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Abstract19

We study the problem of indexing a text T [1..n] ∈ Σn so that, later, given a query regular expression20

pattern R of size m = |R|, we can report all the occ substrings T [i..j] of T matching R. The problem21

is known to be hard for arbitrary patterns R, so in this paper we consider the following two types22

of patterns. (1) Character-class Kleene-star patterns of the form P1D∗P2, where P1 and P2 are23

strings and D = {c1, . . . , ck} ⊂ Σ is a character-class that is shorthand for the regular expression24

(c1|c2| · · · |ck). (2) String Kleene-star patterns of the form P1P ∗P2 where P , P1 and P2 are strings.25

In case (1), we describe an index of O(n log1+ϵ n) space (for any constant ϵ > 0) solving queries in26

time O(m + log n/ log log n + occ) on constant-sized alphabets. We also describe a more general27

solution working on any alphabet size. This result is conditioned on the existence of an anchor :28

a character of P1P2 that does not belong to D. We justify this assumption by proving that if an29

anchor is not present, no efficient indexing solution can exist unless the Set Disjointness Conjecture30

fails. In case (2), we describe an index of size O(n) answering queries in time O(m + (occ + 1) logϵ n)31

on any alphabet size.32
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1 Introduction44

A regular expression R specifies a set of strings formed by characters from an alphabet Σ45

combined with concatenation (·), union (|), and Kleene star (∗) operators. For instance,46

(a|(b · a))∗ describes the set of strings of as and bs such that every b is followed by an a. The47

text indexing for regular expressions problem is to preprocess a text T to support efficient48

regular expression matching queries on T , that is, given a regular expression R, report all49

occurrences of R in T . Here, an occurrence is a substring T [i..j] that matches any of the50

strings belonging to the regular language of R. We also consider existential regular expression51

matching queries, that is, determining whether or not there is an occurrence of R in T . The52

goal is to obtain a compact data structure while supporting efficient queries.53

Regular expressions are a fundamental concept in formal language theory introduced by54

Kleene in the 1950s [23], and regular expression pattern matching queries are a basic tool in55

computer science for searching and processing text. Standard tools such as grep and sed56

provide direct support for regular expression matching in files, and the scripting language57

perl [43] is a complete programming language designed to support regular expression match-58

ing queries easily. Regular expression matching appears in many large-scale data processing59

applications, such as internet traffic analysis [21, 27, 44], data mining [17], databases [31, 32],60

computational biology [35], and human-computer interaction [22]. Most of the solutions are61

based on the efficient algorithms for the classic regular expression matching problem, where62

we are given both the text T and the regular expression R as input, and the goal is to report63

the occurrences of R in T . However, in many scenarios, the text T is available before we are64

given the regular expressions, and we may want to ask multiple regular expression matching65

queries on T . In this case, we ideally want to take advantage of preprocessing to speed up66

the queries, and thus, the indexing version of the problem applies.67

While the regular expression matching problem is a well-studied classic problem [2, 3,68

5, 6, 8, 12, 13, 14, 33, 41, 42], surprisingly few results are known for the text indexing for69

regular expressions problem. Let n and m be the length of T and R, respectively. Gibney70

and Thankachan [18] recently showed that text indexing for regular expression is hard71

to solve efficiently under popular complexity conjectures. More precisely, they showed72

that conditioned on the online matrix-vector multiplication conjecture, even with arbitrary73

polynomial preprocessing time, we cannot answer existential queries in O(n1−ε) for any74

ε > 0. They also show that if conditioned on a slightly stronger assumption, we cannot even75

answer existential queries in O(n3/2−ε) time, for any ε > 0. Gibney and Thankachan also76

studied upper bound time-space trade-offs with exponential preprocessing. Specifically, given77

a parameter t, 1 ≤ t ≤ n, fixed at preprocessing, we can solve the problem using 2O(tn) space78

and preprocessing time and O(nm/t) query time.79

On the other hand, a few text indexing solutions have been studied for highly restricted80

kinds of regular expressions or regular expression-like patterns. These include text indexing81

for string patterns (simple strings corresponding to regular expressions that only use concaten-82

ations) and string patterns with wildcards and gaps (strings that include special characters or83

sequences of special characters that match any other character) [7,9,11,15,20,26,28,29,30,39].84

Thus, we should not hope to efficiently solve text indexing for general regular expressions,85

and efficient solutions are only known for highly restricted regular expressions. Hence, a86

natural question is if there are simple regular expressions for which efficient solutions are87

possible and that form a large subset of those used in practice. This paper considers the88

following two such kinds of regular expressions and provides either efficient solutions or89

conditional lower bounds to them:90
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1:2 Text Indexing for Simple Regular Expressions

Character-class Kleene-star patterns. These are patterns of the form P1D∗P2 where91

P1 and P2 are strings and D = {c1, . . . , ck} ⊂ Σ is a character-class that is shorthand for92

the regular expression (c1|c2| · · · |ck).93

String Kleene-star patterns. These are patterns of the form P1P ∗P2 where P , P194

and P2 are strings.95

In other words, we provide solutions (or lower bounds) for all regular patterns containing96

only concatenations and at most one occurrence of a Kleene star (either of a string or a97

character-class). Using the notation introduced by the seminal paper of Backurs and Indyk [3]98

on the hardness of (non-indexed) regular expression matching, character-class Kleene-star99

patterns belong to the “·|” type: a concatenation of (possibly degenerate, i.e. |D| = 1) unions.100

To see this, observe that the characters of P1 and P2 can be interpreted as degenerate unions101

of one character. String Kleene-star patterns, on the other hand, belong to the “· ∗ ·” type: a102

concatenation of Kleene stars of concatenations. Again (as discussed in [3]), since any level of103

the regular expression tree is allowed to contain leaves (i.e. an individual character), patterns104

of the form P1P ∗P2 belong to this type by interpreting the characters of P1 and P2 as leaves105

in the regular expression tree. Our main results are new text indices that use near-linear106

space while supporting both kind of queries in time near-linear in the length of the pattern107

(under certain unavoidable assumptions discussed in detail below: if the assumptions fail, we108

show that the problem becomes again hard). Below, we introduce our results and discuss109

them in the context of the results obtained in [3].110

1.1 Setup and Results111

We first consider text indexing for character-class Kleene-star patterns R = P1D∗P2, where112

D is a characters class. We say that the pattern is anchored if either P1 or P2 has a character113

that is not in D, and we call such a character an anchor. If the pattern is anchored, we show114

the following result.115

▶ Theorem 1. Let T be a text of length n over an alphabet Σ. Given a parameter kmax < |Σ|116

and a constant ϵ > 0 fixed at preprocessing time, we can build a data structure that uses117

O(kmax n log1+ϵ n) space and supports anchored character-class Kleene-star queries P1D∗P2,118

where D is a characters class with |D| = k ≤ kmax characters in O(m+2k log n/ log log n+occ)119

time with high probability. Here, m = |P1| + |D| + |P2| and occ is the number of occurrences120

of the pattern in T .121

In particular, our solution supports queries in almost optimal O(m + log n/ log log n)122

time for constant-sized alphabets. We also extend Theorem 1 result to handle slightly more123

general character-class interval patterns of the form P1D≥lP2, P1D≤rP2, and P1D[l,r]P2,124

meaning that there are at least, at most, and between l and r copies of characters from D.125

Intuitively, our strategy is to identify all the right-maximal substrings T [i..j] of T , for126

every possible starting position i, that contain only symbols in D for every possible set D.127

Such a substring will form the “D∗” part of the occurrences. For each such T [i..j], we then128

insert in a range reporting data structure a three-dimensional point with (lexicographically-129

sorted) coordinates (T [1..i − 1]rev, T [1..j]rev, T [j + 1..n]). The data structure is labeled by130

set D. We finally observe that the pattern R can be used to query the right range data131

structure and report all matches of R in T .132

Conversely, we show the following conditional lower bound if the pattern is not anchored.133

134

▶ Theorem 2. Let T be a text of length n over an alphabet Σ with |Σ| ≥ 4 and let δ ∈ [0, 1/2].135

Assuming the strong Set Disjointness Conjecture, any data structure that supports existential136
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(non-anchored) character-class Kleene-star pattern matching queries P1D∗P2, where D is a137

character class with at least 3 characters, in O(nδ) time, requires Ω̃(n2−2δ−o(1)) space.138

With δ = 1/2, Theorem 2 implies that any near linear space solution must have query139

time Ω̃(
√

n). On the other hand, with δ = 0, Theorem 2 implies that any solution using time140

independent from n must use Ω̃(n2−o(1)) space.141

To get Theorem 2, we reduce from the Set Disjointness Problem: I.e., preprocessing some142

sets so we can quickly answer, for any pair of sets, if they are disjoint or not. [10] showed that143

wlog, we can assume every element appears in the same number of sets. The idea is then144

to define a string gadget representing any set, and a block for each element in the universe145

containing the string gadget for every set it is included in. The blocks are separated by a146

character not in the block. This way, the intersection of two sets is non-empty if and only if147

their gadgets appear somewhere in the string only separated by characters which appear in a148

block.149

As noted above, character-class Kleene-star patterns belong to the “·|” type. Backurs150

and Indyk [3] show that offline pattern matching on this type of pattern can be performed in151

time O(n log m). This result is, however, incomparable with ours: their solution is offline and152

the lower bound of Theorem 2 only applies to the regimes where the query time is O(
√

n)153

(while Backurs and Indyk’s solution could equivalently be interpreted as an index solving154

queries in O(n log m) time).155

We then consider text indexing for String Kleene-star patterns R = P1P ∗P2. We show156

the following result.157

▶ Theorem 3. Let T be a text of length n over an alphabet Σ. Given a constant ϵ > 0 fixed158

at preprocessing time, we can build a data structure that uses O(n) space and supports String159

Kleene-star patterns P1P ∗P2 in time O(m + (occ + 1) logϵ n), where m = |P1| + |P | + |P2|160

and occ is the number of occurrences of the pattern in T .161

As discussed above, String Kleene-star patterns belong to the “· ∗ ·” type. For this type162

of patterns, Backurs and Indyk [3] proved a conditional lower bound of Ω((mn)1−ϵ) (for any163

constant ϵ > 0) in the offline setting for both pattern matching and membership queries.164

Our result, instead, implies an offline solution running in O(m + logϵ n) time (by stopping165

after locating the first pattern occurrence) after the indexing phase. This does not contradict166

Backurs and Indyk’s lower bound, since our patterns P1P ∗P2 are a very specific case of the167

(broader) type “· ∗ ·”. Equivalently, this indicates that including more than one Kleene star168

makes the problem hard again and thus justifies an index for the simpler case P1P ∗P2.169

The main idea behind the strategy for Theorem 3 is to preprocess all runs in the string,170

so we can quickly find patterns ending just before or starting just after a run. However, there171

are some difficulties to overcome: firstly, P may be periodic - e. g. if P = ww, we do not172

want to report occurrences of P1w3P2; secondly, a run may end with a partial occurrence173

of the period; and lastly, P may share a suffix with P1 or a prefix with P2, in which case174

their occurrences should overlap with the run. We show how to deal with these difficulties in175

Section 4.176

2 Preliminaries177

A string T of length |T | = n is a sequence T [1] · · · T [n] of n characters drawn from an ordered178

alphabet Σ of size |Σ|. The string T [i] · · · T [j], denoted T [i..j], is called a substring of T ;179

T [1..j] and T [i..n] are called the jth prefix and ith suffix of T , respectively. We use ϵ to180

denote the empty string (i.e., the string of length 0). The reverse string of a string T of181

CPM 2025



1:4 Text Indexing for Simple Regular Expressions

length n, denoted by T rev, is given by T rev = T [n] . . . T [1]. Let P and T be strings over an182

alphabet Σ. We say that the range [i..j] is an occurrence of P in T iff T [i..j] = P .183

Lexicographic order and Lyndon words. The order of the alphabet defines a lexicographic184

order on the set of strings as follows: For two strings T1 ̸= T2, let i be the length of the185

longest common prefix of T1 and T2. We have T1 < T2 if and only if either i) |T1| = i186

or ii) both T1 and T2 have a length at least i + 1 and T1[i + 1] < T2[i + 1]. A string T187

is a Lyndon word if it is lexicographically smaller than any of its proper cyclic shifts, i.e.,188

T < T [i..n]T [1..i − 1], for all 1 < i ≤ n.189

Concatenation of strings. The concatenation of two strings A and B is defined as AB =190

A[1] · · · A[|A|]B[1] · · · B[|B|]. The concatenation of k copies of a string A is denoted by Ak,191

where k ∈ N; i.e. A0 = ϵ and Ak = AAk−1. A string B is called primitive if there is no string192

A and k > 1 such that B = Ak.193

Sets of strings. We denote by A≥l =
⋃

k≥l{Ak}, A≤r =
⋃

k≤r{Ak}, A[l,r] =
⋃

l≤k≤r{Ak},194

and A∗ = A≥0. The concatenation of a string A with a set of strings S is defined as195

AS = {AB : B ∈ S}. Similarly, the concatenation of two sets of strings S1 and S2 is defined196

as S1S2 = {AB : A ∈ S1, B ∈ S2}. We define S≥l, S≤r, S[l,r], and S∗ = S≥0 for sets197

analogously. We say that the range [i..j] is an occurrence of a set of strings S if there is a198

P ∈ S such that [i..j] is an occurrence of P in T .199

Period of a string. An integer p is a period of a string T of length n if and only if200

T [i] = T [i + p] for all 1 ≤ i ≤ n − p. A string T is called periodic if it has a period p ≤ n/2.201

The smallest period of T will be called the period of T .202

Tries and suffix trees. A trie for a collection of strings C = {T1, . . . , Tn}, is a rooted labeled203

tree T such that: (1) The label on each edge is a character in some Ti (i ∈ [1, n]). (2) Each204

string in C is represented by a path in T going from the root down to some node (obtained205

by concatenating the labels on the edges of the path). (3) Each root-to-leaf path represents206

a string from C. (4) Common prefixes of two strings share the same path maximally. A207

compact trie is obtained from T by dissolving all nodes except the root, the branching nodes,208

and the leaves, and concatenating the labels on the edges incident to dissolved nodes to209

obtain string labels for the remaining edges.210

Let T be a string over an alphabet Σ. The suffix tree of a string T is the compacted trie211

of the set of all suffixes of T . Throughout this paper, we assume that nodes in a compact212

trie or the suffix tree use deterministic dictionaries to store their children.213

3 Character-class Kleene-star Patterns214

In this section we give our data structure for answering anchored character-class Kleene-star215

pattern queries. Without loss of generality, we can assume that the anchor belongs to P2216

(the other case is captured by building our structures on the reversed text and querying the217

reversed pattern).218

Recall that we assume k = |D| ≤ kmax for some parameter kmax < |Σ| fixed at construction219

time. We first describe a solution for the case kmax ∈ O(log n), and then in Section 3.3 show220

how to handle the case where kmax ≥ log n.221

Our general strategy is to identify all the right-maximal substrings T [i..j] of T , for every222

possible starting position i, that contain only symbols in D (we later generalize the solution223

to consider all the possible subsets of D). Such a substring forms the “D∗” part of the224
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a
n
c
h
o
r

P2P1

pref
D

k−run with symbols in D

Figure 1 Illustration of the general strategy to capture patterns of the form P1D∗P2. A k-run is
a right-maximal substring T [i..j] containing exactly k distinct symbols.

occurrences. For this sake, D∗ must be preceded by P1 and followed by P2. However, if P2225

starts with some symbols in D, those symbols will belong to the right-maximal substring226

T [i..j]. We therefore separate P2 = prefD · suffD, where prefD is the longest prefix of P2227

that contains only symbols from D, and suffD starts with the anchor. The new condition is228

then that the substring T [i..j] ends with prefD and is followed by suffD. See Figure 1.229

We need the following definitions.230

▶ Definition 4. The D-prefix of P2, denoted prefD(P2) is the longest prefix of P2 that is231

formed only by symbols in D. We define suffD(P2) so that P2 = prefD(P2) · suffD(P2)232

▶ Definition 5. The k-run of T that starts at position i is the maximal range [i..j] such233

that T [i..j] contains exactly k distinct symbols. If the suffix T [i..n] has less than k different234

symbols, then there is no k-run starting at i. We call Di,k the set of k symbols that occur in235

the k-run that starts at position i.236

Note that T contains at most n k-runs, each starting at a distinct position i ∈ [1..n].237

We first show how to find occurrences matching all k symbols of D in the D∗ part of the238

pattern P1D∗P2. Then, we complete this solution by allowing matches with any subset of D.239

3.1 Matching all k Characters of D240

We show how to build a data structure for the case where k = |D| is known at construction241

time, and we only find the occurrences that match exactly all k distinct letters in the D∗
242

part of the occurrence. Recall that we also assume that P2 contains an anchor.243

Data structure. Let Dk be the set of subsets D ⊆ Σ of size k that occur as a k-run in T .244

Our data structure consists of the following:245

The suffix tree T of T and the suffix tree T rev of the reversed text, T rev.246

A data structure SD for each set D ∈ Dk indexing all the text positions PD = {i | Di,k =247

D}. The structure consists of an orthogonal range reporting data structure for a four-248

dimensional grid in [1..n]4 with |PD| points, one per k-run [i..j] with i ∈ PD. For each249

such k-run [i..j] we store a point with coordinates (xi, yi, zi, j − i + 1), where250

xi is the lexicographic rank of T [1..i − 1]rev among all the reversed prefixes of T .251

yi is the lexicographic rank of T [1..j]rev among all the reversed prefixes of T .252

zi is the lexicographic rank of T [j + 1..n] among all the suffixes of T .253

Each point stores the limits [i..j] of its k-run (so as to report occurrence positions).254

A trie τk storing all the strings sD of length k formed by sorting in increasing order the k255

characters of D, for every D ∈ Dk.256

CPM 2025



1:6 Text Indexing for Simple Regular Expressions

Note that the fourth coordinate j − i + 1 of point (xi, yi, zi, j − i + 1) could be avoided257

(i.e. using a 3D range reporting data structure) by defining yi to be the lexicographic rank of258

T [1..j]rev$ (where $ is a special terminator character) in the set formed by all the reversed259

prefixes of T and strings of the form T [1..j]rev$, for all k-runs T [i..j]. While this solution260

would work in the same asymptotic space and query time (because we will only need one-sided261

queries on the fourth coordinate), we will need the fourth dimension in Subsection 3.4.262

Basic search. At query time, we first compute prefD(P2). For any occurrence of the query263

pattern, prefD(P2) will necessarily be the suffix of a k-run. This is why we need P2 to contain264

an anchor; P1 is not restricted because we index every possible initial position i.265

We then sort the symbols of D and use the trie τk to find the data structure SD.266

We now find the lexicographic range [x1, x2] × [y1, y2] × [z1, z2] × [|prefD(P2)|, +∞] using267

the suffix tree T of T and the suffix tree T rev of the reversed text, T rev. The range [x1, x2]268

then corresponds to the leaf range of the locus of P rev
1 in T rev, the range [y1, y2] to the leaf269

range of the locus of prefD(P2)rev in T rev, and the range [z1, z2] to the leaf range of the270

locus of suffD(P2) in T .271

Once the four-dimensional range is identified, we extract all the points from SD in the272

range using the range reporting data structure.273

Time and space The suffix trees use space O(n). The total number of points in the274

range reporting data structures is O(n) as there are at most n k-runs. Because we will275

perform one-sided searches on the fourth coordinate, the grid of SD can be represented276

in O(|PD| log1+ϵ n) space, for any constant ϵ > 0, so that range searches on it take time277

O(occ + log n/ log log n) to report the occ points in the range [36, Thm. 7]. Thus, the total278

space for the range reporting data structures is O(n log1+ϵ n). The space of the trie τk is279

k|Dk| ∈ O(kn).280

The string prefD(P2) can easily be computed in O(k + |P2|) time with high probability281

using a dictionary data structure [16]. Sorting D can be done in O(k log log k) time [1].282

By implementing the pointers of node children in τk and in the suffix trees T and T rev
283

using fast dictionaries [16], the search in τk takes O(k) time with high probability and284

the three searches in T and T rev take total time O(|P1| + |P2|) with high probability.285

The range reporting query takes time O(log n/ log log n + occ). In total, a query takes286

O(m + k log log k + log n/ log log n + occ) time with high probability.287

3.2 Matching any Subset of D288

We now show how to find all occurrences of P1D∗P2, that is, also the ones containing only a289

subset of the characters of D in the D∗ part of the occurrence.290

Our previous search will not capture the (k − i)-runs, for 1 ≤ i < k, containing only291

characters appearing in subsets of D, as we only find P1 and suffD(P2) surrounding the292

k-runs containing all characters from D. To solve this we will build an orthogonal range293

reporting data structures for all D ∈
⋃

1≤k≤kmax
Dk. To capture all the occ occurrences294

of P1D∗P2, we search the corresponding grids of all the 2k − 1 nonempty subsets of D,295

which leads to the cost O(2k log n/ log log n + occ). We wish to avoid, however, the cost of296

searching for P1, prefD′(P2), and suffD′(P2) in the suffix trees for every subset D′ of D. In297

the following we show how to do this.298

Data Structure Let D =
⋃

1≤k≤kmax
Dk. Our data structure consists of the following.299

The suffix tree T of T and the suffix tree T rev of the reversed text, T rev.300

The data structure SD from Section 3.1 for each set D ∈ D.301
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A trie τ storing all the strings of length 1 to kmax, in increasing order of symbols, that302

correspond to some D ∈ D.303

The suffix trees uses linear space. The space for each of the k range reporting data struc-304

tures is O(n log1+ϵ n). Added over all k ∈ [1..kmax], the total space becomes O(kmax n log1+ϵ n).305

The space for the trie τ is O(nk2
max) since there are at most kmaxn strings each of length at306

most kmax. Since we assume kmax ∈ O(log n), the total space is O(kmaxn log1+ϵ n).307

Search To perform the search we search in τ for all subsets D′ of D: In sorted order, we308

traverse τ to find all the subsets of D: for each next symbol c ∈ D, we try both skipping309

it or descending by it in τ . In this way we visit all the 2k − 1 nodes of τ corresponding to310

subsets of D. Each time we are in a node in the trie τ corresponding to some set D′ ⊆ D311

which has an associated range reporting data structure SD′ , we perform a range reporting312

query (x1, x2, y1, y2, z1, z2, |prefD′(P2)|, ∞).313

Note that the range [x1, x2] is the same for all queries, so we only compute this once.314

This is done by a search for P rev
1 in T rev. The intervals [y1, y2] and [z1, z2], on the other315

hand, change during the search, as the split of P2 into prefD′(P2) and suffD′(P2) depends316

on the subset D′. To compute these intervals we first preprocess P2 as follows. Compute317

the ranges [y1, y2] for all reversed prefixes of P2 using the suffix tree T rev: Start by looking318

up the locus for P rev
2 and then find the remaining ones by following suffix links. Similarly,319

we compute the ranges [z1, z2] for the suffixes of P2 following suffix links in T . If we know320

the length ℓ of prefD′(P2) we can then easily look up the intervals the corresponding intervals.321

322

Maintaining ℓ. We now explain how to maintain the length ℓ of prefD′(P2) for D′ ⊂ D in323

constant time for every trie node we meet during the traversal of τ . The difficulty with324

maintaining |prefD′(P2)| while D′ changes is that we when traversing the trie we add the325

characters to D′ in lexicographical order and not in the order they occur in P2 (see Figure 2).326

First we compute for each character c ∈ D the position pc of the first occurrence of c in327

prefD(P2). If c does not occur in prefD(P2), we set pc = ∞. For each c ∈ D, we furthermore328

compute the position rank rc of c, i.e., the rank of pc in the sorted set {pc : c ∈ D}. We329

build:330

a dictionary R saving the position rank rc of each element c ∈ D.331

an array B containing the characters in D in position rank order such that B[rc] = c for332

all c ∈ D (define B[0] = −1).333

an array P containing the position of the first occurrence of the characters in D in rank334

order, i.e. P [i] is the first position of character B[i].335

The main idea is to maintain the intervals of characters in position rank order that we have336

in the sets D′. Before we start the traversal of τ we also construct an array A[0..|D| + 1] and337

initialize all positions in A to 0. We will maintain the invariant that the first, respectively last,338

position of an interval of nonzero entries in A contains the position of the end, respectively339

start, of the interval. Initialize ℓ = 0 and initialize an empty stack S. We now maintain340

ℓ = |prefD′(P2)| as follows:341

When we go down during the traversal adding a character c to the set we first lookup pc342

and rc. If pc = ∞ there are no changes. Otherwise, we set Set A[rc] = rc and compute the343

leftmost position lp of the nonzero interval containing c: If A[rc − 1] = 0 then set lp = rc.344

Else lp = A[rc − 1]. To compute the rightmost position rp of the nonzero interval containing345

c: If A[rc + 1] = 0 then set rp = rc. Else rp = A[rc + 1]. We then push (lp, A[lp], rp, A[rp], ℓ)346

onto the stack to be able to quickly undo the operations later. Then we update A by setting347
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

P2 = b b a a b e a b e e c e a d a h . . .

D = {a, b, c, d, e} D in position rank order: [b, a, e, c, d]

D1 = {a} ℓ = 0 A = [0, 0, 2, 0, 0, 0, 0]
D2 = {a, b} ℓ = 5 A = [0, 2, 1, 0, 0, 0, 0]
D3 = {a, b, c} ℓ = 5 A = [0, 2, 1, 0, 4, 0, 0]
D4 = {a, b, c, d} ℓ = 5 A = [0, 2, 1, 0, 5, 4, 0]
D5 = {a, b, c, d, e} ℓ = 15 A = [0, 5, 1, 3, 5, 1, 0]
D6 = {b} ℓ = 2 A = [0, 1, 0, 0, 0, 0, 0]
...

...
...

1

Figure 2 Computing ℓ = |prefD′ (P2)| as D′ changes during the traversal of the trie. The array
A maintains the intervals of characters in position rank order (the order in which the characters
appear in P2) that are in D′.

A[lp] = rp and A[rp] = lp. Finally, we update ℓ: If A[1] ≥ rc set ℓ = P [A[1] + 1] − 1.348

Otherwise, ℓ does not change.349

When going up in the traversal removing character c we first lookup pc. If pc = ∞350

there are no changes. Otherwise, we pop (lp, lv, rp, rv, ℓ′) from the stack and set A[lp] = lv,351

A[rp] = rv, A[rc] = 0, and ℓ = ℓ′.352

Time It takes O(|P1|) time to search for P rev
1 in T rev. Computing [y1, y2] and [z1, z2] for all353

splits of P2 takes time O(|P2|). Sorting D can be done in time O(k log log k) [1]. Computing354

pc for all characters in D, sorting them, computing the ranks rc, and constructing the arrays355

B and P and the dictionary R takes linear time in the pattern length with high probability.356

The size of the subtrie we visit in the search is O(2k) and in each step we use constant time357

to compute the length of ℓ. The total time for the range queries is O(2k log n/ log log n+occ).358

Thus, in total we use O(m + 2k log n/ log log n + occ) time with high probability.359

3.3 Solution for kmax ≥ log n360

In the discussion above, we assumed that kmax ∈ O(log n). If kmax ≥ log n, we build the361

data structure described above by replacing kmax with k′
max = log n. The space of the data362

structure is still O(k′
max n log1+ϵ n) ⊆ O(kmax n log1+ϵ n). At query time, if |D| = k ≤ log n363

we use the data structure to answer queries in O(m + 2k log n/ log log n + occ) time.364

If, on the other hand, |D| = k > log n then n ∈ O(2k log n/ log log n). We first find365

all occurrences of P1 and P2 using the suffix tree T . Let L1 be the end positions of the366

occurrences of P1 and let P2 be the start positions of the occurrences of P2. We sort the lists367

L1 and L2. This can all be done in O(m + n) time and linear space using radix sort. We also368

mark with a 1 in a bitvector B of length n all text positions i such that T [i] ∈ D. This can be369

done in O(n) time with high probability, with a simple scan of T and a dictionary over D [16].370

We build a data structure over the bitvector supporting rank queries in constant time [40].371

We can now find all occurrences of the pattern by considering the occurrences in sorted order372

in a merge like fashion. Recall, that P2 has an anchor. We consider the first occurrence p1373

in the list L1 and find the first occurrence p2 in L2 that comes after L1, i.e. p2 > p1. If374

all characters between p1 and p2 are from D (constant time with two rank operations over375

bitvector B) we output the occurrence. We delete p1 from the list and continue the same376

way. In total, we find all occurrences in O(n + occ) ∈ O(2k log n/ log log n + occ) time with377

high probability. In summary, this proves Theorem 1.378
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3.4 Character-Class Interval Patterns379

We extend our solution to handle patterns of the form P1D≥lP2, P1D≤rP2, and P1D[l,r]P2,380

meaning that there are at least, at most, and between l and r copies of characters from D.381

We collectively call these character-class interval patterns.382

By using one-sided restrictions on the fourth dimension, we can easily handle queries of383

the form P1D≥lP2 in our solution from the previous section. Handling queries of the form384

P1D≤rP2 or P1D[l,r]P2 requires a two-sided restriction on the fourth dimension. This raises385

the space of the grid to O(|PD| log2+ϵ n), while retaining its query time [36, Thm. 7] [37].386

With these observations we obtain the following results.387

▶ Theorem 6. Let T be a text of length n over an alphabet Σ. Given a parameter kmax <388

|Σ| and a constant ϵ > 0 fixed at preprocessing time, we can build a data structure that389

uses O(kmax n log1+ϵ n) space and supports anchored character-class interval queries of the390

form P1D≥lP2, where D is a character class with k ≤ kmax characters in time O(m +391

2k log n/ log log n + occ) and m = |P1| + |D| + |P2| and occ is the number of occurrences of392

the pattern in T .393

▶ Theorem 7. Let T be a text of length n over an alphabet Σ. Given a parameter kmax < |Σ|394

and a constant ϵ > 0 fixed at preprocessing time, we can build a data structure that uses395

O(kmax n log2+ϵ n) space and supports anchored character-class interval queries of the form396

P1D≤rP2 or P1D[l,r]P2, where D is a characters class with k ≤ kmax characters in time397

O(m+2k log n/ log log n+occ) and m = |P1|+ |D|+ |P2| and occ is the number of occurrences398

of the pattern in T .399

An alternative solution, when longer matches are more interesting than shorter ones, is to400

store the points (xi, yi, zi) in a three-dimensional grid, and use j − i + 1 as the point weights.401

Three-dimensional grids on weighted points can use O(|PD| log2+ϵ n) space and report points402

from larger to smaller weight (i.e., j − i + 1) in time O(p + log n) [34, Lem. A.5]. We can403

use this to report the occurrences from longer to shorter k-runs, thereby stopping when404

the length drops below |prefD(P2)|. We insert the first answer of each of the 2k − 1 grids405

into a priority queue, where the priority will be the length j − i + 1 of the matched k′-run406

[i..j] minus |prefD′(P2)|, then extract the longest answer and replace it by the next point407

from the same grid, repeating until returning all the desired answers. The time per returned408

element now includes a factor O(log log n) if we implement the priority queue with a dynamic409

predecessor search data structure, plus O(2k log log n) for the initial insertions. We can also410

return t longest answers in this case, within a total time of O(m + 2k log n + t log log n).411

4 String Kleene-star Patterns412

In this section we give our data structure for supporting string Kleene-star pattern queries.413

As an intermediate step, we first create a structure that, given strings S1 and S2, a414

primitive string w, and numbers a, b, c, d ∈ N with b < a and d < |w|, where S1 and w do415

not share a suffix and S2 and w[d + 1..] do not share a prefix, finds all occurrences in T of416

patterns of the form S1waq+bw[1..d]S2, where q ≥ c and q ∈ N. Later we will show that this417

is sufficient to find occurrences of P1P ∗P2. For now, we assume that S1 and S2 are not the418

empty string; we will handle these cases later. We will also assume that w is not the empty419

string - in our transformation from P1P ∗P2 to S1waq+bw[1..d]S2, w will be empty if and only420

if P is empty. In this case, the problem reduces to matching P1P2 = S1S2 in the suffix tree.421

To define our data structures, we need the notion of a run (or maximal repetition) in T .422
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▶ Definition 8. A run of T is a periodic substring T [i..j], such that the period cannot423

be extended to the left or the right. That is, if the smallest period of T [i..j] is p, then424

T [i − 1] ̸= T [i + p − 1] and T [j + 1] ̸= T [j − p + 1]. We can write T [i..j] = wtw[1..r], where425

t ∈ N, |w| = p and r < |w|. We also call T [i..j] a run of w. The Lyndon root of a run of w426

is the cyclic shift of w that is a Lyndon word.427

Our general strategy is to preprocess all runs into a data structure, such that we can quickly428

determine the runs preceded by S1 and followed by S2, which additionally end on w[1..d]429

and have a length that matches the query.430

Data structure Let T [i..j + r] = wtw[1..r] be a run in T . For each 1 ≤ a ≤ t we insert a431

point in a three-dimensional grid Gw,a,b where b = t mod a. Each point stores the positions432

i, j of the occurrence of the run and has coordinates x, y, z defined as follows:433

x is the lexicographic rank of T [1..i − 1]rev among all the reversed prefixes of T .434

y is the lexicographical rank of T [j + 1..n] among all the suffixes of T .435

z = ⌊t/a⌋436

Furthermore, we construct a compact trie of the strings w of all runs and a lookup table437

for each such that given a and b we can find Gw,a,b. Finally, we store the suffix tree T of T438

and the suffix tree T rev of the reversed text T rev.439

By the runs theorem, the sum of exponents of all runs in T is O(n) [4,25], hence the total440

number of grids and points is O(n). Let |Gw,a,b| be the number of points in the grid Gw,a,b.441

We store Gw,a,b in the orthogonal range reporting data structure [37] using O(|Gw,a,b|) space,442

so that 5-sided searches on it take time O((p + 1) logϵ |Gw,a,b|), for any constant ϵ > 0, to443

report the p points in the range. Hence, our structure uses O(n) space in total.444

Query To answer a query as above, we find the query ranges [x1, x2] × [y1, y2] using the445

suffix trees T and T rev. The ranges [x1, x2] and [y1, y2] correspond to the leaf ranges of446

the loci of Srev
1 in T rev and w[1..d]S2 in T , respectively. Finally, we find all occurrences447

of S1waq+bw[1..d]S2 with q ≥ c as the points in Gw,a,b inside the 5-sided query [x1, x2] ×448

[y1, y2] × [c, +∞].449

The ranges in T and T rev can be found in time O(|d| + |S1| + |S2|) = O(|w| + |S1| + |S2|)450

if the suffix tree nodes use deterministic dictionaries to store their children. We then do a451

single query to the range data structure Gw,a,b, which reports occ points in O((occ+1) logϵ n)452

time. We have proven the following:453

▶ Lemma 9. Given a text T [1..n] over alphabet Σ, we can build a data structure that uses454

O(n) space and can answer the following queries: Given two non-empty strings S1 and S2,455

a primitive string w, and numbers a, b, c, d ∈ N with b < a and d < |w|, where S1 and w456

do not share a suffix and S2 and w[d + 1..] do not share a prefix, find all occurrences in457

T of patterns of the form S1waq+bw[1..d]S2, where q ≥ c and q ∈ N. The query time is458

O(|S1S2w| + (occ + 1) logϵ n), where occ is the number of occurrences of S1waq+bw[1..d]S2.459

Transforming P1P ∗P2 into S1waq+bw[1..d]S2 Given P1P ∗P2 we compute the strings S1, w460

and S2 and the numbers a, b, c, and d as follows: The string S1 is P1[1..|P1| − i] where i is461

the length of the longest common suffix of P1 and P ⌈|P1|/|P |⌉. Let P ′ = P [(−i mod |P |) +462

1..|P |] · P [1..(−i mod |P |)] and P ′
2 = P1[|P1| − i + 1..|P1|]P2. We compute w and a such that463

P ′ = wa and a ∈ N is maximal (this can be done in time O(|P ′|) e.g. using KMP [24]). By464

definition of P ′ and i, we have that P ′[|P ′|] = P [−i mod |P |] ̸= P1[|P1| − i]. Therefore, S1465

and w do not share a suffix.466
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DBC(ABCABCABC)∗ABCABCABCABCABCB

D(BCABCABCA)∗BCABCABCABCABCABCB // S1 = D and P rotated
D(BCA)3qBCABCABCABCABCABCB // P ′ reduced to w3 = (BCA)3

D(BCA)3qBCABCABCB q ≥ c = 1 // w3 occurs at least once
D(BCA)3q+2BCB, q ≥ c = 1 // S1w3q+2w[1..2]S2

Figure 3 An example of the transformation applied when P1 = DBC, P = ABCABCABC,
and P2 = ABCABCABCABCABCB. Here S1 = D, w = BCA, S2 = B, a = 3, b = 2, c = 1 and
d = 2.

Let j be the length of the longest common prefix of P ′
2 and w⌈|P ′

2|/|w|⌉. We define S2 as467

P ′
2[j + 1..|P ′

2|] and d = j mod |w|. Note that by definition of S2, S2 and w[d + 1..] do not468

share a prefix. Finally, we let b = (j − d)/|w| mod a and c = ⌈ j−d
a|w| ⌉ − b. See Figure 3.469

The transformation can be done in O(|P1| + |P2| + |P |) time: The longest common suffix470

of P1 and P ⌈|P1|/|P |⌉ can be computed in O(|P1|) time and the longest common prefix of471

P ′
2 and w⌈|P ′

2|/|w|⌉ in O(|P ′
2|) = O(|P1| + |P2|) time. Further, as mentioned, the period of472

|P ′| can be found in O(|P ′|) = O(|P |) time. Other than that, the transformation consists of473

modulo calculations and cyclic shifts, which clearly can be done in linear time.474

4.1 When one of S1 and S2 is the Empty String475

In the transformation above, it might happen that S1 or S2 or both are empty, in which case476

the data structure from Lemma 9 cannot be used. In this and the next subsection, we give477

additional data structures to handle these cases. Let us first consider the case where S2 = ϵ478

and S1 ̸= ϵ. The general idea is that to answer a query S1waq+bw[1..d], q ≥ c, where S1479

and w do not share a suffix, we need to find all occurrences of S1 followed by a long enough480

run of w. Note that each one of these occurrences can contain multiple occurrences of our481

pattern, for different choices of q.482

Data structure Let T [i..j + r] = wtw[1..r] be a run in T . For each run in T , we insert483

a point into a two-dimensional grid Gw. Each point stores the positions i, j and r of the484

occurrence of the run. The coordinates x, y of the point in Gw are defined as follows:485

x is the lexicographic rank of T [1..i − 1]rev among all reversed prefixes of T .486

y = t|w| + r.487

In terms of space complexity, as before, by the runs theorem, the sum of exponents of all488

runs in T is O(n) [4, 25]. Thus, the total number of points in Gw is O(n). Further, we store489

a compact trie of all w’s together with a dictionary for finding t and d using linear space.490

The two dimensional points can be processed into a data structure allowing 3-sided range491

queries in linear space and O((occ + 1) logϵ n) running time [38], where occ is the number of492

reported points.493

Query To answer a query S1waq+bw[1..d], as before, we find the lexicographical range [x1, x2]494

for S1 using the suffix tree T . Then, we query the grid Gw for [x1, x2] × [(ac + b)|w| + d, ∞].495

For a point (x, y) with (i, j, r) obtained this way, we report T [i−|S1|+1, i+ |w|(aq+b)+d] for496

all q such that c ≤ q and i + |w|(aq + b) + d ≤ j + r, which is equivalent to q ≤ ⌊ (y−d)/|w|−b
a ⌋.497
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The querying of the grid reports occ points in O((occ + 1) logϵ n) running time, and each498

reported point gives at least one occurrence. The additional occurrences can be found in499

constant time per occurrence. Thus, the total query time is O(|S1S2w| + (1 + occ) logϵ n).500

We can deal with the case where S1 = ϵ analogously, by building the same structure on501

T rev and reversing the pattern.502

4.2 When both S1 and S2 are the Empty String503

If both S1 and S2 are the empty string, then we cannot “anchor” our occurrences at the504

start of a run—i.e., waq+bw[1..d] may occur in runs whose period is a shift of w. To deal505

with this, we characterize all runs by their Lyndon root, and write waq+bw[1..d] as a query506

of the form w′[|w| − e + 1]w′a′q+b′
w′[1..d′], where w′ is a Lyndon word. In the following, we507

show how to answer these kinds of queries.508

We create a structure that given a primitive string w that is a Lyndon word, numbers a, b,509

c, d < |w|, and e < |w|, finds all occurrences of patterns of the form w[|w|−e+1]waq+bw[1..d]510

in T , where q ≥ c and q ∈ N.511

Data structure For a run T [i′..j′ + r′] = ut′
u[1..r′] in T , let w be the Lyndon root of512

the run, and let r < |w|, l < |w| and t be such that T [i′..j′ + r′] = T [i − l + 1..j + r] =513

w[|w|− l + 1]wtw[1..r]. We build a three-dimensional grid Gw. For each run, we store i, j and514

the point (x, y, z) = (l, t, r). We store Gw in a linear space data structure which supports515

five-sided range queries in time O((occ + 1) logϵ n), where occ is the number of reported516

points, given in [37]. By the runs theorem, the total number of points in all Gws is bounded517

by O(n), and thus so is the space of our data structure.518

Query Assume we are given a query w, a, b, c, d, e. In the following, we have to again find519

runs of w which are long enough, but with an extra caveat: we need to treat the runs520

w[|w| − l + 1]wtw[1..r] differently depending on i) if e ≤ l and ii) if d ≤ r, since depending521

on those, the leftmost and rightmost occurrences in the run have different positions. This522

gives us four cases to investigate.523

1. We find all points in [e, ∞] × [ac + b, ∞] × [d, ∞]. For each such, we output the following524

occurrences: T [i−e+k·|w|, i+(k+aq+b)|w|+d], where k ≤ t−ac−b and c ≤ q ≤ ⌊ t−b−k
a ⌋.525

2. We find all points in [e, ∞] × [ac + b + 1, ∞] × [0, d − 1]. For each such, we output all526

occurrences of the form T [i − e + k · |w|, i + (k + aq + b)|w| + d], where k ≤ t − 1 − ac − b527

and c ≤ q ≤ ⌊ t−1−b−k
a ⌋.528

3. We find all points in [0, e − 1] × [ac + b + 1, ∞] × [d, ∞] and output the occurrences of the529

form T [i + |w| − e + k · |w|, i + |w| + (k + aq + b)|w| + d], where k ≤ t − ac − b − 1 and530

c ≤ q ≤ ⌊ t−b−k−1
a ⌋.531

4. We find all points in [0, e − 1] × [ac + b + 2, ∞] × [0, d − 1] and output all occurrences of532

the form T [i + |w| − e + k · |w|, i + |w| + (k + aq + b)|w| + d], where k ≤ t − ac − b − 2533

and c ≤ q ≤ ⌊ t−b−k−2
a ⌋.534

Each range query uses O((occ+1) logϵ n) time, where occ is the number of reported points,535

and each reported point gives at least one occurrence. Additional occurrences within the same536

run can be found in constant time per occurrence. Thus, the total time is O((occ + 1) logϵ n).537

In summary, we have proved Theorem 3.538
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A Conditional Lower Bound for Character-class Kleene-star Patterns639

without an Anchor640

We now show Theorem 2. The conditional lower bound is based on the Strong Set Disjointness641

Conjecture formulated in [19] and stated in the following.642

▶ Definition 10 (The Set Disjointness Problem). In the Set Disjointness problem, the goal is643

to preprocess sets S1, . . . , Sm of elements from a universe U into a data structure, to answer644

the following kind of query: For a pair of sets Si and Sj, is Si ∩ Sj empty or not?645

▶ Conjecture 11 (The Strong Set Disjointness Conjecture). For an instance S1, . . . , Sm646

satisfying
∑m

i=1 |Si| = N , any solution to the Set Disjointness problem answering queries in647

O(t) time must use Ω̃
(

N2

t2

)
space.648

The lower bound example in [10], Section 5.2, specifically shows that, assuming Conjec-649

ture 11, indexing T [1..n] to solve queries of the form P1Σ≤rP2 requires Ω̃(n2−2δ−o(1)) space,650

assuming one desires to answer queries in O(nδ) time, for any δ ∈ [0, 1/2]. The alphabet651

size in their lower bound example is 3. To extend this lower bound to queries of the form652

P1D∗P2, we have to slightly adapt this lower bound and increase the alphabet size to 4 (kmax653

will equal 3 in the example).654

When reducing from Set Disjointness, as a first step, [10] shows that we can assume that655

every universe element appears in the same number of sets (Lemma 6 in [10]). Call this656

number f . Then, they construct a string of length 2N log m + 2N from alphabet {0, 1, $} as657

follows: For each element e ∈ U , they build a gadget consisting of the concatenation of the658

binary encodings of the sets e is contained in, each encoding followed by a $. Such a gadget659

has length B = f log m + f . To each gadget, they append a block of B many $, and then660

append the resulting strings of length 2B in an arbitrary order.661

We adapt this reduction as follows: the gadgets are defined in the same way as before,662

only each gadget is followed by a symbol #, where # /∈ {0, 1, $}, instead of a block $B . The663

rest of the construction is the same. Now, if we want to answer a query Si, Sj to the Set664

Disjointness problem, we set P1 to the binary encoding of i, P2 to the binary encoding of j,665

and D = {0, 1, $}. It will find an occurrence if and only if there is a gadget corresponding to666

an element e which contains both the encoding of i and j, which means that e is contained667

in both Si and Sj . The rest of the proof proceeds as in [10].668
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