
Fast Multi-DimensionalApproximate Pattern Matching ?Gonzalo Navarro and Ricardo Baeza-YatesDept. of Computer Science, University of ChileBlanco Encalada 2120 - Santiago - Chilefgnavarro,rbaezag@dcc.uchile.clAbstract. We address the problem of approximate string matching ind dimensions, that is, to �nd a pattern of size md in a text of size ndwith at most k < md errors (substitutions, insertions and deletionsalong any dimension). We use a novel and very 
exible error model,for which there exists only an algorithm to evaluate the similarity be-tween two elements in two dimensions at O(m4) time. We extend thealgorithm to d dimensions, at O(d!m2d) time and O(d!m2d�1) space. Wealso give the �rst search algorithm for such model, which is O(d!mdnd)time and O(d!mdnd�1) space. We show how to reduce the space costto O(d!3dm2d�1) with little time penalty. Finally, we present the �rstsublinear-time (on average) searching algorithm (i.e. not all text cells areinspected), which is O(knd=md�1) for k < (m=(d(log�m� log� d)))d�1,where � is the alphabet size. After that error level the �lter still re-mains better than dynamic programming for k � md�1=(d(log�m �log� d))(d�1)=d. These are the �rst search algorithms for the problem. Asside-e�ects we extend to d dimensions an already proposed algorithm fortwo-dimensional exact string matching, and we obtain a sublinear-time�lter to search in d dimensions allowing k mismatches.1 IntroductionApproximate pattern matching is the problem of �nding a pattern in a textallowing errors (insertions, deletions, substitutions) of characters. A number ofimportant problems related to string processing lead to algorithms for approx-imate string matching: text searching, pattern recognition, computational biol-ogy, audio processing, etc. Two dimensional pattern matching with errors hasapplications, for instance, in computer vision (i.e. searching a subimage insidea large image).In three dimensions, our algorithms may be useful for searchingallowing errors in video data (where the time would be the third dimension) orin some types of medical data (e.g. MRI brain scans).For one dimension this problem is well-known, and is modeled using theedit distance. The edit distance between two strings a and b, ed(a; b), is de�nedas the minimum number of edit operations that must be carried out to make? Supported in part by Fondecyt grant 1-990627.



them equal. The allowed operations are insertion, deletion and substitution ofcharacters in a or b. The problem of approximate string matching is de�ned asfollows: given a text of length n, and a pattern of length m, both being sequencesover an alphabet � of size �, �nd all segments (or \occurrences") in text whoseedit distance to pattern is at most k, where 0 < k < m. The classical solution isO(mn) time and involves dynamic programming [20].Krithivasan and Sitalakshmi (KS) [17] proposed a simple extension to twodimensions. Given two images of the same size, the edit distance is the sum of theedit distance of the corresponding row images. This de�nition is justi�ed whenthe images are transmitted row by row and there are not too many communica-tion errors (e.g. photocopy images, where most errors come from the mechanicaltraction mechanism along one dimension only, or images transmitted by fax),but it is not appropriate otherwise. Using this model they de�ne an approximatesearch problem where a subimage of size m �m is searched into a large imageof size n � n, which they solve in O(m2n2) time using a generalization of theclassical one-dimensional algorithm.In [5], Baeza-Yates (BY) de�ned a more general extension (there called RC),where the errors can occur along rows or columns at any time. This model ismuch more robust and useful for more applications. We are interested in thisgeneral model in this work. Figure 1 gives an example.
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General (BY)Rows (KS)Fig. 1. Alternative error models.Although in [5] they give an O(m4) time algorithm to compute the editdistance among two images of size m � m, they do not give any algorithm tosearch a subimage inside a larger image allowing errors.In this work, we �rst generalize the edit distance algorithm to d dimen-sions with complexity O(d!m2d). We then give an O(d!mdnd) time algorithm forthe search problem, matching the same complexity of the simpler KS modelin two dimensions, and show how to reduce the space requirements so thatthey depend only on the pattern size. We also give a new �ltering algorithmthat allows to quickly discard large parts of the text that cannot contain a



match. This algorithm searches the pattern in average time O(knd=md�1) fork < (m=(d(log�m � log� d)))d�1, where � is the alphabet size. After that errorlevel the �lter changes its cost but remains better than dynamic programming fork � md�1=(d(log� m � log� d))(d�1)=d. These are the �rst searching algorithmsfor this problem.Two side-e�ects are obtained as well. First, we generalize to d dimensionsand analyze a previously proposed algorithm to search in two dimensions notallowing errors. Second, we obtain a �lter to search a pattern in d dimensionsallowing up to k character substitutions.2 Previous WorkThe classical dynamic programming algorithm [20] to search a pattern in a textallowing errors uses dynamic programming and is O(mn) time and O(m) space.This solution was later improved by a number of algorithms, which we do notcover here. The only one of interest to this work is a �ltering algorithm [21,8, 7].It states that if a pattern is cut in k + 1 pieces, then any occurrence with up tok errors must contain one of the pieces unchanged. This is obvious since k errorscannot alter the k + 1 pieces given the edit operations that we consider (whichcannot alter two pieces at the same time). The algorithm simply scans the textusing a multipattern exact search algorithm for all the pieces. Each time a pieceis found, it uses dynamic programming over an area of length m+ 2k where theapproximate occurrence can be found.The multipattern search can be carried out in O(n) worst-case search time byusing an Aho-Corasick machine [1], or in O(n=m) best-case time using Commentz-Walter [12] or another Boyer-Moore type algorithm adapted to multipatternsearch. The total cost of veri�cations keeps below O(n) if k=m � 1=(3 log� m).Two dimensional string matching was �rst considered by Bird and Baker [11,10], who obtain O(n2) worst-case time. Good average results are presented byZhu and Takaoka in [22]. The best average case result is due to Baeza-Yates andR�egnier [9], who obtain O(n2=m) time on average and O(n2) in the worst case.The case of two dimensional approximate string matching usually consid-ers only substitutions for rectangular patterns, which is much simpler than thegeneral case with insertions and deletions. For substitutions, the pattern shapematches the same shape in the text (e.g. if the pattern is a rectangle, it matchesa rectangle of the same size in the text). For insertions and deletions, instead,rows and/or columns of the pattern can match pieces of the text of di�erentlength. Under the substitutions model, one of the best results on the worst caseis due to Amir and Landau [4], which achieves O((k + log�)n2) time but usesO(n2) space. A similar algorithm is presented in [13]. Ranka and Heywood solvethe same problem in O((k+m)n2) time and O(kn) space. Amir and Landau alsopresent a di�erent algorithm running in O(n2 log n log log n logm) time. On aver-age, the best algorithm is due to Karkk�ainen and Ukkonen [15], with its analysisand space usage improved by Park [19]. The expected time is O(n2k=m2 log�m)



for k < m2=(4 log�m) using O(m2) space (O(k) space on average). This timeresult is optimal for the expected case.Krithivasan and Sitalakshmi (KS) [17] de�ned the edit distance in two di-mensions as the sum of the edit distance of the corresponding row images. Usingthis model they search a subimage of size m � m into a large image of sizen � n, in O(m2n2) time using a generalization of the classical one-dimensionalalgorithm. Krithivasan [16] presents for the same model an O(m(k + logm)n2)algorithm that uses O(mn) space. Amir and Landau [4] give an O(k2n2) worstcase time algorithm using O(n2) space. Amir and Farach [3] also considerednon-rectangular patterns achieving O(k(k +pm logmpk log k)n2) time.In [6] we use the same model and improve the expected case to O(n2k log�m=m2) on average for k < m(m + 1)=(5 log�m), using O(m2) space. This timematches the optimal result allowing only substitutions, and is also optimal [15],being the restriction on k only a bit stricter. For higher error levels, [6] presentsan algorithm with time complexity O(n2k=(p� logn)), which works for k <m(m + 1)(1� e=p�). It is also shown that this limit on k cannot be improved.In [5], Baeza-Yates de�ned more general models, where the errors can occuralong rows or columns. Three distances R, C and L are de�ned, and for the �rsttwo it is shown that the �lters of [6] can be applied to obtain the same complexityand slightly reduced tolerance to errors, i.e. k < m(m + 1)=(7 log�m). A fourthmodel de�ned in [5] is called RC, which generalizes R and C since the errorscan occur along rows or columns at any time. This model is much more robustand useful for more applications, and is the one we use in this work. We coverthis model in detail in the next section.3 Multidimensional Approximate SearchingThe classical dynamic programming algorithm [18] to compute the edit distancebetween two one-dimensional strings A and B of length m1 and m2 computesa matrix C0::m1;0::m2 . The value Ci;j holds the edit distance between A1::i andB1::j. The construction algorithm is as followsCi;0  i ; C0;j  jCi;j  if Ai = Bj then Ci�1;j�1 else 1 + min(Ci�1;j�1; Ci�1;j; Ci;j�1)and the distance ed(A;B) is the �nal value of Cm1;m2 . The rationale of theformula is that if Ai = Bj then the cost to convert A1::i into B1::j is that ofconverting A1::i�1 into B1::j�1. Otherwise we have to make one error and selectamong three choices: (a) convert A1::i�1 into B1::j�1 and replace Ai by Bj , (b)convert A1::i�1 into B1::j and delete Ai, and (c) convert A1::i into B1::j�1 andinsert Bj .This algorithm takes O(m1m2) space and time. It is easily adapted to searcha pattern P in a text T allowing up to k errors [20]. In this case we want toreport all the text positions j such that a su�x of T1::j matches P with at most



k errors. This time the matrix is C0::n;0::m and the construction formula isCi;0  0 ; C0;j  jCi;j  if Pi = Tj then Ci�1;j�1 else 1 +min(Ci�1;j�1; Ci�1;j; Ci;j�1)where the only change is that a pattern of length zero matches with no errorsat any text position. All the positions i such that Ci;m � k are reported. Thistakes O(mn) time. The space can be reduced to O(m) by noticing that onlythe old and new column of the matrix need to be stored. We de�ne led(T; P ) asthe smallest edit distance among the pattern P and a su�x of T , and thereforeled(T1::i; P ) = Ci;m.In [5], a natural extension to the edit distance notion for two dimensionalstrings (or \images") A and B was de�ned (called RC in that paper, and ed2in this work). It allows the errors to occur along any dimension. An algorithmto compute the edit distance among two images is de�ned. For simplicity weassume that they are square and of the same size m � m, although it is easyto remove that limitation. The algorithm computes a four-dimensional matrixC0::m;0::m;0::m;0::m, so that Ci;j;p;q = ed(A1::i;1::j; B1::p;1::q). C is built using theformulasCi;0;0;0  i ; C0;j;0;0  jC0;0;p;0  p ; C0;0;0;q  qCi;j;p;q  min( Ci�1;j;p�1;q + ed(Ai;1::j; Bp;1::q); Ci�1;j;p;q + j; Ci;j;p�1;q + q;Ci;j�1;p;q�1+ ed(A1::i;j; B1::p;q) Ci;j�1;p;q + i; Ci;j;p;q�1 + p )which has a very similar rationale of the one-dimensional case: at each point wecan solve the last row (�rst line of the min() formula) or the last column (secondline of the min() formula). In each case, we either insert the whole row, deletethe whole row, or replace the row of A by the row of B (and ed() gives thebest way to do it). This algorithm is O(m6) time and O(m4) space. However, byprecomputing all the valuesHorizi;j;p;q = ed(Ai;1::j; Bp;1::q) V erti;j;p;q = ed(A1::i;j; B1::p;q)(i.e. all the row-wise and column-wise alignments), the search time drops toO(m4) and the space does not change. This is because the ed() of the C formulaare obtained in constant time, and Horiz consists of m2 one-dimensional editdistance computations, among Ai;� and Bp;�. The same holds for V ert.The space can also be reduced to O(m3), as shown in [5]. We select, say, i asthe most external variable of the iteration to �ll the matrix. Therefore, we needonly the values at iteration i � 1 to compute the values at iteration i. Hence,we do not need to store all the cells of all the i-th iterations, just the last one.The same can be done with Horiz and V ert, by using i as the most externaliteration variable.In [5] they mention that this algorithm extends to d dimensions in timeO(m2d) but they do not give the details. We give a detailed algorithm in the



next section and show that the exact complexity is O(d!m2d). Also, no algo-rithm was given in [5] to search a subimage in a larger image using the abovedistance function. We do so in the following sections. We �nally extend theone-dimensional �ltering algorithm to more dimensions.4 Edit Distance in More DimensionsThe idea of the previous section can be extended to compute edd(), i.e. theedit distance generalized to d dimensions. The algorithm is O(d!m2d) time andO(m2d�1) space.A (2d)-dimensional matrix C is computed (d dimensions for A and d di-mensions for B), and the ed() of the above formula is replaced by edd�1. If thevalues of edd�1 are not precomputed then we have O(m2d�1) space (by usingthe trick of selecting one variable as the most external in the iteration) plus thespace needed to compute edd�1 (only one at a time is computed). This gives therecurrence S1 = m ; Sd = m2d�1 + Sd�1which yields O(m2d�1) space. The time, on the other hand, involves to �ll m2dcells, where each cell performs a minimum over 3d elements (i.e. insertion, dele-tion and edd�1 in d dimensions). This makes it necessary to compute d timesthe function edd�1(). That isT1 = m2 ; Td = m2d 3d + m2d d Td�1which yields O(d!md(d+1)). This matches the O(m6) result for two dimensionsmentioned in [5].However, we may precompute all the necessary values of edd�1(). Along eachone of the d dimensions, we take all the m2 (i; p) possible combinations of valuesof the selected dimension in A and B, and compute edd�1() between the (d�1)-dimensional objects which result from restricting the selected dimension to i inA and to j in B. Once this is done, the edd�1 computations can be taken asconstants in the formula of edd(). The time cost is nowT1 = m2 ; Td = m2d 3d + dm2Td�1which yields O(d!m2d) time (which matches the improved O(m4) algorithm of[5] for two dimensions). This is a big improvement over the naive algorithm. Thespace requirements are, however, higher. We have to store, for the d-dimensionalobject, m2d cells plus the precomputed values, along each dimension, of all them2 combinations of (i; p) values for that dimension, and all the space for thelower dimensions resulting for each pair (i; p). That isS1 = m ; Sd = m2d + dm2Sd�1which yieldsSd = d!m2d� 11! + 12! + :::+ 1d!� � d!m2de = O(d!m2d)and we can use the trick of the external variable to reduce this to O(d!m2d�1).



5 A Dynamic Programming Search AlgorithmWe modify the edit distance algorithm so that instead of computing the editdistance between two elements, it searches a small pattern P of size md insidea large text T of size nd. The idea is a simple modi�cation of the edit distancealgorithm. For two dimensions the formula is as followsCi;0;0;0  0 ; C0;j;0;0  0C0;0;p;0  p ; C0;0;0;q  qCi;j;p;q  min( Ci�1;j;p�1;q + led(Ai;1::j; Bp;1::q); Ci�1;j;p;q + q; Ci;j;p�1;q + q;Ci;j�1;p;q�1+ led(A1::i;j; B1::p;q) Ci;j�1;p;q + p; Ci;j;p;q�1 + p )where the only di�erences are that the basic values are zero when the pattern isof size zero, that we penalize insertions and deletions according to the patternsize, and that instead of ed() we use led(), so that we select the best su�x ofthe text along each dimension. If we are searching allowing up to k errors, thenwe report all text (i; j) positions such that Ci;j;m;m � k.The form to extend this to more dimensions is immediate. By repeating theanalysis of the above section, we see that the naive algorithm is O(d!(mn) d(d+1)2 )time and O(mdnd�1) space (since n is much larger than m, we select one of thetext coordinates as the most external variable). By precomputing the distancesin lower dimensions, the search algorithm is O(d!mdnd) time and O(d!mdnd�1)space.5.1 CorrectnessWe now prove that the above algorithm is correct (in two dimensions). Thisextends easily to more dimensions.Lemma: For each text position (i; j), it is possible to perform Ci;j;m;m editoperations in the pattern P (converting it into P 0) so that the pattern P 0 matchesthe text su�x T ::i; ::j, and this is not possible with less operations.Proof: We prove the Lemma for any Ci;j;p;q. The Lemma is obviously truefor the base case of the formula. For the recursive case, we inductively assumethat the Lemma is true for the subproblems. We consider the �rst line of theupdate formula, which corresponds to the rows (the other cases are equivalent).If the value for Ci;j;p;q is obtained using a row insertion in the pattern, thenwe can inductively align P1::p;1::q at T::i�1;j with cost Ci�1;j;p;q, and then insertthe text segment Ti;j�p+1::j in P at the cost of p more errors so as to alignP1::p;1::q at T::i;j.If the value for Ci;j;p;q is obtained using a row deletion in the pattern, thenwe can inductively align P1::p�1;1::q at T::i;j with cost Ci;j;p�1;q, and then deletethe pattern row Pp;1::q from P at the cost of p more errors so as to align P1::p;1::qat T::i;j.Finally, if we obtain Ci;j;p;q by replacing Pp;1::q with a row su�x of Ti;::j,then the led() of the formula gives the optimal way to do it, so that we align



P1::p�1;1::q at T::i�1;j with cost Ci�1;j;p�1;q, and then convert the pattern rowPp;1::q to some text row su�x of Ti;::j, at led(Ti;1::j; Pp;1::q) cost.Alternatively, we can use the recursion on the column values. It is also clearthat this cannot be done better. On the other hand, we can use induction over thenumber of dimensions to show that the Lemma is correct for any d-dimensionalproblem.5.2 Reducing the Space RequirementsThe space requirement of the algorithm is O(d!mdnd�1), which is too high. Thisis awkward since the problem exhibits high locality. That is, the fact that a textposition matches or not depends only on the last (m+k)d -size text \su�x" thatends at that point. In fact, if k > m we just need to start 2m positions behindthe subtext at each dimension, since if more than m errors are made along agiven line, it is better to just perform m replacements.Therefore, if we cut the text in (n=s)d subtexts (of d dimensions) of size sd, wecan work separately at each subtext provided we start, at each dimension, m+min(m; k) positions behind the cube so as to have the context properly initializedwhen we reach the cube. The total time is (n=s)dd!md(m+min(m; k)+ s)d , andthe total space is d!md(m +min(m; k) + s)d�1.For instance, we may select s = m, and then we obtain an algorithm whichis at most O(d!3dmdnd) time and O(d!3dm2d�1) space (and less if k < m),which is much more reasonable. The minimum possible space requirement isO(d!2dm2d�1), at time cost O(d!2dm2dnd) (that is, s = 1).6 Multidimensional Exact String MatchingIn [9], they allow to search, in two dimensions, a pattern in a text in O(n2=m)average time. They traverse only the text rows of the form i �m searching forall the pattern rows at the same time (using Aho-Corasick [1]), and verify allpotential matches. Clearly, no match can be missed with the �lter.In [9], the authors brie
y mention that their technique can be extended tomore dimensions by selecting one dimension and recursively using an algorithmfor (d�1) dimensions on the m-th \rows" of such text. However no more detailsare given, nor any analysis.We give now a more detailed version of the algorithm and analyze it. We selectone dimension (say, coordinate i) and obtain n=m di�erent (d� 1) dimensionalobjects of the form Tm;1::n;1::n;:::, T2m;1::n;1::n;:::, ..., Tim;1::n;1::n;:::, and so on. Onthe other hand, we obtainm patterns of (d�1) dimensions, namely P1;1::m;1::m;:::,P2;1::m;1::m;:::, ..., Pp;1::m;1::m;::: and so on. All the m subpatterns are searchedin each one of the (d � 1) dimensional subtexts. See Figure 2. Each time oneof the (d� 1) dimensional subpatterns is found in a text position, the completed-dimensional pattern is checked.An important part of the analysis of [9] for two dimensions is that the totalcost to verify potential matches is not too large. It is not immediate that this
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3-d  text3-d pattern

3-d patternFig. 2. Algorithm for exact searching. All the pattern \rows" are searched in n=m text\rows" at the same time.is still valid for more dimensions, since a very large number of veri�cations are�nally triggered.The cost to verify a potential match in d dimensions is always O(1) on aver-age, since we have to check if md letters of the pattern are equal to the text ata given position. Since we stop the checking as soon as we �nd a mismatch, weverify more than c characters with probability 1=�c. Hence, the average numberof characters checked is P 1=�c = O(1) (even for patterns of unbounded size).We denote by Ed;r the average search cost for r patterns in d dimensions.The existence of the Aho-Corasick [1] algorithm implies that E1;r = n. Now, ford dimensions, we perform n=m searches for rm patterns on d�1 dimensions, andcheck all the candidates that occur. The probability of a pattern of size md�1occurring in a text position is 1=�md�1 , but we multiply that by rm becausewe search for rm di�erent patterns. As the average cost to verify each potentialmatch is O(1), and the (d� 1) dimensional texts are of size nd�1, we have thatEd;r = nm �Ed�1;rm + nd�1 rm�md�1 � = nmEd�1;rm + ndr�md�1which givesEd;r = ndmd�1 + d�1Xw=1 ndr�mw = O�nd � 1md�1 + r�m��(where the �rst term corresponds to the actual searches which are all done inone dimension).To search for one pattern we replace r by 1 in this �nal formula (although thealgorithm internally uses multipattern search). This formula matches the resultfor two dimensions, since 1=�m = o(1=m). In general, if d is considered �xed,the above result for r = 1 can be bounded by O(nd=md�1).The space complexity of the algorithm corresponds to the Aho-Corasick ma-chine, whose space requirements are proportional to the total size of all thepatterns, i.e. O(rmd). We use now this algorithm as a building block.



3 dimensions1 dimension
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Fig. 3. Filtering algorithm for j = 3. The maximum possible k so that some blockappears unchanged is 2, 2, and 8 as the dimension grows.7 A Fast Filter for Multidimensional Approximate SearchWe present now an e�ective �lter to quickly discard large parts of the text whichcannot contain a match, so that we use the dynamic programming algorithm toverify only the text areas which could contain an occurrence of the pattern.The �lter is based on a generalization of the one-dimensional �lter explainedin Section 2. In that case, we cut the pattern in (k + 1) pieces, and since eacherror can destroy at most one piece, we have always one piece left untouchedinside each occurrence.In two and more dimensions, we cut the pattern in j pieces along each di-mension, for some 1 � j � m (see Figure 3). Since each error occurs along onedimension only, at most kj pieces are destroyed. Therefore, since there are jdpieces in total, it is enough that jd > kj to ensure that at least one of thepieces is left untouched (although we do not know which one). Hence, we searchfor all the jd pieces at the same time in the text without allowing errors. Thosepieces are of size (m=j)d, and can be searched with the algorithm of the previoussection in O(md) space and an average time ofnd� 1(m=j)d�1 + jd�m=j� = jdnd� 1jmd�1 + 1�m=j�Each time one such piece is found, we have to verify a surrounding textarea to check for a possible match. This area extends (m + 2min(m; k)) po-sitions along each dimension (since the match could start at most min(m; k)positions backward or �nish up to min(m; k) positions forward). Hence, the costof a veri�cation is the same as that of searching the pattern in a text of size



(m + 2min(m; k))d allowing errors, which is O(d!md(m + 2min(m; k))d). Thetotal number of veri�cations is obtained by multiplying the number of patternpieces jd by the probability of a piece matching, i.e. 1=�(m=j)d . Hence, the totalexpected cost for veri�cations is jdd!md(m + 2min(m; k))dnd=�(m=j)d .Notice that, since we only verify pieces of the text of size (m+2min(m; k))d,the space requirement of this algorithm is O(d!md(m + 2min(m; k))d�1) (thiscorresponds to the veri�cation phase, since the search of the pieces needs muchless, i.e. O(md)). This is a form of our previous technique to reduce space re-quirements (recall Section 5.2) equivalent to using s = min(m; k). However, inthis case we only check a few portions of the text.Both the search and the veri�cation cost worsen as j grows, so we are inter-ested in the minimum j that works. As said, we need that jd > kj, hencej = jk 1d�1 k + 1is the best choice. The formula does not work for one dimension (because it isnot true that kj pieces are destroyed), and for 2 dimensions it sets j = k + 1 asin the traditional one-dimensional case. Notice that we need that j � m, andtherefore the mechanism works for k < k3 = md�1. Using this optimum (andminimum) j, the total cost of searching plus verifying isndk dd�1 � 1md�1k 1d�1 + 1�m=k1=(d�1) + d!md(m+ 2min(m; k))d�md=kd=(d�1) �which worsens as k grows. This search complexity has three terms, each of whichdominates for a di�erent range of k values. The �rst one dominates fork � k0 = md�1(d log�m)d�1 (1 + o(1))while the second dominates from k > k0 untilk � k1 = md�1(d(log� d+ 2 log�m)) d�1d (1 + o(1))In the maximum acceptable value k = md�1 � 1, the search complexity be-comes O(d!3dm3dnd), which is worse than using dynamic programming. We wantto know which is the k value for which the �lter is better than dynamic program-ming. We can compare against the version that uses the same amount of space(which corresponds to s = min(m; k)), whose time complexity is O(d!2dm2dnd);or we can compare it against the fastest version of dynamic programming, whichneeds much more space and whose time cost is O(d!mdnd). In either case we havethat the k range for which the �lter is better than dynamic programming isk � k2 = md�1(2d log� m) d�1d (1 + o(1))



where the di�erence in the version of dynamic programming used a�ects lowerorder terms only.Finally, the most stringent condition we can ask to the �lter is to be sub-linear, i.e. faster than O(nd). If we try to consider the third term of the searchcomplexity as dominant, we arrive to a k value which is smaller than k1, whichmeans that the solution is in a stricter k range. By considering the second termof the search complexity, we arrive to the condition k � k0. That is, the searchtime is sublinear precisely when the �rst term of the summation dominates.To summarize, the search algorithm is sublinear (i.e. O(knd=md�1)) fork < (m=(d log� m))d�1, and it improves over dynamic programming for k �md�1=(2d log�m)(d�1)=d. Figure 4 illustrates the result of the analysis.
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dominates dominatesFig. 4. The complexity of the proposed �lter, depending on k.7.1 A Stricter FilterWe have assumed up to now that we verify the presence of the pattern allowingerrors as soon as any of the jd pieces appears. However, we can do better. Weknow that jd�jk pieces must appear, at their correct positions, for a match to bepossible. Therefore, whenever a piece appears, we can check the neighborhood forthe exact occurrences of other pieces. On average, the veri�cation of each piecewill fail in O(1) character comparisons, and we will check O(jk) pieces until jkof them fail the test (this is because both are geometric processes). Therefore,we have a preveri�cation test which occurs with probability jd=�(m=j)d , costsO(jk) and is able to discard more text positions before actually verifying thecandidate area. The probability that a text position passes the preveri�cation



test and undergoes the dynamic programming veri�cation can be computed byconsidering that jd � jk cells need to match, which means that md � kmd=jd�1characters match. On the other hand, we can select as we want which jk cellsmatch out of jd, which multiplies the probability by �jdjk�. Finally, if the textarea passes this �lter, we verify it at the same cost as before (i.e. d!md(m +2min(m; k))d). The new search cost is thereforend0@ jd�1md�1 + jd�m=j + jdjk�(m=j)d + �jdjk�d!md(m+ 2min(m; k))d�md�kmd=jd�1 1Awhere the �rst term dominates for j � m=(d log�m), the second one up toj � m=(log�m + log� k)1=d, and the third one for larger j. The fourth termdecreases with j, and therefore it is not immediate that the minimum j is theoptimum (in fact it is not). We have not been able to determine the optimumj, but we can still obtain the maximum k value up to where the �lter is betterthan dynamic programming. The �rst two terms are never worse than dynamicprogramming, and the third improves over dynamic programming forj � m(log�m + log� k � d log� d)1=d (1 + o(1))which gives a condition on k since jd�1 > k:k � k02 = md�1(d(log�m � log� d)) d�1d (1 + o(1))Now, we introduce this maximum j value into the fourth term to determinewhether it is also better than dynamic programming at that point. The resultis that, using that j value, the fourth term is dominated by the third preciselyfor k � k02. Therefore we improve over dynamic programming for k � k02 (whichis better than our previous k2 limit). The proposed j is the best for high kvalues, but smaller values are better for lower k values. In particular, we may beinterested in obtaining the sublinearity limit for this �lter. The �rst three termsput an upper bound on j, the strictest one beingj � md(log�m � log� d) (1 + o(1))and using this maximum j value the fourth term gives us the maximum k thatallows sublinear search time:k � k00 = md�1(d(log�m � log� d))d�1 (1 + o(1))which is slightly better than our previous k0 limit.



7.2 Adapting the Filter to SubstitutionsThe problem of searching a pattern allowing k substitutions is much simpler, andwe can apply our machinery to that case as well. A brute force search algorithmchecks any possible text position until it �nds k mismatches. Being a geometricprocess, this occurs after O(k) character comparisons, which makes the totalsearch cost O(knd) on average.The same �lter proposed in this section works for the case of k substitutions,the only di�erence being that in this case the cost to verify a candidate textposition is O(k), i.e. much cheaper. The search cost still has three terms, the�rst one being dominant for k � k0. The second component is now dominant fork � k01 = md�1(d log�m) d�1d (1 + o(1))and the last one dominates for k > k01. This �lter is sublinear (i.e. does notinspect all the text characters) on average for k < k0 as before. On the otherhand, it turns out to be better than brute force (i.e. O(knd)) for k � k01, i.e.before the veri�cation step dominates the search cost.8 ConclusionsWe have presented the �rst algorithms to search a multidimensional patternin multidimensional text allowing editing errors along any dimension. This isa new model recently proposed in [5]. We have generalized to d dimensionstheir algorithm to compute edit distance, where we obtained O(d!m2d) time andO(d!m2d�1) space (where the compared elements are of size md).We have obtained and proved the correctness of the �rst search algorithmfor this model, where a pattern of size md is searched in a text of size nd atO(d!mdnd) time and O(d!mdnd�1) space. We have shown how to trade time forspace, for instance with O(d!3dm2d�1) space we have O(d!3dmdnd) time.Finally, we have proposed a �lter which obtains roughly O(knd=md�1) (i.e.sublinear) average search time for k < (m=(d(log�m � log� d)))d�1, where � isthe alphabet size. After that error level the �lter changes its cost but remainsbetter than dynamic programming for k � md�1=(d(log�m � log� d))(d�1)=d.For instance, in two dimensions the �lter is sublinear for k < m=(2 log�m) andbetter than dynamic programming for k � m=p2 log�m.These are the �rst search algorithms and fast �lters for the �rst model whichextends successfully the concept of approximate string matching to more thanone dimension. Although we present the algorithms for square d-dimensionalpattern and text, they also work for hyper-rectangular elements.Our work is a (very preliminary) step towards presenting a combinatorialalternative to the current image processing technology. However, for this to besuccessful, we must allow not only errors but also rotations, scalings and defor-mations in the images. There are some works addressing those issues separately[2,14], but they have not been merged. We are currently working on this inte-gration.
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