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Abstract. We present a new algorithm for on-line approximate string
matching. The algorithm is based on the simulation of a non-deterministic
finite automaton built from the pattern and using the text as input. This
simulation uses bit operations on a RAM machine with word length
O(log n), being n the maximum size of the text. The running time
achieved is O(n) for small patterns (i.e. of length m = O(y/logn)),
independently of the maximum number of errors allowed, k. This al-
gorithm is then used to design two general algorithms. One of them
partitions the problem into subproblems, while the other partitions the
automaton into sub-automata. These algorithms are combined to obtain
a hybrid algorithm which on average is O(n) for moderate k/m ratios,
O(y/mk/logn n) for medium ratios, and O((m — k)kn/log n) for large
ratios. We show experimentally that this hybrid algorithm is faster than
previous ones for moderate size of patterns and error ratios, which is the
case in text searching.

1 Introduction

Approximate string matching is one of the main problems in classical string
algorithms, with applications to text searching, computational biology, pattern
recognition, etc. Given a text of length n, a pattern of length m, and a maximal
number of errors allowed, k, we want to find all text positions where the pattern
matches the text up to k errors. Errors can be substituting, deleting or inserting
a character. The solutions to this problem differ if the algorithm has to be
on-line (that is, the text is not known in advance) or off-line (the text can be
preprocessed). In this paper we are interested in the first case, where the classical
dynamic programming solution is O(mn) running time [13, 14].

In the last years several algorithms have been presented that achieve O(kn)
comparisons in the worst-case [20, 9, 10, 11] or in the average case [21, 9], by
taking advantage of the properties of the dynamic programming matrix. In the
same trend is [6], with average time complexity O(kn/+/o) (o is the alphabet
size). The algorithms which are O(kn) in the worst case tend to involve too much
overhead, and are not competitive in practice.
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Other approaches attempt to filter the text, reducing the area in which dynamic
programming needs to be used [18, 19, 17, 16, 7, 8]. These algorithms achieve
sublinear expected time in many cases (O(knlog, m/m) is a typical figure) for
moderate k/m ratios, but the filtration is not effective for larger ratios. A simple
and fast filtering technique is shown in [5], which yields an O(n) algorithm for
moderate k/m ratios.

Yet other approaches use bit-parallelism [2, 25] in a RAM machine of word length
O(logn) to reduce the number of operations. [24] achieves O(kmn/logn) time,
which is competitive for patterns of length O(logn). [22] packs the cells differ-
ently to achieve O(mnlogo/logn) time complexity. [26] uses a Four Russians
approach and packs the table in machine words, achieving O(kn/logn) time on
average.

We present a new algorithm which combines the ideas of taking advantage of
the properties of the matrix, filtering the text and using bit-parallelism, being
faster than previous work for moderate size patterns and error ratios, as we are
interested in text searching.

We model the search with a non-deterministic finite automaton (NFA) built
from the pattern and using the text as input. This automaton is simulated
by an algorithm based on bit operations on a RAM machine of word length
O(logn). The algorithm achieves running time O(n), independently of k, for
small patterns (i.e. mk = O(logn)). This restricted algorithm is used to design
two general algorithms.

A first one partitions the problem into subproblems, and has average time
cost O(mn/logn) for small « = k/m (ie. o« < 1/logn), otherwise it is
O(y/mk/logn n) (i.e. O(Wk n) for m = O(logn), else O(kn)). It involves al-
so a cost to verify potential matches; which is shown to be not significant for
o < ap & 1 —m'VI8n [\ /5 This algorithm is a generalization of an earlier
heuristic [23, 5], that reduces the problem to subproblems of exact matching
and is shown to be O(n) for o < ag = 1/(3log, m).

The second one partitions the automaton in sub-automata, being O(k*n/( /7 log
n)) on average. For @ > 1 — 1//o its worst case, O((m — k)kn/logn), domi-
nates. This algorithm is shown to be better than dynamic programming for

k <log(n)/(1 — «).

We analyze the optimal way to combine the algorithms. We show experimentally
that this hybrid algorithm is faster than previous ones, for moderate m and «.
Table 1 shows the combined complexity.

As a corollary of our analysis, we give tight bounds for the probability of finding
an occurrence of a pattern of length m with & errors starting at a fixed position
in random text. We also show that the heuristic of [21] works O(kn) time on
average, with a constant tighter than that of [6].



|| Condition | Complexity | Method used ||
mk = O(log n) O(n) the simple algorithm
o < ag O(n) reducing to exact match
g < o < g 0] (\/mk/log n n) problem partitioning
a>ar Ak <logn/(1—a)|O((m — k)kn/logn)| automaton partitioning
a>ar Ak >logn/(1—a) O(mn) plain dynamic programming

Table 1. Complexity of our hybrid algorithm.

2 Preliminaries

The problem of approximate string matching can be stated as follows: given
a (long) Text of length n, and a (short) pattern pat of length m, both being
sequences of characters from an alphabet X find all segments (called “occur-
rences” or “matches” ) of Text whose edit distance to pat is at most k, the number
of allowed errors. We use o = |X|.

The edit distance between two strings @ and b is the minimum number of edit
operations needed to transform a into b. The allowed edit operations are deleting,
inserting and replacing a character. Therefore, the problem is non-trivial for
k< m.

Stated that way, we should report a number of segments that contain others.
Because of that, it is common to report only minimal or maximal segments. It
is also common to report not the matching segments but only their start or end
point. In this work we focus on returning end points of minimal segments (i.e.
those not containing others).

We use a C-like notation for the operations (e.g. &, |,==,! =, A, >>). We use
tezt to denote the current character of Text and, unlike C, str[j] to denote the
j-th character of str. Except when otherwise indicated, the log function denotes
logarithm in base 2.

Consider the NFA for searching text with at most & = 2 errors shown in Fig-
ure 1. Every row denotes the number of errors seen. The first one 0, the second
one 1, and so on. Every column represents matching the pattern up to a given
position. At each iteration, a new text character is considered and the automaton
changes its states. Horizontal arrows represent matching a character (they can
only be followed if the corresponding match occurs), vertical arrows represent
inserting a character in the pattern, solid diagonal arrows represent replacing a
character, and dashed diagonal arrows represent deleting a character of the pat-
tern (they are empty transitions, since we delete the character from the pattern
without advancing in the text). Finally, the empty transition at the initial state
allows to consider any character as a potential starting point of a match, and
the automaton accepts a character (as the end of a match) whenever a rightmost
state 1s active. If we do not care about the number of errors, we can consider



final states those of the last full diagonal. Because of the empty transitions, this
makes acceptance equivalent to the lower-right state being active.

This NFA has (m+ 1)(k + 1) states. We assign number (4, j) to the state at row
¢ and column j, where ¢ € 0.k, 5 € 0..m. Initially, the active states at row ¢ are
at the columns from 0 to ¢, to represent the deletion of the first ¢ characters of
the pattern.

@ no errors

1 error

2 errors

Fig.1. An NFA for approximate string matching. Unlabeled transitions match any
character. Active states are (2,3), (2,4) and (1, 3), besides those always active of the
lower-left triangle.

Consider the boolean matrix A corresponding to this automaton. A;; is 1 if
state (¢,7) is active and 0 otherwise. The matrix changes as each character of
the text 1s read. The new values A;»y]» can be computed from the current ones by
the following rule

Aiy = (Aijor & (tewt ==pat[j])) | Aicrj | Aicrj-1 [ Ao (1)

which is used for ¢ € 0..k,j € 1..m. If ¢ = 0 only the first term is used. Note that
the empty transition is represented by immediately propagating a 1 at any posi-
tion to all the elements following it in its diagonal, all in a single iteration (thus
computing the e-closure). The empty transition at the initial state is represented
by the fact that column 7 = 0 is never updated.

The main comparison-based algorithms for approximate string matching consist
fundamentally in simulating this matrix by columns, while many bit-parallelism



approaches simulate it by rows or by diagonals (in this last case, of the dynamic
programming matrix). In all cases, the dependencies introduced by the diagonal
empty transitions prevent the parallel computation of the new values. We present
in the next section an approach that avoids this dependence, by simulating the
automaton using diagonals, such that each diagonal captures the e-closure [3].
This idea leads to a new and fast algorithm.

3 A New Algorithm

Suppose we use just the full diagonals of the automaton (i.e. those of length
k + 1). This presents no problem, since those (shorter) diagonals below the full
ones have always value 1, while those past the full ones do not influence state
(m, k). The last statement may not be obvious, since the vertical transitions
allow to carry 1’s from the last diagonals to state (m, k). But each 1 present
at the last diagonals must have crossed the last full diagonal, where the empty
transition (deletion) immediately would have copied it to the state (m, k). That
is, any 1 that goes again to state (m, k) corresponds to a segment containing one
that has already been reported.

Another observation is that, if state (4,j) is active at any time, then states
(i+d, j+ d) are also active for all d > 0 (due to the empty deletion transition).
Thus, if we number diagonals regarding the column at which they begin, the
state of each diagonal ¢ can be represented by a number D;, the smallest row
value active in that diagonal (i.e. the smallest error). Then, the state of this
simulation consists of m — k + 1 values in the range 0..k 4+ 1. Note that Dy is
always 0, hence, there is no need to store it.

The new values for D; (i € 1..m — k) after we read a new text character are
derived from Eq. (1)

D = min( D; +1, Djp1+1, g(Di_y,text)) (2)
where g(D;, ¢) is defined as

g(Dise) = min({k+1} U {j/j>Di A patli+jl==c})

The first term of the D’ update formula represents a substitution, which follows
the same diagonal. The second term represents the insertion of a character (com-
ing from the next diagonal above). Finally, the last term represents matching a
character: we select the minimum active state (hence the min of the g formula)
of the previous diagonal that matches the text and thus can move to the current
one.

The deletion transitions are represented precisely by the fact that once a state
in a diagonal is active, we consider active all subsequent states on that diagonal
(so we keep the minimum). The empty initial transition corresponds to Dy = 0.
Finally, we find a match in the text whenever D,,_; < k.



This simulation has the advantage that can be computed in parallel for all z.
We use this property to design a fast algorithm that exploits bit-parallelism for
small patterns, and then extend it to handle the general case by partitioning
either the problem or the automaton.

3.1 A Linear Algorithm for Small Patterns

We show in this section how to simulate the automaton by diagonals using bit-
parallelism, assuming that our problem fits in a single word (i.e. (m — k)(k +
2) < w, where w is the length of the computer word). We first select a suitable
representation for our problem and then describe the algorithm.

Since we have m — k non-trivial diagonals, and each one takes values in the range

0.k + 1, we need at least (m — k)[log,(k + 2)] bits.

However, the g function cannot be computed in parallel for all ¢ with this optimal
representation. It can be precomputed and stored, but it takes O(a(k + 1)™~*)
space 1f it has to be accessed in parallel for all 7. At this exponential space cost,
the automaton approach of [21] is preferable.

Therefore, we use unary encoding of the I); values, since in this case ¢ can be
computed in parallel. Thus, we need (m — k)(k + 2) bits to encode the problem,
where each of the m — k blocks of k£ + 2 bits stores the value of a D;.

Fach value of D; is stored as 1’s aligned to the right of its (k + 2)-wide block
(thus there is a separator at the highest bit having always 0). The blocks are
stored contiguously, the last one (i = m—k) aligned to the right of the computer
word. Thus, our bit representation of state Dy, ..., Dy_j 18

D = Q0FH1=Pr D g oktl=D2 D2 g Ftl=Dmx {Dmor

where we use exponentiation to mean digit repetition. Observe that, in this way,
what our word contains is a rearrangement of the 0’s and 1’s of (the relevant
part of) the automaton. The rearrangement exchanges 0’s and 1’s and reads the
diagonals left-to-right and bottom-to-top (see Figure 2).

With this representation, taking minimum is equivalent to anding, adding 1 is
equivalent to shifting one position to the left and oring with a 1 at the rightmost
position, and accessing the next or previous diagonal means shifting a block (k+2
positions) to the left or right, respectively.

The computation of the ¢ function is carried out by defining, for each character
¢, an m bits long mask t[¢], representing match (0) or mismatch (1) against the
pattern, and then computing a mask 7'[c] having at each block the (k + 1) bits
long segment of t[c] that is relevant to that block (see Figure 2). That is,

tle] = (e!= pat[m]) (¢! = pat[m —1]) ... (¢! = pat[l])

where each condition stands for a bit and they are aligned to the right. So we
precompute



separator separator final state

l L

D 0 0 : 1 : 1 0 0 : 0 : 1
AhoA Ao
(2,3) (1,2) (0,1) (2:4) (1,3) (0,2)
X e t t X e
I I I I
T[’t’] 0 1 : 1 : 01 0 0 : 1 : 1

Fig. 2. Encoding of the example NFA.

Tle] = 0 sp41(tle],0) 0 spy1(tle], 1) ... 0 sppar(t[e],m—k —1)

for each ¢, where s;(x, i) shifts & to the right in ¢ bits and takes the last j bits
of the result (the bits that “fall” are discarded). Note that T'[c] fits in a word if
the problem does.

We have now all the elements to implement the algorithm. We represent the
current state by a computer word D. The value of all D;’s is initially k& + 1, so
the initial value of D is Dy, = (0 1¥¥1)™ =% The formula to update D is derived
from Eq. (2)

D'= (D<<1)]|(0Ftm=*
& (D << (k+3)) | (0FFtym=F=1g 1F+!
& (((z + (0P )™=y A ) >> 1)
& Din (3)
where = (D >>(k+2)| Ttext]

The update formula is a sequence of and’s, corresponding to the min of Eq. (2).
The first line corresponds to D; 4+ 1, the second line to D;y1 + 1, the third line
is the g function applied to the previous diagonal, and the fourth line ensures
the invariant of having zeros in the separators (needed to limit the propagation
Of ((+77).

Note that we are assuming that the shifts get zeros from both borders of the
word (i.e. unsigned semantics). If this is not so, additional masking is necessary.

We detect that the state (m, k) is active by checking whether D & (1 << k)
is 0. When we find a match, we clear the last diagonal. This ensures that the
reported occurrences always end with a match.



A further improvement is not to run the automaton through all the text, but to
scan the text looking for any of the k& + 1 initial characters of the pattern, and
only then starting the automaton. When the automaton returns to the initial
configuration, we restart the scanning. This is much faster and correct, since one
of the k+1 initial characters of the pattern must be present in any result with at
most k errors. We precompute a boolean table S[¢], that says for each character
¢ whether it is one of the first £+ 1 of the pattern. Observe that this table alone
solves the problem for the case £ = m — 1 (since each positive answer of S is an
occurrence).

Figure 3 presents the complete algorithm. To avoid complications, we do not
refine the preprocessing, which can be done more efficiently than what the code
suggests.

search (Text,n,pat, m,k)
{ /* preprocessing */
for each c€ X
{ tle] = (¢!= pat[m]) (c'= pat[m —1]) ... (¢! = pat[l])
Tle] = 0 sp41(t[c],0) 0 sp41(t[c],1) ... 0 spqa(t[c],m —k —1)
Sle] = (¢ € pat[l..k + 1))

Din — (0 1k+1)m—k
M1 = (0Fttym=F
M2 = (0k+11)m—k—1 0 1k+1
M3 = om—k=1)(k+2) o 1k+1
G=1<<k
/* searching */
i=0
while (+4:<=n)
if (S[Text[:]]) /* is one of the first k+ 1 characters? */
do { z=(D>>(k+2)) | T[Text[s]]
D=((D<< )| M) & ((D<<(k+3))| M2)
& (((e+M1) A z)>>1) & Din
it (D& G==0)
{ report a match ending at i
D=D| M3 /* clear last diagonal */
}
}
while (D! = D;p && ++4i<=n)

Fig. 3. Algorithm to search for a short pattern.



3.2 Partitioning Large Automata

If the automaton does not fit in a single word, we can partition it using a number
of machine words for the simulation.

First suppose that & 1s small and m 1s large. Then, the automaton can be “hori-
zontally” split in as many sub-automata as necessary, each one holding a number
of diagonals. We call “columns” those sets of diagonals packed in a single ma-
chine word. Those sub-automata behave differently than the simple one, since
they must communicate their first and last diagonals with their neighbors.

Thus, if (m — k)(k + 2) > w, we partition the automaton horizontally in J
columns, where J = [(m —k)(k+2)/w]. Note that for this idea to work we need
that at least one diagonal fits in a single machine word, i.e. k + 2 < w.

Suppose now that k& is large (close to m, so that the width m — k is small). In
this case, the automaton is not wide but tall, and a vertical partitioning becomes
necessary. The sub-automata behave differently than the previous ones, since we
must propagate the e-transitions down to all subsequent sub-automata.

In this case, if (m — k)(k +2) > w, we partition the automaton vertically in T
rows, where I has the same formula as J. The difference is that, in this case, we
need that at least one row fits in a machine word, i.e. 2(m — k) < w (the 2 is
because we need an overflow bit for each diagonal of each cell).

When none of the two applicability conditions hold, we need a generalized par-
tition in rows and columns. We use I rows and J columns, so that each cell
contains £, bits of each one of £, diagonals. It must hold (¢, + 1)¢. < w.

There are many options to pick (7,.J) for a given problem. We show later that
they are roughly equivalent in cost (except for integer round-offs that are notice-
able in practice). We use I as small as possible and then determine J. That is,
1= [(k+ 1)/ (w—1)], b = [(k+ 1)/1], e = [w/(6+1)] and J = [(m—k)/L.].
The cells of the last column and the last row may be smaller, since they have
the residues.

The simulation of the automaton is now more complex, but follows the same
principle of the update formula (3). We have a matrix of automata D;; (i €
0.I-1,j € 0..J —1), and a matrix of masks 7; ; coming from splitting the
original 7'. The new update formula is

Di; = (Dij << 1) ((Dirj >> (6 — 1)) & (071)%)
& ((Dij << (r+2)) |

(Di—1j << 2) & (07 1)) |

(Dic1jpr >> (6 + 1)l = 1) + £ = 1)) |

(Dij1 >> (6 + 1)L = 1) = 1)))

((z 4+ (0 1)') A z) >> 1)

&



where  ©=((D;; >> (&, + 1)) | (Dij-1 << (b + D)L, — 1)) | T; j[text])
& ((Di_y; >> (4 — 1)) [ (170)%)

and it is assumed D_; ; = D; 5 = 1Dt and D; = OUertl)te

We find a match whenever Dy_; yj_q has a 0 in its last position, i.e. at (k —
L(I=1))+ (6 + 1) J — (m —k)), counting from the right. In that case, we
must clear the last diagonal, i.e. that of D; y_; for all 1.

The fact that we select the minimal 7 and that we solve the case £ = m —1 with
a simpler algorithm (the S table) causes this general schema to fall into three
simpler cases: (a) the automaton is horizontal, (b) the automaton is horizontal
and only one diagonal fits in each word, (¢) the automaton spreads horizontally
and vertically but only one diagonal fits in each word. Those cases can be solved
with a simpler (two or three times faster) update formula.

3.3 Partitioning Large Problems

The following lemma, which is a generalization of the idea presented in [24],
suggests a way to partition a large problem into smaller ones.

Lemma: If segm = Texrt[a..b] matches pat with k errors, and pat = p1...p; (a
concatenation of sub-patterns), then segm includes a segment that matches at
least one of the p;’s, with |k/j| errors.

Proof: Suppose the opposite. Then, in order to transform pat into segm, we
need to transform each p; into an s;, such that segm = s1...s;. But since no p; is
present in segm with less than |[k/j| errors, each p; needs at least 14 [k/j] edit
operations to be transformed into any segment of segm (s; in particular). Thus
the whole transformation needs at least j(1 + |k/j]) > j(k/j) = k operations.
A contradiction. O

Thus, we can reduce the number of errors if we divide the pattern, provided we
search all the sub-patterns. Each match of a sub-pattern must be checked to
determine if it is in fact a complete match. Suppose we find at position ¢ in Text
the end of a match for the sub-pattern ending at position j in pat. Then, the po-
tential match must be searched in the area Teat[i —j+ 1—k,i—j+ 1+ m+k],
an (m + 2k)-wide area. This checking must be done with a classical algorith-
m needing little preprocessing, e.g. the variation of [21] to standard dynamic
programming. A related idea was used in [12] to search indexed text.

To perform the partition, we pick an integer j, and split the pattern in j sub-
patterns of length m/j (more precisely, if m = ¢j + r, with 0 < r < 4, r
sub-patterns of length [m/j] and j—r of length [m/j]). Because of the lemma,
it is enough to check if any of the sub-patterns is present in the text with at most
|k/j| errors. Thus, we select j as small as possible such that the subproblems
fit in a computer word, that is



e (o (D () <o o o)

where the second condition avoids searching a sub-pattern of length m’ with
k' = m' errors (those of length [m/j] are guaranteed to be longer than |k/j] if
m > k). Such a j always exists, since j = k + 1 implies searching with 0 errors.

In case of 0 errors, we can use an Aho-Corasick machine [1] to guarantee O(n)
total search time, or use a faster heuristic such as extending the Boyer-Moore-
Horspool-Sunday algorithm [15] to multipattern search.

Figure 4 shows the general algorithm, which is written that way for clarity. In
a practical implementation, it is better to run all sub-searches in synchroniza-
tion, picking at any moment the candidate whose initial checking position is the
leftmost in the set, checking its area and advancing that sub-search to its next
candidate position. This allows to avoid re-verifying the same text because of
different candidates that imply overlapping areas. This is done by remembering
the last checked position and keeping the state of the checking algorithm.

ProblemPartition (Text,n,pat,m,k)
{5 = min {r/ (fm/r] - frD(LEr] +2) < w A Lmfr] > [kr])
if (j ==1) search (Text,n,pat, m,k)
else { a =0
for re€0..5—1
{ len =(r <m%yj)? [m/y] : [m/j]
b=a+len—1
for each pos.i reported by search(Text,n, pat[a..b],len, |k/j])
check the area Tezt[i —b+1—k,i—b+1+m+ k]

a=b+1

Fig.4. Algorithm for problem partitioning.

4 Analysis

In this section we analyze the different aspects of our algorithms, and obtain a
general heuristic to combine them. Recall that o = k/m.

4.1 The Simple Algorithm

The preprocessing phase of this algorithm can be optimized to take O(o +
mmin(m, o)) time, and it requires O(o) space. The search phase needs O(n)
time.



However, this algorithm is limited to the case in which (m — k)(k +2) < w. In
the RAM model it is assumed logn < w, so a machine-independent bound is

(m—k)(k+2) <logn.

Since (m — k)(k + 2) takes its maximum value when & = m/2 — 1, we can assure
that this algorithm can be applied whenever m < 2(y/w — 1), independently of
k. That is, we have a linear algorithm for m = O(y/logn), for example, m < 9
for w = 32, or m < 14 for w = 64.

4.2 Partitioning the Automaton

If we divide the automaton in I.J sub-automata (I rows and J columns), we
must update I cells at each column. However, we use a heuristic similar to [21]
(i.e. not processing the m columns but only up to the last active one), so we do
not work on all the diagonals, but only the active portion.

To compute the expected last active diagonal, we first compute the last active
column in the heuristic of [21] (these are real columns of the matrix, not our
packed diagonals), i.e. the largest r satisfying C, < k (being C, the smallest-row
active state of column r). We follow the proof of [6], but we find a tighter bound.
If we call L the last active column, we have

E(L) < K+ rP[C, <k
r>K

for any K. We show in the next section that if k/r < 1 — e/+/o, then P[C, <
k] = O(y") with v < 1, thus we take K = k/(1 — e/y/0) to obtain

k ok
B BN r>k/(1z—:e/\/3)r0(7 R ETCR,

which shows that, on average, the last active column is O(k).

This refines the proof of [6] of that the heuristic of [21] is O(kn). Since this
measures active columns and we work on active diagonals, we subtract k, to
obtain that on average we work on ke/(y/o —e) + 1 diagonals (one beyond the
last active one). Our experiments suggest that, although the formal proof needs
e, it 1s more accurate to replace e by 1. We do so in the following.

Since we pack (m—#k)/J diagonals in a single machine word, we work on average
on (k/(v/o — 1)+ 1) J/(m — k) words. But since there are only J columns, our

total complexity is
1 k
1 in (1 1
7 min (1,215 (g ) @

which shows that any choice for I and J is the same for a fixed IJ. Since
IJ =~ (m —k)(k + 1)/(w — 1), the final cost expression is independent (up to
round-offs) of I and J:




k k+1
min(m—k,ﬁ_l—l—l) w—i—_ln (5)
which is O(k%*n/(\/o logn)) time, and is better if « > 1 —1//7, namely O((m —
k)kn/logn) time. This last complexity is also the worst case of this algorithm.

The preprocessing time and space complexity of this algorithm is O(mkao/w).

4.3 Partitioning the Problem

There are two main components in the cost of problem partitioning. One is the
j simple searches that are carried out, and the other is the checks that must be
done. The first part is O(jn), while the second one costs O(jm? f(m/j, k/j)n),
where f(m, k) is the probability that an automaton of size (k+ 1) x (m + 1)
accepts a given text position (observe that « is the same for the subproblems).
The complexity comes from considering that we perform j independent searches,
and each verification costs O(m?). Clearly, in the worst case each text position
must be verified, and since we avoid re-checking the text, we have O((j4+m)n) =
O(mn) worst-case complexity, but we show that this does not happen on average.

To determine j, we consider the following equation, derived from Eq. (4)
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j:m—k—l—\/(m—k)Z—l—wk(m—k):O(m/w+ /mk/w) (6)

w

whose solution 1s

That is, if & > 1/w, we have j = O(y/mk/w) = O(k), otherwise we have j =
O(m/w). If we further assume the general condition m = O(w), then j = O(\/E)
A machine-independent complexity is obtained by assuming w = O(logn).

Observe that we discarded the second condition of Eq. (4), namely |m/j| >
|k/j]. This is because if [m/j| = |k/j], then j > m — k, which implies o >
1 —1/(w—1). As we show next, this value of « is outside our area of interest
(i.e. it is larger than 1 — 1/,/7), except for ¢ > (w — 1)? = 2(log” n), that is,
extremely large alphabets.

The preprocessing time and storage requirements for the general algorithm are
j times those of the simple one.

In the Appendix we show that for @« < 1—e/ (\/571/(2(1_“))), flm, k) = O(y™),
for v < 1. Thus, for o small enough, f(m/j, k/j) = O(y™/7), which does not
affect the complexity provided y™/7 = O(1/m?). This happens for v < 1/m%/™.
Hence, 1/yY/(0=0)) > p2i/@m1=a)) = 4pi/(m=Fk) Therefore, f(m/j, k/j) =
O(1/m?) if @ < ay, where



1 e i e 14/ 1Hwoy /(1—ay)
a1 =1 — — mm- = — — m w

! NG NG

up to where the cost of verifications is not significant. We repeat that experi-
mental results suggest that it 1s better to replace e by 1 in this formula. A good

approximation for ay (except for very large m) is oy & 0.92 — ml/ﬁ/\/;.

4.4 The Heuristic of Reducing to Exact Search

When we partition the problem, we want to have as few subproblems as possible.
However, the special case j = k + 1 is different, since in that case we search with
0 errors, and a faster algorithm is possible (i.e. exact multipattern search). Thus,
it 1s possible that in some cases we may prefer to increase j beyond its minimum
value, setting it to k 4 1. This is the heuristic used in [23, 5].

To analyze this algorithm, we assume the use of an Aho-Corasick machine [1],
which guarantees O(n) search time. However, in practice we find that an exten-
sion of Boyer-Moore-Horspool-Sunday [15] to multipattern searching is faster.
This extension consists of building a trie with the sub-patterns, and at each
position searching the text into the trie. If we do not find a sub-pattern, we
shift the window using the Sunday heuristic, taking the minimum shift among
all patterns (this minimum shift is, of course, precomputed).

Any match of any of the sub-patterns is a candidate for a complete match. Since
there are k + 1 sub-patterns of length m/(k + 1), the number of verifications
that must be carried out is (k + 1)/0™/*+1)_ For the verification phase to be
not significant, it is necessary that the total number of verifications be O(1/m?)
(the inverse of the cost to verify a candidate). This happens for o < ap =
1/(3log, m).

For values of m and k that allow discarding the effect of verifications, this algo-
rithm is linear.

4.5 A General Strategy

In this section we depict the hybrid algorithm, that takes the best among the
described strategies.

We first discard trivial cases: & = 0 is solved with exact matching, e.g. [15], at
O(nlogm/m) cost on average; k = m — 1 is solved with the heuristic of the
first k 4+ 1 characters (i.e. each hit of the S table is an occurrence) at O(n) cost;
k > m means that any text position is an occurrence.

If o < g, reduction to exact search (i.e. problem partitioning with j = £ + 1)
is O(n), and even faster in practice than the simple algorithm for o < 1/3.

For larger «, if the problem fits in a single word (i.e. (m — k)(k 4+ 2) < w), the
simple algorithm can be used, which is O(n). This algorithm is faster if we use



also the heuristic of the first & 4+ 1 characters (the S table). If the problem does
not fit in a single word, we may use problem or automaton partitioning.

For a > a1, problem partitioning is not advisable, because of the large number
of verifications (it is better to use the verification code [21] alone). To see when
automaton partitioning is better than plain dynamic programming, consider
that, for large «, the first one works O(IJ) = O((m — k)(k + 1)/(w — 1)) per
text position, while the second one works O(m). That means that for & < (w —
1)/(1—a)—1 (which is moderately large), it is better to partition the automaton,
while for larger £ it 1s better to just use dynamic programming. In both cases
we can use also the S table to reduce the average cost.

What is left is the case of medium «. The general strategy is to partition the
problem in a number of subproblems; which are in turn solved by partitioning
each automaton. However, we find that except for o < /o /2(w + +/7), the best
strategy is to apply only problem partitioning. Where convenient, the combina-
tion of both partitions leads to an O(kn/logn) expected time algorithm.

However, the area in which problem partitioning combined with automaton
partitioning is the best i1s outperformed by the heuristic of reducing to exact
matching, which is O(n) for o < ag. This ag is larger than /o /2(w + /o) for
m < ¢2/3+w/Vo) whichis a huge limit to reach. So for intermediate «, problem
partitioning is the best choice.

Thus, the combined algorithm is O(n) for @ < ag or mk = O(logn), from

there to o < aq it is O(y/mk/logn n), and O((m — k)k/logn) for larger «.
Recall that, for the « in which it is applied, O(y/mk/logn n) = O(kn), and it
is O(vk n) if m = O(logn). Figure 5 (left side) shows the combined complexity.

problem partitioning
~~~~~~ automaton partitioning

— — exact partitioning

exact partitioning (j=k+1)

9 30 60

Fig.5. The complexities of our algorithm (left side) and areas where each algorithm
is the best (right side) for o = 32 and w = 32.

Observe that this schema gets worse as m grows, since the area o > «y domi-
nates, and automaton partition gets quickly worse than plain dynamic program-
ming. Because of this, our algorithm is well suited for moderate patterns (or



comparatively small «), which is the case in text searching.

5 Experimental Results

In this section we experimentally compare our algorithm against the fastest
previous algorithms we are aware of. We use the experiments to confirm our
analytical results about the optimal way to combine the heuristics, and to show
that the resulting hybrid algorithm is faster than previous work on moderate
patterns and error ratios.

Since we compare only the fastest algorithms, we leave aside [14, 20, 9, 10,
17], which were not competitive in our first experimental study. The algorithms
included in this comparison are

Ukkonen [21] is the standard dynamic programming algorithm, modified to be
O(kn) on average. This is the algorithm we use to verify potential matches.
The code is ours.

Chang [6] is the algorithm kn.clp, which computes only the places where the
value of the dynamic programming matrix does not change along each col-
umn. The code is from the author.

Suntinen-Tarhio [16] is, to our knowledge, the best filtration algorithm. The
method is limited to o < 1/2, and the implementation to & < w/2 — 3. The
code is from the authors. We use s = 2 (number of samples to match) and
maximal ¢ (length of the ¢-grams), as suggested in [16].

Baeza-Yates/Perleberg [5] is essentially the heuristic j = k + 1, that our
hybrid algorithm uses in the appropriate case. The code 1s ours.

Wu-Manber [24] uses bit-parallelism to simulate the automaton by rows. Our
implementation (taken from Wright’s tests [22]) is limited to m < 31, and it
would be slower if generalized.

Wright [22] uses bit-parallelism to pack the diagonals (perpendicular to ours)
of the dynamic programming matrix (not the automaton). The code is from
the author.

Wu-Manber-Myers [26] applies a Four Russians technique to the dynamic
programming matrix, storing the states of the automaton in computer words.
The code is from the authors, and is used with » = 5 as suggested in [26] (r
is related with the size of the Four Russians tables).

Agrep [23] is a widely distributed approximate search software, that imple-
ments a hybrid algorithm. It is limited, although not inherently, to m < 29
and k < 8, so it is only included in the test for small patterns. Because of
its match reporting policy and its options, it is hard to compare fairly with
the other algorithms, but we include it as a reference point.

Ours are our algorithms.

We tested random patterns against 1 Mb of random text on a Sun SparcClassic,
of approximately Specmark 26, running SunOS 4.1.3, with 16 Mb of RAM. We



use w = 32 and o = 32 (typical case in text searching). Each data point was
obtained by averaging the Unix’s user time over 10 trials.

Figure 5 (right side) summarizes the results, showing in which case should each
algorithm be applied. As it can be seen, our heuristic is the best for moderate
values of m and «, otherwise Chang is the best choice. We made three types of
tests:

Small patterns: we tested the case m = 9,k = 1..8, using our simple algorith-
m (no partitions needed). The result is shown in Figure 6. Note that our
algorithm is by far more efficient than any other when the problem fits in a
single word. However, the heuristic of j = k+1 (i.e. [5]) is slightly faster for
a<1/3.

—o— Ukkonen

— Chang

—x— Suntinen-Tarhio

- - - Baeza-Yates/Perleberg
—o— Wu-Manber

—o— Wright (5 bits)

""" Wu-Manber-Myers
—o— Agrep

— Ours (simple)

0 T T T T T T 1
1 2 3 4 5 6 7 8

Fig. 6. Times compared for small m =9 (in seconds).

Moderate patterns: we tested the cases m = 31,k = 1..30 and m = 61,k =
1..60, where the simple algorithm cannot be used. The result for m = 31 is
shown in Figure 7 (left plot). We tested Agrep for m = 29 and & = 1..8, and
found it worse than many others for m = 31.

For m = 31, we have ag = 0.34, oy = 0.59 (k = 10 and k = 18, respectively).
Note that, as expected, [5] is the best choice for & < g, problem partitioning
is the best for ay < a < a7, and automaton partitioning is the best for
a > ay. Since m is moderate, this combined heuristic is the fastest, except
for Chang and Wu-Manber-Myers, which are better for o from «; to short
before 1.

Note that for a < g, it 1s not clear which is the best among problem and
automaton partitioning (since the best choice is to combine them). Note also



that problem partitioning behaves as O(\/E n) for fixed m and o < «;.

For m = 61, we have ap = 0.28, vy = 0.55 (k = 17 and k = 33, respectively,
what matches the simulation). In this case, automaton partition is noticeable
worse, and outperformed by dynamic programming.

120
t

90

60

30

0 T T T T 1
100 200 300 400 500

—o— Ukkonen — — Baeza-Yates/Perleberg -+ Wu-Manber-Myers
— Chang —o— Wu-Manber — Ours (problem part.)
—x— Suntinen-Tarhio —— Wright (5 bits) — = Ours (automaton part.)

Fig.7. Times in seconds for moderate m = 31 and k¥ = 0..30 (left) and for large
m = 20..500 and o = 0.3 (right).

Very long patterns: we tested the case o = 0.3 for m up to 500. Figure 7
(right plot) shows the results.
As it can be seen, reduction to exact matching is better up to m = 100 (we
predict 105). Automaton partition is never the best choice. Our combined
algorithm is the best except again for Chang, which is slightly better.
Note that automaton partition becomes worse than dynamic programming
somewhere between m = 100 and m = 160. Our analysis predicts 152.

6 Concluding Remarks

We presented a new algorithm for approximate pattern matching, based on the
simulation of an automaton by diagonals. This enables the possibility of comput-
ing the new values in parallel, using bit-parallelism. This is done if the problem
fits in a single computer word (i.e. (m — k)(k + 2) < w). If it does not, we
show a technique to partition the automaton into sub-automata. We show an-
other technique to partition the problem into subproblems, that are searched
with the simple algorithm and the candidate matches later verified. A special
case of problem partitioning reduces the problem to exact search. The combined



algorithm is O(n) for small patterns or small o, O(\/km/logn n) for medium
a, and O((m — k)kn/logn) for large «.

We analyzed the optimum strategy to combine the algorithms and showed ex-
perimentally that our algorithm is the fastest for moderate patterns and error
ratios. The longer the patterns, the smaller the error ratios for which our algo-
rithm is the best. In the other cases, [6] is the best, except for k very close to
m, where automaton partitioning becomes O(mn/logn) and outperforms the
others.

As in the shift-or algorithm for exact matching [4], we can specify a set of
characters at each position of the pattern instead of a single one (e.g. to search
for “text” in case-insensitive, we search for {t,THe, E}{xz, X}{t,T}). In fact,
we can represent any “limited expression” | as defined in [26]. This is achieved
by modifying the ¢ table, making any element of the set to match that position,
with no running time overhead.

We can modify the algorithm to match whole words, by eliminating the initial
empty transition (then the automaton computes edit distance), running the algo-
rithm only from word beginnings (where we re-initialize D = D, ), and checking
matches only at the end of words.

Although in this work we deal with finite alphabets, we can easily extend our
algorithms for the infinite case, since the tables must only be filled for charac-
ters present in the pattern. In this case, a logm factor must be added to the
complexities (to search into the tables), and the probability for two characters
to be equal should no longer be 1/ but a given p. This last modification allows
also to analyze alphabets with non-uniform distribution.

Searching with different integral costs for insertion and substitution (including
not allowing such operations) can be accomodated in our scheme, but deletion
is built into the model in such a way that different costs for deletions cannot be
accomodated.

The combination of problem and automaton partitioning may be useful in the
area just past «q, since the limit of low number of verifications can be moved
to the right of a; by using a smaller j and partitioning the resulting automata.
This provides a smooth transition between problem and automaton partitioning,
since for av > 1—m1/(m_k)/\/5 we have j = 1, i.e. pure automaton partitioning.
This subject i1s currently under study.

More work, both analytical and experimental, is needed to refine the selection
among heuristics. For example, we did not take into account the different con-
stants involved in the shapes of the partitioned automata, or due to the heuristic
of the first £ + 1 characters. The case of long patterns, small alphabets or high
« deserves more study, since we concentrated mainly on text searching in this
work.
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Appendix. Upper bound for f(m,k)

To prove f(m, k) = O(y™), we consider an upper bound to f: suppose a text
area Text[a..b] matches the pattern. Since we only report segments whose last
character matches the pattern, we know that b is in pat. We consider a as the
first character matching the pattern. Then, the length s = 6 — a + 1 is in the
range m — k..m + k. Since there are up to k errors, at least m — k characters
of the pattern must be also in the text. Under a uniform model, the probability
of that many matches is 1/0” 7%, Since these characters can be anyone in the
pattern and in the text, we have

o= £ A E AR

s=m—k s=m+1

where the two combinatorials count the ways to choose the m — k (or s — k)
matching characters from the pattern and from the text, respectively. The “—2”
in the second combinatorials are because the first and last characters of the text
must match the pattern. We divided the sum in two parts because if the area
has length s > m, then more than m — k characters must match, namely s — k.
See Figure 8.

First assume constant « (we cover the other cases later). We begin with the first

summation, which is easy to solve exactly to get (1—«) (T]’;)Z/Um_k. However, we
prefer to analyze its largest term (the last one), since it is useful for the second
summation too. The last term is



First one Last one
matches matches

Text

Pattern: m=9, k=5

m At least 9-5=4 matches

Fig. 8. Upper bound for f(m, k).
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where the last step is done using Stirling’s approximation to the factorial.

Clearly, for the summation to be O(y™) (y < 1), this term must be of that order,
and this happens if and only if the base of the exponential is < . On the other
hand, the first summation is bounded by k& + 1 times the last term, so the first
summation is O(y™) if and only if this last term is. That is

-
11— 1

1
> =
7= ('Yaza(l - O‘)z(l_a)) 'yﬁaf—aa (1—«)?

It is easy to show analytically that e~ < o™= < 1if 0 < o < 1, so for y=1it
suffices that o > e?/(1 — a)?, or @ < 1 — ¢/+/o, while for arbitrary 7,

[
oy T

is a sufficient condition for the largest (last) term to be O(y™), as well as the
whole first summation.

a<1

(7)

We address now the second summation, which is more complicated. First, observe
that



L)) < S A0

s=m+1 s=m

a bound that we later find tight. In this case, it is not clear which is the larger
term. We can see each term as

1L /m\/k+r
o’ \ r k
where m — k < r < m. By considering r = am (¢ € [l — &, 1]) and applying

again the Stirling’s approximation, the problem is to maximize the base of the
resulting exponential, that is

(l,_i_ a)x+oz
O-xl;Zx(l _ l;)l—xaoz

h(z) =

Elementary calculus leads to solve a second-grade equation that has roots in
the interval [1 — a, 1] only if ¢ < a/(1 — a)?. Since due to Eq. (7) we are only
interested in o > 1/(1 — «)?, h'(z) does not have roots, and the maximum of
h(z) is at # = 1 — . That means r = m — k, i.e. the first term of the second
summation, which is the same larger term of the first summation.

We conclude that

fim, k) < Qk“'ym (HO(%)) = 0(H™)

m

Since this is an O() result, it suffices for the condition to hold after a given my,
so if k = o(m) we always satisfy the condition.

We conducted experiments to determine the real limit for o (since this is an
upper bound). The experimental curve fits almost exactly our formula, if we
replace e by 1. Thus, we make that replacement in the heuristics.

We can prove, with a different model, that for « > 1 —1/0 or k = 2(m — o(m))
the cost of verifications is significant.

This article was processed using the IANTRpX macro package with LLNCS style



