
Distributed Generation of Su�x ArraysGonzalo Navarro 1 ?Jo~ao Paulo Kitajima 2 ??Berthier A. Ribeiro-Neto 2 ???Nivio Ziviani 2 y1 Dept. of Computer Science, University of Chile, Chile.2 Dept. of Computer Science, Federal University of Minas Gerais, Brazil.Abstract. An algorithm for the distributed computation of su�x arrays for large texts is presen-ted. The parallelism model is that of a set of sequential tasks which execute in parallel and ex-change messages among them. The underlying architecture is that of a high bandwidth networkof processors. Our algorithm builds the su�x array by quickly assigning an independent sub-problem to each processor and completing the process with a �nal local sorting. We demonstratethat the algorithm has time complexity of O(b log n) computation and O(b) communication inthe average case, where b corresponds to the local text size on each processor (i.e., text size ndivided by r, the number of processors). This is faster than the best known sequential algorithmand improves over previous parallel algorithms to build su�x arrays, both in time complexityand scaling factor.1 Introduction and MotivationWe present a new algorithm for distributed parallel generation of large su�x arrays in the context ofa high bandwidth network of processors. The motivation is three-fold. First, the high cost of the bestknown sequential algorithm for su�x array generation leads naturally to the exploration of parallelalgorithms for solving the problem. Second, the use of a set of processors (connected by a fast switchlike ATM, for example) as a parallel machine is an attractive alternative nowadays [1]. Third, the �nalindex can be left distributed to reduce the query time overhead. The distributed algorithm we proposeis based on a parallel generalized quicksort presented in [7, 15]. The algorithm is an alternative to aprevious mergesort-based distributed algorithm [10, 16] and to a pure quicksort-based algorithm [18].We show that the here proposed algorithm is faster and, more important, that it scales up well whilethe mergesort-based algorithm does not.The problem of generating su�x arrays is equivalent to sorting a set of unbounded-length and over-lapping strings. Because of those unique features, and because our parallelism model is not a classicalone, the problem cannot be solved directly with a classical parallel sorting algorithm. For the PRAMmodel, there are several studies on parallel sorting. For instance, J�aj�a et al. [8] describe two optimal-work parallel algorithms for sorting a list of strings over an arbitrary alphabet. Apostolico et al. [2]build the su�x tree of a text of n characters using n processors in O(logn) time, in the CRCW PRAM? This author has been partially supported by Fondecyt grant 1-950622 (Chile).?? This author has been partially supported by CNPq Project 300815/94-8.??? This author has been partially supported by CNPq Project 300188/95-1.y This author has been partially supported by CNPq Project 520916/94-8 and Project Ritos/Cyted.



model. Retrieval of strings in both cases is performed directly. In a su�x array, strings are pointed toand the pointers are the ones which are sorted. If a distributed memory is used, such indirection makesthe sorting problem more complex and requires a more careful algorithm design.The parallelism model we adopt is that of parallel machines with distributed memory. In such context,di�erent approaches for sorting can be employed. For instance, Quinn [15] presents a quicksort for ahypercube architecture. That algorithm does not take into account the variable size and overlappingin the elements of our problem. Further, the behavior of the communication network in Quinn's workis di�erent (processors are not equidistant one from each other) from the one we adopt here.1.1 Su�x ArraysThe advent of powerful processors and cheap storage has allowed the consideration of alternativemodels for information retrieval other than the traditional one of a collection of documents indexedby keywords. One such a model which is gaining popularity is the full text model. In this modeldocuments are represented by either their complete full text or extended abstracts. The user expresseshis information need via words, phrases or patterns to be matched for and the information systemretrieves those documents containing the user speci�ed strings. While the cost of searching the full textis usually high, the model is powerful, requires no structure in the text, and is conceptually simple [5].To reduce the cost of searching a full text, specialized indexing structures are adopted. The mostpopular of these are inverted lists. Inverted lists are useful because their search strategy is based onthe vocabulary (the set of distinct words in the text) which is usually much smaller than the text andthus, �ts in main memory. For each word, the list of all its occurrences (positions) in the text is stored.Those lists are large and take space which is close to the text size.Su�x arrays [13] or pat arrays [4, 5] are more sophisticated indexing structures which also take spaceclose to the text size. Their main drawback is their costly construction and maintenance procedures(i.e., creating and updating a su�x array). However, su�x arrays are superior to inverted lists forsearching phrases or complex queries such as regular expressions [5, 13].In this model, the entire text is viewed as one very long string. In this string, each position k isassociated to a semi-in�nite string or su�x, which initiates at position k in the text and extends to theright as far as needed to make it unique. Retrieving the \occurrences" of the user-provided patterns isequivalent to �nding the positions of the su�xes that start with the given pattern.A su�x array is a linear structure composed of pointers (here called index pointers) to every su�xin the text (since the user normally bases his queries upon words and phrases, it is customary toindex only word beginnings). These index pointers are sorted according to a lexicographical orderingof their respective su�xes and each index pointer can be viewed simply as the o�set (counted from thebeginning of the text) of its corresponding su�x in the text. Figure 1 illustrates the su�x array for atext example with nine text positions.To �nd the user patterns, binary search is performed on the array at O(logn) cost (where n is the textsize). The construction of a su�x array is simply an indirect sort of the index pointers. The di�cultpart is to do this sorting e�ciently when large texts are involved (i.e., texts of gigabytes). Large textsdo not �t in main memory and an external sort procedure has to be used. The best known sequentialprocedure for generating large su�x arrays takes time O(n2 logn =m) where n is the text size and mis the size of the main memory [5].Su�x arrays come from the idea of building a digital search tree on all the su�xes of a text. Such



28 14 38 17 11 25 6 30 11 2 3 4 5 6 7 8 9This text is an example of a textual database61 66 611 614 617 625 628 630 638Fig. 1. A su�x array.search tree allows one to �nd all the occurrences of a pattern of length m in O(m) time. To reducethe high space requirements, a Patricia tree can be used [14], which compresses unary paths to achieveO(n) storage cost. A Patricia tree built over all su�xes of the text is called a su�x tree [12]. Su�xtrees take time O(n) to build [20]. However, this construction is only practical if the tree �ts in mainmemory. Su�x arrays further reduce the space requirements by storing only the leaves of su�x trees.Recently, an intermediate structure between su�x trees and su�x arrays has been proposed [9].1.2 Distributed Parallel ComputersParallel machines with distributed memory (multicomputers or message passing parallel computers) area good cost-performance tradeo�. The emergent fast switching technology has allowed the disseminationof high-speed networks of processors at relatively low cost. The underlying high-speed network couldbe, for instance, an ATM network running at a guaranteed rate of hundreds of megabits per second. Inan ATM network, all processors are connected to a central ATM switch which runs internally at a ratemuch higher than the external rate. Any pair of processing nodes can communicate at the guaranteedrate without contention. Further, the communication between machines A and B does not interferewith the communication between machines C and D and broadcasting can be done e�ciently. Otherpossible implementations are the IBM SP machine or a Myrinet cluster.Our idea is to use the aggregate distributed memory of the parallel machine to hold the text. Accessingthis aggregate memory requires frequent accesses to remote data (across the network) which take timesimilar to the time to get data from a local disk at transfer rate [10, 16]. Despite this relatively highremote data access time, use of the distributed aggregate memory to hold the text gives us two criticaladvantages. First, the aggregate memory allows random access to the data at uniform cost, which wedo not have with local disks. Second, we can split our problem in smaller parts and work on them inparallel.The algorithm we propose is suitable for an environment in which the indexing task is parallelized butthe �nal index is stored at a single processor for sequential query processing. However, the �nal indexmay be left distributed along the participant machines.In a distributed environment, the index can be distributed in two di�erent ways. In the �rst one,each processor builds a local separate index relative to its local text only. The main drawback of thisapproach is that each query must be broadcast to every processor and the partial results must be latermerged. Despite the high parallelism among processors, this strategy reduces concurrency becausequeries have to be processed sequentially (i.e., one after the other). In the second and more challengingscheme, a global index is computed and then partitioned among the processors, such that each processor



holds a lexicographical interval of the index (e.g. a range of words in dictionary order). In this case, aquery is normally directed to a few processors. Despite the low parallelism, concurrency is increasedat query time and the system throughput (i.e., number of queries processed in a unit of time) tends toimprove.2 PreliminariesOur parallelism model is that of a parallel machine with distributed memory. Assume that we have anumber r of processors, each one storing b text positions, composing a total distributed text of sizen = rb. Our �nal su�x array will also be distributed, and a query is solved with only O(logn) remoteaccesses. We assume that the parallelism is coarse-grained, with a few processors, each one with a largemain memory. Typical values are r in the tenths or hundreds and b in the millions.The fact that sorting is indirect poses the following problem when working with distributed memory. Aprocessor which receives a su�x array cell (sent by another processor) is not able to directly comparethis cell because it has no local access to the su�x pointed to by the cell (such su�x is stored in theoriginal processor). Performing a communication to get (part of) this su�x from the original processoreach time a comparison is to be done is very expensive. To deal with this problem, we use a techniquecalled pruned su�xes which works as follows. Each time a su�x array cell is sent to a processor, the�rst ` characters of the corresponding su�x (which we call a pruned su�x) are also sent together. Thisallows the remote processor to perform comparisons locally if they can be decided looking at the �rst` characters only. Otherwise, the remote processor requests more characters to the processor owningthe text su�x cell 5. We try to select ` large enough to ensure that most comparisons can be decidedwithout extra communication and small enough to avoid very expensive exchanges and high memoryrequirements. In Section 6.2 we �nd experimentally good values for `.Before entering into the algorithm itself we put in clear what we understand by a \worst-on-average-text" (wat) case analysis. If we consider a pathological text such as "a a a a a a ...", the classicalsu�x array building algorithm will not be able to handle it well. This is because each comparisonamong two positions in the text will need to reach the end of the text to be decided, thus costing O(n).Since we �nd such worst-case analysis unrealistic and probably useless, our analysis deal with averagerandom or natural language text. In such text the comparisons among random positions take O(1) time(because the probability of having to look at more than i characters is 1=�i for some � > 1). Also,the number of index points (e.g., words) at each processor (and hence the size of its su�x array) isroughly the same. A wat-case analysis is therefore a worst-case analysis on average text. We performwat-case and average-case analysis.3 The Proposed AlgorithmThe central idea of the algorithm is as follows. Consider the global sorted su�x array which results ofthe sorting task. If we cut this array in b similarly-sized portions (which we call slices), we can thinkthat each processor holds exactly one such slice at the end. Thus, the idea is to quickly deliver to eachprocessor the index pointers corresponding to its slice.5 As we will see, in some cases this is not necessary and one might assume that the su�xes are equal if thecomparison cannot be locally decided.



We recall the de�nition of a percentile. An �-percentile is the value at position �n in the global sortedsu�x array. For example, the (1=r)-percentile is the element at position b. Our algorithm partitions thedata to be worked on by each processor by �nding the percentiles 1=r, 2=r, ... (r�1)=r. An alternativede�nition for slice is: the portion of the global su�x array between two consecutive (i=r)-percentiles.The algorithm proceeds in four steps:Step 1: Every processor builds internally its local su�x array.Step 2: The processors cooperate to �nd the r global (i=r)-percentiles. This de�nes the portion ofeach slice stored on each processor.Step 3: The processors engage in a distribution process so that every processor gets the part of itsslice stored on any other processor.Step 4: Every processor completes internally the sorting of its slice.The analysis is divided in two parts: CPU internal cost for the processors, which is indicated by afactor I, and communication cost, which is indicated by a factor C. CPU operations occur in parallelwhile communication operations may occur in parallel between distinct pairs of processors.3.1 Internal SortingFor this �rst step, each processor traverses its local text, �nds the index points of interest (e.g.,beginning of words), and builds an array with all the positions of those index points. The pointersmust be shifted to re
ect the o�sets in the global text, not the local one. Once this is done, the arraymust be sorted by the su�x each position points to.Since the text is local, the cost of this step is O(b log b)I in the average and wat case.3.2 Finding the PercentilesOnce every processor has sorted its local su�x array, all the processors must collaborate to �nd the rglobal percentiles. We �rst use the median (0.5-percentile) to explain the technique.It is well known that given two sorted arrays A1 and A2 of total size n, the median of A1 [A2 can beobtained in O(logn). The algorithm proceeds by binary searching on both arrays simultaneously. Thesearch of the median is performed even without knowing the median.We keep two positions i1 and i2, one for each array. The sum of the two positions is always n. If wecould �nd i1; i2 such that i1 + i2 = n and A1[i1] = A2[i2], that would be the median, since that valuewould be in the middle of the sorted union of both arrays.We �rst look at the middle of both arrays, i.e., i1 = i2 = n=2. If A1[i1] < A2[i2], we conclude thatA1[i1] � median � A2[i2], and therefore binary search adds n=4 to i1 and subtracts n=4 from i2. Theother case is symmetric. In O(logn) steps the median is found. We are ignoring boundary conditionsin this exposition (for instance, it might be that there is no exact median in an array of size 2n), sincetheir e�ect in the algorithm is negligible.Now imagine we have r arrays of size b and want the global median. We begin in the middle of all ofthem. The br=2c smaller values must increment their position, while the br=2c larger must decrementit. At the end of the multiple binary search, the median of all the r �nal values is the global median.



If we consider that every array is hold by one processor, we obtain that at each step, every processormust broadcast its current value, which costs O(r)C. Since O(log b) steps are carried out, the cost toextract the global median is O(r log b)C.The algorithm to �nd general �-percentiles is conceptually the same. As before, all arrays start in theirmiddle positions. However, instead of selecting the median of the r values, we select the �-percentile.Therefore, b�rc processors increment their position and b(1 � �)rc decrement it. The rest proceedsthe same as before. A binary search is performed at each array, and the percentile sought drives thenumber of processors increasing or decreasing their position. Note that in this case it is not true that atany moment the sum of all the positions equals �n. However it is easy to show that with this strategythat sum converges to the correct value after log2(n(1 � 2�)) steps for � � 1=2 (the case � > 1=2 issymmetric). Therefore, the algorithm converges to the correct sum before the end of the binary search.Since each percentile must be found separately, the total cost of this algorithm is O(r2 log b)C in theaverage and wat case (it is true that a percentile found can reduce the search area for the others, butthe gain is marginal).Observe that the processors cannot send the complete text su�xes when they broadcast their values,but only pruned su�xes. The �rst ` characters are compared and equality is assumed if the comparisoncannot be decided. Therefore, additional characters are never requested. This involves some details todeal with. First, care must be exercised to ensure that, at each step, exactly b�rc processors movetheir position forward and b(1 � �)rc move backward, even in the case of repeated values. Second,when the value of the �nal (pruned) percentile is known, the processors must agree on a complete (notpruned) percentile to perform all internal partitions consistently. For example, they can put to the leftthe su�xes that, once pruned, are smaller or equal to the pruned percentile.Therefore, the obtained slices can be slightly di�erent in size because of the possible lack of precisionwhen comparing pruned su�xes. These errors are negligible on normal text and the a�ected processorcan easily absorb the few extra items (cf. Section 6.1). Since the number of percentiles broadcast alongthis process is small, a large ` value can be used to ensure a good partition.3.3 Redistributing the SlicesOnce every processor knows the r uniform percentiles, it knows the local slice in its su�x array thatmust be sent to every other processor. At this point they engage in a redistribution process to sendto each other processor the corresponding local slice. This process must ensure that every pair ofprocessors gets a chance to exchange their slices.We describe an exchange mechanism which allows every processor to be paired with each other atsome moment. When two processors are paired, they exchange the appropriate portions of their arrays.The exchange mechanism progresses in stages. In the �rst stage, we make sure that every processoris paired to its previous and next processor (assuming that processors 0 and r � 1 are neighbors). Inthe second stage we do the same for every pair of processors at \distance" two, and so on. By doingso, only br=2c stages are needed. Figure 2 illustrates this exchange mechanism for the case of sevenprocessors. The stages are the rows in the Figure. In the ith stage, processors at distance i are paired.In general, the exchange mechanism works as follows. At stage i, we ensure that every processor p ispaired with processors p + i and p � i (for simplicity, we speak modulo r in this passage). This canalways be accomplished with three rounds of pairing. To show this, we distinguish groupings of pairs ofprocessors that can communicate all in parallel (grayed in the Figure). In the �rst round of stage i, the



0

1

2

34

5

6
0

1

2

34

5

6
0

1

2

34

5

6

0

1

2

34

5

6
0

1

2

34

5

6
0

1

2

34

5

6

0

1

2

34

5

6
0

1

2

34

5

6
0

1

2

34

5

6

Fig. 2. A redistribution process with 7 processors.groupings of pairs are [(0; i), (1; i+1), ..., (i�1; 2i�1)], [(2i; 3i), (2i+1; 3i+1), ..., (3i�1; 4i�1)], andso on. In the second round of stage i, the groupings of pairs are [(i; 2i), (i+1; 2i+1), ..., (2i�1; 3i�1)],[(3i; 4i), (3i+1; 4i+1), ..., (4i�1; 5i�1)], and so on. Notice that, in general, the number of processorsin a grouping is 2i. Whenever r is a multiple of 2i, all pairings in stage i are accomplished with onlytwo rounds. However, if r is not a multiple of 2i, processors might be left unpaired in the �rst andsecond rounds. In this case, a third round is required, which pairs exactly the couples left out in theother two rounds.To be more precise, let k and s be two integers such that r = k(2i) + s, where k > 0, 0 � s < 2i, and iis always a stage number. If r is not a multiple of 2i then s > 0. In this case, the number of unpairedprocessors is s when (s < i) and is 2i � s when s > i. Notice that, in the �rst round, the unpairedprocessors are near the highest-numbered processors, while in the second round they are among thelowest-numbered. Those processors unpaired in the �rst two rounds need precisely to be paired amongthem in an additional third round. Therefore, in at most 3 rounds we complete a stage.Hence, we need a total of 3br=2c = O(r) exchange rounds. Since each round takes time proportional tothe largest exchange in the round, we have a wat case of O(b)C cost per round, for a total wat caseof O(n)C. However, we prove in Appendix A that the cost of each round is on average O(b=r), eventaking into account that we wait for the slower exchange in the round. Therefore, the average cost ofthis step is O(b)C (we verify this fact experimentally in Section 6.1). Recall that the processors need toexchange not only the elements of the su�x array, but also the �rst ` characters of each su�x pointedto by each element. This allows the target processor to complete the sorting without asking the su�xto the owner of the text in most cases.



3.4 Final SortingOnce each processor obtained all the elements of its slice, the process is completed by an internalsorting. Observe, however, that the situation is not the same as in the initial sorting, because theelements point to remote text, and therefore reliance on the pruned su�xes transmitted together withthe pointers is necessary. Another di�erence is that the elements are arranged in r sorted sequences(i.e., the slice sent by each processor).Since the processor that sends a slice will send all the pruned su�xes in ascending order, most su�xeswill share a common pre�x with their neighbors. This can be used to reduce the amount of commu-nication. This technique has been previously applied to compress su�x array indices [3], and works asfollows: the �rst pruned su�x is sent complete. The next ones are coded in two parts: the length ofthe pre�x shared with the previous pruned su�x; and the remaining characters. For example, to send"core", "court" and "custom", we sent "core", (2,"urt") and (1,"ustom"). In Section 6.2 we showthat gains near 50% can be expected.Since we have r sorted sequences, we use a heap to merge them at O(b log r)I cost in the average andwat case. This has an additional advantage: the r local slices received are accessed sequentially andtherefore can be stored on disk with little penalty. This is important because the set of all su�x arraycells plus their pruned su�xes may not �t in main memory.Additional communication may be necessary to break ties between equal pruned su�xes. More textmay be retrieved from the processors owning the texts. However, as explained, we use long enoughpruned su�xes to guarantee that this will occur so infrequently in practice that its e�ect can beneglected (cf. Section 6.2).4 AnalysisWe compute the global cost of the algorithm. We perform the analysis in terms of r and b, as well asa simpli�cation that is valid whenever r = o(pb= log b), which holds in practice.Summing up the costs of the algorithm shows an average case ofO(b logn)I +O(r2 log b+ b)C = O(b logn)I +O(b)Cwhile in the wat case we haveO(b logn)I+ O(r2 log b+ n)C = O(b logn)I +O(n)CThe CPU time improves over the sequential algorithm [5], which is O(n2 logn=b) time (assuming m =b), by a factor of �(r2) (this is because the sequential algorithm is not optimal but tries to minimizeseek time). The improvement over an optimal sequential algorithm of cost O(n logn) is �(r), which isoptimal.To analyze the scalability of the algorithm, we consider how the cost is increased if we double the textsize and the number of processors, i.e.,C(2n; 2r)C(n; r) = b log(2n)b logn I + 4r2 log b+ br2 log b+ b C = 1 + O� 1logn� I+ O�r2 log bb �C = 1 + o(1)which is very good for the practical values involved, though not for very large r.



We compare now the complexity against other parallel algorithms. In [10] a mergesort-based parallelalgorithm is proposed, which is O(b logn)I + O(n)C in the average and wat case. The wat caseis similar to ours, but our average case is much better. In [18], a recursive quicksort-based parallelalgorithm is presented, which is O(b logn)I+O(b log r)C on average and O(b logn)I+O(b log2 r)C inthe wat case. Although our average case is better, their wat case is better than ours. This is becausethey use a process of pivoting and partitioning by half which allows bad partitions (i.e., one takingmore processors than the other). The partition continues until each processor contains a slice. Ourpresent algorithm can be seen as a version of the above procedure in which partitions are built in justone step, losing however the 
exibility to handle bad partitions e�ciently.5 A Simpler AlgorithmWe show experimentally in Section 6.1 that it is not necessary in practice to compute the exact per-centiles. A quick approximation works equally well. This allows to devise a simpler algorithm with thesame average case, although the wat case is worse.This algorithm replaces Step 2 of the previous one. Instead of engaging in a process of computing theglobal percentiles, each processor broadcasts its local r uniform percentiles (this costs O(r2)C). Everyprocessor receives all the percentiles and estimates the global percentiles by taking the median of thesamples. The rest proceeds in the same way.We prove in Appendix B that the deviation from the actual values is extremely small on average (i.e.,O(1=pn)), and our experiments in Section 6.1 con�rm these assertions. Therefore, the average casecost of this algorithm is O(b logn)I+ O(r2 + b)C = O(b logn)I+ O(b)CTo analyze the wat case, we �nd the maximum size of an approximated slice. Suppose that we computean �-percentile. Since every processor broadcasts a value which is larger than �b local items, the medianof the values is guaranteed to be larger than �=2 n elements. With the same argument, it is guaranteedto be smaller than (1��)=2 n values. If we take the smallest possible value on an estimated percentileand the largest value in the next percentile, the slice in the middle can be up to n=2+ b = O(n). TheseO(n) pointers are to be sent to a single processor, which will need O(n)C time to receive the elementsand O(n logn)I time to sort them. This is the wat case of this algorithm: worse than sequential sorting.6 Simulation ResultsThe implementation of the proposed algorithm is not concluded yet. However, we performed experi-ments to validate the most contrived assumptions used in our work.The �rst experiment shows that, for a typical text �le6, the distribution of words inside each processorapproximately follows that of the whole text, and therefore Steps 2-3 will work well on average text, aswell as the simpler algorithm.The second experiment is related to Step 4. The goal is to �nd a suitable pruned su�x size `, so thatthe processors are able to sort locally without normally asking more characters of remote su�xes.6 In our experiments, the 262,755,189 bytes Wall Street Journal �le from tipster/trec collection [6].



6.1 Word DistributionIn this simulation, the Wall Street Journal (WSJ) �le is broken into r = 16 blocks of (almost) identicalsizes b. For each block, we computed r� 1 local percentiles. Next, these percentiles are made availableto every simulated processor which computes r � 1 medians, each one corresponding to a percentile.Table 1 presents the average and standard deviation of the slice sizes exchanged between any pair ofprocessors. Su�xes were pruned at 48 characters (recall that a large ` can be used for Step 2).p sent received p sent received� � stdev � � stdev � � stdev � � stdev1 0.94 � 2.32% 1.01 � 7.68% 9 0.98 � 2.40% 1.01 � 3.25%2 0.96 � 2.39% 1.00 � 2.78% 10 1.01 � 1.95% 1.00 � 3.01%3 0.97 � 1.46% 1.00 � 3.55% 11 1.00 � 1.95% 0.99 � 2.99%4 0.99 � 1.12% 1.00 � 2.89% 12 1.03 � 1.73% 1.01 � 3.03%5 0.97 � 2.01% 1.01 � 3.04% 13 1.00 � 1.17% 1.00 � 2.98%6 1.00 � 1.02% 0.99 � 3.24% 14 1.03 � 2.14% 1.00 � 2.98%7 1.00 � 1.64% 1.01 � 3.21% 15 1.03 � 1.67% 1.00 � 3.46%8 1.03 � 1.27% 0.99 � 3.10% 16 1.07 � 1.34% 1.00 � 3.83%Table 1. Amount of exchanged data in bytes for r = 16 (� is the ratio between the average and theexpected b=r). Standard deviation is presented as a percentage of the average.We remark that the amount of messages sent and received for each pair is approximately the samein most cases. This shows that the partition in words is quite even among processors, and that eachprocessor ends up with a slice of size almost b to perform Step 4.With regard to the number of bytes transferred during redistribution we observe that the variationamong the slices sent by a given processor is rather low (< 2:5%). On the other hand, the variationof the number of bytes received by a given processor from each other processor is higher (< 8%: thehigher variation is 7.68% followed by a 3.83%). The largest slice transferred in the whole process is11% over the expected b=r. This shows that the redistribution of slices is O(b)C in practice, even withpruned su�xes (of length 48 in this case).Finally, since we are using estimated percentiles, this shows that the simpler algorithm of Section 5performs well on natural language texts.6.2 Su�xes ComparisonIn this experiment, we generated sequentially the su�x array for a 100 megabytes subset of the WSJ.We computed for each su�x the number L of identical characters when compared with the previoussu�x (given by the sorted su�x array). For example:suffix x : "A document is a piece of paper..."suffix x+1: "A document preparation system..." L=11suffix x+2: "A dollar in my pocket..." L=4



The purpose of this experiment is to �nd an ` which will work reasonably well even in the �nal momentsof the sorting process, when the algorithm compares su�xes that are almost neighbors in the �nal su�xarray. If each word in the text is considered an index point, we �nd that the average L is 15.04 with astandard deviation of 10.19. If we consider instead that su�xes do not start with stop words (e.g., "a","the", etc), the average L is 15.45 with a standard deviation of 10.62. The distribution of L is givenin the Figure 3.
0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35 40 45 50

P(
L

<
X

)

X

without stopwords
with stopwords

Fig. 3. Distribution of L (probability of a given L < X) for 100 megabytes of the WSJ �le.For both cases (su�xes starting and not starting with stop words), the distributions are similar. With` = 30, 90% of the comparisons are locally solved (i.e., the pruned su�xes di�er). In our algorithm,the graph presented in Figure 3 can be considered an upper bound, as explained. Since L � 15 onaverage, by using ` = 30 we can save 50% of communication and storage costs by compressing theslices to redistribute (cf. Section 3.4) 7. For larger texts, the value of ` will grow if the same probabilityof remote access is to be maintained. However, the growing rate is known to be very low (i.e., O(logn),the average height of a leaf in the su�x trie [19]). The average L will grow at a similar rate, whatallows to keep the same compression ratio.7 Conclusions and Future WorkWe have discussed a distributed algorithm for the generation of su�x arrays for large texts. Thealgorithm is executed on a parallel computer composed of processors connected through a high band-width network. The aggregate memory of the various processors is used as a giant cache for disks.7 Preliminary more realistic simulations of the sorting process show that this upper bound is pessimistic. With` = 20 we have 90% of the comparisons decided locally (and therefore compression is 75% e�ective), and for` = 30 the probability of a successful local comparison is 95%.



In such aggregate memory, remote accesses are as time consuming as sequential accesses to a localdisk. The algorithm quickly splits the problem in one independent subproblem per processor and therest proceeds locally. The improvement in performance comes from parallelism and from the fact thatremote memory can be accessed randomly at uniform cost.We analyzed the average and worst (on average text) case complexity of our algorithm considering atext of size n and the presence of r processors storing b index points each. Such analysis points outmany important advantages over previous work. First, our proposed algorithm has average runningtime complexityO(b logn) for computation and O(b) for communication on average, which has optimalspeedup over sequential algorithms. Second, it is faster than the previous parallel algorithms thatsolve this problem. Third, it scales up much nicer than other previous algorithms (e.g., one based onmergesort).We are currently working on the implementation of the above parallel algorithms. The mergesortimplementation is concluded [11] and we compared its performance with that of a local implementationof the sequential algorithm. Besides such implementation e�orts, we are investigating the applicationof our ideas to the generation of the more popular inverted lists [17].AcknowledgmentsWe thank the anonymous referees for their useful comments to improve this work.References1. T. Anderson, D. Culler, and D. Patterson. A case for NOW (Network of Workstations). IEEE Micro,15(1):54{64, February 1995.2. A. Apostolico, C. Iliopoulos, G. Landau, B. Schieber, and U. Vishkin. Parallel construction of a su�x treewith applications. Algorithmica, 3:347{365, 1988.3. E. Barbosa and N. Ziviani. From partial to full inverted lists for text searching. In R. Baeza-Yates andU. Manber, editors, Proc. of the Second South American Workshop on String Processing (WSP'95), pages1{10, April 1995.4. G. Gonnet. PAT 3.1: An E�cient Text Searching System { User's Manual. Centre of the New OxfordEnglish Dictionary, University of Waterloo, Canada, 1987.5. G. H. Gonnet, R. A. Baeza-Yates, and T. Snider. New indices for text: Pat trees and pat arrays. InInformation Retrieval { Data Structures & Algorithms, pages 66{82. Prentice-Hall, 1992.6. D. Harman. Overview of the third text retrieval conference. In Proceedings of the Third Text RetrievalConference - TREC-3, Gaithersburg, Maryland, 1995. National Institute of Standards and Technology.NIST Special Publication 500-225.7. J. J�aj�a. An Introduction to Parallel Algorithms. Addison-Wesley, 1992.8. J. J�aj�a, K. W. Ryu, and U. Vishkin. Sorting strings and constructing digital search trees in parallel.Theoretical Computer Science, 154(2):225{245, 1996.9. J. Karkkainen. Su�x cactus: A cross between su�x tree and su�x array. In Proc. CPM'95, pages 191{204.Springer-Verlag, 1995. LNCS 937.10. J. P. Kitajima, B. Ribeiro, and N. Ziviani. Network and memory analysis in distributed parallel generationof pat arrays. In Fourteenth Brazilian Symposium on Computer Architecture, pages 192{202, Recife,August 1996.11. J.P. Kitajima, M.D. Resende, B. Ribeiro, and N. Ziviani. Distributed parallel generation of indices for verylarge text databases. Technical Report 008/97, Universidade Federal de Minas Gerais - Departamento de



Ciência da Computa�c~ao, Belo Horizonte, Brazil, April 1997. ftp://ftp.dcc.ufmg.br/pub/research/-nivio/papers/.12. Donald E. Knuth. The Art of Computer Programming: Sorting and Searching. Addison Wesley, 1973.13. U. Manber and G. Myers. Su�x arrays: A new method for on-line string searches. SIAM Journal onComputing, 22, 1993.14. D.R. Morrison. PATRICIA { Practical Algorithm To Retrieve Information Coded In Alphanumeric.JACM, 15(4):514{534, October 1968.15. M. J. Quinn. Parallel Computing: Theory and Practice. McGraw-Hill, second edition, 1994.16. B. Ribeiro, J. P. Kitajima, and N. Ziviani. Distributed parallel generation of pat arrays. Technical Report019/96, Universidade Federal de Minas Gerais - Departamento de Ciência da Computa�c~ao, Belo Horizonte,Brazil, June 1996. ftp://ftp.dcc.ufmg.br/pub/research/nivio/papers/.17. B. Ribeiro, J.P. Kitajima, G. Navarro, and N. Ziviani. Parallel generation of inverted lists on a networkof workstations. Technical Report 009/97, Universidade Federal de Minas Gerais - Departamento deCiência da Computa�c~ao, Belo Horizonte, Brazil, April 1997. ftp://ftp.dcc.ufmg.br/pub/research/-nivio/papers/.18. B. Ribeiro, G. Navarro, J. P. Kitajima, and N. Ziviani. Recursive parallel generation of su�x arrays. Tech-nical Report 010/97, Universidade Federal de Minas Gerais - Departamento de Ciência da Computa�c~ao,Belo Horizonte, Brazil, April 1997. ftp://ftp.dcc.ufmg.br/pub/research/nivio/papers/.19. W. Szpankowski. Probabilistic analysis of generalized su�x trees. In Proc. CPM'92, pages 1{14. Springer-Verlag, April 1992. LNCS 644.20. E. Ukkonen. Constructing su�x trees on-line in linear time. Algorithmica, 14(3):249{260, Sep 1995.Appendix A: Analysis of Pairwise ExchangeWe show that the maximum amount of data exchanged by a pair of processors in the Step 3 of ouralgorithm is O(b=r) on average.Since the global index is divided so that an equivalent slice is assigned to each processor, we have requal-sized slices in the su�x array. The part of the local su�x array to transfer to each processor canbe taken as a random sampling over the whole set of su�xes. Therefore, the number of elements of thelocal su�x array of processor i corresponding to the slice of processor j has a Binomial distributionwith parameters B(b; 1=r), since it comes from randomly taking b elements of the global su�x arrayand observing how many of them correspond to processor j (which occurs with probability 1=r).The amount of pointers exchanged between br=2c pairs of processors can be seen as r independentrandom variables with the same Binomial distribution (since the pairs exchange data in both ways). Themaximumamount of data exchanged in a stage corresponds therefore to the maximumof r independentrandom variables with distribution B(b; 1=r). Let X1; :::; Xr be those random variables.We �rst show that, for j > b=r, P (Xi � j) = O(P (Xi = j)), i.e. the �rst term of the summation ofprobabilities dominates the rest once we passed the mean of the distribution. If we call pj = P (Xi = j),we have P (Xi � j) = bXk=j pk = bXk=j�bk� (1� 1=r)b�krkand we observe that pk+1pk = b� k(k + 1)r(1� 1=r) � b(k + 1)r � C < 1



where the inequalities come from the fact that k � b=r. C = b=(b+ r) is a new constant introduced toindicate that there is a �xed upper bound for all pk+1=pk which is independent of k and smaller than1. Therefore, the terms of the summation decrease at least by a multiplicative constant, what makestheir sum a constant proportion of the �rst summand, i.e. Dpj , where the constant D is bounded aboveby D = 1=(1�C).We now consider the probability of Y = max(X1; :::; Xr) � k. This is equivalent to some Xi being � k.Bounding again, we haveP (Y � k) � P (X1 � k) + :::+ P (Xr � k) = rP (X � k) � DrpkWe �nd out now how must k be in order for the above probability to be � 1=r (we use that resultlater). That is Drpk = Dr�bk� 1rk � 1=rwhere we pessimistically discarded the factor (1� 1=r)b�k. Taking logarithms we haveb log b� k log k � (b � k) log(b� k) +O(log b) � k log r(an O(log r) error term is discarded assuming r < b).We substitute now k = �b=r, for constant �, in the above equation and simplify, to obtain��r log�� log(1� �=r) + �r log(1� �=r) + O� log bb � � 0which by expanding logarithms yieldslog�+ �r � 1 + O� log bb + 1r2�which is clearly achieved by some constant �.Therefore, we have proved that for k = O(b=r), the probability of the maximum Y among all therandom variables Xi being � k is � 1=r. We use it to bound the mean of Y , which is the value we areseeking for: E(Y ) = bXj=0 jP (Y = j) � k + (b� k)P (Y > k) � k + b=r = O(b=r)what completes the proof.Appendix B: Average Median by Sampling b Out of nWe prove that by sampling b elements out of n we arrive at the correct median with a relative error ofO(n�1=2), provided b > pn. Since the median is the highest variance percentile, the proof is automat-ically valid for any percentile. This is stronger than the result we need, since we show that even themedian estimation at a single processor is good enough, and therefore doing the same at r processorsand combining the results (as done in the paper) is better.



For simplicity, we assume that b = 2m + 1. The probability s(j) of our estimated median being theposition j in the sorted array is that of, in our sampling, selecting m elements in the range [1::j � 1],m elements in the range [j + 1::n], and of course selecting j. This iss(j) = �j�1m ��n�jm �� n2m+1�We are interested in the expected proportional size of the larger partition. This isP = 1n 0@ n=2Xj=1(n� j + 1)s(j) + nXj=n=2+1 js(j)1A = 2 nXj=n=2+1(j=n)s(j)We call t(j) = js(j) and f(x) = t(nx) the continuous version of t(j) over the interval [1=2 :: 1]. HenceP = 2n nXj=n=2+1 t(j) = 2n nXj=n=2+1 f(j=n) � 2 Z 1�m=n1=2 f(x)dx(since t(j) is descending for large n). Since f(x) = t(nx), it follows thatf(x + 1=n)f(x) = t(nx+ 1)t(nx) = v(nx)where we have just de�ned v(j) = t(j + 1)t(j) = (j + 1)(n�m� j)(j �m)(n� j)Taking logarithms and multiplying by n, we haveln f(x + 1=n)� lnf(x)1=n = n ln v(nx)This last equation de�nes (lnf)0, hencef(x) = K en R x1=2 ln v(ny)dythe constant K coming from the integration. We obtain it observing that f(1=2) = K = t(n=2), fromwhere f(x) =rm� enR x1=2 ln v(ny)dy(1 +O(m=n) +O(1=m))We now solve the integral of ln v(ny). We haven Z x1=2 ln v(ny)dy = Z nxn=2 lnv(z)dz� m(2 ln 2 + lnx+ ln(1� x)) + ln 2 + lnx+O(1=n)



We then rewrite the equation for f(x) as followsf(x) =rm� 22m+1xm+1(1� x)m(1 +O(m=n) +O(1=m))and return to our wanted result on PP � 2 Z 1�m=n1=2 f(x)dx � 4m+1pmp� Z 11=2 xm+1(1� x)mdx (1 +O(m=n) +O(1=m))This last integral is not trivial. We solve it by induction. Leth(d) = Z 11=2 xm+1+d(1� x)m�ddxthen h(m) = 1� 14m+12m+ 2and our desired result is h(0). Using fg = R f 0g + R fg0, we haveh(d) = Z 11=2 xm+1+d(1� x)m�ddx = 1(m � d+ 1)4m+1 + m+ d+ 1m� d+ 1 Z 11=2 xm+d(1� x)m�d+1dxwhere the last integral is h(d � 1), hence the recurrence. By using g(i) = h(m � i) we have the moreconventional one g(0) = 1� 14m+12m + 2 ; g(i + 1) = (i + 1)g(i) � 14m+12m � i + 1which yields g(m) = 18p�=m4m (1 + O(1=m))and we have the �nal resultP � 12 (1 + O(m=n) + O(1=m)) = 12 (1 +O(b=n) + O(1=b))what shows that the estimated median is very close to the real one for moderately large b.A question that naturally arises is why the result seems to be worse as b grows (i.e., the O(b=n) errorterm). This is because we used upper bounds in some parts, hiding factors depending on m that madethe error smaller. Since it is clear that, as b grows, the estimation gets better, and that we can assumeb > r (i.e., b > pn), we have an estimation error independent of bP � 12 �1 + O �1=pn��This proves that the largest piece of the partition is O(1=pn) in excess over the average, for the medianand for every percentile, even if only one processor samples the data.This article was processed using the LATEX macro package with LLNCS style


