
A Bit-parallel Approach to Su�x Automata:Fast Extended String MatchingGonzalo Navarro13 Mathieu Ra�not21 Dept. of Computer Science, University of Chile. Blanco Encalada 2120, Santiago,Chile. gnavarro@dcc.uchile.cl.2 Institut Gaspard Monge, Cit�e Descartes, Champs-sur-Marne, 77454Marne-la-Vall�ee Cedex 2, France. raffinot@monge.univ-mlv.fr.3 Partially supported by Chilean Fondecyt grant 1-950622.Abstract. We present a new algorithm for string matching. The al-gorithm, called BNDM, is the bit-parallel simulation of a known (butrecent) algorithm called BDM. BDM skips characters using a \su�x au-tomaton" which is made deterministic in the preprocessing. BNDM, in-stead, simulates the nondeterministic version using bit-parallelism. Thisalgorithm is 20%-25% faster than BDM, 2-3 times faster than other bit-parallel algorithms, and 10%-40% faster than all the Boyer-Moore fam-ily. This makes it the fastest algorithm in all cases except for very shortor very long patterns (e.g. on English text it is the fastest between 5and 110 characters). Moreover, the algorithm is very simple, allowing toeasily implement other variants of BDM which are extremely complex intheir original formulation. We show that, as other bit-parallel algorithms,BNDM can be extended to handle classes of characters in the patternand in the text, multiple patterns and to allow errors in the pattern orin the text, combining simplicity, e�ciency and exibility. We also gen-eralize the su�x automaton de�nition to handle classes of characters. Tothe best of our knowledge, this extension has not been studied before.1 IntroductionThe string-matching problem is to �nd all the occurrences of a given patternp = p1p2 : : : pm in a large text T = t1t2 : : : tn, both sequences of characters froma �nite character set �.Several algorithms exist to solve this problem. One of the most famous, andthe �rst having linear worst-case behavior, is Knuth-Morris-Pratt (KMP) [14]. Asecond algorithm, as famous as KMP, which allows to skip characters, is Boyer-Moore (BM) [6]. This algorithm leads to several variations, like Hoorspool [12]and Sunday [20], forming the fastest known string-matching algorithms.A large part of the research in e�cient algorithms for string matching can beregarded as looking for automata which are e�cient in some sense. For instance,KMP is simply a deterministic automaton that searches the pattern, being itsmain merit that it is O(m) in space and construction time. Many variations ofthe BM family are supported by an automaton as well.Another automaton, called \su�x automaton" is used in [9, 10, 11, 15, 19],where the idea is to search a substring of the pattern instead of a pre�x (as KMP),

or a su�x (as BM). Optimal sublinear algorithms on average, like \BackwardDAWG Match" (BDM) or Turbo BDM [10, 11], have been obtained with thisapproach, which has also been extended to multipattern matching [9, 11, 19](i.e. looking for the occurrences of a set of patterns).Another related line of research is to take those automata in their nonde-terministic form instead of making them deterministic. Usually the nondeter-ministic versions are very simple and regular and can be simulated using \bit-parallelism" [1]. This technique uses the intrinsic parallelism of the bit manipula-tions inside computer words to performmany operations in parallel. Competitivealgorithms have been obtained for exact string matching [2, 22], as well as ap-proximate string matching [22, 23, 3]. Although these algorithms work well onlyon relatively short patterns, they are simpler, more exible, and have very lowmemory requirements.In this paper we merge some aspects of the two approaches in order to ob-tain a fast string matching algorithm, called Backward Nondeterministic DawgMatching (BNDM), which we extend to handle classes of characters, to searchmultiple patterns, and to allow errors in the pattern and/or in the text, likeShift-Or [2]. BNDM uses a nondeterministic su�x automaton that is simulatedusing bit-parallelism. This new algorithm has the advantage of being faster thanprevious ones which could be extended in such a way (typically 2-3 times fasterthan Shift-Or), faster than its deterministic-automaton counterpart BDM (20%-25% faster), using little space in comparison with the BDM or Turbo BDM al-gorithms, and being very simple to implement. It becomes the fastest stringmatching algorithm, beating all the Boyer-Moore family (Sunday included) by10% to 40%. Only for very short (up to 2-6 letters) or very long patterns (past90-150 letters), depending on j�j and the architecture, other algorithms becomefaster than BNDM (Sunday and BDM, respectively). Moreover, we de�ne a newsu�x automaton which handles classes of characters and we simulate its nonde-terministic version using bit-parallelism. This extension has not been consideredfor the BDM or Turbo BDM algorithms before.We introduce some notation now. A word x 2 �� is a factor (i.e. substring)of p if p can be written p = uxv, u; v 2 ��. We denote Fact(p) the set of factorsof p. A factor x of p is called a su�x of p is p = ux. The set of su�xes of p iscalled Su�(p).We denote as b`:::b1 the bits of a mask of length `. We use exponentiation todenote bit repetition (e.g. 031 = 0001). We use C-like syntax for operations onthe bits of computer words: \j" is the bitwise-or, \&" is the bitwise-and, \ b " isthe bitwise-xor and \�" complements all the bits. The shift-left operation, \<<",moves the bits to the left and enters zeros from the right, i.e. bmbm�1:::b2b1 <<r = bm�r :::b2b10r . We can interpret bit masks as integers also to performarithmetic operations on them.An expanded version of this work can be found in [17].

2 Searching with Su�x AutomataWe describe in this section the BDM pattern matching algorithm [10, 11]. Thisalgorithm is based on a su�x automaton. We �rst describe such automaton andthen explain how is it used in the search algorithm2.1 Su�x AutomataA su�x automaton on a pattern p = p1p2 : : : pm (frequently called DAWG(p) -for Deterministic Acyclic Word Graph) is the minimal (incomplete) deterministic�nite automaton that recognizes all the su�xes of this pattern. By \incomplete"we mean that some transitions are not present.The nondeterministic version of this automaton has a very regular structureand is shown in Figure 1. We show now how the corresponding deterministicautomaton is built. I 0 1 2 3 4 5 6 7b a a b b a a� � � � � � � �Fig. 1. A nondeterministic su�x automaton for the pattern p = baabbaa. Dashed linesrepresent epsilon transitions (i.e. they occur without consuming any input). I is theinitial state of the automaton.Given a factor x of the pattern p, endpos(x) is the set of all the patternpositions where an occurrence of x ends (there is at least one, since x is a factorof the pattern, and there are as many as repetitions of x inside p). Formally,given x 2 Fact(p), we de�ne endpos(x) = fi = 9u; p1p2:::pi = uxg. We call eachsuch integer a position. For example, endpos(baa) = f3; 7g in the word baabbaa.Notice that endpos(�) is the complete set of possible positions (recall that � isthe empty string). Notice that for any u; v, endpos(u) and endpos(v) are eitherdisjoint or one contained in the other.We de�ne an equivalence relation � between factors of the pattern. For u; v 2Fact(p), we de�ne u � v if and only if endpos(u) = endpos(v)(notice that one of the factors must be a su�x of the other for this equivalenceto hold, although the converse is not true). For instance, in our example patternp = baabbaa, we have that baa � aa because in all the places where aa ends inthe pattern, baa ends also (and vice-versa).The nodes of the DAWG correspond to the equivalence classes of �, i.e. tosets of positions. A state, therefore, can be thought of a factor of the pattern

already recognized, except because we do not distinguish between some factors.Another way to see it is that the set of positions is in fact the set of active statesin the nondeterministic automaton.There is an edge labeled � from the set of positions fi1; i2; : : : ikg to p(i1 +1; �) [p(i2 + 1; �)[: : :[p(ik; �), wherep(i; �) = (fig if i � m and pi = �; otherwisewhich is the same to say that we try to extend the factor that we recognizedwith the next text character �, and keep the positions that still match. If we areleft with no matching positions, we do not build the transition. The initial statecorresponds to the set f0::mg. Finally, a state is terminal if its correspondingsubset of positions contains the last position m (i.e. we matched a su�x of thepattern). As an example, the deterministic su�x automaton of the word baabbaais given in Figure 2.0,1,2,3,4,5,6,7 1,4,5 2,6 3,72,3,6,7 4 5 6 7b a a b b a aba baFig. 2. Deterministic su�x automaton of the word baabbaa. The largest node is theinitial state.The (deterministic) su�x automaton is a well known structure [8, 5, 11, 18],and we do not prove any of its properties here (neither the correctness of theprevious construction). The size of DAWG(p) is linear inm (counting both nodesand edges), and can be built in linear time [8]. A very important fact for ouralgorithm is that this automaton can not only be used to recognize the su�xesof p, but also factors of p. By the su�x automaton de�nition, there is a pathlabeled by x form the initial node of DAWG(p) if and only if x is a factor of p.2.2 Search AlgorithmThe su�x automaton structure is used in [10, 11] to design a simple patternmatching algorithm called BDM. This algorithm is O(mn) time in the worst case,but optimal in average (O(n logm=m) time)4. Other more complex variationssuch as Turbo BDM[10] and MultiBDM[11, 19] achieve linear time in the worst4 The lower bound of O(n logm=m) in average for any pattern matching algorithmunder a Berbouilli model is from A. C. Yao in [24].

case. To search a pattern p = p1p2 : : : pm in a text T = t1t2 : : : tn, the su�xautomaton of pr = pmpm�1 : : : p1 (i.e the pattern read backwards) is built. Awindow of length m is slid along the text, from left to right. The algorithmsearches backwards inside the window for a factor of the pattern p using thesu�x automaton. During this search, if a terminal state is reached which doesnot correspond to the entire pattern p, the window position is remembered (ina variable last). This corresponds to �nding a pre�x of the pattern starting atposition last inside the window and ending at the end of the window (since thesu�xes of pr are the reverse pre�xes of p). The last recognized pre�x is thelongest one. The backward search ends because of two possible reasons:1. We fail to recognize a factor, i.e we reach a letter � that does not correspondto a transition in DAWG(pr). Figure 3 illustrates this case. We then shiftthe window to the right in last characters (we cannot miss an occurrencebecause in that case the su�x automaton would have found its pre�x in thewindow). � lastWindowRecord in last the window position when a terminal state is reachedSearch for a factor with the DAWGlastThe maximum pre�x starts at lastFail to recognize a factor at �: the pattern can not start before �.�safe shift New windowFig. 3. Basic search with the su�x automaton2. We reach the beginning of the window, therefore recognizing the pattern p.We report the occurrence, and we shift the window exactly as in the previouscase (notice that we have the previous last value).Search example: we search the pattern aabbaab in the textT = a b b a b a a b b a a b:We �rst build DAWG(pr =baabbaa), which is given in Figure 2. We note thecurrent window between square brackets and the recognized pre�x in a rectangle.We begin withT = [a b b a b a a]b b a a b, m = 7, last = 7.

1. T = [a b b a b a a] b b a a b.a is a factor of pr and a reversepre�x of p. last = 6.2. T = [a b b a b a a] b b a a b.aa is a factor of pr and a reversepre�x of p. last = 5.3. T = [a b b a b a a] b b a a b.aab is a factor of pr.We fail to recognize the next a.So we shift the window to last.We search again in the position:T = a b b a b [a a b b a a b],last = 7.4. T = a b b a b [a a b b a a b].b is a factor of pr.
5. T = a b b a b [a a b b a a b].ba is a factor of pr.6. T = a b b a b [a a b b a a b].baa is a factor of pr.7. T = a b b a b [a a b b a a b].baa is a factor of pr , and a reversepre�x of p. last = 4.8. T = a b b a b [a a b b a a b].baab is a factor of pr.9. T = a b b a b [a a b b a a b].baabb is a factor of pr.10. T = a b b a b [a a b b a a b].baabba is a factor of pr.11. T = a b b a b [a a b b a a b].We recognize the word aabbaaband report an occurrence.3 Bit-ParallelismIn [2], a new approach to text searching was proposed. It is based on bit-parallelism [1], which consists in taking advantage of the intrinsic parallelismof the bit operations inside a computer word to cut down the number of opera-tions by a factor of at most w, where w is the number of bits in the computerword.The Shift-Or algorithm uses bit-parallelism to simulate the operation of anondeterministic automaton that searches the pattern in the text (see Figure 4).As this automaton is simulated in time O(mn), the Shift-Or algorithm achievesO(mn=w) worst-case time (optimal speedup). If we convert the automaton todeterministic we get a version of KMP [14], which is O(n) search time, althoughtwice as slow in practice for m � w.0 1 2 3 4 5 6 7� b a a b b a aFig. 4. A nondeterministic automaton to search the pattern p = baabbaa in a text.The initial state is 0.We explain now a variant of the Shift-Or algorithm (called Shift-And). Thealgorithm builds �rst a table B which for each character stores a bit maskbm:::b1. The mask in B[c] has the i-th bit set if and only if pi = c. The state ofthe search is kept in a machine word D = dm:::d1, where di is set whenever the

state numbered i in Figure 4 is active. Therefore, we report a match wheneverdm is set.We set D = 0 originally, and for each new text character Tj, we update Dusing the formula D0 ((D << 1) j 0m�11) & B[Tj]which mimics what occurs inside the nondeterministic automaton for each newtext character: each state gets the value of the previous one, provided the textcharacter matches the corresponding arrow. The \j 0m�11" corresponds to theinitial self-loop. For patterns longer than the computer word (i.e. m > w), thealgorithmuses dm=we computer words for the simulation (not all them are activeall the time).This algorithm is very simple and can be extended to handle classes of char-acters (i.e. each pattern position matches a set of characters), and to allowmismatches. This paradigm was later enhanced to support wild cards, regularexpressions, approximate search, etc. yielding the fastest algorithms for thoseproblems [22, 3]. Bit-parallelism became a general way to simulate simple non-deterministic automata instead of converting them to deterministic. This is howwe use it in our algorithm.4 Bit-Parallelism on Su�x AutomataWe simulate the BDM algorithm using bit-parallelism.The result is an algorithmwhich is simpler, uses less memory, has more locality of reference, and is easilyextended to handle more complex patterns. We �rst assume that m � w andshow later how to extend the algorithm for longer patterns.4.1 The Basic AlgorithmWe simulate the reverse version of the automaton of Figure 1. Just as for Shift-And, we keep the state of the search using m bits of a computer word D =dm:::d1.The BDM algorithm moves a window over the text. Each time the windowis positioned at a new text position just after pos, it searches backwards thewindow Tpos+1::Tpos+m using the DAWG automaton, until either m iterationsare performed (which implies a match in the current window) or the automatoncannot perform any transition.In our case, the bit di at iteration k is set if and only if pm�i+1::m�i+k =Tpos+1+m�k::Tpos+m. Since we begin at iteration 0, the initial value for D is 1m.There is a match if and only if after iteration m it holds dm = 1. Wheneverdm = 1, we have matched a pre�x of the pattern in the current window. Thelongest pre�x matched corresponds to the next window position.The algorithm is as follows. Each time we position the window in the textwe initialize D and scan the window backwards. For each new text character weupdate D. Each time we �nd a pre�x of the pattern (dm = 1) we remember the

position in the window. If we run out of 1's in D then there cannot be a matchand we suspend the scanning (this corresponds to not having any transition tofollow in the automaton). If we can performm iterations then we report a match.We use a mask B which for each character c stores a bit mask. This masksets the bits corresponding to the positions where the pattern has the characterc (just as in Shift-And). The formula to update D followsD0 (D & B[Tj]) << 1The algorithm is summarized in Figure 5. Some optimizations done on thereal code, related to improved ow of control and bit manipulation tricks, arenot shown for clarity.BNDM (p = p1p2:::pm; T = t1t2:::tn)1. Preprocessing2. For c 2 � do B[c] 0m3. For i 2 1::m do B[pm�i+1] B[pm�i+1] j 0m�i10i�14. Search5. pos 06. While pos <= n�m do7. j m; last m8. D = 1m9. While D ! = 0m do10. D D & B[Tpos+j]11. j j � 112. if D & 10m�1 ! = 0m then13. if j > 0 then last j14. else report an occurrence at pos+ 115. D D << 116. End of while17. pos pos+ last18. End of whileFig. 5. Bit-parallel code for BDM. Some optimizations are not shown for clarity.Search example: we search the pattern aabbaab in the text T = a b b a b a a b b aa b. Immediately after each step number (1 to 11) we show the text and notethe current window between square brackets, as well as the recognized pre�x ina rectangle. We begin withT = [a b b a b a a] b b a a b, D = 1 1 1 1 1 1 1, B = a 1 1 0 0 1 1 0b 0 0 1 1 0 0 1 , m = 7,last = 7, j = 7.

1. [abbaba a] bbaab.1 1 1 1 1 1 1& 1 1 0 0 1 1 0D = 1 1 0 0 1 1 0j = 6; last= 62. [abbab aa] bbaab.1 0 0 1 1 0 0& 1 1 0 0 1 1 0D = 1 0 0 0 1 0 0j = 5; last = 53. [abba baa] bbaab.0 0 0 1 0 0 0& 0 0 1 1 0 0 1D = 0 0 0 1 0 0 0j = 4; last = 54. [abb abaa] bbaab.0 0 1 0 0 0 0& 1 1 0 0 1 1 0D = 0 0 0 0 0 0 0j = 3; last = 5
We fail to recognizethe next a. So we shiftthe window to last. Wesearch again in the posi-tion: abbab [aabbaab], last= 7, j = 7.5. abbab [aabbaa b].1 1 1 1 1 1 1& 0 0 1 1 0 0 1D = 0 0 1 1 0 0 1j = 6; last= 76. abbab [aabba ab].0 1 1 0 0 1 0& 1 1 0 0 1 1 0D = 0 1 0 0 0 1 0j = 5; last= 77. abbab [aabb aab].1 0 0 0 1 0 0& 1 1 0 0 1 1 0D = 1 0 0 0 1 0 0j = 4; last= 4

8. abbab [aab baab].0 0 0 1 0 0 0& 0 0 1 1 0 0 1D = 0 0 0 1 0 0 0j = 3; last= 49. abbab [aa bbaa b].0 0 1 0 0 0 0& 0 0 1 1 0 0 1D = 0 0 1 0 0 0 0j = 2; last= 410. abbab [a abbaab].0 1 0 0 0 0 0& 1 1 0 0 1 1 0D = 0 1 0 0 0 0 0j = 2; last= 411. abbab [aabbaab].1 0 0 0 0 0 0& 1 1 0 0 1 1 0D = 1 0 0 0 0 0 0j = 0; last= 4Report an occurrence at 6.4.2 Handling Longer PatternsWe can cope with longer patterns by setting up an array of words Dt and sim-ulating the work on a long computer word. We propose a di�erent alternativewhich was experimentally found to be faster.If m > w, we partition the pattern in M = dm=we subpatterns si, such thatp = s1 s2 ::: sM and si is of length mi = w if i < M and mM = m �w(M � 1).Those subpatterns are searched with the basic algorithm.We now search s1 in the text with the basic algorithm. If s1 is found at atext position j, we verify whether s2 follows it. That is, we position a window atTj+m1 ::Tj+m1+m2�1 and use the basic algorithm for s2 in that window. If s2 isin the window, we continue similarly with s3 and so on. This process ends eitherbecause we �nd the complete pattern and report it, or because we fail to �nd asubpattern si.We have to move the window now. An easy alternative is to use the shiftlast1 that corresponds to the search of s1. However, if we tested the subpatternss1 to si, each one has a possible shift lasti, and we use the maximumof all shifts.

4.3 AnalysisThe preprocessing time for our algorithm is O(m+ j�j) if m � w, and O(m(1+j�j=w)) otherwise.In the simple case m � w, the analysis is the same as for the BDM algorithm.That is, O(mn) in the worst case (e.g. T = an; p = am), O(n=m) in the best case(e.g. T = an; p = am�1b), and O(n logj�jm=m) on average (which is optimal).Our algorithm, however, bene�ts from more locality of reference, since we do notaccess an automaton but only a few variables which can be put in registers (withthe exception of the B table). As we show in the experiments, this di�erencemakes our algorithm the fastest one.When m > w, our algorithm is O(nm2=w) in the worst case (since eachof the O(mn) steps of the BDM algorithm forces to work on dm=we computerwords). The best case occurs when the text traversal using s1 always performs itsmaximum shift after looking one character, which is O(n=w). We show, �nally,that the average case is O(n logj�j w=w). Clearly these complexities are worsethan those of the simple BDM algorithm for long enough patterns. We show inthe experiments up to which length our version is faster in practice.The search cost for s1 is O(n logj�jw=w). With probability 1=j�jw, we �nds1 and check for the rest of the pattern. The check for s2 in the window costsO(w) at most. With probability 1=j�jw we �nd s2 and check s3, and so on. Thetotal cost incurred by the existence of s2:::sM is at mostM�1Xi=1 wj�jwi � " = wj�jw (1 + O(w=j�jw)) = O(1)which therefore does not a�ect the main cost to search s1 (neither in theorysince the extra cost is O(1) nor in practice since " is very small). We considerthe shifts now. The search of each subpattern si provides a shift lasti, and wetake the maximum shift. Now, the shift lasti participates in this maximumwithprobability 1=j�jwi. The longest possible shift is w. Hence, if we sum (instead oftaking the maximum) the longest possible shifts w with their probabilities, weget into the same sum above, which is " = O(1). Therefore, the average shift islonger than last1 and shorter than last1 + " = last1 +O(1), and hence the costis that of searching s1 plus lower order terms.5 Further Improvements5.1 A Linear AlgorithmAlthough our algorithm has optimal average case, it is not linear in the worstcase even for m � w, since we can traverse the complete window backwardsand advance it in one character. Our aim now is to reduce its worst case fromO(nm2=w) to O(nm=w), i.e. O(n) when m = O(w).Improved variations on BDM already exist, such as Turbo BDM and Turbo RF[10, 15], the last one being linear in the worst case and still sublinear on aver-age. The main idea is to avoid retraversing the same characters in the backward

window veri�cation using the fact that when we advance the window in lastpositions, we already know that Ti+last::Ti+m�1 is a pre�x of the pattern (re-call Figure 3). The ending position of the pre�x in the window is usually calledthe critical position. The main problem if this area is not retraversed is how todetermine the next shift, since among all possible shifts in Ti+last::Ti+m�1 weremember only the �rst one.One strategy adds a kind of BM machine to the BDM algorithm. It worksas follows: let u be the pattern pre�x before the critical position. If we reachthe critical position after reading (backwards) a factor z with the DAWG, it ispossible to know whether zr is a su�x of the pattern p: if zr is a su�x, (i.e.p = uzr) we recognize the whole pattern p, and the next shift corresponds tothe longest border of p (i.e. the longest proper pre�x that is also a su�x), whichcan be computed in advance. If zr is not a su�x, it appears in the pattern in aset of positions which is given by the state we reached in the su�x automaton.We shift to the rightmost occurrence of zr in the pattern.It is not di�cult to simulate this idea in our BNDM algorithm. To know ifthe factor z we read with the DAWG is a su�x, we test whether djzj = 1. Toget the rightmost occurrence, we seek the rightmost 1 in D, which we can get(if it exists) in constant time with log2(D& � (D � 1)) 5. We implemented thisalgorithm under the name BM BNDM in the experimental part of this paper.This algorithm remains quadratic, because we do not keep a pre�x of thepattern after the BM shift. We do that now. Recall that u is the pre�x beforethe critical position. The Turbo RF (second variation) [10] uses a complicatedpreprocessing phase to associate in linear time an occurrence of zr in the patternto a border bu of u, in order to obtain the maximal pre�x of the pattern that is asu�x of uzr. Moreover, the Turbo RF uses a su�x tree, and it is quite di�cult touse this preprocessing phase on DAWGs.With our simulation, this preprocessingphase becomes simple. To each pre�x ui of the pattern p, we associate a maskBord[i] that registers the starting positions of the borders of ui (� included).This table is precomputed in linear time. Now, to join one occurrence of zr to aborder of u, we want the positions which start a border of u and continue withan occurrence of zr. The �rst set of positions is Bord[i], and the second one isprecisely the current D value (i.e. positions in the pattern where the recognizedfactor z ends). Hence, the bits of X = Bord[i] & D are the positions satisfyingboth criteria. As we want the rightmost such occurrence (i.e. the maximalpre�x),we take again log2(X& � (X � 1)). We implemented this algorithm under thename Turbo BNDM in the experimental part of this paper.5.2 A Constant-Space AlgorithmIt is also interesting to notice that, although the algorithm needs O(j�jm=w)extra space, we can make it constant space on a binary alphabet �2 = f0; 1g.5 It is faster and cleaner to implement this log2 by shifting the mask to the right untilit becomes zero. Using this technique we can use the simpler expression D ^ (D� 1)and get the same result.

The trick is that in this case, B[1] = p and B[0] = � B[1]. Therefore, we needno extra storage apart from the pattern itself to perform all the operations. Intheory, any text over a �nite alphabet � could be searched in constant space byrepresenting the symbols of � with bits and working on the bits (the misalignedmatches have to be later discarded). This involves an average search time ofn log2 j�jm log2 j�j log2(m log2 j�j) = Normal time � log2 j�j �1 + log2 log2 j�jlog2m �which if the alphabet is considered of constant size is of the same order of thenormal search time.6 ExtensionsWe analyze now some extensions applicable to our basic scheme, which form asuccessful combination of e�ciency and exibility.6.1 Classes of CharactersAs in the Shift-Or algorithm, we allow that each position in the pattern matchesnot only a single character but an arbitrary set of characters. We call \extendedpatterns" those that are more complex than a simple string to be searched. Inthis work the only extended patterns we deal with are those allowing a class ofcharacters at each position.We denote p = C1C2 : : :Cm such extended patterns. A word x = x1x2 : : :xrin �� is a factor of an extended pattern p = C1C2 : : :Cm if there exists an i suchthat x1 2 Ci�r+1; x2 2 Ci�r+2; : : : ; xr 2 Ci. Such an i is called a position of xin p. A factor x = x1x2 : : :xr of p = C1C2 : : :Cm is a su�x if x1 2 Cm�r+1; x2 2Ci�r+2; : : : ; xr 2 Cm.Similarly to the �rst part of this work, we design an automaton which rec-ognizes all su�xes of an extended pattern p = C1C2 : : :Cm. This automatonis not anymore a DAWG. We call it Extended DAWG. To our knowledge, thiskind of automaton has never been studied. We �rst give a formal constructionof the Extended DAWG (proving its correctness) and later present a bit-parallelimplementation.Construction The construction we use is quite similar to the one we give for theDAWG, except for the new de�nition of su�xes. For any x factor of p, we denoteL-endpos(x) the set of positions of x in p. For example, L-endpos(baa) = f3; 7gin the extended pattern b[a,b]abbaa, and L-endpos(bba) = f3; 6g (notice that,unlike before, the sets of positions can be not disjoint and no one a subset of theother). We de�ne the equivalence relation �E for u; v factors of p byu �E v if and only if L-endpos(u) = L-endpos(v):

We de�ne p(i; �) with i 2 f0; 1; : : : ;m;m+ 1g; � 2 � byp(i; �) = (fig if i � m and � 2 Ci; otherwiseLemma 1 Let p be an extended pattern and �E the equivalence relation on itsfactors (as previously de�ned). The equivalence relation �E is compatible withthe concatenation on words.This lemma allows us to de�ne an automaton from this equivalence class.States of the automaton are the equivalence classes of �E . There is an edgelabeled by � from the set of positions fi1; i2; : : : ikg to p(i1 + 1; �) [p(i2 +1; �) [: : : [p(ik + 1; �), if it is not empty. The initial node of the automatonis the set that contains all the positions. Terminals nodes of the automaton arethe set of positions that contain m. As an example, the su�x automaton of theword [a,b]aa[a,b]baa is given in Figure 6.0,1,2,3,4,5,6,7 1,4,5 2,6 3,74,51,2,3,4,6,7 2,3,4,7 3,4 4 5 6 7a a a a,b b a aa ab bb b aa,bbFig. 6. Extended DAWG of the extended pattern 0[a; b]1a2a3[a; b]4b5a6a7Lemma 2 The Extended DAWG of an extended pattern p = C1C2 : : :Cm recog-nizes the set of su�xes of p.We can use this new automaton to recognize the set of su�xes of an ex-tended pattern p. We do not give an algorithm to build this Extended DAWGin its deterministic form, but we simulate the deterministic automaton usingbit-parallelism.A bit-parallel implementation: from the above construction, the only modi�ca-tion that our algorithm needs is that the B table has the i-th bit set for allcharacters belonging to the set of the i-th position of the pattern. Therefore wesimply change line 3 (part of the preprocessing) in the algorithm of Figure 5 toFor i 2 1::m; c 2 � do if c 2 pi then B[c] B[c] j 0m�i10i�1

such that now the preprocessing takes O(j�jm) time but the search algorithmdoes not change.We combine the exibility of extended patterns with the e�ciency of a Boyer-Moore-like algorithm. It should be clear, however, that the e�ciency of the shiftscan be degraded if the classes of characters are signi�cantly large and preventlong shifts. However, this is much more resistant than some simple variations ofBoyer-Moore since it uses more knowledge about the matched characters.We point out now another extension related to classes of characters: the textitself may have basic characters as well as other symbols denoting sets of basiccharacters. This is common, for instance, in DNA databases. We can easilyhandle such texts. Assume that the symbol C represents the set fc1; :::; crg.Then we set B[C] = B[c1] j ::: j B[cr]. This is much more di�cult to achievewith algorithms not based on bit-parallelism.6.2 Multiple PatternsTo search a set of patterns P1:::P r (i.e. reporting the occurrences of all them)of length m in parallel, we can use an arrangement proposed in [22], whichconcatenates the patterns as follows: P = P11 P21 :::P r1 P12 P22 :::P r2 :::::P1m P2m :::P rm (i.e. all the �rst letters, then all the second letters, etc.) andsearches P just as a single pattern. The only di�erence in the algorithm ofFigure 5 is that the shift is not in one bit but in r bits in line 15 (since we haver bits per multipattern position) and that instead of looking for the highest bitdm of the computer word we consider all the r bits corresponding to the highestposition. That is, we replace the old 10m�1 test mask by 1r0r(m�1) in line 12.This will automatically search for r words of length m and keep all the bitsneeded for each word. Moreover, it will report the matches of any of the patternsand will not allow shifting more than what all patterns allow to shift.An alternative arrangement is: P = P1 P2 ::: P r (i.e. just concatenate thepatterns). In this case the shift in line 15 is for one bit, and the mask for line 12 is(10m�1)r . On some processors a shift in one position is faster than a shift in r > 1positions, which could be an advantage for this arrangement. On the other hand,in this case we must clear the bits that are carried from the highest position ofa pattern to the next one, replacing line 15 for D = (D << 1) & (1m�10)r . Thisinvolves an extra operation. Finally, this arrangement allows to have patterns ofdi�erent lengths for the algorithm of Wu and Manber [22] which is not possiblein their current proposal.Clearly these techniques cannot be applied to the case m > bw=2c. However,ifm � bw=2c and r�m > w we divide the set of patterns into dr=bw=mce groups,so that the patterns in each group �t in w bits. Since this skips characters, it isbetter on average than [22]. As we show in the experiments, this is also betterthan sequentially searching each pattern in turn, even given that the shifts arethe most conservative among all the r patterns.

6.3 Approximate String MatchingApproximate string matching is the problem of �nding all the occurrences of apattern in a text allowing at most k \errors". The errors are insertions, deletionsand replacements to perform in the pattern so that it matches the text. In [22],an e�cient �lter is proposed to determine that large text areas cannot containan occurrence. It is based on dividing the pattern in k + 1 pieces and searchingall the pieces in parallel. Since k errors cannot destroy the k+1 pieces, some ofthe pieces must appear with no errors close to each occurrence. They use themultipattern search algorithm mentioned in the previous paragraph. In [4, 3],a multipattern Boyer-Moore strategy is preferred, which is faster but does nothandle classes of characters and other extensions. This algorithm is the fastestone for low error levels.Our multipattern search technique presented in the previous section combinesthe best of both worlds: our performance is comparable to Boyer-Moore algo-rithms and we keep the exibility of bit-parallelism handle classes of characters.We show in the experiments how our algorithm performs in this setup.7 Experimental ResultsWe ran extensive experiments on random and natural language text to showhow e�cient are our algorithms in practice. The experiments were run on a SunUltraSparc-1 of 167 MHz, with 64 Mb of RAM, running SunOS 5.5.1. We mea-sure CPU times, which are within �2% with 95% con�dence. We used randomtexts and patterns with � = 2 to 64, as well as natural language text and DNAsequences.We show in Figure 7 some of the results for short (m � w) and long (m > w)patterns. The comparison includes the best known algorithms: BM, BM-Sunday,KMP (very slow to appear in the plots, close to 0.14 sec/Mb), Shift-Or (notalways shown, close to 0.07 sec/Mb), classical BDM, and our three bit-parallelvariants: BNDM, BM BNDM and Turbo BNDM.Our bit-parallel algorithms are always the fastest for short patterns, exceptfor m � 2-6. The fastest algorithm is BM BNDM, though it is very close tosimple BNDM. Classical BDM, on the other hand, is sometimes slower thanthe BM family. Turbo BNDM is competitive with simple BNDM and has linearworst case. Our algorithms are especially good for small alphabets since they usemore information on the matched pattern than others. The only good competitorfor small alphabets is Boyer-Moore, which however is slower because the codeis more complex (notice that Boyer-Moore is faster than BDM, but slower thanBNDM). For larger alphabets, on the other hand, another very simple algorithmgets very close: BM-Sunday. However, we are always at least 10% faster.On longer patterns6 our algorithm ceases to improve because it basically6 We did not include the more complex variations of our algorithm because they havealready been shown very similar to the simple one. We did not include also thealgorithms which are known not to improve, such as Shift-Or and KMP.

searches for the �rst w letters of the pattern, while classical BDM keeps improv-ing. Hence, our algorithm ceases to be the best one (beaten by BDM) for m �90-150. This value would at least duplicate in a 64-bit architecture.We show also some illustrative results using classes of characters, which weregenerated manually as follows: we select from an English text an infrequent word,namely "responsible" (close to 10 matches per megabyte). Then we replace its�rst or last characters by the class fa::zg. This will adversely a�ect the shifts ofthe BNDM algorithm. We compare the e�ciency against Shift-Or. The result ispresented in Table 1, which shows that even in the case of three initial or �nalletters allowing a large class of characters the shifts are signi�cant and we doublethe performance of Shift-Or. Hence, our goals of handling classes of characterswith improved search times are achieved.Pattern Shift-Or BNDMresponsible 6.58 2.71responsibl? 6.51 2.96responsib?? 6.52 3.23responsi??? 6.49 3.40?esponsible 6.46 2.93??sponsible 6.55 3.42???ponsible 6.51 3.78Table 1. Search times with classes of characters, in 1/100-th of seconds per megabyteon English text. The question mark '?' represents the class fa::zg.We present in Figure 8 some results on our multipattern algorithm, to showthat although we take the minimum shift among all the patterns, we can stilldo better than searching each pattern in turn. We take random groups of �vepatterns of length 6 and compare our multipattern algorithm (in its two versions,called Multi-BNDM (1) and (2) attending to their presentation order), against�ve sequential searches with BNDM (called BNDM in the legend), and againstthe parallel version proposed in [22] (called Multi-WM). As it can be seen, our�rst arrangement is slightly more e�cient than the second one, they are alwaysmore e�cient than a sequential search (although the improvement is not �ve-foldbut two- or three-fold because of shorter shifts), and are more e�cient than theproposal of [22] provided � � 8.Finally, we show the performance of our multipattern algorithm when usedfor approximate string matching. We include the fastest known algorithms inthe comparison [4, 3, 7, 13, 16, 23, 22]. We compare those algorithms againstour version of [4] (where the Sunday algorithm is replaced by our BNDM), whilewe consider [22] not as the bit-parallel algorithm presented there but their otherproposal, namely reduction to exact searching using their algorithm Multi-WMfor multipattern search (shown in the previous experiment). Figure 9 shows the

results for di�erent alphabet sizes and m = 20.Since BNDM is not very good for very short patterns, the approximate searchalgorithm ceases to be competitive short before the original version [4]. This isbecause the length of the patterns to search for is O(m=k). Despite this draw-back, our algorithm is quite close to [4] (sometimes even faster) which makes ita reasonably competitive yet more exible alternative, while being faster thanthe other exible candidate [22].8 ConclusionsWe present a new algorithm (called BNDM) based on the bit-parallel simulationof a nondeterministic su�x automaton. This automaton has been previouslyused in deterministic form in an algorithm called BDM. Our new algorithmis experimentally shown to be very fast on average. It is the fastest algorithmin all cases for patterns from length 5 to 110 (on English; the bounds varydepending on the alphabet size and the architecture). We present also somevariations called Turbo BNDM and BM BNDM which are derived from the cor-responding variants of BDM. These variants are much more simply implementedusing bit-parallelism and become practical algorithms. Turbo BNDM has aver-age performance very close to BNDM, though O(n) worst case behavior, whileBM BNDM is slightly faster than BNDM. The BNDM algorithm can be ex-tended simply and e�ciently to handle classes of characters, multiple patternmatching and approximate pattern matching, among others.The new su�x automaton we introduce and simulate for classes of charac-ters has never been studied. Its study should permit to extend the BDM andTurbo RF to handle classes of characters.The Agrep software [21] is in many cases faster than BNDM. However, Agrepis just a BM algorithm which uses pairs of characters instead of single ones.This is an orthogonal technique that can be incorporated in all algorithms, anda general study of this technique would permit to improve the speed of patternmatching softwares. We plan to work on this idea too.References1. R. Baeza-Yates. Text retrieval: Theory and practice. In 12th IFIP World Com-puter Congress, volume I, pages 465{476. Elsevier Science, September 1992.2. R. Baeza-Yates and G. Gonnet. A new approach to text searching. CACM,35(10):74{82, October 1992.3. R. Baeza-Yates and G. Navarro. A faster algorithm for approximate string match-ing. In Proc. of CPM'96, pages 1{23, 1996.4. R. Baeza-Yates and C. Perleberg. Fast and practical approximate pattern match-ing. In Proc. CPM'92, pages 185{192. Springer-Verlag, 1992. LNCS 644.5. A. Blumer, A. Ehrenfeucht, and D. Haussler. Average sizes of su�x trees anddawgs. Discrete Applied Mathematics, 24(1):37{45, 1989.6. R. S. Boyer and J. S. Moore. A fast string searching algorithm. Communicationsof the ACM, 20(10):762{772, 1977.

7. W. Chang and J. Lampe. Theoretical and empirical comparisons of approximatestring matching algorithms. In Proc. of CPM'92, pages 172{181, 1992. LNCS 644.8. M. Crochemore. Transducers and repetitions. Theor. Comput. Sci., 45(1):63{86,1986.9. M. Crochemore, A. Czumaj, L. Gasieniec,S. Jarominek, T. Lecroq, W. Plandowski, and W. Rytter. Fast practical multi-pattern matching. Rapport 93-3, Institut Gaspard Monge, Universit�e de Marne laVall�ee, 1993.10. M. Crochemore, A. Czumaj,L. Gasieniec, S. Jarominek, T. Lecroq, W. Plandowski, and W. Rytter. Speedingup two string-matching algorithms. Algorithmica, (12):247{267, 1994.11. M. Crochemore and W. Rytter. Text algorithms. Oxford University Press, 1994.12. R. N. Horspool. Practical fast searching in strings. Softw. Pract. Exp., 10:501{506,1980.13. P. Jokinen, J. Tarhio, and E. Ukkonen. A comparison of approximate stringmatching algorithms. Software Practice and Experience, 26(12):1439{1458, 1996.14. D. E. Knuth, J. H. Morris, Jr, and V. R. Pratt. Fast pattern matching in strings.SIAM Journal on Computing, 6(1):323{350, 1977.15. T. Lecroq. Recherches de mot. Th�ese de doctorat, Universit�e d'Orl�eans, France,1992.16. G. Navarro. A partial deterministic automaton for approximate string matching.In Proc. of WSP'97, pages 112{124. Carleton University Press, 1997.17. G. Navarro and M. Ra�not. A bit-parallel approach to su�x automata: Fastextended string matching. Technical Report TR/DCC-98-1, Dept. of Com-puter Science, Univ. of Chile, Jan 1998. ftp://ftp.dcc.uchile.cl/pub/users/-gnavarro/bndm.ps.gz.18. M. Ra�not. Asymptotic estimation of the average number of terminal states indawgs. In R. Baeza-Yates, editor, Proc. of WSP'97, pages 140{148, Valparaiso,Chile, November 12-13, 1997. Carleton University Press.19. M. Ra�not. On the multi backward dawg matching algorithm (MultiBDM). InR. Baeza-Yates, editor, Proceedings of the 4rd South American Workshop on StringProcessing, pages 149{165, Valparaiso, Chile, November 12-13, 1997. Carleton Uni-versity Press.20. D. Sunday. A very fast substring search algorithm. CACM, 33(8):132{142, August1990.21. S. Wu and U. Manber. Agrep { a fast approximate pattern-matching tool. InProc. of USENIX Technical Conference, pages 153{162, 1992.22. S. Wu and U. Manber. Fast text searching allowing errors. CACM, 35(10):83{91,October 1992.23. S. Wu, U. Manber, and E. Myers. A sub-quadratic algorithm for approximatelimited expression matching. Algorithmica, 15(1):50{67, 1996.24. A. C. Yao. The complexity of pattern matching for a random string. SIAM Journalon Computing, 8(3):368{387, 1979.This article was processed using the LATEX macro package with LLNCS style

� � � � � � � � �� � � � � � � � �� � � � � � � �305 10 15 20 25 302
7
23456
7

m
� � � � � � � � � � � � �� � � � � � � � � � � � �40 16040 60 80 100 120 140 1601.5

5.0
1.52.02.53.03.54.0
4.55.0 m� � � � � � � � � �� � � � � � � � �305 10 15 20 25 302.0

5.5
2.02.53.03.54.04.5
5.05.5 m � � � � � � � � � � � � �� � � � � � � � � � � � �40 16040 60 80 100 120 140 1601.5

2.4
1.51.82.1
2.4

m� � � � � � � � �� � � � � � � � �� � � � � � � � � 305 10 15 20 25 302
7
23456
7

m � � � � � � � � � � � � �� � � � � � � � � � � � �40 16040 60 80 100 120 140 1601.7
2.5
1.71.92.12.3 mBDMBNDM BM BNDMTurbo BNDM � Shift-Or� Sunday � Boyer-MooreFig. 7. Times in 1/100-th of seconds per megabyte. For �rst to third row, randomtext with � = 4, random text with � = 64 and English text. Left column shows shortpatterns, right column shows long patterns.

� � � � � �� � � � � �
� � � � � �� � � � � �2 4 8 16 32 640

40
051015202530
3540 �t

� Multi-BNDM (1) � Multi-BNDM (2) � Multi-WM � BNDMFig. 8. Times in 1/100-th of seconds per megabyte, for multipattern search on randomtext of di�erent alphabet sizes (x axis).
� � � � � � � �� � � � �� � � � �+ + + + + + + + + +� � � � � � � � � �
1 101 2 3 4 5 6 7 8 9 100.0

4.0
0.00.51.01.52.02.53.0
3.54.0 k

t
� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �+ + + + + + + + + +� � � � � � � � � �
1 101 2 3 4 5 6 7 8 9 100.0

4.0
0.00.51.01.52.02.53.0
3.54.0 k

t
Ex. Part. (ours)Ex. Part. [4] Ex. Part. [22]� Bit Parall. [3] � Col. Part. [7]� Counting [13] + DFA [16]� 4-russians [23]Fig. 9. Times in seconds per megabyte, for random text on patterns of length 20, and� = 16 and 64 (�rst and second column, respectively). The x axis is the number oferrors allowed.

