A Bit-parallel Approach to Suffix Automata:
Fast Extended String Matching

Gonzalo Navarro!? Mathieu Raffinot?

! Dept. of Computer Science, University of Chile. Blanco Encalada 2120, Santiago,
Chile. gnavarro@dcc.uchile.cl.
2 Institut Gaspard Monge, Cité Descartes, Champs-sur-Marne, 77454
Marne-la-Vallée Cedex 2, France. raff inot@monge .univ-mlv.fr.
® Partially supported by Chilean Fondecyt grant 1-950622.

Abstract. We present a new algorithm for string matching. The al-
gorithm, called BNDM, is the bit-parallel simulation of a known (but
recent) algorithm called BDM. BDM skips characters using a “suffix au-
tomaton” which is made deterministic in the preprocessing. BNDM, in-
stead, simulates the nondeterministic version using bit-parallelism. This
algorithm is 20%-25% faster than BDM, 2-3 times faster than other bit-
parallel algorithms, and 10%-40% faster than all the Boyer-Moore fam-
ily. This makes it the fastest algorithm in all cases except for very short
or very long patterns (e.g. on English text it is the fastest between 5
and 110 characters). Moreover, the algorithm is very simple, allowing to
easily implement other variants of BDM which are extremely complex in
their original formulation. We show that, as other bit-parallel algorithms,
BNDM can be extended to handle classes of characters in the pattern
and in the text, multiple patterns and to allow errors in the pattern or
in the text, combining simplicity, efficiency and flexibility. We also gen-
eralize the suffix automaton definition to handle classes of characters. To
the best of our knowledge, this extension has not been studied before.

1 Introduction

The string-matching problem is to find all the occurrences of a given pattern
P =DpiP2...Pm 10 a large text T' = 1t .. .1, both sequences of characters from
a finite character set X

Several algorithms exist to solve this problem. One of the most famous, and
the first having linear worst-case behavior, is Knuth-Morris-Pratt (KMP) [14]. A
second algorithm, as famous as KMP, which allows to skip characters, is Boyer-
Moore (BM) [6]. This algorithm leads to several variations, like Hoorspool [12]
and Sunday [20], forming the fastest known string-matching algorithms.

A large part of the research in efficient algorithms for string matching can be
regarded as looking for automata which are efficient in some sense. For instance,
KMP is simply a deterministic automaton that searches the pattern, being its
main merit that it is O(m) in space and construction time. Many variations of
the BM family are supported by an automaton as well.

Another automaton, called “suffix automaton” is used in [9, 10, 11, 15, 19],
where the idea is to search a substring of the pattern instead of a prefix (as KMP),

or a suffix (as BM). Optimal sublinear algorithms on average, like “Backward
DAWG Match” (BDM) or Turbo.BDM [10, 11], have been obtained with this
approach, which has also been extended to multipattern matching [9, 11, 19]
(i.e. looking for the occurrences of a set of patterns).

Another related line of research is to take those automata in their nonde-
terministic form instead of making them deterministic. Usually the nondeter-
ministic versions are very simple and regular and can be simulated using “bit-
parallelism” [1]. This technique uses the intrinsic parallelism of the bit manipula-
tions inside computer words to perform many operations in parallel. Competitive
algorithms have been obtained for exact string matching [2, 22], as well as ap-
proximate string matching [22, 23, 3]. Although these algorithms work well only
on relatively short patterns, they are simpler, more flexible, and have very low
memory requirements.

In this paper we merge some aspects of the two approaches in order to ob-
tain a fast string matching algorithm, called Backward Nondeterministic Dawg
Matching (BNDM), which we extend to handle classes of characters, to search
multiple patterns, and to allow errors in the pattern and/or in the text, like
Shift-Or [2]. BNDM uses a nondeterministic suffix automaton that is simulated
using bit-parallelism. This new algorithm has the advantage of being faster than
previous ones which could be extended in such a way (typically 2-3 times faster
than Shift-Or), faster than its deterministic-automaton counterpart BDM (20%-
25% faster), using little space in comparison with the BDM or Turbo_.BDM al-
gorithms, and being very simple to implement. It becomes the fastest string
matching algorithm, beating all the Boyer-Moore family (Sunday included) by
10% to 40%. Only for very short (up to 2-6 letters) or very long patterns (past
90-150 letters), depending on | X| and the architecture, other algorithms become
faster than BNDM (Sunday and BDM, respectively). Moreover, we define a new
suffix automaton which handles classes of characters and we simulate its nonde-
terministic version using bit-parallelism. This extension has not been considered
for the BDM or Turbo_BDM algorithms before.

We introduce some notation now. A word # € X* is a factor (i.e. substring)
of pif p can be written p = uzv, u,v € 2*. We denote Fact(p) the set of factors
of p. A factor & of p is called a suffiz of p 18 p = ux. The set of suffixes of p is
called Suff(p).

We denote as by...h; the bits of a mask of length £. We use exponentiation to
denote bit repetition (e.g. 031 = 0001). We use C-like syntax for operations on
the bits of computer words: “|” is the bitwise-or, “&” is the bitwise-and, “~” is
the bitwise-xor and “~” complements all the bits. The shift-left operation, “<<”,
moves the bits to the left and enters zeros from the right, i.e. b0 —1...02b1 <<
7 = bp_pr...bob10". We can interpret bit masks as integers also to perform
arithmetic operations on them.

An expanded version of this work can be found in [17].

2 Searching with Suffix Automata

We describe in this section the BDM pattern matching algorithm [10, 11]. This
algorithm is based on a suffix automaton. We first describe such automaton and
then explain how is it used in the search algorithm

2.1 Suffix Automata

A suffix automaton on a pattern p = p1pa...pm (frequently called DAWG(p) -
for Deterministic Acyclic Word Graph) is the minimal (incomplete) deterministic
finite automaton that recognizes all the suffixes of this pattern. By “incomplete”
we mean that some transitions are not present.

The nondeterministic version of this automaton has a very regular structure
and is shown in Figure 1. We show now how the corresponding deterministic
automaton 1s built.

Fig. 1. A nondeterministic suffix automaton for the pattern p = baal}baa. Dashed lines
represent epsilon transitions (i.e. they occur without consuming an:y input). Iis the
initial state of the automaton. H

Given a factor z of the pattern p, endpos(z) is the set of all the pattern
positions where an occurrence of = ends (there is at least one, since = is a factor
of the pattern, and there are as many as repetitions of z inside p). Formally,
given € Fact(p), we define endpos(x) = {i / Ju, p1pa...p; = ur}. We call each
such integer a position. For example, endpos(baa) = {3,7} in the word baabbaa.
Notice that endpos(e) is the complete set of possible positionsi (recall that € is
the empty string). Notice that for any u, v, endpos(u) and endj'oos(v) are either
disjoint or one contained in the other. :

We define an equivalence relation = between factors of the pattern For u,v €
Fact(p), we define

u = v if and only if endpos(u) = endpos(v)

(notice that one of the factors must be a suffix of the other forithis equivalence
to hold, although the converse is not true). For instance, in our :example pattern
p= baabbaa we have that baa = aa because in all the places Where aa ends in
the pattern, baa ends also (and vice-versa). :

The nodes of the DAWG correspond to the equivalence classes of =, 1.e. to
sets of positions. A state, therefore, can be thought of a factar of the pattern

already recognized, except because we do not distinguish b¢tween some factors.
Another way to see 1t is that the set of positions is in fact the set of active states
in the nondeterministic automaton.

There is an edge labeled o from the set of positions {71]ia, .. .ix} to v, (i1 +
Lo)yU~p(ia+1,0)U...U~p(ig, o), where

(i, 0) {itifi<mand p,=¢
i,0) = i
T # otherwise

which is the same to say that we try to extend the factol that we recognized
with the next text character o, and keep the positions that gtill match. If we are
left with no matching positions, we do not build the transitfon. The initial state
corresponds to the set {0..m}. Finally, a state is terminallif its corresponding
subset of positions contains the last position m (i.e. we matched a suffix of the
pattern). As an example, the deterministic suffix automaton of the word baabbaa
is given in Figure 2.

a a
0,1,2,3,4,5,6,7 e @

Fig. 2. Deterministic suffix automaton of the word baabbaa. The largest node is the
initial state.

The (deterministic) suffix automaton is a well known structure [8, 5, 11, 18],
and we do not prove any of its properties here (neither the correctness of the
previous construction). The size of DAWG(p) is linear in m (counting both nodes
and edges), and can be built in linear time [8]. A very important fact for our
algorithm is that this automaton can not only be used to recognize the suffixes
of p, but also factors of p. By the suffix automaton definition, there is a path
labeled by # form the initial node of DAWG(p) if and only if # is a factor of p.

2.2 Search Algorithm

The suffix automaton structure is used in [10, 11] to design a simple pattern
matching algorithm called BDM. This algorithm is O(mn) time in the worst case,
but optimal in average (O(nlogm/m) time)*. Other more complex variations
such as Turbo.BDM[10] and MultiBDM[11, 19] achieve linear time in the worst

* The lower bound of O(nlogm/m) in average for any pattern matching algorithm
under a Berbouilli model is from A. C. Yao in [24].

case. To search a pattern p = pipa...pm In a text T = t1t5...1,, the suffix
automaton of p" = pmpm—_1...p1 (i.e the pattern read backwards) is built. A
window of length m is slid along the text, from left to right. The algorithm
searches backwards inside the window for a factor of the pattern p using the
suffix automaton. During this search, if a terminal state is reached which does
not correspond to the entire pattern p, the window position is remembered (in
a variable last). This corresponds to finding a prefir of the pattern starting at
position last inside the window and ending at the end of the window (since the
suffixes of p” are the reverse prefixes of p). The last recognized prefix is the
longest one. The backward search ends because of two possible reasons:

1. We fail to recognize a factor, i.e we reach a letter o that does not correspond
to a transition in DAWG(p"). Figure 3 illustrates this case. We then shift
the window to the right in last characters (we cannot miss an occurrence
because in that case the suffix automaton would have found its prefix in the
window).

Window

last
|

Search for a factor with the DAWG

Record in last the window position when a terminal state is reached
last |

(T TTTT o] \ | T IT T I]

Fail to recognize a factor at o: the pattern can not start before o.
The maximum prefix starts at last

(TITT I T Tl TP T T T I I T

safe shift New window

Fig. 3. Basic search with the suffix automaton

2. We reach the beginning of the window, therefore recognizing the pattern p.
We report the occurrence, and we shift the window exactly as in the previous
case (notice that we have the previous last value).

Search example: we search the pattern aabbaab in the text
T=abbabaabbaalb.
We first build DAWG(p" =baabbaa), which is given in Figure 2. We note the

current window between square brackets and the recognized prefix in a rectangle.
We begin with
T=[abbabaalbbaab, m="7T, last=7.

I.T=[abbaba[a]]lbbaab. 5. T=abbablaabbalab]].

a 1s a factor of p” and a reverse ba is a factor of p”.
prefix of p. last = 6. 6. T = abbab[aabb].
2. T=[abbab[aa]]bbaab. baais a factor of p'.

aa 1s a factor of p” and a reverse T.T= abbab[aabb].

prefix of p. last = 5. baa 1s a factor of p”, and a reverse
prefix of p. last = 4.

3.T:[abba]bbaab. 8. T=abbablaablbaabl|].

aab is a factor of p”. baab is a factor of p”.

We fail to recognize the next a. o 7 sppablaalbbaabll
So we shift the window to last. baabb is afactE)r of]
7\?Ye_seal"cbhbagabin n tl;)ebpositil())n: 10. T=abbabla].
; t_—C; ablaa aabl], baabba is a factor of p”.
ast = 1. 0 T=abbabl[aabbaab]]
4. T=abbablaabbaa @] We recognize the word aabbaab

b is a factor of p”. and report an occurrence.

3 Bit-Parallelism

In [2], a new approach to text searching was proposed. It is based on bit-
parallelism [1], which consists in taking advantage of the intrinsic parallelism
of the bit operations inside a computer word to cut down the number of opera-
tions by a factor of at most w, where w 1s the number of bits in the computer
word.

The Shift-Or algorithm uses bit-parallelism to simulate the operation of a
nondeterministic automaton that searches the pattern in the text (see Figure 4).
As this automaton is simulated in time O(mn), the Shift-Or algorithm achieves
O(mn/w) worst-case time (optimal speedup). If we convert the automaton to
deterministic we get a version of KMP [14], which is O(n) search time, although
twice as slow in practice for m < w.

X
“ 0:10.10:,0:10,.0-0)

Fig.4. A nondeterministic automaton to search the pattern p = baabbaa in a text.
The initial state is 0.

We explain now a variant of the Shift-Or algorithm (called Shift-And). The
algorithm builds first a table B which for each character stores a bit mask
bp,...b1. The mask in B[c] has the é-th bit set if and only if p; = ¢. The state of
the search is kept in a machine word D = d,,...d1, where d; is set whenever the

state numbered ¢ in Figure 4 is active. Therefore, we report a match whenever
d,y, 15 set.

We set D = 0 originally, and for each new text character 7}, we update D
using the formula

D'« ((D<<1)|0m 1) & B[T}]

which mimics what occurs inside the nondeterministic automaton for each new
text character: each state gets the value of the previous one, provided the text
character matches the corresponding arrow. The “| 0™~11” corresponds to the
initial self-loop. For patterns longer than the computer word (i.e. m > w), the
algorithm uses [m/w] computer words for the simulation (not all them are active
all the time).

This algorithm 1s very simple and can be extended to handle classes of char-
acters (i.e. each pattern position matches a set of characters), and to allow
mismatches. This paradigm was later enhanced to support wild cards, regular
expressions, approximate search, etc. yielding the fastest algorithms for those
problems [22, 3]. Bit-parallelism became a general way to simulate simple non-
deterministic automata instead of converting them to deterministic. This is how
we use it in our algorithm.

4 Bit-Parallelism on Suffix Automata

We simulate the BDM algorithm using bit-parallelism. The result is an algorithm
which 1s simpler, uses less memory, has more locality of reference, and is easily
extended to handle more complex patterns. We first assume that m < w and
show later how to extend the algorithm for longer patterns.

4.1 The Basic Algorithm

We simulate the reverse version of the automaton of Figure 1. Just as for Shift-
And, we keep the state of the search using m bits of a computer word D =
dpy...dy.

The BDM algorithm moves a window over the text. Each time the window
is positioned at a new text position just after pos, 1t searches backwards the
window Tpos41..Tpos+m using the DAWG automaton, until either m iterations
are performed (which implies a match in the current window) or the automaton
cannot perform any transition.

In our case, the bit d; at iteration k is set if and only if pm_it1..m—itk =
Tpos+1+m—k--Apos4+m. Since we begin at iteration 0, the initial value for D is 1.
There is a match if and only if after iteration m 1t holds d,, = 1. Whenever
d,, = 1, we have matched a prefix of the pattern in the current window. The
longest prefix matched corresponds to the next window position.

The algorithm is as follows. Each time we position the window in the text
we initialize D and scan the window backwards. For each new text character we
update D. Each time we find a prefix of the pattern (d,,, = 1) we remember the

position in the window. If we run out of 1’s in DD then there cannot be a match
and we suspend the scanning (this corresponds to not having any transition to
follow in the automaton). If we can perform m iterations then we report a match.

We use a mask B which for each character ¢ stores a bit mask. This mask
sets the bits corresponding to the positions where the pattern has the character
¢ (just as in Shift-And). The formula to update D follows

D'« (D & B[Tj]) << 1

The algorithm is summarized in Figure 5. Some optimizations done on the
real code, related to improved flow of control and bit manipulation tricks, are
not shown for clarity.

BNDM (p = P1pP2...Pm, T = t1t2...tn)

1 Preprocessing

2 For c € ¥ do B[c] + 0™

3. For i € 1..m do Bpm—it+1] & Blpm—i+1] | 07 7'10' 7!
4. Search

5 pos <0

6 While pos <=n —m do

7 3 m, last «m

8 D=1m

9. While D!'= 0™ do

10. D« D & B[Tpos+j]

11. jeg—1

12. if D & 10™~"' = 0™ then

13. if 7 > 0 then last « j

14. else report an occurrence at pos + 1
15. D+ D<<1

16. End of while

17. pos + pos + last

18. End of while

Fig. 5. Bit-parallel code for BDM. Some optimizations are not shown for clarity.

Search example: we search the pattern aabbaabin thetext T'= abbabaabba
a b. Immediately after each step number (1 to 11) we show the text and note
the current window between square brackets, as well as the recognized prefix in
a rectangle. We begin with

T=labbabaalbbaab D=1111111,B=
last="7,j=1.

1100110
0011001}’

Q

m="17,

>~

L. [abbaba [a]] bbaab. We fail to recognize 8. abbab [aab |baab |].

1111111 the next a. So we shift 0001000
& lt1o00110 the window to last. We & lloo11001
D=I1100110 search again in the posi- D=lloo0o1000
J =6, last=6 tion: abbab [aabbaab], last 73 “jast = 4
=7,7=".
2. [abbab [aa] bbaab. 5. abbab [aabbaa @] 9. abbab [aa |bbaa b |].
1001100 1111111 0010000
& |I1100110 ¢ lloo11001 & |I0011001
D=||1000100 D=l0011001 D=l0010000
3=25, last=15 7=6, lasi=7 3=2, last=14

3. [abba | baa |] bbaab. 6. abbab [aabba @] 10. abbab [a | abbaab |].

0001000 STT0010 0100000
& 0011001 & |[1100110
P & 1100110
e D=[o100010 D=]0100000
J= S st 7=05,last="7 g=2 last=4
4. [abb | abaa |] bbaab.
7. abbab [aabb [aab]]. 11. abbab [| aabbaab |].

0010000 1000000
& 1100110 1000100 & 1100110
D=|0000000 & 1100110 D=[[1000000
- — D=||1000100 —
3=23, last=15 3=0, last=4

7=4, last=4

Report an occurrence at 6.

4.2 Handling Longer Patterns

We can cope with longer patterns by setting up an array of words D; and sim-
ulating the work on a long computer word. We propose a different alternative
which was experimentally found to be faster.

If m > w, we partition the pattern in M = [m/w] subpatterns s;, such that
p =51 82 ... spr and s; is of length m; = w if i < M and myr = m —w(M —1).
Those subpatterns are searched with the basic algorithm.

We now search sy in the text with the basic algorithm. If s; is found at a
text position j, we verify whether s follows it. That is, we position a window at
Titm:-Tj4mi+ms—1 and use the basic algorithm for s, in that window. If s5 is
in the window, we continue similarly with s3 and so on. This process ends either
because we find the complete pattern and report 1t, or because we fail to find a
subpattern s;.

We have to move the window now. An easy alternative is to use the shift
last, that corresponds to the search of s;. However, if we tested the subpatterns
s1 to s;, each one has a possible shift last;, and we use the maximum of all shifts.

4.3 Analysis

The preprocessing time for our algorithm is O(m+ |X|) if m < w, and O(m(1 +
|Z|/w)) otherwise.

In the simple case m < w, the analysis is the same as for the BDM algorithm.
That is, O(mn) in the worst case (e.g. T = a”, p = a™), O(n/m) in the best case
(e.g. T'=a™, p=a™ 'b), and O(nlog y;m/m) on average (which is optimal).
Our algorithm, however, benefits from more locality of reference, since we do not
access an automaton but only a few variables which can be put in registers (with
the exception of the B table). As we show in the experiments, this difference
makes our algorithm the fastest one.

When m > w, our algorithm is O(nm?/w) in the worst case (since each
of the O(mn) steps of the BDM algorithm forces to work on [m/w] computer
words). The best case occurs when the text traversal using s; always performs its
maximum shift after looking one character, which is O(n/w). We show, finally,
that the average case is O(nloglzl w/w). Clearly these complexities are worse
than those of the simple BDM algorithm for long enough patterns. We show in
the experiments up to which length our version is faster in practice.

The search cost for s1 is O(nlog g w/w). With probability 1/|X]*, we find
s1 and check for the rest of the pattern. The check for s; in the window costs
O(w) at most. With probability 1/|X|% we find s2 and check sz, and so on. The
total cost incurred by the existence of ss...s3 1s at most

M-1
EW < ¢ = g 0+ 0w/121Y) = o)

which therefore does not affect the main cost to search s; (neither in theory
since the extra cost is O(1) nor in practice since ¢ is very small). We consider
the shifts now. The search of each subpattern s; provides a shift last;, and we
take the maximum shift. Now, the shift last; participates in this maximum with
probability 1/|X]“%. The longest possible shift is w. Hence, if we sum (instead of
taking the maximum) the longest possible shifts w with their probabilities, we
get into the same sum above, which is € = O(1). Therefore, the average shift is
longer than last; and shorter than lasty + ¢ = last; + O(1), and hence the cost
is that of searching s; plus lower order terms.

5 Further Improvements

5.1 A Linear Algorithm

Although our algorithm has optimal average case, it is not linear in the worst
case even for m < w, since we can traverse the complete window backwards
and advance it in one character. Our aim now is to reduce its worst case from
O(nm?/w) to O(nm/w), i.e. O(n) when m = O(w).

Improved variations on BDM already exist, such as Turbo_. BDM and Turbo_RF
[10, 15], the last one being linear in the worst case and still sublinear on aver-
age. The main idea is to avoid retraversing the same characters in the backward

window verification using the fact that when we advance the window in last
positions, we already know that Tjij4st..Ti4m—1 is a prefix of the pattern (re-
call Figure 3). The ending position of the prefix in the window is usually called
the critical position. The main problem if this area is not retraversed is how to
determine the next shift, since among all possible shifts in Tiyi4s5¢..Tipm—1 We
remember only the first one.

One strategy adds a kind of BM machine to the BDM algorithm. It works
as follows: let u be the pattern prefix before the critical position. If we reach
the critical position after reading (backwards) a factor z with the DAWG; it is
possible to know whether 2" is a suffix of the pattern p: if 2" is a suffix, (i.e.
p = uz") we recognize the whole pattern p, and the next shift corresponds to
the longest border of p (i.e. the longest proper prefix that is also a suffix), which
can be computed in advance. If 27 is not a suffix, it appears in the pattern in a
set of positions which is given by the state we reached in the suffix automaton.
We shift to the rightmost occurrence of z” in the pattern.

It 1s not difficult to simulate this idea in our BNDM algorithm. To know if
the factor z we read with the DAWG is a suffix, we test whether dj;; = 1. To
get the rightmost occurrence, we seek the rightmost 1 in D, which we can get
(if it exists) in constant time with log,(D & ~ (D — 1)) ®. We implemented this
algorithm under the name BM_BNDM in the experimental part of this paper.

This algorithm remains quadratic, because we do not keep a prefix of the
pattern after the BM shift. We do that now. Recall that u is the prefix before
the critical position. The Turbo_RF (second variation) [10] uses a complicated
preprocessing phase to associate in linear time an occurrence of z” in the pattern
to a border b, of u, in order to obtain the maximal prefix of the pattern that is a
suffix of uz”. Moreover, the Turbo_RF uses a suffix tree, and it is quite difficult to
use this preprocessing phase on DAWGs. With our simulation, this preprocessing
phase becomes simple. To each prefix u; of the pattern p, we associate a mask
Bord[i] that registers the starting positions of the borders of u; (e included).
This table 1s precomputed in linear time. Now, to join one occurrence of z” to a
border of u, we want the positions which start a border of u and continue with
an occurrence of z”. The first set of positions is Bord[i], and the second one is
precisely the current D value (i.e. positions in the pattern where the recognized
factor z ends). Hence, the bits of X = Bord[i] & D are the positions satisfying
both criteria. As we want the rightmost such occurrence (i.e. the maximal prefix),
we take again log,(X& ~ (X — 1)). We implemented this algorithm under the
name Turbo_.BNDM in the experimental part of this paper.

5.2 A Constant-Space Algorithm

It is also interesting to notice that, although the algorithm needs O(|X|m/w)
extra space, we can make it constant space on a binary alphabet ¥y = {0,1}.

5 It is faster and cleaner to implement this log, by shifting the mask to the right until
it becomes zero. Using this technique we can use the simpler expression D~ (D —1)
and get the same result.

The trick is that in this case, B[1] = p and B[0] = ~ BJ[1]. Therefore, we need
no extra storage apart from the pattern itself to perform all the operations. In
theory, any text over a finite alphabet 3 could be searched in constant space by
representing the symbols of X with bits and working on the bits (the misaligned
matches have to be later discarded). This involves an average search time of

nlog, | X

log, log,, | X
log,(mlog, |X]|) = Normal time x log, | Y| (1 + OngZII)

mlog, | X| log, m

which if the alphabet 1s considered of constant size is of the same order of the
normal search time.

6 Extensions

We analyze now some extensions applicable to our basic scheme, which form a
successful combination of efficiency and flexibility.

6.1 Classes of Characters

As in the Shift-Or algorithm, we allow that each position in the pattern matches
not only a single character but an arbitrary set of characters. We call “extended
patterns” those that are more complex than a simple string to be searched. In
this work the only extended patterns we deal with are those allowing a class of
characters at each position.

We denote p = C'1C5 ... C,, such extended patterns. A word © = z125... 2,
in X* is a factor of an extended pattern p = C1C5 . ..C,, if there exists an ¢ such
that z1 € Cs_r41,22 € Cs_rq2,... 2, € C;. Such an ¢ is called a position of x
in p. A factor x = 2120 .. .2, of p=C1Cy...Cisasuffizrif x1 € Cpp_py1, 22 €
CZ'_H_Q, oL, Xy € Ch.

Similarly to the first part of this work, we design an automaton which rec-
ognizes all suffixes of an extended pattern p = C1C5...Cy,. This automaton
i1s not anymore a DAWG. We call it Extended_DAWG. To our knowledge, this
kind of automaton has never been studied. We first give a formal construction
of the Extended_.DAWG (proving its correctness) and later present a bit-parallel
implementation.

Construction The construction we use is quite similar to the one we give for the
DAWG, except for the new definition of suffixes. For any x factor of p, we denote
L-endpos(x) the set of positions of # in p. For example, L-endpos(baa) = {3,7}
in the extended pattern bfa,bjabbaa, and L-endpos(bba) = {3,6} (notice that,
unlike before, the sets of positions can be not disjoint and no one a subset of the
other). We define the equivalence relation =g for u, v factors of p by

u =g v if and only if L-endpos(u) = L-endpos(v).

We define v, (7,0) with i € {0,1,... m,m+1},0€ X by
)_{{i}ifigmandO'ECi

otherwise

LEMMA 1 Let p be an extended pattern and =g the equivalence relation on its
factors (as previously defined). The equivalence relation =g is compatible with
the concatenation on words.

This lemma allows us to define an automaton from this equivalence class.
States of the automaton are the equivalence classes of =pg. There is an edge
labeled by o from the set of positions {i1,4,...9%} to v, (i1 + 1,0) U~ (ia +
Lo)U...U~(ix + 1,0), if it is not empty. The initial node of the automaton
is the set that contains all the positions. Terminals nodes of the automaton are
the set of positions that contain m. As an example, the suffix automaton of the
word [a,bJaafa,blbaa is given in Figure 6.

0,1,2,3,4,5,6,7

Fig. 6. Extended_DAWG of the extended pattern °[a, b]' a’a®[a, b]*b°a®a’

LEMMA 2 The Extended_ DAWG of an extended pattern p = C1Cs .. .Cy, recog-
nizes the set of suffires of p.

We can use this new automaton to recognize the set of suffixes of an ex-
tended pattern p. We do not give an algorithm to build this Extended_DAWG
in its deterministic form, but we simulate the deterministic automaton using
bit-parallelism.

A bit-parallel tmplementation: from the above construction, the only modifica-
tion that our algorithm needs is that the B table has the i-th bit set for all
characters belonging to the set of the ¢-th position of the pattern. Therefore we
simply change line 3 (part of the preprocessing) in the algorithm of Figure 5 to

For i € 1..m,c € ¥ do if ¢ € p; then B[¢] « B[c] | 0m~110""1

such that now the preprocessing takes O(]|X|m) time but the search algorithm
does not change.

We combine the flexibility of extended patterns with the efficiency of a Boyer-
Moore-like algorithm. It should be clear, however, that the efficiency of the shifts
can be degraded if the classes of characters are significantly large and prevent
long shifts. However, this is much more resistant than some simple variations of
Boyer-Moore since it uses more knowledge about the matched characters.

We point out now another extension related to classes of characters: the text
itself may have basic characters as well as other symbols denoting sets of basic
characters. This is common, for instance, in DNA databases. We can easily
handle such texts. Assume that the symbol C represents the set {c1,...,¢,}.
Then we set B[C] = Blei] | ... | Bley]. This is much more difficult to achieve
with algorithms not based on bit-parallelism.

6.2 Multiple Patterns

To search a set of patterns P1...Pr (i.e. reporting the occurrences of all them)
of length m in parallel, we can use an arrangement proposed in [22], which
concatenates the patterns as follows: P = P1y P2y ...Pry Pls P25 ...Pry
Ply, P2y, ...Pry, (i.e. all the first letters, then all the second letters, etc.) and
searches P just as a single pattern. The only difference in the algorithm of
Figure 5 is that the shift is not in one bit but in r bits in line 15 (since we have
7 bits per multipattern position) and that instead of looking for the highest bit
d, of the computer word we consider all the r bits corresponding to the highest
position. That is, we replace the old 10! test mask by 170"(™=1 in line 12.

This will automatically search for » words of length m and keep all the bits
needed for each word. Moreover, it will report the matches of any of the patterns
and will not allow shifting more than what all patterns allow to shift.

An alternative arrangement is: P = P1 P2 ... Pr (i.e. just concatenate the
patterns). In this case the shift in line 15 is for one bit, and the mask for line 12 is
(10™=1)". On some processors a shift in one position is faster than a shift in r > 1
positions, which could be an advantage for this arrangement. On the other hand,
in this case we must clear the bits that are carried from the highest position of
a pattern to the next one, replacing line 15 for D = (D << 1) & (1™~10)". This
involves an extra operation. Finally, this arrangement allows to have patterns of
different lengths for the algorithm of Wu and Manber [22] which is not possible
in their current proposal.

Clearly these techniques cannot be applied to the case m > |w/2|. However,
ifm < |w/2]| and rxm > w we divide the set of patterns into [r/|w/m|] groups,
so that the patterns in each group fit in w bits. Since this skips characters, it is
better on average than [22]. As we show in the experiments, this is also better
than sequentially searching each pattern in turn, even given that the shifts are
the most conservative among all the r patterns.

6.3 Approximate String Matching

Approximate string matching is the problem of finding all the occurrences of a
pattern in a text allowing at most & “errors”. The errors are insertions, deletions
and replacements to perform in the pattern so that it matches the text. In [22],
an efficient filter is proposed to determine that large text areas cannot contain
an occurrence. It is based on dividing the pattern in & + 1 pieces and searching
all the pieces in parallel. Since k errors cannot destroy the k47 pieces, some of
the pieces must appear with no errors close to each occurrence. They use the
multipattern search algorithm mentioned in the previous paragraph. In [4, 3],
a multipattern Boyer-Moore strategy is preferred, which is faster but does not
handle classes of characters and other extensions. This algorithm is the fastest
one for low error levels.

Our multipattern search technique presented in the previous section combines
the best of both worlds: our performance is comparable to Boyer-Moore algo-
rithms and we keep the flexibility of bit-parallelism handle classes of characters.
We show in the experiments how our algorithm performs in this setup.

7 Experimental Results

We ran extensive experiments on random and natural language text to show
how efficient are our algorithms in practice. The experiments were run on a Sun
UltraSparc-1 of 167 MHz, with 64 Mb of RAM, running SunOS 5.5.1. We mea-
sure CPU times, which are within 2% with 95% confidence. We used random
texts and patterns with ¢ = 2 to 64, as well as natural language text and DNA
sequences.

We show in Figure 7 some of the results for short (m < w) and long (m > w)
patterns. The comparison includes the best known algorithms: BM, BM-Sunday,
KMP (very slow to appear in the plots, close to 0.14 sec/Mb), Shift-Or (not
always shown, close to 0.07 sec/Mb), classical BDM, and our three bit-parallel
variants: BNDM, BM_BNDM and Turbo_BNDM.

Our bit-parallel algorithms are always the fastest for short patterns, except
for m < 2-6. The fastest algorithm is BM_BNDM, though it is very close to
simple BNDM. Classical BDM, on the other hand, is sometimes slower than
the BM family. Turbo_.BNDM is competitive with simple BNDM and has linear
worst case. Our algorithms are especially good for small alphabets since they use
more information on the matched pattern than others. The only good competitor
for small alphabets is Boyer-Moore, which however is slower because the code
is more complex (notice that Boyer-Moore is faster than BDM, but slower than
BNDM). For larger alphabets, on the other hand, another very simple algorithm
gets very close: BM-Sunday. However, we are always at least 10% faster.

On longer patterns® our algorithm ceases to improve because it basically

6 We did not include the more complex variations of our algorithm because they have
already been shown very similar to the simple one. We did not include also the
algorithms which are known not to improve, such as Shift-Or and KMP.

searches for the first w letters of the pattern, while classical BDM keeps improv-
ing. Hence, our algorithm ceases to be the best one (beaten by BDM) for m >
90-150. This value would at least duplicate in a 64-bit architecture.

We show also some illustrative results using classes of characters, which were
generated manually as follows: we select from an English text an infrequent word,
namely "responsible" (close to 10 matches per megabyte). Then we replace its
first or last characters by the class {a..z}. This will adversely affect the shifts of
the BNDM algorithm. We compare the efficiency against Shift-Or. The result is
presented in Table 1, which shows that even in the case of three initial or final
letters allowing a large class of characters the shifts are significant and we double
the performance of Shift-Or. Hence, our goals of handling classes of characters
with improved search times are achieved.

Pattern [Shift-Or|BNDM
responsible| 6.58 2.71
responsibl?| 6.51 2.96
responsib??| 6.52 3.23
responsi???| 6.49 3.40
7esponsible| 6.46 2.93
??sponsible| 6.55 3.42
???ponsible| 6.51 3.78

Table 1. Search times with classes of characters, in 1/100-th of seconds per megabyte
on English text. The question mark ’>?’ represents the class {a..z}.

We present in Figure 8 some results on our multipattern algorithm, to show
that although we take the minimum shift among all the patterns, we can still
do better than searching each pattern in turn. We take random groups of five
patterns of length 6 and compare our multipattern algorithm (in its two versions,
called Multi-BNDM (1) and (2) attending to their presentation order), against
five sequential searches with BNDM (called BNDM in the legend), and against
the parallel version proposed in [22] (called Multi-WM). As it can be seen, our
first arrangement is slightly more efficient than the second one, they are always
more efficient than a sequential search (although the improvement is not five-fold
but two- or three-fold because of shorter shifts), and are more efficient than the
proposal of [22] provided o > 8.

Finally, we show the performance of our multipattern algorithm when used
for approximate string matching. We include the fastest known algorithms in
the comparison [4, 3, 7, 13, 16, 23, 22]. We compare those algorithms against
our version of [4] (where the Sunday algorithm is replaced by our BNDM), while
we consider [22] not as the bit-parallel algorithm presented there but their other
proposal, namely reduction to exact searching using their algorithm Multi-WM
for multipattern search (shown in the previous experiment). Figure 9 shows the

results for different alphabet sizes and m = 20.

Since BNDM 1is not very good for very short patterns, the approximate search
algorithm ceases to be competitive short before the original version [4]. This is
because the length of the patterns to search for is O(m/k). Despite this draw-
back, our algorithm is quite close to [4] (sometimes even faster) which makes it
a reasonably competitive yet more flexible alternative, while being faster than
the other flexible candidate [22].

8 Conclusions

We present a new algorithm (called BNDM) based on the bit-parallel simulation
of a nondeterministic suffix automaton. This automaton has been previously
used in deterministic form in an algorithm called BDM. Our new algorithm
is experimentally shown to be very fast on average. It is the fastest algorithm
in all cases for patterns from length 5 to 110 (on English; the bounds vary
depending on the alphabet size and the architecture). We present also some
variations called Turbo_.BNDM and BM_BNDM which are derived from the cor-
responding variants of BDM. These variants are much more simply implemented
using bit-parallelism and become practical algorithms. Turbo_.BNDM has aver-
age performance very close to BNDM, though O(n) worst case behavior, while
BM_BNDM is slightly faster than BNDM. The BNDM algorithm can be ex-
tended simply and efficiently to handle classes of characters, multiple pattern
matching and approximate pattern matching, among others.

The new suffix automaton we introduce and simulate for classes of charac-
ters has never been studied. Its study should permit to extend the BDM and
Turbo_RF to handle classes of characters.

The Agrep software [21] is in many cases faster than BNDM. However, Agrep
is just a BM algorithm which uses pairs of characters instead of single ones.
This is an orthogonal technique that can be incorporated in all algorithms, and
a general study of this technique would permit to improve the speed of pattern
matching softwares. We plan to work on this idea too.

References

1. R. Baeza-Yates. Text retrieval: Theory and practice. In 12th IFIP World Com-
puter Congress, volume 1, pages 465-476. Elsevier Science, September 1992.

2. R. Baeza-Yates and G. Gonnet. A new approach to text searching. CACM,
35(10):74-82, October 1992.

3. R. Baeza-Yates and G. Navarro. A faster algorithm for approximate string match-
ing. In Proc. of CPM’96, pages 1-23, 1996.

4. R. Baeza-Yates and C. Perleberg. Fast and practical approximate pattern match-
ing. In Proc. CPM’92, pages 185-192. Springer-Verlag, 1992. LNCS 644.

5. A. Blumer, A. Ehrenfeucht, and D. Haussler. Average sizes of suffix trees and
dawgs. Discrete Applied Mathematics, 24(1):37-45, 1989.

6. R. S. Boyer and J. S. Moore. A fast string searching algorithm. Communications
of the ACM, 20(10):762-772, 1977.

7. W. Chang and J. Lampe. Theoretical and empirical comparisons of approximate
string matching algorithms. In Proc. of CPM’92, pages 172-181, 1992. LNCS 644.

8. M. Crochemore. Transducers and repetitions. Theor. Comput. Sci., 45(1):63-86,
1986.

9. M. Crochemore, A. Czumaj, L. Gasieniec,
S. Jarominek, T. Lecroq, W. Plandowski, and W. Rytter. Fast practical multi-
pattern matching. Rapport 93-3, Institut Gaspard Monge, Université de Marne la
Vallée, 1993.

10. M. Crochemore, A. Czumaj,
L. Gasieniec, S. Jarominek, T. Lecroq, W. Plandowski, and W. Rytter. Speeding
up two string-matching algorithms. Algorithmica, (12):247-267, 1994.

11. M. Crochemore and W. Rytter. Text algorithms. Oxford University Press, 1994.

12. R. N. Horspool. Practical fast searching in strings. Softw. Pract. Fxp., 10:501-506,
1980.

13. P. Jokinen, J. Tarhio, and E. Ukkonen. A comparison of approximate string
matching algorithms. Software Practice and Ezperience, 26(12):1439-1458, 1996.

14. D. E. Knuth, J. H. Morris, Jr, and V. R. Pratt. Fast pattern matching in strings.
SIAM Journal on Computing, 6(1):323-350, 1977.

15. T. Lecroq. Recherches de mot. Theése de doctorat, Université d’Orléans, France,
1992.

16. G. Navarro. A partial deterministic automaton for approximate string matching.
In Proc. of WSP’97, pages 112—124. Carleton University Press, 1997.

17. G. Navarro and M. Raffinot. A bit-parallel approach to suffix automata: Fast
extended string matching. Technical Report TR/DCC-98-1, Dept. of Com-
puter Science, Univ. of Chile, Jan 1998. ftp://ftp.dcc.uchile.cl/pub/users/-
gnavarro/bndm.ps.gz.

18. M. Raffinot. Asymptotic estimation of the average number of terminal states in
dawgs. In R. Baeza-Yates, editor, Proc. of WSP’97, pages 140-148, Valparaiso,
Chile, November 12-13, 1997. Carleton University Press.

19. M. Raffinot. On the multi backward dawg matching algorithm (MultiBDM). In
R. Baeza-Yates, editor, Proceedings of the 4rd South American Workshop on String
Processing, pages 149-165, Valparaiso, Chile, November 12-13, 1997. Carleton Uni-
versity Press.

20. D. Sunday. A very fast substring search algorithm. CACM, 33(8):132-142, August
1990.

21. S. Wu and U. Manber. Agrep — a fast approximate pattern-matching tool. In
Proc. of USENIX Technical Conference, pages 153-162, 1992.

22. 8. Wu and U. Manber. Fast text searching allowing errors. CACM, 35(10):83-91,
October 1992.

23. S. Wu, U. Manber, and E. Myers. A sub-quadratic algorithm for approximate
limited expression matching. Algorithmica, 15(1):50-67, 1996.

24. A. C. Yao. The complexity of pattern matching for a random string. SIAM Journal
on Computing, 8(3):368-387, 1979.

This article was processed using the ¥TEX macro package with LLNCS style

6 -
5 -
4 —
3 -
2
40 60 80 100 120 140 160
2.4 5
2.1
1.8
m
1.5 T T T T T 1
40 60 80 100 120 140 160
2.5 1
2.3 1
2.1 1
1.9
m
1.7 T T T T T 1
5 10 15 20 25 30 40 60 80 100 120 140 160
— BDM - - BM_BNDM —— Shift-Or —~— Boyer-Moore
— BNDM ---- Turbo_.BNDM —- Sunday

Fig.7. Times in 1/100-th of seconds per megabyte. For first to third row, random
text with ¢ = 4, random text with o = 64 and English text. Left column shows short
patterns, right column shows long patterns.

40

30

25

15

10

0 T T T T T 1
2 4 8 16 32 64
~° Multi-BNDM (1) -* Multi-BNDM (2) - Multi-WM — BNDM

Fig. 8. Times in 1/100-th of seconds per megabyte, for multipattern search on random
text of different alphabet sizes (z axis).

— Ex. Part. (ours) - - Ex. Part. [22] - Col. Part. [7] -+ DFA [16]

— Ex. Part. [4] —— Bit Parall. [3] —+ Counting [13] —*- 4-russians [23]
Fig. 9. Times in seconds per megabyte, for random text on patterns of length 20, and
o = 16 and 64 (first and second column, respectively). The & axis is the number of
errors allowed.

