
A Faster Algorithm forApproximate String Matching ?Ricardo Baeza-Yates Gonzalo NavarroDepartment of Computer ScienceUniversity of ChileBlanco Encalada 2120 - Santiago - Chilefrbaeza,gnavarrog@dcc.uchile.clAbstract. We present a new algorithm for on-line approximate stringmatching. The algorithm is based on the simulation of a non-deterministic�nite automaton built from the pattern and using the text as input. Thissimulation uses bit operations on a RAM machine with word lengthO(log n), being n the maximum size of the text. The running timeachieved is O(n) for small patterns (i.e. of length m = O(plog n)),independently of the maximum number of errors allowed, k. This al-gorithm is then used to design two general algorithms. One of thempartitions the problem into subproblems, while the other partitions theautomaton into sub-automata. These algorithms are combined to obtaina hybrid algorithm which on average is O(n) for moderate k=m ratios,O(pmk= log n n) for medium ratios, and O((m� k)kn= log n) for largeratios. We show experimentally that this hybrid algorithm is faster thanprevious ones for moderate size of patterns and error ratios, which is thecase in text searching.1 IntroductionApproximate string matching is one of the main problems in classical stringalgorithms, with applications to text searching, computational biology, patternrecognition, etc. Given a text of length n, a pattern of length m, and a maximalnumber of errors allowed, k, we want to �nd all text positions where the patternmatches the text up to k errors. Errors can be substituting, deleting or insertinga character. The solutions to this problem di�er if the algorithm has to beon-line (that is, the text is not known in advance) or o�-line (the text can bepreprocessed). In this paper we are interested in the �rst case, where the classicaldynamic programming solution is O(mn) running time [13, 14].In the last years several algorithms have been presented that achieve O(kn)comparisons in the worst-case [20, 9, 10, 11] or in the average case [21, 9], bytaking advantage of the properties of the dynamic programming matrix. In thesame trend is [6], with average time complexity O(kn=p�) (� is the alphabetsize). The algorithms which are O(kn) in the worst case tend to involve too muchoverhead, and are not competitive in practice.? This work has been supported in part by FONDECYT grant 1950622.



Other approaches attempt to �lter the text, reducing the area in which dynamicprogramming needs to be used [18, 19, 17, 16, 7, 8]. These algorithms achievesublinear expected time in many cases (O(kn log� m=m) is a typical �gure) formoderate k=m ratios, but the �ltration is not e�ective for larger ratios. A simpleand fast �ltering technique is shown in [5], which yields an O(n) algorithm formoderate k=m ratios.Yet other approaches use bit-parallelism [2, 25] in a RAMmachine of word lengthO(logn) to reduce the number of operations. [24] achieves O(kmn= logn) time,which is competitive for patterns of length O(logn). [22] packs the cells di�er-ently to achieve O(mn log�= logn) time complexity. [26] uses a Four Russiansapproach and packs the table in machine words, achieving O(kn= logn) time onaverage.We present a new algorithm which combines the ideas of taking advantage ofthe properties of the matrix, �ltering the text and using bit-parallelism, beingfaster than previous work for moderate size patterns and error ratios, as we areinterested in text searching.We model the search with a non-deterministic �nite automaton (NFA) builtfrom the pattern and using the text as input. This automaton is simulatedby an algorithm based on bit operations on a RAM machine of word lengthO(logn). The algorithm achieves running time O(n), independently of k, forsmall patterns (i.e. mk = O(logn)). This restricted algorithm is used to designtwo general algorithms.A �rst one partitions the problem into subproblems, and has average timecost O(mn= logn) for small � = k=m (i.e. � < 1= logn), otherwise it isO(pmk= logn n) (i.e. O(pk n) for m = O(logn), else O(kn)). It involves al-so a cost to verify potential matches, which is shown to be not signi�cant for� < �1 � 1 � m1=plogn=p�. This algorithm is a generalization of an earlierheuristic [23, 5], that reduces the problem to subproblems of exact matchingand is shown to be O(n) for � < �0 = 1=(3 log�m).The second one partitions the automaton in sub-automata, being O(k2n=(p� logn)) on average. For � > 1 � 1=p� its worst case, O((m � k)kn= logn), domi-nates. This algorithm is shown to be better than dynamic programming fork � log(n)=(1� �).We analyze the optimal way to combine the algorithms.We show experimentallythat this hybrid algorithm is faster than previous ones, for moderate m and �.Table 1 shows the combined complexity.As a corollary of our analysis, we give tight bounds for the probability of �ndingan occurrence of a pattern of length m with k errors starting at a �xed positionin random text. We also show that the heuristic of [21] works O(kn) time onaverage, with a constant tighter than that of [6].



Condition Complexity Method usedmk = O(log n) O(n) the simple algorithm� < �0 O(n) reducing to exact match�0 < � < �1 O�pmk= log n n� problem partitioning� > �1 ^ k < log n=(1� �) O((m� k)kn= log n) automaton partitioning� > �1 ^ k > log n=(1� �) O(mn) plain dynamic programmingTable 1. Complexity of our hybrid algorithm.2 PreliminariesThe problem of approximate string matching can be stated as follows: givena (long) Text of length n, and a (short) pattern pat of length m, both beingsequences of characters from an alphabet �, �nd all segments (called \occur-rences" or \matches") of Text whose edit distance to pat is at most k, the numberof allowed errors. We use � = j�j.The edit distance between two strings a and b is the minimum number of editoperations needed to transform a into b. The allowed edit operations are deleting,inserting and replacing a character. Therefore, the problem is non-trivial fork < m.Stated that way, we should report a number of segments that contain others.Because of that, it is common to report only minimal or maximal segments. Itis also common to report not the matching segments but only their start or endpoint. In this work we focus on returning end points of minimal segments (i.e.those not containing others).We use a C-like notation for the operations (e.g. &; j;==; ! =;^; >>). We usetext to denote the current character of Text and, unlike C, str[j] to denote thej-th character of str. Except when otherwise indicated, the log function denoteslogarithm in base 2.Consider the NFA for searching text with at most k = 2 errors shown in Fig-ure 1. Every row denotes the number of errors seen. The �rst one 0, the secondone 1, and so on. Every column represents matching the pattern up to a givenposition. At each iteration, a new text character is considered and the automatonchanges its states. Horizontal arrows represent matching a character (they canonly be followed if the corresponding match occurs), vertical arrows representinserting a character in the pattern, solid diagonal arrows represent replacing acharacter, and dashed diagonal arrows represent deleting a character of the pat-tern (they are empty transitions, since we delete the character from the patternwithout advancing in the text). Finally, the empty transition at the initial stateallows to consider any character as a potential starting point of a match, andthe automaton accepts a character (as the end of a match) whenever a rightmoststate is active. If we do not care about the number of errors, we can consider



�nal states those of the last full diagonal. Because of the empty transitions, thismakes acceptance equivalent to the lower-right state being active.This NFA has (m+1)(k+ 1) states. We assign number (i; j) to the state at rowi and column j, where i 2 0::k; j 2 0::m. Initially, the active states at row i areat the columns from 0 to i, to represent the deletion of the �rst i characters ofthe pattern.�
� � ���� ��
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no errors1 error2 errorsFig. 1. An NFA for approximate string matching. Unlabeled transitions match anycharacter. Active states are (2; 3), (2; 4) and (1; 3), besides those always active of thelower-left triangle.Consider the boolean matrix A corresponding to this automaton. Ai;j is 1 ifstate (i; j) is active and 0 otherwise. The matrix changes as each character ofthe text is read. The new values A0i;j can be computed from the current ones bythe following ruleA0i;j = (Ai;j�1 & ( text == pat[j] )) j Ai�1;j j Ai�1;j�1 j A0i�1;j�1 (1)which is used for i 2 0::k; j 2 1::m. If i = 0 only the �rst term is used. Note thatthe empty transition is represented by immediately propagating a 1 at any posi-tion to all the elements following it in its diagonal, all in a single iteration (thuscomputing the �-closure). The empty transition at the initial state is representedby the fact that column j = 0 is never updated.The main comparison-based algorithms for approximate string matching consistfundamentally in simulating this matrix by columns, while many bit-parallelism



approaches simulate it by rows or by diagonals (in this last case, of the dynamicprogramming matrix). In all cases, the dependencies introduced by the diagonalempty transitions prevent the parallel computation of the new values. We presentin the next section an approach that avoids this dependence, by simulating theautomaton using diagonals, such that each diagonal captures the �-closure [3].This idea leads to a new and fast algorithm.3 A New AlgorithmSuppose we use just the full diagonals of the automaton (i.e. those of lengthk + 1). This presents no problem, since those (shorter) diagonals below the fullones have always value 1, while those past the full ones do not in
uence state(m; k). The last statement may not be obvious, since the vertical transitionsallow to carry 1's from the last diagonals to state (m; k). But each 1 presentat the last diagonals must have crossed the last full diagonal, where the emptytransition (deletion) immediately would have copied it to the state (m; k). Thatis, any 1 that goes again to state (m; k) corresponds to a segment containing onethat has already been reported.Another observation is that, if state (i; j) is active at any time, then states(i+ d; j+ d) are also active for all d > 0 (due to the empty deletion transition).Thus, if we number diagonals regarding the column at which they begin, thestate of each diagonal i can be represented by a number Di, the smallest rowvalue active in that diagonal (i.e. the smallest error). Then, the state of thissimulation consists of m � k + 1 values in the range 0::k + 1. Note that D0 isalways 0, hence, there is no need to store it.The new values for Di (i 2 1::m � k) after we read a new text character arederived from Eq. (1)D0i = min( Di + 1; Di+1 + 1; g(Di�1; text) ) (2)where g(Di; c) is de�ned asg(Di; c) = min( fk + 1g [ f j = j � Di ^ pat[i+ j] == c g )The �rst term of the D0 update formula represents a substitution, which followsthe same diagonal. The second term represents the insertion of a character (com-ing from the next diagonal above). Finally, the last term represents matching acharacter: we select the minimum active state (hence the min of the g formula)of the previous diagonal that matches the text and thus can move to the currentone.The deletion transitions are represented precisely by the fact that once a statein a diagonal is active, we consider active all subsequent states on that diagonal(so we keep the minimum). The empty initial transition corresponds to D0 = 0.Finally, we �nd a match in the text whenever Dm�k � k.



This simulation has the advantage that can be computed in parallel for all i.We use this property to design a fast algorithm that exploits bit-parallelism forsmall patterns, and then extend it to handle the general case by partitioningeither the problem or the automaton.3.1 A Linear Algorithm for Small PatternsWe show in this section how to simulate the automaton by diagonals using bit-parallelism, assuming that our problem �ts in a single word (i.e. (m � k)(k +2) � w, where w is the length of the computer word). We �rst select a suitablerepresentation for our problem and then describe the algorithm.Since we have m�k non-trivial diagonals, and each one takes values in the range0::k+ 1, we need at least (m � k)dlog2(k + 2)e bits.However, the g function cannot be computed in parallel for all i with this optimalrepresentation. It can be precomputed and stored, but it takes O(�(k + 1)m�k)space if it has to be accessed in parallel for all i. At this exponential space cost,the automaton approach of [21] is preferable.Therefore, we use unary encoding of the Di values, since in this case g can becomputed in parallel. Thus, we need (m� k)(k+ 2) bits to encode the problem,where each of the m� k blocks of k + 2 bits stores the value of a Di.Each value of Di is stored as 1's aligned to the right of its (k + 2)-wide block(thus there is a separator at the highest bit having always 0). The blocks arestored contiguously, the last one (i = m�k) aligned to the right of the computerword. Thus, our bit representation of state D1; :::; Dm�k isD = 0 0k+1�D1 1D1 0 0k+1�D2 1D2 ::: 0 0k+1�Dm�k 1Dm�kwhere we use exponentiation to mean digit repetition. Observe that, in this way,what our word contains is a rearrangement of the 0's and 1's of (the relevantpart of) the automaton. The rearrangement exchanges 0's and 1's and reads thediagonals left-to-right and bottom-to-top (see Figure 2).With this representation, taking minimum is equivalent to anding, adding 1 isequivalent to shifting one position to the left and oring with a 1 at the rightmostposition, and accessing the next or previous diagonal means shifting a block (k+2positions) to the left or right, respectively.The computation of the g function is carried out by de�ning, for each characterc, an m bits long mask t[c], representing match (0) or mismatch (1) against thepattern, and then computing a mask T [c] having at each block the (k + 1) bitslong segment of t[c] that is relevant to that block (see Figure 2). That is,t[c] = (c ! = pat[m]) (c ! = pat[m� 1]) ::: (c ! = pat[1])where each condition stands for a bit and they are aligned to the right. So weprecompute



0 1 1 0x e t 0 0 1 1t x eseparator separator(0,1) (1,3) (0,2)(2,4)(1,2) �nal state0 0 0 00 1 1 1D (2,3)T['t']Fig. 2. Encoding of the example NFA.T [c] = 0 sk+1(t[c]; 0) 0 sk+1(t[c]; 1) ::: 0 sk+1(t[c];m� k � 1)for each c, where sj(x; i) shifts x to the right in i bits and takes the last j bitsof the result (the bits that \fall" are discarded). Note that T [c] �ts in a word ifthe problem does.We have now all the elements to implement the algorithm. We represent thecurrent state by a computer word D. The value of all Di's is initially k + 1, sothe initial value of D is Din = (0 1k+1)m�k. The formula to update D is derivedfrom Eq. (2) D0 = (D << 1) j (0k+11)m�k& (D << (k + 3)) j (0k+11)m�k�10 1k+1& (((x+ (0k+11)m�k) ^ x) >> 1)& Din (3)where x = (D >> (k + 2)) j T [text]The update formula is a sequence of and's, corresponding to the min of Eq. (2).The �rst line corresponds to Di + 1, the second line to Di+1 + 1, the third lineis the g function applied to the previous diagonal, and the fourth line ensuresthe invariant of having zeros in the separators (needed to limit the propagationof \+").Note that we are assuming that the shifts get zeros from both borders of theword (i.e. unsigned semantics). If this is not so, additional masking is necessary.We detect that the state (m; k) is active by checking whether D & (1 << k)is 0. When we �nd a match, we clear the last diagonal. This ensures that thereported occurrences always end with a match.



A further improvement is not to run the automaton through all the text, but toscan the text looking for any of the k + 1 initial characters of the pattern, andonly then starting the automaton. When the automaton returns to the initialcon�guration, we restart the scanning. This is much faster and correct, since oneof the k+1 initial characters of the pattern must be present in any result with atmost k errors. We precompute a boolean table S[c], that says for each characterc whether it is one of the �rst k+1 of the pattern. Observe that this table alonesolves the problem for the case k = m� 1 (since each positive answer of S is anoccurrence).Figure 3 presents the complete algorithm. To avoid complications, we do notre�ne the preprocessing, which can be done more e�ciently than what the codesuggests.search (Text; n; pat;m; k)f /* preprocessing */for each c 2 �f t[c] = (c ! = pat[m]) (c ! = pat[m� 1]) ::: (c ! = pat[1])T [c] = 0 sk+1(t[c];0) 0 sk+1(t[c];1) ::: 0 sk+1(t[c];m� k � 1)S[c] = (c 2 pat[1::k+ 1])gDin = (0 1k+1)m�kM1 = (0k+11)m�kM2 = (0k+11)m�k�1 0 1k+1M3 = 0(m�k�1)(k+2) 0 1k+1G = 1 << k/* searching */D = Dini = 0while (++ i <= n)if (S[Text[i]]) /* is one of the first k+ 1 characters? */do f x = (D >> (k + 2)) j T [Text[i]]D = ((D << 1) j M1) & ((D << (k + 3)) j M2)& (((x+M1) ^ x) >> 1) & Dinif (D & G == 0)f report a match ending at iD = D j M3 /* clear last diagonal */ggwhile (D ! = Din && ++i <= n)g Fig. 3. Algorithm to search for a short pattern.



3.2 Partitioning Large AutomataIf the automaton does not �t in a single word, we can partition it using a numberof machine words for the simulation.First suppose that k is small and m is large. Then, the automaton can be \hori-zontally" split in as many sub-automata as necessary, each one holding a numberof diagonals. We call \columns" those sets of diagonals packed in a single ma-chine word. Those sub-automata behave di�erently than the simple one, sincethey must communicate their �rst and last diagonals with their neighbors.Thus, if (m � k)(k + 2) > w, we partition the automaton horizontally in Jcolumns, where J = d(m�k)(k+2)=we. Note that for this idea to work we needthat at least one diagonal �ts in a single machine word, i.e. k + 2 � w.Suppose now that k is large (close to m, so that the width m � k is small). Inthis case, the automaton is not wide but tall, and a vertical partitioning becomesnecessary. The sub-automata behave di�erently than the previous ones, since wemust propagate the �-transitions down to all subsequent sub-automata.In this case, if (m � k)(k + 2) > w, we partition the automaton vertically in Irows, where I has the same formula as J . The di�erence is that, in this case, weneed that at least one row �ts in a machine word, i.e. 2(m � k) � w (the 2 isbecause we need an over
ow bit for each diagonal of each cell).When none of the two applicability conditions hold, we need a generalized par-tition in rows and columns. We use I rows and J columns, so that each cellcontains `r bits of each one of `c diagonals. It must hold (`r + 1)`c � w.There are many options to pick (I; J) for a given problem. We show later thatthey are roughly equivalent in cost (except for integer round-o�s that are notice-able in practice). We use I as small as possible and then determine J . That is,I = d(k+1)=(w�1)e, `r = d(k+1)=Ie, `c = bw=(`r+1)c and J = d(m�k)=`ce.The cells of the last column and the last row may be smaller, since they havethe residues.The simulation of the automaton is now more complex, but follows the sameprinciple of the update formula (3). We have a matrix of automata Di;j (i 20::I � 1; j 2 0::J � 1), and a matrix of masks Ti;j coming from splitting theoriginal T . The new update formula isD0i;j = (Di;j << 1) j ((Di�1;j >> (`r � 1)) & (0`r1)`c )& ((Di;j << (`r + 2)) j((Di�1;j << 2) & (0`r1)`c ) j(Di�1;j+1 >> ((`r + 1)(`c � 1) + `r � 1)) j(Di;j+1 >> ((`r + 1)(`c � 1)� 1)))& (((x+ (0`r1)`c ) ^ x) >> 1)& Din



where x = ((Di;j >> (`r + 1)) j (Di;j�1 << (`r + 1)(`c � 1)) j Ti;j [text])& ((D0i�1;j >> (`r � 1)) j (1`r0)`c )and it is assumed D�1;j = Di;J = 1(`r+1)`c and Di;�1 = 0(`r+1)`c .We �nd a match whenever DI�1;J�1 has a 0 in its last position, i.e. at (k �`r(I � 1)) + (`r + 1)(`cJ � (m � k)), counting from the right. In that case, wemust clear the last diagonal, i.e. that of Di;J�1 for all i.The fact that we select the minimal I and that we solve the case k = m�1 witha simpler algorithm (the S table) causes this general schema to fall into threesimpler cases: (a) the automaton is horizontal, (b) the automaton is horizontaland only one diagonal �ts in each word, (c) the automaton spreads horizontallyand vertically but only one diagonal �ts in each word. Those cases can be solvedwith a simpler (two or three times faster) update formula.3.3 Partitioning Large ProblemsThe following lemma, which is a generalization of the idea presented in [24],suggests a way to partition a large problem into smaller ones.Lemma: If segm = Text[a::b] matches pat with k errors, and pat = p1:::pj (aconcatenation of sub-patterns), then segm includes a segment that matches atleast one of the pi's, with bk=jc errors.Proof: Suppose the opposite. Then, in order to transform pat into segm, weneed to transform each pi into an si, such that segm = s1:::sj. But since no pi ispresent in segm with less than bk=jc errors, each pi needs at least 1+ bk=jc editoperations to be transformed into any segment of segm (si in particular). Thusthe whole transformation needs at least j(1 + bk=jc) > j(k=j) = k operations.A contradiction. 2Thus, we can reduce the number of errors if we divide the pattern, provided wesearch all the sub-patterns. Each match of a sub-pattern must be checked todetermine if it is in fact a complete match. Suppose we �nd at position i in Textthe end of a match for the sub-pattern ending at position j in pat. Then, the po-tential match must be searched in the area Text[i� j+ 1� k; i� j+1+m+ k],an (m + 2k)-wide area. This checking must be done with a classical algorith-m needing little preprocessing, e.g. the variation of [21] to standard dynamicprogramming. A related idea was used in [12] to search indexed text.To perform the partition, we pick an integer j, and split the pattern in j sub-patterns of length m=j (more precisely, if m = qj + r, with 0 � r < j, rsub-patterns of length dm=je and j� r of length bm=jc). Because of the lemma,it is enough to check if any of the sub-patterns is present in the text with at mostbk=jc errors. Thus, we select j as small as possible such that the subproblems�t in a computer word, that is



j = min � r = �lmr m� �kr����kr�+ 2� � w ^ jmr k > �kr� � (4)where the second condition avoids searching a sub-pattern of length m0 withk0 = m0 errors (those of length dm=je are guaranteed to be longer than bk=jc ifm > k). Such a j always exists, since j = k + 1 implies searching with 0 errors.In case of 0 errors, we can use an Aho-Corasick machine [1] to guarantee O(n)total search time, or use a faster heuristic such as extending the Boyer-Moore-Horspool-Sunday algorithm [15] to multipattern search.Figure 4 shows the general algorithm, which is written that way for clarity. Ina practical implementation, it is better to run all sub-searches in synchroniza-tion, picking at any moment the candidate whose initial checking position is theleftmost in the set, checking its area and advancing that sub-search to its nextcandidate position. This allows to avoid re-verifying the same text because ofdi�erent candidates that imply overlapping areas. This is done by rememberingthe last checked position and keeping the state of the checking algorithm.ProblemPartition (Text; n; pat;m; k)f j = min f r = (dm=re � bk=rc)(bk=rc + 2) � w ^ bm=rc > bk=rcgif (j == 1) search (Text; n; pat;m; k)else f a = 0for r 2 0::j� 1f len = (r < m%j) ? dm=je : bm=jcb = a+ len� 1for each pos. i reported by search(Text;n; pat[a::b]; len; bk=jc)check the area Text[i� b+ 1� k; i� b+ 1 +m+ k]a = b+ 1g g g Fig. 4. Algorithm for problem partitioning.4 AnalysisIn this section we analyze the di�erent aspects of our algorithms, and obtain ageneral heuristic to combine them. Recall that � = k=m.4.1 The Simple AlgorithmThe preprocessing phase of this algorithm can be optimized to take O(� +mmin(m;�)) time, and it requires O(�) space. The search phase needs O(n)time.



However, this algorithm is limited to the case in which (m � k)(k + 2) � w. Inthe RAM model it is assumed logn � w, so a machine-independent bound is(m � k)(k + 2) � logn.Since (m� k)(k+2) takes its maximum value when k = m=2� 1, we can assurethat this algorithm can be applied whenever m � 2(pw � 1), independently ofk. That is, we have a linear algorithm for m = O(plogn), for example, m � 9for w = 32, or m � 14 for w = 64.4.2 Partitioning the AutomatonIf we divide the automaton in IJ sub-automata (I rows and J columns), wemust update I cells at each column. However, we use a heuristic similar to [21](i.e. not processing the m columns but only up to the last active one), so we donot work on all the diagonals, but only the active portion.To compute the expected last active diagonal, we �rst compute the last activecolumn in the heuristic of [21] (these are real columns of the matrix, not ourpacked diagonals), i.e. the largest r satisfying Cr � k (being Cr the smallest-rowactive state of column r). We follow the proof of [6], but we �nd a tighter bound.If we call L the last active column, we haveE(L) � K + Xr>K r P [Cr � k]for any K. We show in the next section that if k=r � 1 � e=p�, then P [Cr �k] = O(
r) with 
 < 1, thus we take K = k=(1� e=p�) to obtainE(L) � k1� e=p� + Xr>k=(1�e=p�) r O(
r) = k1� e=p� + O(1)which shows that, on average, the last active column is O(k).This re�nes the proof of [6] of that the heuristic of [21] is O(kn). Since thismeasures active columns and we work on active diagonals, we subtract k, toobtain that on average we work on ke=(p� � e) + 1 diagonals (one beyond thelast active one). Our experiments suggest that, although the formal proof needse, it is more accurate to replace e by 1. We do so in the following.Since we pack (m�k)=J diagonals in a single machine word, we work on averageon (k=(p� � 1) + 1) J=(m � k) words. But since there are only J columns, ourtotal complexity is I J min�1; 1m � k � kp� � 1 + 1�� nwhich shows that any choice for I and J is the same for a �xed IJ . SinceIJ � (m � k)(k + 1)=(w � 1), the �nal cost expression is independent (up toround-o�s) of I and J :



min�m � k ; kp� � 1 + 1� k + 1w � 1 n (5)which is O(k2n=(p� logn)) time, and is better if � � 1�1=p�, namely O((m�k)kn= logn) time. This last complexity is also the worst case of this algorithm.The preprocessing time and space complexity of this algorithm is O(mk�=w).4.3 Partitioning the ProblemThere are two main components in the cost of problem partitioning. One is thej simple searches that are carried out, and the other is the checks that must bedone. The �rst part is O(jn), while the second one costs O(jm2f(m=j; k=j)n),where f(m; k) is the probability that an automaton of size (k + 1) � (m + 1)accepts a given text position (observe that � is the same for the subproblems).The complexity comes from considering that we perform j independent searches,and each veri�cation costs O(m2). Clearly, in the worst case each text positionmust be veri�ed, and since we avoid re-checking the text, we have O((j+m)n) =O(mn) worst-case complexity, but we show that this does not happen on average.To determine j, we consider the following equation, derived from Eq. (4)�mj � kj��kj + 2� = wwhose solution isj = m � k +p(m � k)2 +wk(m � k)w = O�m=w +pmk=w� (6)That is, if � > 1=w, we have j = O(pmk=w) = O(k), otherwise we have j =O(m=w). If we further assume the general conditionm = O(w), then j = O(pk).A machine-independent complexity is obtained by assuming w = O(logn).Observe that we discarded the second condition of Eq. (4), namely bm=jc >bk=jc. This is because if bm=jc = bk=jc, then j > m � k, which implies � >1 � 1=(w � 1). As we show next, this value of � is outside our area of interest(i.e. it is larger than 1 � 1=p�), except for � > (w � 1)2 = 
(log2 n), that is,extremely large alphabets.The preprocessing time and storage requirements for the general algorithm arej times those of the simple one.In the Appendix we show that for � � 1�e= �p�
1=(2(1��))�, f(m; k) = O(
m),for 
 < 1. Thus, for � small enough, f(m=j; k=j) = O(
m=j ), which does nota�ect the complexity provided 
m=j = O(1=m2). This happens for 
 � 1=m2j=m.Hence, 1=
1=(2(1��)) � m2j=(2m(1��)) = mj=(m�k). Therefore, f(m=j; k=j) =O(1=m2) if � � �1, where



�1 = 1� ep� m jm�k = 1� ep� m 1+p1+w�1=(1��1)wup to where the cost of veri�cations is not signi�cant. We repeat that experi-mental results suggest that it is better to replace e by 1 in this formula. A goodapproximation for �1 (except for very large m) is �1 � 0:92�m1=pw=p�.4.4 The Heuristic of Reducing to Exact SearchWhen we partition the problem, we want to have as few subproblems as possible.However, the special case j = k+1 is di�erent, since in that case we search with0 errors, and a faster algorithm is possible (i.e. exact multipattern search). Thus,it is possible that in some cases we may prefer to increase j beyond its minimumvalue, setting it to k + 1. This is the heuristic used in [23, 5].To analyze this algorithm, we assume the use of an Aho-Corasick machine [1],which guarantees O(n) search time. However, in practice we �nd that an exten-sion of Boyer-Moore-Horspool-Sunday [15] to multipattern searching is faster.This extension consists of building a trie with the sub-patterns, and at eachposition searching the text into the trie. If we do not �nd a sub-pattern, weshift the window using the Sunday heuristic, taking the minimum shift amongall patterns (this minimum shift is, of course, precomputed).Any match of any of the sub-patterns is a candidate for a complete match. Sincethere are k + 1 sub-patterns of length m=(k + 1), the number of veri�cationsthat must be carried out is (k + 1)=�m=(k+1). For the veri�cation phase to benot signi�cant, it is necessary that the total number of veri�cations be O(1=m2)(the inverse of the cost to verify a candidate). This happens for � < �0 �1=(3 log� m).For values of m and k that allow discarding the e�ect of veri�cations, this algo-rithm is linear.4.5 A General StrategyIn this section we depict the hybrid algorithm, that takes the best among thedescribed strategies.We �rst discard trivial cases: k = 0 is solved with exact matching, e.g. [15], atO(n logm=m) cost on average; k = m � 1 is solved with the heuristic of the�rst k+ 1 characters (i.e. each hit of the S table is an occurrence) at O(n) cost;k � m means that any text position is an occurrence.If � < �0, reduction to exact search (i.e. problem partitioning with j = k + 1)is O(n), and even faster in practice than the simple algorithm for � < 1=3.For larger �, if the problem �ts in a single word (i.e. (m � k)(k + 2) � w), thesimple algorithm can be used, which is O(n). This algorithm is faster if we use



also the heuristic of the �rst k+ 1 characters (the S table). If the problem doesnot �t in a single word, we may use problem or automaton partitioning.For � > �1, problem partitioning is not advisable, because of the large numberof veri�cations (it is better to use the veri�cation code [21] alone). To see whenautomaton partitioning is better than plain dynamic programming, considerthat, for large �, the �rst one works O(IJ) = O((m � k)(k + 1)=(w � 1)) pertext position, while the second one works O(m). That means that for k < (w �1)=(1��)�1 (which is moderately large), it is better to partition the automaton,while for larger k it is better to just use dynamic programming. In both caseswe can use also the S table to reduce the average cost.What is left is the case of medium �. The general strategy is to partition theproblem in a number of subproblems, which are in turn solved by partitioningeach automaton. However, we �nd that except for � < p�=2(w+p�), the beststrategy is to apply only problem partitioning. Where convenient, the combina-tion of both partitions leads to an O(kn= logn) expected time algorithm.However, the area in which problem partitioning combined with automatonpartitioning is the best is outperformed by the heuristic of reducing to exactmatching, which is O(n) for � < �0. This �0 is larger than p�=2(w +p�) form < �2=3(1+w=p�), which is a huge limit to reach. So for intermediate �, problempartitioning is the best choice.Thus, the combined algorithm is O(n) for � < �0 or mk = O(logn), fromthere to � < �1 it is O(pmk= logn n), and O((m � k)k= logn) for larger �.Recall that, for the � in which it is applied, O(pmk= logn n) = O(kn), and itis O(pk n) if m = O(logn). Figure 5 (left side) shows the combined complexity.
�0 �00 �1 10 1t �k(m�k)wpmkw CHANG01 9� m2/31/3 30automaton partitioningproblem partitioningexact partitioning 60�1�0problem partitioningexact partitioning (j=k+1)part.automsimpleFig. 5. The complexities of our algorithm (left side) and areas where each algorithmis the best (right side) for � = 32 and w = 32.Observe that this schema gets worse as m grows, since the area � > �1 domi-nates, and automaton partition gets quickly worse than plain dynamic program-ming. Because of this, our algorithm is well suited for moderate patterns (or



comparatively small �), which is the case in text searching.5 Experimental ResultsIn this section we experimentally compare our algorithm against the fastestprevious algorithms we are aware of. We use the experiments to con�rm ouranalytical results about the optimal way to combine the heuristics, and to showthat the resulting hybrid algorithm is faster than previous work on moderatepatterns and error ratios.Since we compare only the fastest algorithms, we leave aside [14, 20, 9, 10,17], which were not competitive in our �rst experimental study. The algorithmsincluded in this comparison areUkkonen [21] is the standard dynamic programming algorithm,modi�ed to beO(kn) on average. This is the algorithm we use to verify potential matches.The code is ours.Chang [6] is the algorithm kn.clp, which computes only the places where thevalue of the dynamic programming matrix does not change along each col-umn. The code is from the author.Suntinen-Tarhio [16] is, to our knowledge, the best �ltration algorithm. Themethod is limited to � < 1=2, and the implementation to k � w=2� 3. Thecode is from the authors. We use s = 2 (number of samples to match) andmaximal q (length of the q-grams), as suggested in [16].Baeza-Yates/Perleberg [5] is essentially the heuristic j = k + 1, that ourhybrid algorithm uses in the appropriate case. The code is ours.Wu-Manber [24] uses bit-parallelism to simulate the automaton by rows. Ourimplementation (taken from Wright's tests [22]) is limited to m � 31, and itwould be slower if generalized.Wright [22] uses bit-parallelism to pack the diagonals (perpendicular to ours)of the dynamic programming matrix (not the automaton). The code is fromthe author.Wu-Manber-Myers [26] applies a Four Russians technique to the dynamicprogrammingmatrix, storing the states of the automaton in computer words.The code is from the authors, and is used with r = 5 as suggested in [26] (ris related with the size of the Four Russians tables).Agrep [23] is a widely distributed approximate search software, that imple-ments a hybrid algorithm. It is limited, although not inherently, to m � 29and k � 8, so it is only included in the test for small patterns. Because ofits match reporting policy and its options, it is hard to compare fairly withthe other algorithms, but we include it as a reference point.Ours are our algorithms.We tested random patterns against 1 Mb of random text on a Sun SparcClassic,of approximately Specmark 26, running SunOS 4.1.3, with 16 Mb of RAM. We



use w = 32 and � = 32 (typical case in text searching). Each data point wasobtained by averaging the Unix's user time over 10 trials.Figure 5 (right side) summarizes the results, showing in which case should eachalgorithm be applied. As it can be seen, our heuristic is the best for moderatevalues of m and �, otherwise Chang is the best choice. We made three types oftests:Small patterns: we tested the case m = 9; k = 1::8, using our simple algorith-m (no partitions needed). The result is shown in Figure 6. Note that ouralgorithm is by far more e�cient than any other when the problem �ts in asingle word. However, the heuristic of j = k+1 (i.e. [5]) is slightly faster for� � 1=3. � UkkonenChang� Suntinen-TarhioBaeza-Yates/Perleberg� Wu-Manber2 Wright (5 bits)Wu-Manber-Myers� AgrepOurs (simple)� � � � � � � �� �� � � � � � � �2 2 2 2 2 2 2 2� � � � � � � �
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Fig. 6. Times compared for small m = 9 (in seconds).Moderate patterns: we tested the cases m = 31; k = 1::30 and m = 61; k =1::60, where the simple algorithm cannot be used. The result for m = 31 isshown in Figure 7 (left plot). We tested Agrep for m = 29 and k = 1::8, andfound it worse than many others for m = 31.Form = 31, we have �0 = 0:34; �1 = 0:59 (k = 10 and k = 18, respectively).Note that, as expected, [5] is the best choice for � < �0, problem partitioningis the best for �0 < � < �1, and automaton partitioning is the best for� > �1. Since m is moderate, this combined heuristic is the fastest, exceptfor Chang and Wu-Manber-Myers, which are better for � from �1 to shortbefore 1.Note that for � < �0, it is not clear which is the best among problem andautomaton partitioning (since the best choice is to combine them). Note also



that problem partitioning behaves as O(pk n) for �xed m and � < �1.For m = 61, we have �0 = 0:28; �1 = 0:55 (k = 17 and k = 33, respectively,what matches the simulation). In this case, automaton partition is noticeableworse, and outperformed by dynamic programming.
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� UkkonenChang� Suntinen-Tarhio Baeza-Yates/Perleberg� Wu-Manber2 Wright (5 bits) Wu-Manber-MyersOurs (problem part.)Ours (automaton part.)Fig. 7. Times in seconds for moderate m = 31 and k = 0::30 (left) and for largem = 20::500 and � = 0:3 (right).Very long patterns: we tested the case � = 0:3 for m up to 500. Figure 7(right plot) shows the results.As it can be seen, reduction to exact matching is better up to m = 100 (wepredict 105). Automaton partition is never the best choice. Our combinedalgorithm is the best except again for Chang, which is slightly better.Note that automaton partition becomes worse than dynamic programmingsomewhere between m = 100 and m = 160. Our analysis predicts 152.6 Concluding RemarksWe presented a new algorithm for approximate pattern matching, based on thesimulation of an automaton by diagonals. This enables the possibility of comput-ing the new values in parallel, using bit-parallelism. This is done if the problem�ts in a single computer word (i.e. (m � k)(k + 2) � w). If it does not, weshow a technique to partition the automaton into sub-automata. We show an-other technique to partition the problem into subproblems, that are searchedwith the simple algorithm and the candidate matches later veri�ed. A specialcase of problem partitioning reduces the problem to exact search. The combined



algorithm is O(n) for small patterns or small �, O(pkm= logn n) for medium�, and O((m � k)kn= logn) for large �.We analyzed the optimum strategy to combine the algorithms and showed ex-perimentally that our algorithm is the fastest for moderate patterns and errorratios. The longer the patterns, the smaller the error ratios for which our algo-rithm is the best. In the other cases, [6] is the best, except for k very close tom, where automaton partitioning becomes O(mn= logn) and outperforms theothers.As in the shift-or algorithm for exact matching [4], we can specify a set ofcharacters at each position of the pattern instead of a single one (e.g. to searchfor \text" in case-insensitive, we search for ft; Tgfe; Egfx;Xgft; Tg). In fact,we can represent any \limited expression", as de�ned in [26]. This is achievedby modifying the t table, making any element of the set to match that position,with no running time overhead.We can modify the algorithm to match whole words, by eliminating the initialempty transition (then the automaton computes edit distance), running the algo-rithm only from word beginnings (where we re-initialize D = Din), and checkingmatches only at the end of words.Although in this work we deal with �nite alphabets, we can easily extend ouralgorithms for the in�nite case, since the tables must only be �lled for charac-ters present in the pattern. In this case, a logm factor must be added to thecomplexities (to search into the tables), and the probability for two charactersto be equal should no longer be 1=� but a given p. This last modi�cation allowsalso to analyze alphabets with non-uniform distribution.Searching with di�erent integral costs for insertion and substitution (includingnot allowing such operations) can be accomodated in our scheme, but deletionis built into the model in such a way that di�erent costs for deletions cannot beaccomodated.The combination of problem and automaton partitioning may be useful in thearea just past �1, since the limit of low number of veri�cations can be movedto the right of �1 by using a smaller j and partitioning the resulting automata.This provides a smooth transition between problem and automaton partitioning,since for � � 1�m1=(m�k)=p� we have j = 1, i.e. pure automaton partitioning.This subject is currently under study.More work, both analytical and experimental, is needed to re�ne the selectionamong heuristics. For example, we did not take into account the di�erent con-stants involved in the shapes of the partitioned automata, or due to the heuristicof the �rst k + 1 characters. The case of long patterns, small alphabets or high� deserves more study, since we concentrated mainly on text searching in thiswork.
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m), we consider an upper bound to f : suppose a textarea Text[a::b] matches the pattern. Since we only report segments whose lastcharacter matches the pattern, we know that b is in pat. We consider a as the�rst character matching the pattern. Then, the length s = b � a + 1 is in therange m � k::m + k. Since there are up to k errors, at least m � k charactersof the pattern must be also in the text. Under a uniform model, the probabilityof that many matches is 1=�m�k. Since these characters can be anyone in thepattern and in the text, we havef(m; k) � mXs=m�k 1�m�k� mm � k�� s � 2m� k � 2� + m+kXs=m+1 1cs�k� ms� k�� s� 2s � k � 2�where the two combinatorials count the ways to choose the m � k (or s � k)matching characters from the pattern and from the text, respectively. The \�2"in the second combinatorials are because the �rst and last characters of the textmust match the pattern. We divided the sum in two parts because if the areahas length s > m, then more than m� k characters must match, namely s � k.See Figure 8.First assume constant � (we cover the other cases later). We begin with the �rstsummation, which is easy to solve exactly to get (1��)�mk �2=�m�k. However, weprefer to analyze its largest term (the last one), since it is useful for the secondsummation too. The last term is
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At least 9-5=4 matchesFig. 8. Upper bound for f(m;k).1�m�k� mm � k�� m � 2m � k � 2� = (1 � �)2�m�k �mk�2�1 + O� 1m��= � 1�1���2�(1� �)2(1��)�m m�1 �1� �2�� +O� 1m��where the last step is done using Stirling's approximation to the factorial.Clearly, for the summation to be O(
m) (
 < 1), this term must be of that order,and this happens if and only if the base of the exponential is � 
. On the otherhand, the �rst summation is bounded by k + 1 times the last term, so the �rstsummation is O(
m) if and only if this last term is. That is� � � 1
�2�(1� �)2(1��)� 11�� = 1
 11��� 2�1�� (1� �)2It is easy to show analytically that e�1 � � �1�� � 1 if 0 � � � 1, so for 
 = 1 itsu�ces that � � e2=(1� �)2, or � � 1� e=p�, while for arbitrary 
,� � 1� ep�
 12(1��) (7)is a su�cient condition for the largest (last) term to be O(
m), as well as thewhole �rst summation.We address now the second summation,which is more complicated. First, observethat



m+kXs=m+1 1�s�k� ms � k�� s � 2s � k � 2� � m+kXs=m 1�s�k� ms� k��sk�a bound that we later �nd tight. In this case, it is not clear which is the largerterm. We can see each term as 1�r�mr��k + rk �where m � k � r � m. By considering r = xm (x 2 [1 � �; 1]) and applyingagain the Stirling's approximation, the problem is to maximize the base of theresulting exponential, that ish(x) = (x+ �)x+��xx2x(1� x)1�x��Elementary calculus leads to solve a second-grade equation that has roots inthe interval [1 � �; 1] only if � � �=(1� �)2. Since due to Eq. (7) we are onlyinterested in � � 1=(1 � �)2, h0(x) does not have roots, and the maximum ofh(x) is at x = 1 � �. That means r = m � k, i.e. the �rst term of the secondsummation, which is the same larger term of the �rst summation.We conclude thatf(m; k) � 2k + 1m 
m �1 +O� 1m�� = O (
m)Since this is an O() result, it su�ces for the condition to hold after a given m0,so if k = o(m) we always satisfy the condition.We conducted experiments to determine the real limit for � (since this is anupper bound). The experimental curve �ts almost exactly our formula, if wereplace e by 1. Thus, we make that replacement in the heuristics.We can prove, with a di�erent model, that for � > 1� 1=� or k = 
(m� o(m))the cost of veri�cations is signi�cant.
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