

1 Text Indexing for Simple Regular Expressions

2 **Hideo Bannai**

3 M&D Data Science Center, Institute of Integrated Research, Institute of Science Tokyo, Japan

4 **Philip Bille**

5 Technical University of Denmark, Lyngby, Denmark

6 **Inge Li Gørtz**

7 Technical University of Denmark, Lyngby, Denmark

8 **Gad M. Landau**

9 Department of Computer Science, University of Haifa, Haifa, Israel

10 **Gonzalo Navarro**

11 Department of Computer Science, University of Chile, Santiago, Chile

12 Center for Biotechnology and Bioengineering (CeBiB), Santiago, Chile

13 **Nicola Prezza**

14 DAIS, Ca' Foscari University of Venice, Venice, Italy

15 **Teresa Anna Steiner**

16 University of Southern Denmark, Odense, Denmark

17 **Simon Rumle Tarnow**

18 Technical University of Denmark, Lyngby, Denmark

19 — Abstract —

20 We study the problem of indexing a text $T[1..n] \in \Sigma^n$ so that, later, given a query regular expression
21 pattern R of size $m = |R|$, we can report all the occ substrings $T[i..j]$ of T matching R . The problem
22 is known to be hard for arbitrary patterns R , so in this paper we consider the following two types of
23 patterns. (1) *Character-class Kleene-star* patterns of the form $P_1 D^* P_2$, where P_1 and P_2 are strings
24 and $D = \{c_1, \dots, c_k\} \subset \Sigma$ is a *character-class* (2) *String Kleene-star* patterns of the form $P_1 P^* P_2$
25 where P , P_1 and P_2 are strings. In case (1), we describe an index of $O(n \log^{1+\epsilon} n)$ space (for any
26 constant $\epsilon > 0$) solving queries in time $O(m + \log n / \log \log n + occ)$ on constant-sized alphabets. We
27 also describe a more general solution working on any alphabet size. This result is conditioned on the
28 existence of an *anchor*: a character of $P_1 P_2$ that does not belong to D . We justify this assumption
29 by proving that if an anchor is not present, no efficient indexing solution can exist unless the Set
30 Disjointness Conjecture fails. In case (2), we describe an index of size $O(n)$ answering queries in
31 time $O(m + (occ + 1) \log^\epsilon n)$ on any alphabet size.

32 **2012 ACM Subject Classification** Theory of computation → Pattern matching

33 **Keywords and phrases** Text indexing, regular expressions, data structures

34 **Digital Object Identifier** 10.4230/LIPIcs.CPM.2025.1

35 **Funding** *Hideo Bannai*: JSPS KAKENHI Grant Number JP24K02899

36 *Philip Bille*: Danish Research Council grant DFF-8021-002498

37 *Inge Li Gørtz*: Danish Research Council grant DFF-8021-002498

38 *Gonzalo Navarro*: Basal Funds FB0001 and AFB240001, ANID, Chile.

39 *Nicola Prezza*: Funded by the European Union (ERC, REGINDEX, 101039208). Views and opinions
40 expressed are however those of the author(s) only and do not necessarily reflect those of the European
41 Union or the European Research Council Executive Agency. Neither the European Union nor the
42 granting authority can be held responsible for them.

43 *Teresa Anna Steiner*: Supported by a research grant (VIL51463) from VILLUM FONDEN.

44 **Acknowledgements** Work initiated at Dagstuhl Seminar 24472 "Regular Expressions: Matching and
45 Indexing"

© Hideo Bannai, Philip Bille, Inge Li Gørtz, Gad Landau, Gonzalo Navarro, Nicola Prezza, Teresa
Anna Steiner, Simon Rumle Tarnow ;

licensed under Creative Commons License CC-BY 4.0

36th Annual Symposium on Combinatorial Pattern Matching (CPM 2025).

Editors: P. Bonizzoni and V. Mäkinen; Article No. 1; pp. 1:1–1:17

Leibniz International Proceedings in Informatics

LIPICS Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

46 **1** Introduction

47 A regular expression R specifies a set of strings formed by characters from an alphabet Σ
 48 combined with concatenation (\cdot), union (\mid), and Kleene star (*) operators. For instance,
 49 $(a|(b \cdot a))^*$ describes the set of strings of as and bs such that every b is followed by an a . The
 50 *text indexing for regular expressions problem* is to preprocess a text T to support efficient
 51 *regular expression matching queries* on T , that is, given a regular expression R , report all
 52 occurrences of R in T . Here, an occurrence is a substring $T[i..j]$ that matches any of the
 53 strings belonging to the regular language of R . We also consider *existential regular expression*
 54 *matching queries*, that is, determining whether or not there is an occurrence of R in T . The
 55 goal is to obtain a compact data structure while supporting efficient queries.

56 Regular expressions are a fundamental concept in formal language theory introduced by
 57 Kleene in the 1950s [25], and regular expression pattern matching queries are a basic tool in
 58 computer science for searching and processing text. Standard tools such as `grep` and `sed`
 59 provide direct support for regular expression matching in files, and the scripting language
 60 `perl` [46] is a complete programming language designed to support regular expression match-
 61 ing queries easily. Regular expression matching appears in many large-scale data processing
 62 applications, such as internet traffic analysis [23, 29, 47], data mining [18], databases [33, 34],
 63 computational biology [38], and human-computer interaction [24]. Most of the solutions are
 64 based on the efficient algorithms for the classic *regular expression matching problem*, where
 65 we are given both the text T and the regular expression R as input, and the goal is to report
 66 the occurrences of R in T . However, in many scenarios, the text T is available before we are
 67 given the regular expressions, and we may want to ask multiple regular expression matching
 68 queries on T . In this case, we ideally want to take advantage of preprocessing to speed up
 69 the queries, and thus, the indexing version of the problem applies.

70 While the regular expression matching problem is a well-studied classic problem [2, 3,
 71 5, 6, 8, 12, 13, 14, 17, 35, 44, 45], surprisingly few results are known for the text indexing for
 72 regular expressions problem. Let n and m be the length of T and R , respectively. Gibney
 73 and Thankachan [20] recently showed that text indexing for regular expression is hard
 74 to solve efficiently under popular complexity conjectures. More precisely, they showed
 75 that conditioned on the online matrix-vector multiplication conjecture, even with arbitrary
 76 polynomial preprocessing time, we cannot answer existential queries in $O(n^{1-\varepsilon})$ for any
 77 $\varepsilon > 0$. They also show that if conditioned on a slightly stronger assumption, we cannot even
 78 answer existential queries in $O(n^{3/2-\varepsilon})$ time, for any $\varepsilon > 0$. Gibney and Thankachan also
 79 studied upper bound time-space trade-offs with exponential preprocessing. Specifically, given
 80 a parameter t , $1 \leq t \leq n$, fixed at preprocessing, we can solve the problem using $2^{O(tn)}$ space
 81 and preprocessing time and $O(nm/t)$ query time.

82 On the other hand, a few text indexing solutions have been studied for highly restricted
 83 kinds of regular expressions or regular expression-like patterns. These include text index-
 84 ing for string patterns (simple strings corresponding to regular expressions that only use
 85 concatenations) and string patterns with *wildcards* and *gaps* (strings that include special
 86 characters or sequences of special characters that match any other character) and similar
 87 extensions [7, 9, 11, 15, 19, 22, 28, 30, 31, 32, 42].

88 Thus, we should not hope to efficiently solve text indexing for general regular expressions,
 89 and efficient solutions are only known for highly restricted regular expressions. Hence, a
 90 natural question is if there are simple regular expressions for which efficient solutions are
 91 possible and that form a large subset of those used in practice. This paper considers the
 92 following two such kinds of regular expressions and provides either efficient solutions or

93 conditional lower bounds to them:

94 ■ **Character-class Kleene-star patterns.** These are patterns of the form $P_1 D^* P_2$ where
 95 P_1 and P_2 are strings and $D = \{c_1, \dots, c_k\} \subset \Sigma$ is a *character-class* that is shorthand for
 96 the regular expression $(c_1|c_2|\dots|c_k)$.
 97 ■ **String Kleene-star patterns.** These are patterns of the form $P_1 P^* P_2$ where P , P_1
 98 and P_2 are strings.

99 In other words, we provide solutions (or lower bounds) for all regular patterns containing
 100 only *concatenations and at most one occurrence of a Kleene star* (either of a string or a
 101 character-class). Using the notation introduced by the seminal paper of Backurs and Indyk [3]
 102 on the hardness of (non-indexed) regular expression matching, *character-class Kleene-star*
 103 patterns belong to the “ $\cdot \cdot \ast \cdot$ ” type: a concatenation of Kleene stars of (possibly degenerate,
 104 i.e. $|D| = 1$) unions. To see this, observe that the characters of P_1 and P_2 can be interpreted
 105 as degenerate unions of one character (without Kleene). *String Kleene-star* patterns, on the
 106 other hand, belong to the “ $\cdot \ast \cdot \cdot$ ” type: a concatenation of Kleene stars of concatenations.
 107 Again (as discussed in [3]), since any level of the regular expression tree is allowed to contain
 108 leaves (i.e. an individual character), patterns of the form $P_1 P^* P_2$ belong to this type by
 109 interpreting the characters of P_1 and P_2 as leaves in the regular expression tree. Our main
 110 results are new text indices that use near-linear space while supporting both kind of queries
 111 in time near-linear in the length of the pattern (under certain unavoidable assumptions
 112 discussed in detail below: if the assumptions fail, we show that the problem becomes again
 113 hard). Below, we introduce our results and discuss them in the context of the results obtained
 114 in [3].

115 1.1 Setup and Results

116 We first consider text indexing for character-class Kleene-star patterns $R = P_1 D^* P_2$, where
 117 D is a characters class. We say that the pattern is *anchored* if either P_1 or P_2 has a character
 118 that is *not* in D , and we call such a character an *anchor*. If the pattern is anchored, we show
 119 the following result.

120 ▶ **Theorem 1.** *Let T be a text of length n over an alphabet Σ . Given a parameter $k_{\max} < |\Sigma|$
 121 and a constant $\epsilon > 0$ fixed at preprocessing time, we can build a data structure that uses
 122 $O(k_{\max} n \log^{1+\epsilon} n)$ space and supports anchored character-class Kleene-star queries $P_1 D^* P_2$,
 123 where D is a characters class with $|D| = k \leq k_{\max}$ characters in $O(m + 2^k \log n / \log \log n + \text{occ})$
 124 time with high probability. Here, $m = |P_1| + |D| + |P_2|$ and occ is the number of occurrences
 125 of the pattern in T .*

126 In particular, our solution supports queries in almost optimal $O(m + \log n / \log \log n + \text{occ})$
 127 time for constant-sized alphabets. We also extend Theorem 1 result to handle slightly more
 128 general *character-class interval patterns* of the form $P_1 D^{\geq l} P_2$, $P_1 D^{\leq r} P_2$, and $P_1 D^{[l,r]} P_2$,
 129 meaning that there are at least, at most, and between l and r copies of characters from D .

130 Intuitively, our strategy is to identify all the right-maximal substrings $T[i..j]$ of T , for
 131 every possible starting position i , that contain only symbols in D for every possible set D .
 132 Such a substring will form the “ D^* ” part of the occurrences. For each such $T[i..j]$, we then
 133 insert in a range reporting data structure a three-dimensional point with (lexicographically-
 134 sorted) coordinates $(T[1..i-1]^{rev}, T[1..j]^{rev}, T[j+1..n])$. The data structure is labeled by
 135 set D . We finally observe that the pattern R can be used to query the right range data
 136 structure and report all matches of R in T .

137 Conversely, we show the following conditional lower bound if the pattern is not anchored.

138

139 ► **Theorem 2.** *Let T be a text of length n over an alphabet Σ with $|\Sigma| \geq 4$ and let $\delta \in [0, 1/2]$.
 140 Assuming the strong Set Disjointness Conjecture, any data structure that supports existential
 141 (non-anchored) character-class Kleene-star pattern matching queries $P_1 D^* P_2$, where D is a
 142 character class with at least 3 characters, in $O(n^\delta)$ time, requires $\tilde{\Omega}(n^{2-2\delta-o(1)})$ space.*

143 With $\delta = 1/2$, Theorem 2 implies that any near linear space solution must have query
 144 time $\tilde{\Omega}(\sqrt{n})$. On the other hand, with $\delta = 0$, Theorem 2 implies that any solution using time
 145 independent from n must use $\tilde{\Omega}(n^{2-o(1)})$ space.

146 To get Theorem 2, we reduce from the Set Disjointness Problem: preprocessing some sets
 147 so we can quickly answer, for any pair of sets, if they are disjoint or not. [10] showed that
 148 wlog, we can assume every element appears in the same number of sets. The idea is then
 149 to define a string gadget representing any set, and a block for each element in the universe
 150 containing the string gadget for every set it is included in. The blocks are separated by a
 151 character not in the block. This way, the intersection of two sets is non-empty if and only if
 152 their gadgets appear somewhere in the string only separated by characters which appear in a
 153 block.

154 As noted above, *character-class Kleene-star* patterns belong to the “ $\cdot \cdot \ast |$ ” type. Backurs
 155 and Indyk [3] prove a quadratic lower bound for this class of regular expressions. Our result
 156 shows that even the more restricted sub-class $P_1 D^* P_2$ of “ $\cdot \cdot \ast |$ ” is hard if no anchors are
 157 present.

158 We then consider text indexing for String Kleene-star patterns $R = P_1 P^* P_2$. We show
 159 the following result.

160 ► **Theorem 3.** *Let T be a text of length n over an alphabet Σ . Given a constant $\epsilon > 0$ fixed
 161 at preprocessing time, we can build a data structure that uses $O(n)$ space and supports String
 162 Kleene-star patterns $P_1 P^* P_2$ in time $O(m + (\text{occ} + 1) \log^\epsilon n)$, where $m = |P_1| + |P| + |P_2|$
 163 and occ is the number of occurrences of the pattern in T .*

164 As discussed above, *String Kleene-star* patterns belong to the “ $\cdot \cdot \ast \cdot$ ” type. For this type
 165 of patterns, Backurs and Indyk [3] proved a conditional lower bound of $\Omega((mn)^{1-\epsilon})$ (for any
 166 constant $\epsilon > 0$) in the offline setting for both pattern matching and membership queries.
 167 Our result, instead, implies an offline solution running in $O(m + \log^\epsilon n)$ time (by stopping
 168 after locating the first pattern occurrence) after the indexing phase. This does not contradict
 169 Backurs and Indyk’s lower bound, since our patterns $P_1 P^* P_2$ are a very specific case of the
 170 (broader) type “ $\cdot \cdot \ast \cdot$ ”. Equivalently, this indicates that including more than one Kleene star
 171 makes the problem hard again and thus justifies an index for the simpler case $P_1 P^* P_2$.

172 The main idea behind the strategy for Theorem 3 is to preprocess all maximal periodic
 173 substrings (called *runs*) in the string, so we can quickly find patterns ending just before or
 174 starting just after a run. However, there are some difficulties to overcome: firstly, P may be
 175 periodic - e. g. if $P = ww$, we do not want to report occurrences of $P_1 w^3 P_2$; secondly, a run
 176 may end with a partial occurrence of the period; and lastly, P may share a suffix with P_1 or
 177 a prefix with P_2 , in which case their occurrences should overlap with the run. We show how
 178 to deal with these difficulties in Section 4.

179 2 Preliminaries

180 A string T of length $|T| = n$ is a sequence $T[1] \cdots T[n]$ of n characters drawn from an ordered
 181 alphabet Σ of size $|\Sigma|$. The string $T[i] \cdots T[j]$, denoted $T[i..j]$, is called a *substring* of T ;

¹⁸² $T[1..j]$ and $T[i..n]$ are called the j^{th} *prefix* and i^{th} *suffix* of T , respectively. We use ϵ to
¹⁸³ denote the empty string (i.e., the string of length 0). The *reverse string* of a string T of
¹⁸⁴ length n , denoted by T^{rev} , is given by $T^{rev} = T[n] \dots T[1]$. Let P and T be strings over an
¹⁸⁵ alphabet Σ . We say that the range $[i..j]$ is an *occurrence* of P in T iff $T[i..j] = P$.

¹⁸⁶ **Lexicographic order and Lyndon words.** The order of the alphabet defines a *lexicographic*
¹⁸⁷ *order* on the set of strings as follows: For two strings $T_1 \neq T_2$, let i be the length of the
¹⁸⁸ longest common prefix of T_1 and T_2 . We have $T_1 < T_2$ if and only if either i) $|T_1| = i$ and
¹⁸⁹ $T_1[i+1..n] < T_2[i+1..n]$, or ii) both T_1 and T_2 have a length at least $i+1$ and $T_1[i+1..n] < T_2[i+1..n]$. A string T
¹⁹⁰ is a *Lyndon word* if it is lexicographically smaller than any of its proper cyclic shifts, i.e.,
¹⁹¹ $T < T[i..n]T[1..i-1]$, for all $1 < i \leq n$.

¹⁹² **Concatenation of strings.** The concatenation of two strings A and B is defined as $AB =$
¹⁹³ $A[1] \dots A[|A|]B[1] \dots B[|B|]$. The concatenation of k copies of a string A is denoted by A^k ,
¹⁹⁴ where $k \in \mathbb{N}$; i.e. $A^0 = \epsilon$ and $A^k = AA^{k-1}$. A string B is called *primitive* if there is no string
¹⁹⁵ A and $k > 1$ such that $B = A^k$.

¹⁹⁶ **Sets of strings.** We denote by $A^{\geq l} = \bigcup_{k \geq l} \{A^k\}$, $A^{\leq r} = \bigcup_{k \leq r} \{A^k\}$, $A^{[l,r]} = \bigcup_{l \leq k \leq r} \{A^k\}$,
¹⁹⁷ and $A^* = A^{\geq 0}$. The concatenation of a string A with a set of strings S is defined as
¹⁹⁸ $AS = \{AB : B \in S\}$. Similarly, the concatenation of two sets of strings S_1 and S_2 is defined
¹⁹⁹ as $S_1S_2 = \{AB : A \in S_1, B \in S_2\}$. We define $S^{\geq l}$, $S^{\leq r}$, $S^{[l,r]}$, and $S^* = S^{\geq 0}$ for sets
²⁰⁰ analogously. We say that the range $[i..j]$ is an *occurrence* of a set of strings S if there is a
²⁰¹ $P \in S$ such that $[i..j]$ is an occurrence of P in T .

²⁰² **Period of a string.** An integer p is a *period* of a string T of length n if and only if
²⁰³ $T[i] = T[i+p]$ for all $1 \leq i \leq n-p$. A string T is called *periodic* if it has a period $p \leq n/2$.
²⁰⁴ The smallest period of T will be called *the period* of T .

²⁰⁵ **Tries and suffix trees.** A *trie* for a collection of strings $\mathcal{C} = \{T_1, \dots, T_n\}$, is a rooted labeled
²⁰⁶ tree \mathcal{T} such that: (1) The label on each edge is a character in some T_i ($i \in [1, n]$). (2) Each
²⁰⁷ string in \mathcal{C} is represented by a path in \mathcal{T} going from the root down to some node (obtained
²⁰⁸ by concatenating the labels on the edges of the path). (3) Each root-to-leaf path represents
²⁰⁹ a string from \mathcal{C} . (4) Common prefixes of two strings share the same path maximally. A
²¹⁰ *compact trie* is obtained from \mathcal{T} by dissolving all nodes except the root, the branching nodes,
²¹¹ and the leaves, and concatenating the labels on the edges incident to dissolved nodes to
²¹² obtain *string labels* for the remaining edges.

²¹³ Let T be a string over an alphabet Σ . The *suffix tree* of a string T is the compacted trie
²¹⁴ of the set of all suffixes of T . Throughout this paper, we assume that nodes in a compact
²¹⁵ trie or the suffix tree use deterministic dictionaries to store their children.

²¹⁶ 3 Character-class Kleene-star Patterns

²¹⁷ In this section we give our data structure for answering anchored character-class Kleene-star
²¹⁸ pattern queries. Without loss of generality, we can assume that the anchor belongs to P_2
²¹⁹ (the other case is captured by building our structures on the reversed text and querying the
²²⁰ reversed pattern).

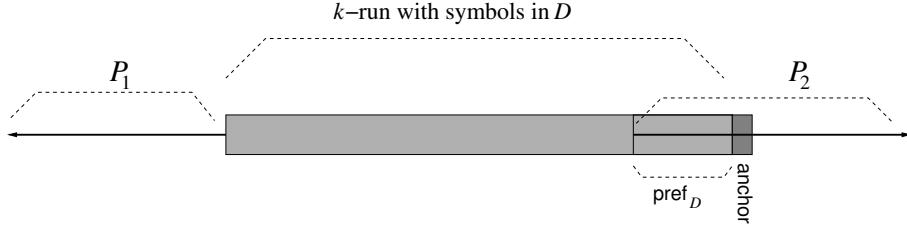


Figure 1 Illustration of the general strategy to capture patterns of the form $P_1 D^* P_2$. A k -run is a right-maximal substring $T[i..j]$ containing exactly k distinct symbols.

Recall that we assume $k = |D| \leq k_{\max}$ for some parameter $k_{\max} < |\Sigma|$ fixed at construction time. We first describe a solution for the case $k_{\max} < \log n$, and then in Section 3.3 show how to handle the case where $k_{\max} \geq \log n$.

Our general strategy is to identify all the right-maximal substrings $T[i..j]$ of T , for every possible starting position i , that contain all and only the symbols of D (we later generalize the solution to consider all the possible *subsets* of D). Such a substring forms the “ D^* ” part of the occurrences. For this sake, D^* must be preceded by P_1 and followed by P_2 . However, if P_2 starts with some symbols in D , those symbols will belong to the right-maximal substring $T[i..j]$. We therefore separate $P_2 = \text{pref}_D \cdot \text{suff}_D$, where pref_D is the longest prefix of P_2 that contains only symbols from D , and suff_D starts with the anchor. The new condition is then that the substring $T[i..j]$ ends with pref_D and is followed by suff_D . See Figure 1.

We need the following definitions.

► **Definition 4.** The D -prefix of P_2 , denoted $\text{pref}_D(P_2)$ is the longest prefix of P_2 that is formed only by symbols in D . We define $\text{suff}_D(P_2)$ so that $P_2 = \text{pref}_D(P_2) \cdot \text{suff}_D(P_2)$

► **Definition 5.** The k -run of T that starts at position i is the maximal range $[i..j]$ such that $T[i..j]$ contains exactly k distinct symbols. If the suffix $T[i..n]$ has less than k different symbols, then there is no k -run starting at i . We call $D_{i,k}$ the set of k symbols that occur in the k -run that starts at position i .

Note that T contains at most n k -runs, each starting at a distinct position $i \in [1..n]$.

We first show how to find occurrences matching all k symbols of D in the D^* part of the pattern $P_1 D^* P_2$. Then, we complete this solution by allowing matches with any subset of D .

3.1 Matching all k Characters of D

We show how to build a data structure for the case where $k = |D|$ is known at construction time, and we only find the occurrences that match *exactly* all k distinct letters in the D^* part of the occurrence. Recall that we also assume that P_2 contains an anchor.

► **Data structure.** Let \mathcal{D}_k be the set of subsets $D \subseteq \Sigma$ of size k that occur as a k -run in T . Our data structure consists of the following:

- The suffix tree \mathcal{T} of T and the suffix tree \mathcal{T}^{rev} of the reversed text, T^{rev} .
- A data structure S_D for each set $D \in \mathcal{D}_k$ indexing all the text positions $P_D = \{i \mid D_{i,k} = D\}$. The structure consists of an orthogonal range reporting data structure for a four-dimensional grid in $[1..n]^4$ with $|P_D|$ points, one per k -run $[i..j]$ with $i \in P_D$. For each such k -run $[i..j]$ we store a point with coordinates $(x_i, y_i, z_i, j - i + 1)$, where
 - x_i is the lexicographic rank of $T[1..i - 1]^{\text{rev}}$ among all the reversed prefixes of T .

254 ■ y_i is the lexicographic rank of $T[1..j]^{rev}$ among all the reversed prefixes of T .
 255 ■ z_i is the lexicographic rank of $T[j+1..n]$ among all the suffixes of T .
 256 Each point stores the limits $[i..j]$ of its k -run (so as to report occurrence positions).
 257 ■ A trie τ_k storing all the strings s_D of length k formed by sorting in increasing order the k
 258 characters of D , for every $D \in \mathcal{D}_k$.

259 Note that the fourth coordinate $j - i + 1$ of point $(x_i, y_i, z_i, j - i + 1)$ could be avoided
 260 (i.e. using a 3D range reporting data structure) by defining y_i to be the lexicographic rank of
 261 $T[1..j]^{rev}\$$ (where $\$$ is a special terminator character) in the set formed by all the reversed
 262 prefixes of T and strings of the form $T[1..j]^{rev}\$$, for all k -runs $T[i..j]$. While this solution
 263 would work in the same asymptotic space and query time (because we will only need one-sided
 264 queries on the fourth coordinate), we will need the fourth dimension in Subsection 3.4.

265 **Basic search.** At query time, we first compute $\text{pref}_D(P_2)$. For any occurrence of the query
 266 pattern, $\text{pref}_D(P_2)$ will necessarily be the suffix of a k -run. This is why we need P_2 to contain
 267 an anchor; P_1 is not restricted because we index every possible initial position i .

268 We then sort the symbols of D and use the trie τ_k to find the data structure S_D .

269 We now find the lexicographic range $[x_1, x_2] \times [y_1, y_2] \times [z_1, z_2] \times [|\text{pref}_D(P_2)|, +\infty]$ using
 270 the suffix tree \mathcal{T} of T and the suffix tree \mathcal{T}^{rev} of the reversed text, T^{rev} . The range $[x_1, x_2]$
 271 then corresponds to the leaf range of the locus of P_1^{rev} in \mathcal{T}^{rev} , the range $[y_1, y_2]$ to the leaf
 272 range of the locus of $\text{pref}_D(P_2)^{rev}$ in \mathcal{T}^{rev} , and the range $[z_1, z_2]$ to the leaf range of the
 273 locus of $\text{suff}_D(P_2)$ in \mathcal{T} .

274 Once the four-dimensional range is identified, we extract all the points from S_D in the
 275 range using the range reporting data structure.

276 **Time and space.** The suffix trees use space $O(n)$. The total number of points in the
 277 range reporting data structures is $O(n)$ as there are at most n k -runs. Because we will
 278 perform one-sided searches on the fourth coordinate, the grid of S_D can be represented
 279 in $O(|P_D| \log^{1+\epsilon} n)$ space, for any constant $\epsilon > 0$, so that range searches on it take time
 280 $O(\text{occ} + \log n / \log \log n)$ to report the occ points in the range [39, Thm. 7]. Thus, the total
 281 space for the range reporting data structures is $O(n \log^{1+\epsilon} n)$. The space of the trie τ_k is
 282 $k|\mathcal{D}_k| \in O(kn)$.

283 The string $\text{pref}_D(P_2)$ can easily be computed in $O(k + |P_2|)$ time with high probability
 284 using a dictionary data structure [16]. Sorting D can be done in $O(k \log \log k)$ time [1].
 285 By implementing the pointers of node children in τ_k and in the suffix trees \mathcal{T} and \mathcal{T}^{rev}
 286 using perfect hashing (see [37]), the search in τ_k takes $O(k)$ worst-case time and the three
 287 searches in \mathcal{T} and \mathcal{T}^{rev} take total time $O(|P_1| + |P_2|)$. The range reporting query takes time
 288 $O(\log n / \log \log n + \text{occ})$. In total, a query takes $O(m + k \log \log k + \log n / \log \log n + \text{occ})$
 289 time with high probability¹.

290 3.2 Matching any Subset of D

291 We now show how to find all occurrences of $P_1 D^* P_2$, that is, also the ones containing only a
 292 subset of the characters of D in the D^* part of the occurrence.

293 Our previous search will not capture the $(k - i)$ -runs, for $1 \leq i < k$, containing only
 294 characters appearing in *subsets* of D , as we only find P_1 and $\text{suff}_D(P_2)$ surrounding the k -runs

¹ Unfortunately, [39, Thm. 7] does not describe construction of the range reporting data structure that we use, so we are not able to provide construction time and working space of our index.

295 containing all characters from D . To solve this we will build an orthogonal range reporting
 296 data structure for all $D \in \bigcup_{1 \leq k \leq k_{\max}} \mathcal{D}_k$. To capture all the occ occurrences of $P_1 D^* P_2$, we
 297 search the corresponding grids of all the $2^k - 1$ nonempty subsets of D , which leads to the
 298 cost $O(2^k \log n / \log \log n + occ)$. We wish to avoid, however, the cost of searching for P_1 ,
 299 $\text{pref}_{D'}(P_2)$, and $\text{suff}_{D'}(P_2)$ in the suffix trees for every subset D' of D . In the following we
 300 show how to do this.

301 **Data Structure.** Let $\mathcal{D} = \bigcup_{1 \leq k \leq k_{\max}} \mathcal{D}_k$. Our data structure consists of the following.

- 302 ■ The suffix tree \mathcal{T} of T and the suffix tree \mathcal{T}^{rev} of the reversed text, T^{rev} .
- 303 ■ The data structure S_D from Section 3.1 for each set $D \in \mathcal{D}$.
- 304 ■ A trie τ storing all the strings of length 1 to k_{\max} , in increasing alphabetic order of
 305 characters, that correspond to some $D \in \mathcal{D}$.

306 The suffix trees uses linear space. The space for each of the k range reporting data struc-
 307 tures is $O(n \log^{1+\epsilon} n)$. Added over all $k \in [1..k_{\max}]$, the total space becomes $O(k_{\max} n \log^{1+\epsilon} n)$.
 308 The space for the trie τ is $O(nk_{\max}^2)$ since there are at most $k_{\max}n$ strings each of length at
 309 most k_{\max} . Since we assume $k_{\max} < \log n$, the total space is $O(k_{\max}n \log^{1+\epsilon} n)$.

310 **Search.** To perform the search, we traverse τ to find all the subsets of D as follows. Let
 311 $s_D = c_1 c_2 \dots c_k$ be the string formed by concatenating all symbols of D in sorted order.
 312 Letting N_i be the set of nodes of τ reached after processing $s_D[1..i]$ (initially, $i = 0$ and
 313 N_0 contains only the root of τ), N_{i+1} is obtained by inserting in N_i the nodes reached by
 314 following the edges labeled with character $s_D[i+1]$ from nodes in N_i . In other words, for
 315 each symbol of s_D we try both skipping it or descending by it in τ . The last set, N_k , contains
 316 all the $2^k - 1$ nodes of τ corresponding to subsets of D . Each time we are in a node of τ
 317 corresponding to some set $D' \subseteq D$ which has an associated range reporting data structure
 318 $S_{D'}$, we perform a range reporting query $(x_1, x_2, y_1, y_2, z_1, z_2, |\text{pref}_{D'}(P_2)|, \infty)$.

319 Note that the range $[x_1, x_2]$ is the same for all queries, so we only compute this once.
 320 This is done by a search for P_1^{rev} in \mathcal{T}^{rev} . The intervals $[y_1, y_2]$ and $[z_1, z_2]$, on the other
 321 hand, change during the search, as the split of P_2 into $\text{pref}_{D'}(P_2)$ and $\text{suff}_{D'}(P_2)$ depends
 322 on the subset D' . To compute these intervals we first preprocess P_2 as follows. Compute the
 323 ranges $[y_1, y_2]$ for all reversed prefixes of P_2 using the suffix tree \mathcal{T}^{rev} : Start by looking up
 324 the locus for P_2^{rev} and then find the remaining ones by following suffix links. Similarly, we
 325 compute the ranges $[z_1, z_2]$ for the suffixes of P_2 following suffix links in \mathcal{T} . If we know the
 326 length ℓ of $\text{pref}_{D'}(P_2)$, we can then easily look up the corresponding intervals.

327 **Maintaining ℓ .** We now explain how to maintain the length ℓ of $\text{pref}_{D'}(P_2)$ for $D' \subseteq D$ in
 328 constant time for every trie node we meet during the traversal of τ . The difficulty with
 329 maintaining $|\text{pref}_{D'}(P_2)|$ while D' changes is that we when traversing the trie we add the
 330 characters to D' in lexicographical order and not in the order they occur in P_2 (see Figure 2).

332 First we compute for each character $c \in D$ the position p_c of the first occurrence of c in
 333 $\text{pref}_D(P_2)$. If c does not occur in $\text{pref}_D(P_2)$, we set $p_c = \infty$. For each $c \in D$, we furthermore
 334 compute the *position rank* r_c of c , i.e., the rank of p_c in the sorted set $\{p_c : c \in D\}$. We
 335 build:

- 336 ■ a dictionary R saving the position rank r_c of each element $c \in D$.
- 337 ■ an array B containing the characters in D in position rank order such that $B[r_c] = c$ for
 338 all $c \in D$ (define $B[0] = -1$).
- 339 ■ an array P containing the position of the first occurrence of the characters in D in rank
 340 order, i.e., $P[i]$ is the first position of character $B[i]$.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
$P_2 =$	b	b	a	a	b	e	a	b	e	e	c	e	a	d	a	h	...
$D = \{a, b, c, d, e\}$	D in position rank order: $[b, a, e, c, d]$																
$D_1 = \{a\}$		$\ell = 0$		$A = [0, 0, 2, 0, 0, 0, 0]$		$I_{D_1} = \{[2, 2]\}$											
$D_2 = \{a, b\}$		$\ell = 5$		$A = [0, 2, 1, 0, 0, 0, 0]$		$I_{D_2} = \{[1, 2]\}$											
$D_3 = \{a, b, c\}$		$\ell = 5$		$A = [0, 2, 1, 0, 4, 0, 0]$		$I_{D_3} = \{[1, 2], [4, 4]\}$											
$D_4 = \{a, b, c, d\}$		$\ell = 5$		$A = [0, 2, 1, 0, 5, 4, 0]$		$I_{D_4} = \{[1, 2], [4, 5]\}$											
$D_5 = \{a, b, c, d, e\}$		$\ell = 15$		$A = [0, 5, 1, 3, 5, 1, 0]$		$I_{D_5} = \{[1, 5]\}$											
$D_6 = \{b\}$		$\ell = 2$		$A = [0, 1, 0, 0, 0, 0, 0]$		$I_{D_6} = \{[1, 1]\}$											
\vdots		\vdots		\vdots		\vdots								\vdots			

■ **Figure 2** Computing $\ell = |\text{pref}_{D'}(P_2)|$ as D' changes during the traversal of the trie. The array A maintains the intervals of characters in position rank order (the order in which the characters appear in P_2) that are in D' .

341 Let α be the first character in position rank order that is not in D' . Then $\ell = p_\alpha - 1$. The
 342 main idea is to maintain the intervals $I_{D'}$ of characters in D' in position rank order. The
 343 position rank r_α of α can then easily be computed from the set of intervals $I_{D'}$ and used
 344 to compute $p_\alpha = P[r_\alpha]$. We use array $A[0..|D| + 1]$ to store the intervals of $I_{D'}$. Initially,
 345 all positions in A are 0. We will maintain the invariant that the first, respectively last,
 346 position of an interval of nonzero entries in A contains the position of the end, respectively
 347 start, of the interval. Initialize $\ell = 0$ and initialize an empty stack S . We now maintain
 348 $\ell = |\text{pref}_{D'}(P_2)|$ as follows:

349 When we go down during the traversal adding a character c to the set, we first lookup r_c
 350 in R and set $p_c = P[r_c]$. If $p_c = \infty$ there are no changes. Otherwise, we set $A[r_c] = r_c$
 351 and compute the leftmost position lp of the nonzero interval containing c : If $A[r_c - 1] = 0$
 352 then set $lp = r_c$. Else $lp = A[r_c - 1]$. To compute the rightmost position rp of the nonzero
 353 interval containing c : If $A[r_c + 1] = 0$ then set $rp = r_c$. Else $rp = A[r_c + 1]$. We then push
 354 $(lp, A[lp], rp, A[rp], \ell)$ onto the stack to be able to quickly undo the operations later. Then
 355 we update A by setting $A[lp] = rp$ and $A[rp] = lp$. Finally, we update ℓ : If $A[1] \geq r_c$ set
 356 $\ell = P[A[1] + 1] - 1$. Otherwise, ℓ does not change.

357 When going up in the traversal removing character c we first lookup p_c . If $p_c = \infty$
 358 there are no changes. Otherwise, we pop (lp, lv, rp, rv, ℓ') from the stack and set $A[lp] = lv$,
 359 $A[rp] = rv$, $A[r_c] = 0$, and $\ell = \ell'$.

360 **Time.** It takes $O(|P_1|)$ time to search for P_1^{rev} in \mathcal{T}^{rev} . Computing $[y_1, y_2]$ and $[z_1, z_2]$ for all
 361 splits of P_2 takes time $O(|P_2|)$. Sorting D can be done in time $O(k \log \log k)$ [1]. Computing
 362 p_c for all characters in D , sorting them, computing the ranks r_c , and constructing the arrays
 363 B and P and the dictionary R takes linear time in the pattern length with high probability.
 364 The size of the subtrie we visit in the search is $O(2^k)$ and in each step we use constant time
 365 to compute the length of ℓ . The total time for the range queries is $O(2^k \log n / \log \log n + \text{occ})$.
 366 Thus, in total we use $O(m + 2^k \log n / \log \log n + \text{occ})$ time with high probability.

367 **3.3 Solution for $k_{\max} \geq \log n$.**

368 In the discussion above, we assumed that $k_{\max} < \log n$. If $k_{\max} \geq \log n$, we build the data
 369 structure described above by replacing k_{\max} with $k'_{\max} = \log n$. The space of the data
 370 structure is still $O(k'_{\max} n \log^{1+\epsilon} n) \subseteq O(k_{\max} n \log^{1+\epsilon} n)$. At query time, if $|D| = k \leq \log n$
 371 we use the data structure to answer queries in $O(m + 2^k \log n / \log \log n + \text{occ})$ time.

372 If, on the other hand, $|D| = k > \log n$ then $n \in O(2^k \log n / \log \log n)$. We first find
 373 all occurrences of P_1 and P_2 using the suffix tree \mathcal{T} . Let L_1 be the end positions of the
 374 occurrences of P_1 and let L_2 be the start positions of the occurrences of P_2 . We sort the lists
 375 L_1 and L_2 . This can all be done in $O(m + n)$ time and linear space using radix sort. We also
 376 mark with a 1 in a bitvector B_D of length n all text positions i such that $T[i] \in D$. This can be
 377 done in $O(n)$ time with high probability, with a simple scan of T and a dictionary over D [16].
 378 We build a data structure over the bitvector supporting rank queries in constant time [43].
 379 We can now find all occurrences of the pattern by considering the occurrences in sorted order
 380 in a merge like fashion. Recall, that P_2 has an anchor. We consider the first occurrence p_1
 381 in the list L_1 and find the first occurrence p_2 in L_2 that comes after L_1 , i.e. $p_2 > p_1$. If
 382 all characters between p_1 and p_2 are from D (constant time with two rank operations over
 383 bitvector B_D) we output the occurrence. We delete p_1 from the list and continue the same
 384 way. In total, we find all occurrences in $O(n + \text{occ}) \in O(2^k \log n / \log \log n + \text{occ})$ time with
 385 high probability. In summary, this proves Theorem 1.

386 **3.4 Character-Class Interval Patterns**

387 We extend our solution to handle patterns of the form $P_1 D^{\geq l} P_2$, $P_1 D^{\leq r} P_2$, and $P_1 D^{[l,r]} P_2$,
 388 meaning that there are at least, at most, and between l and r copies of characters from D .
 389 We collectively call these *character-class interval patterns*.

390 By using one-sided restrictions on the fourth dimension, we can easily handle queries of
 391 the form $P_1 D^{\geq l} P_2$ in our solution from the previous section. Handling queries of the form
 392 $P_1 D^{\leq r} P_2$ or $P_1 D^{[l,r]} P_2$ requires a two-sided restriction on the fourth dimension. This raises
 393 the space of the grid to $O(|P_D| \log^{2+\epsilon} n)$, while retaining its query time [39, Thm. 7] [40].
 394 With these observations we obtain the following results.

395 ▶ **Theorem 6.** *Let T be a text of length n over an alphabet Σ . Given a parameter $k_{\max} < |\Sigma|$
 396 and a constant $\epsilon > 0$ fixed at preprocessing time, we can build a data structure that uses
 397 $O(k_{\max} n \log^{1+\epsilon} n)$ space and supports anchored character-class interval queries of the form
 398 $P_1 D^{\geq l} P_2$ in time $O(m + 2^k \log n / \log \log n + \text{occ})$, where D is a character class with $k \leq k_{\max}$
 399 characters, $m = |P_1| + |D| + |P_2|$, and occ is the number of occurrences of the pattern in T .*

400 ▶ **Theorem 7.** *Let T be a text of length n over an alphabet Σ . Given a parameter $k_{\max} < |\Sigma|$
 401 and a constant $\epsilon > 0$ fixed at preprocessing time, we can build a data structure that uses
 402 $O(k_{\max} n \log^{2+\epsilon} n)$ space and supports anchored character-class interval queries of the form
 403 $P_1 D^{\leq r} P_2$ or $P_1 D^{[l,r]} P_2$ in time $O(m + 2^k \log n / \log \log n + \text{occ})$, where D is a characters
 404 class with $k \leq k_{\max}$ characters, $m = |P_1| + |D| + |P_2|$, and occ is the number of occurrences
 405 of the pattern in T .*

406 An alternative solution, when longer matches are more interesting than shorter ones, is to
 407 store the points (x_i, y_i, z_i) in a three-dimensional grid, and use $j - i + 1$ as the point weights.
 408 Three-dimensional grids on weighted points can use $O(|P_D| \log^{2+\epsilon} n)$ space and report points
 409 from larger to smaller weight (i.e., $j - i + 1$) in time $O(p + \log n)$ [36, Lem. A.5]. We can
 410 use this to report the occurrences from longer to shorter k -runs, thereby stopping when
 411 the length drops below $|\text{pref}_D(P_2)|$. We insert the first answer of each of the $2^k - 1$ grids

412 into a priority queue, where the priority will be the length $j - i + 1$ of the matched k' -run
 413 $[i..j]$ minus $|\text{pref}_{D'}(P_2)|$, then extract the longest answer and replace it by the next point
 414 from the same grid, repeating until returning all the desired answers. The time per returned
 415 element now includes a factor $O(\log \log n)$ if we implement the priority queue with a dynamic
 416 predecessor search data structure, plus $O(2^k \log \log n)$ for the initial insertions. We can also
 417 return t longest answers in this case, within a total time of $O(m + 2^k \log n + t \log \log n)$.

418 4 String Kleene-star Patterns

419 In this section we give our data structure for supporting string Kleene-star pattern queries.

420 As an intermediate step, we first create a structure that, given strings S_1 and S_2 , a
 421 primitive string w , and numbers $a, b, c, d \in \mathbb{N}$ with $b < a$ and $d < |w|$, where S_1 and w do
 422 not share a suffix and S_2 and $w[d+1..]$ do not share a prefix, finds all occurrences in T of
 423 patterns of the form $S_1 w^{aq+b} w[1..d] S_2$, where $q \geq c$ and $q \in \mathbb{N}$. Later we will show that this
 424 is sufficient to find occurrences of $P_1 P^* P_2$. For now, we assume that S_1 and S_2 are not the
 425 empty string; we will handle these cases later. We will also assume that w is not the empty
 426 string - in our transformation from $P_1 P^* P_2$ to $S_1 w^{aq+b} w[1..d] S_2$, w will be empty if and only
 427 if P is empty. In this case, the problem reduces to matching $P_1 P_2 = S_1 S_2$ in the suffix tree.

428 To define our data structures, we need the notion of a run (or maximal repetition) in T .

429 **► Definition 8.** A run of T is a periodic substring $T[i..j]$, such that the period cannot
 430 be extended to the left or the right. That is, if the smallest period of $T[i..j]$ is p , then
 431 $T[i-1] \neq T[i+p-1]$ and $T[j+1] \neq T[j-p+1]$. We can write $T[i..j] = w^t w[1..r]$, where
 432 $t \in \mathbb{N}$, $|w| = p$ and $r < |w|$. We also call $T[i..j]$ a run of w . The Lyndon root of a run of w
 433 is the cyclic shift of w that is a Lyndon word.

434 Our general strategy is to preprocess all runs into a data structure, such that we can quickly
 435 determine the runs preceded by S_1 and followed by S_2 , which additionally end on $w[1..d]$
 436 and have a length that matches the query.

437 **Data structure.** Let $T[i..j+r] = w^t w[1..r]$ with $r < |w|$ be a run in T . For each $1 \leq a \leq t$
 438 we insert a point in a three-dimensional grid $G_{w,a,b}$ where $b = t \bmod a$. Each point stores
 439 the positions i, j and has coordinates x, y, z defined as follows:

- 440 ■ x is the lexicographic rank of $T[1..i-1]^{\text{rev}}$ among all the reversed prefixes of T .
- 441 ■ y is the lexicographical rank of $T[j+1..n]$ among all the suffixes of T .
- 442 ■ $z = \lfloor t/a \rfloor$.

443 Furthermore, we construct a compact trie of the strings w of all runs and a lookup table
 444 such that given a and b we can find $G_{w,a,b}$. Finally, we store the suffix tree \mathcal{T} of T and the
 445 suffix tree \mathcal{T}^{rev} of the reversed text T^{rev} .

446 By the runs theorem, the sum of exponents of all runs in T is $O(n)$ [4, 27], hence the total
 447 number of grids and points is $O(n)$. Let $|G_{w,a,b}|$ be the number of points in the grid $G_{w,a,b}$.
 448 We store $G_{w,a,b}$ in the orthogonal range reporting data structure [40] using $O(|G_{w,a,b}|)$ space,
 449 so that 5-sided searches on it take time $O((p+1) \log^\epsilon |G_{w,a,b}|)$, for any constant $\epsilon > 0$, to
 450 report the p points in the range. Hence, our structure uses $O(n)$ space in total.

451 **Query.** To answer a query as above, we find the query ranges $[x_1, x_2] \times [y_1, y_2]$ using the
 452 suffix trees \mathcal{T} and \mathcal{T}^{rev} . The ranges $[x_1, x_2]$ and $[y_1, y_2]$ correspond to the leaf ranges of
 453 the loci of S_1^{rev} in \mathcal{T}^{rev} and $w[1..d] S_2$ in \mathcal{T} , respectively. Finally, we find all occurrences

$DBC(ABCABCABC)^*ABCABCABCABCABC$	
$D(BCABCABC)^*BCABCABCABCABC$	// $S_1 = D$ and P rotated
$D(BCA)^{3q}BCABCABCABCABC$	// P' reduced to $w^3 = (BCA)^3$
$D(BCA)^{3q}BCABCABC$ $q \geq c = 1$	// w^3 occurs at least once
$D(BCA)^{3q+2}BCB$, $q \geq c = 1$	// $S_1 w^{3q+2} w[1..2] S_2$

■ **Figure 3** An example of the transformation applied when $P_1 = DBC$, $P = ABCABCABC$, and $P_2 = ABCABCABCABCABC$. Here $S_1 = D$, $w = BCA$, $S_2 = B$, $a = 3$, $b = 2$, $c = 1$ and $d = 2$.

454 of $S_1 w^{aq+b} w[1..d] S_2$ with $q \geq c$ as the points in $G_{w,a,b}$ inside the 5-sided query $[x_1, x_2] \times$
455 $[y_1, y_2] \times [c, +\infty]$.

456 The ranges in \mathcal{T} and \mathcal{T}^{rev} can be found in time $O(|d| + |S_1| + |S_2|) = O(|w| + |S_1| + |S_2|)$
457 if the suffix tree nodes use deterministic dictionaries to store their children (see [37]). Again,
458 we augment each suffix tree node x with the lexicographic range of the suffixes represented
459 by the leaves below x . We then do a single query to the range data structure $G_{w,a,b}$, which
460 reports occ points in $O((\text{occ} + 1) \log^\epsilon n)$ time. We have proven the following:

461 ► **Lemma 9.** *Given a text $T[1..n]$ over alphabet Σ , we can build a data structure that uses
462 $O(n)$ space and can answer the following queries: Given two non-empty strings S_1 and S_2 ,
463 a primitive string w , and numbers $a, b, c, d \in \mathbb{N}$ with $b < a$ and $d < |w|$, where S_1 and w
464 do not share a suffix and S_2 and $w[d+1..]$ do not share a prefix, find all occurrences in
465 T of patterns of the form $S_1 w^{aq+b} w[1..d] S_2$, where $q \geq c$ and $q \in \mathbb{N}$. The query time is
466 $O(|S_1 S_2 w| + (\text{occ} + 1) \log^\epsilon n)$, where occ is the number of occurrences of $S_1 w^{aq+b} w[1..d] S_2$.*

467 **Transforming $P_1 P^* P_2$ into $S_1 w^{aq+b} w[1..d] S_2$.** Given $P_1 P^* P_2$ we compute the strings S_1 ,
468 w and S_2 and the numbers a, b, c , and d as follows: The string S_1 is $P_1[1..|P_1| - i]$ where i
469 is the length of the longest common suffix of P_1 and $P \lceil |P_1| / |P| \rceil$. Let $P' = P[(-i \bmod |P|) +$
470 $1..|P|] \cdot P[1..(-i \bmod |P|)]$ and $P'_2 = P_1[|P_1| - i + 1..|P_1|] P_2$. We compute w and a such that
471 $P' = w^a$ and $a \in \mathbb{N}$ is maximal (this can be done in time $O(|P'|)$ e.g. using KMP [26]). By
472 definition of P' and i , we have that $P'[|P'|] = P[-i \bmod |P|] \neq P_1[|P_1| - i]$. Therefore, S_1
473 and w do not share a suffix.

474 Let j be the length of the longest common prefix of P'_2 and $w^{\lceil |P'_2| / |w| \rceil}$. We define S_2 as
475 $P'_2[j + 1..|P'_2|]$ and $d = j \bmod |w|$. Note that by definition of S_2 , S_2 and $w[d+1..]$ do not
476 share a prefix. Finally, we let $b = (j - d) / |w| \bmod a$ and $c = \lceil \frac{j-d}{a|w|} \rceil - b$. See Figure 3.

477 The transformation can be done in $O(|P_1| + |P_2| + |P|)$ time: The longest common suffix
478 of P_1 and $P \lceil |P_1| / |P| \rceil$ can be computed in $O(|P_1|)$ time and the longest common prefix of
479 P'_2 and $w^{\lceil |P'_2| / |w| \rceil}$ in $O(|P'_2|) = O(|P_1| + |P_2|)$ time. Further, as mentioned, the period of
480 $|P'|$ can be found in $O(|P'|) = O(|P|)$ time. Other than that, the transformation consists of
481 modulo calculations and cyclic shifts, which clearly can be done in linear time.

4.1 When one of S_1 and S_2 is the Empty String.

482 In the transformation above, it might happen that S_1 or S_2 or both are empty, in which
483 case the data structure from Lemma 9 cannot be used. We give additional data structures
484 to handle these cases in this and the next subsection. Let us first consider the case where

486 $S_2 = \epsilon$ and $S_1 \neq \epsilon$. The general idea is that to answer a query $S_1 w^{aq+b} w[1..d]$, $q \geq c$, where
 487 S_1 and w do not share a suffix, we need to find all occurrences of S_1 followed by a long
 488 enough run of w . Note that each one of these occurrences can contain multiple occurrences
 489 of our pattern, for different choices of q .

490 **Data structure.** Let $T[i..j+r] = w^t w[1..r]$ with $r < |w|$ be a run in T . For each run in T ,
 491 we insert a point into a two-dimensional grid G_w . Each point stores the positions i, j and r
 492 of the occurrence of the run. The coordinates x, y of the point in G_w are defined as follows:
 493

- x is the lexicographic rank of $T[1..i-1]^{rev}$ among all reversed prefixes of T .
- $y = t|w| + r$.

495 In terms of space complexity, as before, by the runs theorem, the sum of exponents of all
 496 runs in T is $O(n)$ [4, 27]. Thus, the total number of points in G_w is $O(n)$. Further, we store
 497 a compact trie of all w 's together with a dictionary for finding t and d using linear space.
 498 The two-dimensional points can be processed into a data structure allowing 3-sided range
 499 queries in linear space and $O((\text{occ} + 1) \log^\epsilon n)$ running time [41], where occ is the number of
 500 reported points.

501 **Query.** To answer a query $S_1 w^{aq+b} w[1..d]$, as before, we find the lexicographical range
 502 $[x_1, x_2]$ for S_1 using the suffix tree \mathcal{T} . Then, we query the grid G_w for $[x_1, x_2] \times [(ac+b)|w| +$
 503 $d, \infty]$. For a point (x, y) with (i, j, r) obtained this way, we report $T[i - |S_1| + 1, i + |w|(aq +$
 504 $b) + d]$ for all q such that $c \leq q$ and $i + |w|(aq + b) + d \leq j + r$, which is equivalent to
 505 $q \leq \lfloor \frac{(y-d)/|w|-b}{a} \rfloor$.

506 The querying of the grid reports occ points in $O((\text{occ} + 1) \log^\epsilon n)$ running time, and each
 507 reported point gives at least one occurrence. The additional occurrences can be found in
 508 constant time per occurrence. Thus, the total query time is $O(|S_1 S_2 w| + (1 + \text{occ}) \log^\epsilon n)$.

509 We can deal with the case where $S_1 = \epsilon$ analogously, by building the same structure on
 510 T^{rev} and reversing the pattern.

511 4.2 When both S_1 and S_2 are the Empty String.

512 If both S_1 and S_2 are the empty string, then we cannot “anchor” our occurrences at the
 513 start of a run—i.e., $w^{aq+b} w[1..d]$ may occur in runs whose period is a shift of w . To deal
 514 with this, we characterize all runs by their Lyndon root, and write $w^{aq+b} w[1..d]$ as a query
 515 of the form $w' [|w| - e + 1] w'^{a'q+b'} w'[1..d']$, where w' is a Lyndon word. In the following, we
 516 show how to answer these kinds of queries.

517 We create a structure that given a primitive string w that is a Lyndon word, numbers $a, b,$
 518 $c, d < |w|$, and $e < |w|$, finds all occurrences of patterns of the form $w [|w| - e + 1] w^{aq+b} w[1..d]$
 519 in T , where $q \geq c$ and $q \in \mathbb{N}$.

520 **Data structure.** For a run $T[i'..j'+r'] = u^{t'} u[1..r']$ with $r' < |u|$ in T , let w be the Lyndon
 521 root of the run, and let $r < |w|$, $l < |w|$ and t be such that $T[i'..j'+r'] = T[i - l + 1..j+r] =$
 522 $w [|w| - l + 1] w^t w[1..r]$. We build a three-dimensional grid G_w . For each run, we store i, j and
 523 the point $(x, y, z) = (l, t, r)$. We store G_w in a linear space data structure which supports
 524 five-sided range queries in time $O((\text{occ} + 1) \log^\epsilon n)$, where occ is the number of reported
 525 points, given in [40]. By the runs theorem, the total number of points in all G_w s is bounded
 526 by $O(n)$, and thus so is the space of our data structure.

527 **Query.** Assume we are given a query w, a, b, c, d, e . In the following, we have to again
 528 find runs of w which are long enough, but with an extra caveat: we need to treat the runs
 529 $w[|w| - l + 1]w^t w[1..r]$ differently depending on i) if $e \leq l$ and ii) if $d \leq r$, since depending
 530 on those, the leftmost and rightmost occurrences in the run have different positions. This
 531 gives us four cases to investigate.

- 532 1. We find all points in $[e, \infty] \times [ac + b, \infty] \times [d, \infty]$. For each such, we output the following
 533 occurrences: $T[i - e + k \cdot |w|, i + (k + aq + b)|w| + d]$, where $k \leq t - ac - b$ and $c \leq q \leq \lfloor \frac{t-b-k}{a} \rfloor$.
- 534 2. We find all points in $[e, \infty] \times [ac + b + 1, \infty] \times [0, d - 1]$. For each such, we output all
 535 occurrences of the form $T[i - e + k \cdot |w|, i + (k + aq + b)|w| + d]$, where $k \leq t - 1 - ac - b$
 536 and $c \leq q \leq \lfloor \frac{t-1-b-k}{a} \rfloor$.
- 537 3. We find all points in $[0, e - 1] \times [ac + b + 1, \infty] \times [d, \infty]$ and output the occurrences of the
 538 form $T[i + |w| - e + k \cdot |w|, i + |w| + (k + aq + b)|w| + d]$, where $k \leq t - ac - b - 1$ and
 539 $c \leq q \leq \lfloor \frac{t-b-k-1}{a} \rfloor$.
- 540 4. We find all points in $[0, e - 1] \times [ac + b + 2, \infty] \times [0, d - 1]$ and output all occurrences of
 541 the form $T[i + |w| - e + k \cdot |w|, i + |w| + (k + aq + b)|w| + d]$, where $k \leq t - ac - b - 2$
 542 and $c \leq q \leq \lfloor \frac{t-b-k-2}{a} \rfloor$.

543 Each range query uses $O((\text{occ} + 1) \log^\epsilon n)$ time, where occ is the number of reported points,
 544 and each reported point gives at least one occurrence. Additional occurrences within the same
 545 run can be found in constant time per occurrence. Thus, the total time is $O((\text{occ} + 1) \log^\epsilon n)$.

546 In summary, we have proved Theorem 3.

5 Conditional Lower Bound for Character-class Kleene-star Patterns without an Anchor

549 We now prove Theorem 2. The conditional lower bound is based on the Strong Set Disjointness
 550 Conjecture formulated in [21] and stated in the following.

551 ▶ **Definition 10** (The Set Disjointness Problem). *In the Set Disjointness problem, the goal is
 552 to preprocess sets S_1, \dots, S_m of elements from a universe U into a data structure, to answer
 553 the following kind of query: For a pair of sets S_i and S_j , is $S_i \cap S_j$ empty or not?*

554 ▶ **Conjecture 11** (The Strong Set Disjointness Conjecture). *For an instance S_1, \dots, S_m
 555 satisfying $\sum_{i=1}^m |S_i| = N$, any solution to the Set Disjointness problem answering queries in
 556 $O(t)$ time must use $\tilde{\Omega}\left(\frac{N^2}{t^2}\right)$ space.*

557 The lower bound example in [10], Section 5.2, specifically shows that, assuming Conjec-
 558 ture 11, indexing $T[1..n]$ to solve queries of the form $P_1 \Sigma^{\leq r} P_2$ requires $\tilde{\Omega}(n^{2-2\delta-o(1)})$ space,
 559 assuming one desires to answer queries in $O(n^\delta)$ time, for any $\delta \in [0, 1/2]$. The alphabet
 560 size in their lower bound example is 3. To extend this lower bound to queries of the form
 561 $P_1 D^* P_2$, we have to slightly adapt this lower bound and increase the alphabet size to 4 (k_{\max}
 562 will equal 3 in the example).

563 When reducing from Set Disjointness, as a first step, [10] shows that we can assume that
 564 every universe element appears in the same number of sets (Lemma 6 in [10]). Call this
 565 number f . Then, they construct a string of length $2N \log m + 2N$ from alphabet $\{0, 1, \$\}$ as
 566 follows: For each element $e \in U$, they build a gadget consisting of the concatenation of the
 567 binary encodings of the sets e is contained in, each encoding followed by a $\$$. Such a gadget
 568 has length $B = f \log m + f$. To each gadget, they append a block of B many $\$$, and then
 569 append the resulting strings of length $2B$ in an arbitrary order.

570 We adapt this reduction as follows: the gadgets are defined in the same way as before,
 571 only each gadget is followed by a symbol $\#$, where $\# \notin \{0, 1, \$\}$, instead of a block $\B . The
 572 rest of the construction is the same. Now, if we want to answer a query S_i, S_j to the Set
 573 Disjointness problem, we set P_1 to the binary encoding of i , P_2 to the binary encoding of j ,
 574 and $D = \{0, 1, \$\}$. It will find an occurrence if and only if there is a gadget corresponding to
 575 an element e , which contains both the encoding of i and j , which means that e is contained
 576 in both S_i and S_j . The rest of the proof proceeds as in [10].

577 ————— **References** —————

- 578 1 Arne Andersson, Torben Hagerup, Stefan Nilsson, and Rajeev Raman. Sorting in linear time?
 579 In *Proceedings of the twenty-seventh annual ACM symposium on Theory of computing*, pages
 580 427–436, 1995.
- 581 2 Arturs Backurs and Piotr Indyk. Which regular expression patterns are hard to match? In
 582 *Proc. 57th FOCS*, pages 457–466, 2016.
- 583 3 Arturs Backurs and Piotr Indyk. Which regular expression patterns are hard to match? In
 584 *2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS)*, pages
 585 457–466. IEEE, 2016.
- 586 4 Hideo Bannai, Tomohiro I, Shunsuke Inenaga, Yuto Nakashima, Masayuki Takeda, and Kazuya
 587 Tsuruta. The "runs" theorem. *SIAM J. Comput.*, 46(5):1501–1514, 2017.
- 588 5 Philip Bille. New algorithms for regular expression matching. In *Proc. 33rd ICALP*, pages
 589 643–654, 2006.
- 590 6 Philip Bille and Martin Farach-Colton. Fast and compact regular expression matching. *Theoret.
 591 Comput. Sci.*, 409:486 – 496, 2008.
- 592 7 Philip Bille and Inge Li Gørtz. Substring range reporting. *Algorithmica*, 69:384–396, 2014.
- 593 8 Philip Bille and Inge Li Gørtz. Sparse regular expression matching. In *Proc. 35th SODA*,
 594 pages 3354–3375, 2024.
- 595 9 Philip Bille, Inge Li Gørtz, Max Rishøj Pedersen, and Teresa Anna Steiner. Gapped indexing
 596 for consecutive occurrences. *Algorithmica*, 85(4):879–901, 2023.
- 597 10 Philip Bille, Inge Li Gørtz, Max Rishøj Pedersen, and Teresa Anna Steiner. Gapped indexing
 598 for consecutive occurrences. *Algorithmica*, 85(4):879–901, 2023. URL: <https://doi.org/10.1007/s00453-022-01051-6>, doi:10.1007/S00453-022-01051-6.
- 600 11 Philip Bille, Inge Li Gørtz, Hjalte Wedel Vildhøj, and Søren Vind. String indexing for patterns
 601 with wildcards. *Theory Comput. Syst.*, 55(1):41–60, 2014.
- 602 12 Philip Bille and Mikkel Thorup. Faster regular expression matching. In *Proc. 36th ICALP*,
 603 pages 171–182, 2009.
- 604 13 Philip Bille and Mikkel Thorup. Regular expression matching with multi-strings and intervals.
 605 In *Proc. 21st SODA*, 2010.
- 606 14 Karl Bringmann, Allan Grønlund, and Kasper Green Larsen. A dichotomy for regular
 607 expression membership testing. In *Proc. 58th FOCS*, pages 307–318, 2017.
- 608 15 Richard Cole, Lee-Ad Gottlieb, and Moshe Lewenstein. Dictionary matching and indexing
 609 with errors and don't cares. In *Proc. 36th STOC*, pages 91–100, 2004.
- 610 16 Martin Dietzfelbinger and Friedhelm Meyer auf der Heide. A new universal class of hash
 611 functions and dynamic hashing in real time. In *International Conference on Automata,
 612 Languages and Programming*, pages 6–19, Berlin, Heidelberg, 1990. Springer Berlin Heidelberg.
- 613 17 Bartłomiej Dudek, Paweł Gawrychowski, Garance Gourdel, and Tatiana Starikovskaya. Stream-
 614 ing regular expression membership and pattern matching. In *Proc. 33rd SODA*, pages 670–694,
 615 2022.
- 616 18 Minos N Garofalakis, Rajeev Rastogi, and Kyuseok Shim. SPIRIT: Sequential pattern mining
 617 with regular expression constraints. In *Proc. 25th VLDB*, pages 223–234, 1999.
- 618 19 Daniel Gibney. An efficient elastic-degenerate text index? not likely. In *Proc. 27th SPIRE*,
 619 pages 76–88, 2020.

1:16 Text Indexing for Simple Regular Expressions

620 20 Daniel Gibney and Sharma V. Thankachan. Text indexing for regular expression matching. *Algorithms*, 14(5), 2021. URL: <https://www.mdpi.com/1999-4893/14/5/133>, doi:10.3390/a14050133.

621 21 Isaac Goldstein, Tsvi Kopelowitz, Moshe Lewenstein, and Ely Porat. Conditional lower
622 bounds for space/time tradeoffs. In *Proc. 15th WADS*, pages 421–436, 2017. doi:10.1007/978-3-319-62127-2_36.

623 22 Costas S. Iliopoulos and M. Sohel Rahman. Indexing factors with gaps. *Algorithmica*,
624 55(1):60–70, 2009.

625 23 Theodore Johnson, S. Muthukrishnan, and Irina Rozenbaum. Monitoring regular expressions
626 on out-of-order streams. In *Proc. 23nd ICDE*, pages 1315–1319, 2007.

627 24 Kenrick Kin, Björn Hartmann, Tony DeRose, and Maneesh Agrawala. Proton: multitouch
628 gestures as regular expressions. In *Proc. SIGCHI*, pages 2885–2894, 2012.

629 25 S. C. Kleene. Representation of events in nerve nets and finite automata. In C. E. Shannon
630 and J. McCarthy, editors, *Automata Studies, Ann. Math. Stud. No. 34*, pages 3–41. Princeton
631 U. Press, 1956.

632 26 Donald E. Knuth, James H. Morris Jr., and Vaughan R. Pratt. Fast pattern matching in
633 strings. *SIAM J. Comput.*, 6(2):323–350, 1977. doi:10.1137/0206024.

634 27 Roman M. Kolpakov and Gregory Kucherov. Finding maximal repetitions in a word in
635 linear time. In *40th Annual Symposium on Foundations of Computer Science, FOCS '99*,
636 17–18 October, 1999, New York, NY, USA, pages 596–604. IEEE Computer Society, 1999.
637 doi:10.1109/SFFCS.1999.814634.

638 28 Tsvi Kopelowitz and Robert Krauthgamer. Color-distance oracles and snippets. In *Proc. 27th
639 CPM*, pages 24:1–24:10, 2016.

640 29 Sailesh Kumar, Sarang Dharmapurikar, Fang Yu, Patrick Crowley, and Jonathan Turner.
641 Algorithms to accelerate multiple regular expressions matching for deep packet inspection. In
642 *Proc. SIGCOMM*, pages 339–350, 2006.

643 30 Moshe Lewenstein. Indexing with gaps. In *Proc. 18th SPIRE*, pages 135–143, 2011.

644 31 Moshe Lewenstein, J. Ian Munro, Venkatesh Raman, and Sharma V. Thankachan. Less space:
645 Indexing for queries with wildcards. *Theor. Comput. Sci.*, 557:120–127, 2014.

646 32 Moshe Lewenstein, Yakov Nekrich, and Jeffrey Scott Vitter. Space-efficient string indexing for
647 wildcard pattern matching. In *Proc. 31st STACS*, pages 506–517, 2014.

648 33 Quanzhong Li and Bongki Moon. Indexing and querying XML data for regular path expressions.
649 In *Proc. 27th VLDB*, pages 361–370, 2001.

650 34 Makoto Murata. Extended path expressions of XML. In *Proc. 20th PODS*, pages 126–137,
651 2001.

652 35 E. W. Myers. A four-russian algorithm for regular expression pattern matching. *J. ACM*,
653 39(2):430–448, 1992.

654 36 G. Navarro and Y. Nekrich. Top- k document retrieval in compressed space. In *Proc. 36th
655 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA)*, pages 4009–4030, 2025.

656 37 Gonzalo Navarro and Veli Mäkinen. Compressed full-text indexes. *ACM Comput. Surv.*,
657 39(1):2–es, April 2007. doi:10.1145/1216370.1216372.

658 38 Gonzalo Navarro and Mathieu Raffinot. Fast and simple character classes and bounded gaps
659 pattern matching, with applications to protein searching. *J. Comput. Bio.*, 10(6):903–923,
660 2003.

661 39 Yakov Nekrich. New data structures for orthogonal range reporting and range minima queries.
662 *arXiv preprint arXiv:2007.11094*, 2020.

663 40 Yakov Nekrich. New data structures for orthogonal range reporting and range minima queries.
664 In *Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA)*, pages
665 1191–1205. SIAM, 2021.

666 41 Yakov Nekrich and Gonzalo Navarro. Sorted range reporting. In *Proc. 13th SWAT*, pages
667 271–282, 2012. doi:10.1007/978-3-642-31155-0_24.

668 670

671 42 Pierre Peterlongo, Julien Allali, and Marie-France Sagot. Indexing gapped-factors using a tree.
672 *Int. J. Found. Comput. Sci.*, 19(1):71–87, 2008.

673 43 Rajeev Raman, Venkatesh Raman, and S. Srinivasa Rao. Succinct indexable dictionaries with
674 applications to encoding k-ary trees and multisets. In *Proceedings of the Thirteenth Annual*
675 *ACM-SIAM Symposium on Discrete Algorithms*, SODA '02, page 233–242, USA, 2002. Society
676 for Industrial and Applied Mathematics.

677 44 Philipp Schepper. Fine-grained complexity of regular expression pattern matching and
678 membership. In *Proc. 28th ESA*, 2020.

679 45 K. Thompson. Regular expression search algorithm. *Commun. ACM*, 11:419–422, 1968.

680 46 Larry Wall. *The Perl Programming Language*. Prentice Hall Software Series, 1994.

681 47 Fang Yu, Zhifeng Chen, Yanlei Diao, T. V. Lakshman, and Randy H. Katz. Fast and memory-
682 efficient regular expression matching for deep packet inspection. In *Proc. ANCS*, pages 93–102,
683 2006.