age, since we have to check if m? letters of the pattern are equal to the text at
a given position. Since we stop the checking as soon as we find a mismatch, we
verify more than ¢ characters with probability 1/c°¢. Hence, the average number
of characters checked is Y 1/0¢ = O(1) (even for patterns of unbounded size).

We denote by Eg, the average search cost for r patterns in d dimensions.
The existence of the Aho-Corasick [1] algorithm implies that £y, = n. Now, for
d dimensions, we perform n/m searches for rm patterns on d—1 dimensions, and
check all the candidates that occur. The probability of a pattern of size m?~?!
occurring in a text position is 1/0'md_1, but we multiply that by rm because
we search for rm different patterns. As the average cost to verify each potential

match is O(1), and the (d — 1) dimensional texts are of size n?~!, we have that
d
n _, ™ n nr
Ed,r = E (Ed—l,rm + nd ! O_md_l) = EEd—l,rm + W
which gives
d -1 4
_ n nr d 1 T
B = i + Lo = o(nf ()

(where the first term corresponds to the actual searches which are all done in
one dimension).

To search for one pattern we replace r by 1 in this final formula (although the
algorithm internally uses multipattern search). This formula matches the result
for two dimensions, since 1/0™ = o(1/m). In general, if d is considered fixed,
the above result for 7 = 1 can be bounded by O(n¢/m¢=1).

The space complexity of the algorithm corresponds to the Aho-Corasick ma-
chine, whose space requirements are proportional to the total size of all the
patterns, i.e. O(rm?). We use now this algorithm as a building block.

1 dimension 3 dimensions

2 dimensions

e

Fig. 3. Filtering algorithm for j = 3. The maximum possible k so that some block
appears unchanged is 2, 2, and 8 as the dimension grows.

7 A Fast Filter for Multidimensional Approximate Search

We present now an effective filter to quickly discard large parts of the text which
cannot contain a match, so that we use the dynamic programming algorithm to
verify only the text areas which could contain an occurrence of the pattern.

The filter is based on a generalization of the one-dimensional filter explained
in Section 2. In that case, we cut the pattern in (k + 1) pieces, and since each
error can destroy at most one piece, we have always one piece left untouched
inside each occurrence.

In two and more dimensions, we cut the pattern in j pieces along each di-
mension, for some 1 < j < m (see Figure 3). Since each error occurs along one
dimension only, at most kj pieces are destroyed. Therefore, since there are ;¢
pieces in total, it is enough that j¢ > kj to ensure that at least one of the
pieces is left untouched (although we do not know which one). Hence, we search
for all the j¢ pieces at the same time in the text without allowing errors. Those
pieces are of size (m/j)¢, and can be searched with the algorithm of the previous
section in O(m?) space and an average time of

1 3¢ 1 1
d _ d_d
g <(m/j>d—1 * am/j> - <jmd—1 * C,m,,»)

Each time one such piece is found, we have to verify a surrounding text
area to check for a possible match. This area extends (m + 2min(m, k)) po-
sitions along each dimension (since the match could start at most min(m, k)
positions backward or finish up to min(m, k) positions forward). Hence, the cost
of a verification is the same as that of searching the pattern in a text of size

(m + 2min(m, k))? allowing errors, which is O(d!m¢(m + 2min(m, k))?¢). The
total number of verifications is obtained by multiplying the number of pattern
pieces j¢ by the probability of a piece matching, i.e. 1/0'(m/j)d. Hence, the total
expected cost for verifications is j¢d!m?(m + 2 min(m, k))dnd/a(m/j)d.

Notice that, since we only verify pieces of the text of size (m-+2min(m, k))¢,
the space requirement of this algorithm is O(d!m?(m + 2min(m, k))4~1) (this
corresponds to the verification phase, since the search of the pieces needs much
less, i.e. O(m?)). This is a form of our previous technique to reduce space re-
quirements (recall Section 5.2) equivalent to using s = min(m, k). However, in
this case we only check a few portions of the text.

Both the search and the verification cost worsen as j grows, so we are inter-
ested in the minimum j that works. As said, we need that j¢ > kj, hence

j = [kﬁJJrl

is the best choice. The formula does not work for one dimension (because it is
not true that kj pieces are destroyed), and for 2 dimensions it sets j = k + 1 as
in the traditional one-dimensional case. Notice that we need that ;7 < m, and
therefore the mechanism works for & < k3 = m?~!. Using this optimum (and
minimum) j, the total cost of searching plus verifying is

il < 1 1 d!md(m+2min(m,k))d>

d—1f 7ot + om/ k@D om? /K@D

which worsens as k grows. This search complexity has three terms, each of which
dominates for a different range of k& values. The first one dominates for

d—1

k < ko = W(l-i—o(l))

while the second dominates from k& > kg until

md—l

E < k = — (1 +0o(1
' T (dllog, d + 21og, my U T

In the maximum acceptable value k = m%= ! — 1, the search complexity be-
comes O(d!39m>en?), which is worse than using dynamic programming. We want
to know which is the & value for which the filter is better than dynamic program-
ming. We can compare against the version that uses the same amount of space
(which corresponds to s = min(m, k)), whose time complexity is O(d!2¢m?¢n?);
or we can compare it against the fastest version of dynamic programming, which
needs much more space and whose time cost is O(d!m?n?). In either case we have
that the k£ range for which the filter is better than dynamic programming is

md—l

k < ky = ——— (1+0(1
’ (2dlog, m) @ ((1)

where the difference in the version of dynamic programming used affects lower
order terms only.

Finally, the most stringent condition we can ask to the filter is to be sub-
linear, i.e. faster than O(n?). If we try to consider the third term of the search
complexity as dominant, we arrive to a k value which is smaller than ki, which
means that the solution is in a stricter k£ range. By considering the second term
of the search complexity, we arrive to the condition k < k. That is, the search
time is sublinear precisely when the first term of the summation dominates.

To summarize, the search algorithm is sublinear (i.e. O(kn¢/md=1)) for
k < (m/(dlog, m))¢~1, and it improves over dynamic programming for k <
m?=1/(2dlog, m)(?=1)/4, Figure 4 illustrates the result of the analysis.

/
.................... Dynprog.
%
e
-
,/l
’/
.7 Filter
T oy
| | | K
0 ko ky ko ks
L)\ ._._._._._.a
first term second term third term
dominates dominates dominates

Fig. 4. The complexity of the proposed filter, depending on k.

7.1 A Stricter Filter

We have assumed up to now that we verify the presence of the pattern allowing
errors as soon as any of the j¢ pieces appears. However, we can do better. We
know that j%— jk pieces must appear, at their correct positions, for a match to be
possible. Therefore, whenever a piece appears, we can check the neighborhood for
the exact occurrences of other pieces. On average, the verification of each piece
will fail in O(1) character comparisons, and we will check O(jk) pieces until jk
of them fail the test (this is because both are geometric processes). Therefore,
we have a preverification test which occurs with probability jd/o(m/j)d, costs
O(jk) and is able to discard more text positions before actually verifying the
candidate area. The probability that a text position passes the preverification

test and undergoes the dynamic programming verification can be computed by

considering that j¢ — jk cells need to match, which means that m¢ — km?/;j¢-!

characters match. On the other hand, we can select as we want which jk cells
.d

match out of j¢, which multiplies the probability by (;k) Finally, if the text

area passes this filter, we verify it at the same cost as before (i.e. d!mé(m +
2min(m, k))?). The new search cost is therefore

ja-1 jd 54k N (;Z)d!md(m—i—Zmin(m,k))d

md—1 o-m/j o-(m/j)d o'mdl—"‘f""'dl/j”l_1

TLd

where the first term dominates for j < m/(dlog, m), the second one up to
j < m/(log, m + log, k)}/¢, and the third one for larger j. The fourth term
decreases with j, and therefore it is not immediate that the minimum j is the
optimum (in fact it is not). We have not been able to determine the optimum
j, but we can still obtain the maximum % value up to where the filter is better
than dynamic programming. The first two terms are never worse than dynamic
programming, and the third improves over dynamic programming for

m

1 1
(log, m + log, k — dlog, d)1/¢ (1+0(1))

which gives a condition on k since 794~ > k:

md—l

E < k'2 = — (14 o(1
(d(log, m —log, d)) = (1(1)

Now, we introduce this maximum j value into the fourth term to determine
whether it is also better than dynamic programming at that point. The result
is that, using that j value, the fourth term is dominated by the third precisely
for k < k. Therefore we improve over dynamic programming for k& < k% (which
is better than our previous k; limit). The proposed j is the best for high %
values, but smaller values are better for lower & values. In particular, we may be
interested in obtaining the sublinearity limit for this filter. The first three terms
put an upper bound on j, the strictest one being

m

i < (1+0(1))

d(log, m —log_ d)

and using this maximum j value the fourth term gives us the maximum % that
allows sublinear search time:

d—1
' m

B S R = (iog, m—Tog, d) 1

1+ o(1))

which is slightly better than our previous %k limit.

7.2 Adapting the Filter to Substitutions

The problem of searching a pattern allowing % substitutions is much simpler, and
we can apply our machinery to that case as well. A brute force search algorithm
checks any possible text position until it finds £ mismatches. Being a geometric
process, this occurs after O(k) character comparisons, which makes the total
search cost O(kn?) on average.

The same filter proposed in this section works for the case of k substitutions,
the only difference being that in this case the cost to verify a candidate text
position is O(k), i.e. much cheaper. The search cost still has three terms, the
first one being dominant for k < ko. The second component is now dominant for

md-1
Bo< b = ———— (1+0(1))
(dlog, m)"T"
and the last one dominates for & > kj. This filter is sublinear (i.e. does not
inspect all the text characters) on average for k < ko as before. On the other
hand, it turns out to be better than brute force (i.e. O(kn?)) for k < kf, i.e.

before the verification step dominates the search cost.

8 Conclusions

We have presented the first algorithms to search a multidimensional pattern
in multidimensional text allowing editing errors along any dimension. This is
a new model recently proposed in [5]. We have generalized to d dimensions
their algorithm to compute edit distance, where we obtained O(d!m??) time and
O(d!m??-1) space (where the compared elements are of size m?).

We have obtained and proved the correctness of the first search algorithm
for this model, where a pattern of size m? is searched in a text of size n? at
O(d!m?n?) time and O(d!m?n¢~1) space. We have shown how to trade time for
space, for instance with O(d!39m?2?~1) space we have O(d!39m?n?) time.

Finally, we have proposed a filter which obtains roughly O(kn?/m?-1) (i.e.
sublinear) average search time for k < (m/(d(log, m — log, d)))¢~1, where o is
the alphabet size. After that error level the filter changes its cost but remains
better than dynamic programming for k& < m?=!/(d(log, m — log, d))(¢-1)/4,
For instance, in two dimensions the filter is sublinear for k& < m/(2log, m) and
better than dynamic programming for k£ < m/y/2log, m.

These are the first search algorithms and fast filters for the first model which
extends successfully the concept of approximate string matching to more than
one dimension. Although we present the algorithms for square d-dimensional
pattern and text, they also work for hyper-rectangular elements.

Our work is a (very preliminary) step towards presenting a combinatorial
alternative to the current image processing technology. However, for this to be
successful, we must allow not only errors but also rotations, scalings and defor-
mations in the images. There are some works addressing those issues separately
[2,14], but they have not been merged. We are currently working on this inte-
gration.

References

1.

2.

10.

11.
12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

A. Aho and M. Corasick. Efficient string matching: an aid to bibliographic search.
CACM, 18(6):333-340, June 1975.

A. Amir and G. Calinescu. Alphabet independent and dictionary scaled matching.
In Proc. CPM’96, number 1075 in LNCS, pages 320-334, 1996.

A. Amir and M. Farach. Efficient 2-dimensional approximate matching of non-
rectangular figures. In Proc. SODA’91, pages 212-223, 1991.

A. Amir and G. Landau. Fast parallel and serial multidimensional approximate
array matching. Theoretical Computer Science, 81:97-115, 1991.

R. Baeza-Yates. Similarity in two-dimensional strings. In Proc. COCOON’98,
number 1449 in LNCS, pages 319-328, Taipei, Taiwan, August 1998.

. R. Baeza-Yates and G. Navarro. Fast two-dimensional approximate pattern match-

ing. In Proc. LATIN’98, number 1380 in LNCS, pages 341-351. Springer-Verlag,
1998.

R. Baeza-Yates and G. Navarro. Faster approximate string matching. Algorithmica,
23(2):127-158, 1999. To appear. Preliminary version in Proc. CPM’96.

R. Baeza-Yates and C. Perleberg. Fast and practical approximate pattern match-
ing. In Proc. CPM’92, LNCS 644, pages 185-192, 1992.

R. Baeza-Yates and M. Régnier. Fast two dimensional pattern matching. Infor-
mation Processing Letters, 45:51-57, 1993.

T. Baker. A technique for extending rapid exact string matching to arrays of more
than one dimension. SIAM Journal on Computing, 7:533-541, 1978.

R. Bird. Two dimensional pattern matching. Inf. Proc. Letters, 6:168-170, 1977.

B. Commentz-Walter. A string matching algorithm fast on the average. In Proc.
ICALP’79, number 6 in LNCS, pages 118-132. Springer-Verlag, 1979.

M. Crochemore and W. Rytter. Text Algorithms. Oxford University Press, Oxford,
UK, 1994.

K. Fredriksson and E. Ukkonen. A rotation invariant filter for two-dimensional
string matching. In Proc. CPM’98, number 1448 in LNCS, pages 118-125, 1998.

J. Karkkéinen and E. Ukkonen. Two and higher dimensional pattern matching in
optimal expected time. In Proc. SODA’9, pages 715-723. SIAM, 1994.

K. Krithivasan. Efficient two-dimensional parallel and serial approximate pattern
matching. Technical Report CAR-TR-259, University of Maryland, 1987.

K. Krithivasan and R. Sitalakshmi. Efficient two-dimensional pattern matching in
the presence of errors. Information Sciences, 43:169-184, 1987.

S. Needleman and C. Wunsch. A general method applicable to the search for
similarities in the amino acid sequences of two proteins. J. of Molecular Biology,
48:444-453, 1970.

K. Park. Analysis of two dimensional approximate pattern matching algorithms.
In Proc. CPM’96, LNCS 1075, pages 335-347, 1996.

P. Sellers. The theory and computation of evolutionary distances: pattern recog-
nition. J. of Algorithms, 1:359-373, 1980.

S. Wu and U. Manber. Fast text searching allowing errors. CACM, 35(10):83-91,
October 1992.

R.Zhu and T. Takaoka. A technique for two-dimensional pattern matching. Comm.
ACM, 32(9):1110-1120, 1989.

