
Text Indexing for Simple Regular Expressions1

Hideo Bannai #2

M&D Data Science Center, Institute of Integrated Research, Institute of Science Tokyo, Japan3

Philip Bille #4

Technical University of Denmark, Lyngby, Denmark5

Inge Li Gørtz #6

Technical University of Denmark, Lyngby, Denmark7

Gad M. Landau #8

Department of Computer Science, University of Haifa, Haifa, Israel9

Gonzalo Navarro #10

Department of Computer Science, University of Chile, Santiago, Chile11

Center for Biotechnology and Bioengineering (CeBiB), Santiago, Chile12

Nicola Prezza #13

DAIS, Ca’ Foscari University of Venice, Venice, Italy14

Teresa Anna Steiner #15

University of Southern Denmark, Odense, Denmark16

Simon Rumle Tarnow #17

Technical University of Denmark, Lyngby, Denmark18

Abstract19

We study the problem of indexing a text T [1..n] ∈ Σn so that, later, given a query regular expression20

pattern R of size m = |R|, we can report all the occ substrings T [i..j] of T matching R. The problem21

is known to be hard for arbitrary patterns R, so in this paper we consider the following two types of22

patterns. (1) Character-class Kleene-star patterns of the form P1D∗P2, where P1 and P2 are strings23

and D = {c1, . . . , ck} ⊂ Σ is a character-class (2) String Kleene-star patterns of the form P1P ∗P224

where P , P1 and P2 are strings. In case (1), we describe an index of O(n log1+ϵ n) space (for any25

constant ϵ > 0) solving queries in time O(m + log n/ log log n + occ) on constant-sized alphabets. We26

also describe a more general solution working on any alphabet size. This result is conditioned on the27

existence of an anchor : a character of P1P2 that does not belong to D. We justify this assumption28

by proving that if an anchor is not present, no efficient indexing solution can exist unless the Set29

Disjointness Conjecture fails. In case (2), we describe an index of size O(n) answering queries in30

time O(m + (occ + 1) logϵ n) on any alphabet size.31

2012 ACM Subject Classification Theory of computation → Pattern matching32

Keywords and phrases Text indexing, regular expressions, data structures33

Digital Object Identifier 10.4230/LIPIcs.CPM.2025.134

Funding Hideo Bannai: JSPS KAKENHI Grant Number JP24K0289935

Philip Bille: Danish Research Council grant DFF-8021-00249836

Inge Li Gørtz: Danish Research Council grant DFF-8021-00249837

Gonzalo Navarro: Basal Funds FB0001 and AFB240001, ANID, Chile.38

Nicola Prezza: Funded by the European Union (ERC, REGINDEX, 101039208). Views and opinions39

expressed are however those of the author(s) only and do not necessarily reflect those of the European40

Union or the European Research Council Executive Agency. Neither the European Union nor the41

granting authority can be held responsible for them.42

Teresa Anna Steiner : Supported by a research grant (VIL51463) from VILLUM FONDEN.43

Acknowledgements Work initiated at Dagstuhl Seminar 24472 ”Regular Expressions: Matching and44

Indexing”45

© Hideo Bannai, Philip Bille, Inge Li Gørtz, Gad Landau, Gonzalo Navarro, Nicola Prezza, Teresa
Anna Steiner, Simon Rumle Tarnow ;
licensed under Creative Commons License CC-BY 4.0

36th Annual Symposium on Combinatorial Pattern Matching (CPM 2025).
Editors: P. Bonizzoni and V. Mäkinen; Article No. 1; pp. 1:1–1:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hdbn.dsc@tmd.ac.jp
mailto:phbi@dtu.dk
mailto:inge@dtu.dk
mailto:landau@univ.haifa.ac.il
mailto:gnavarro@uchile.cl
mailto:nicola.prezza@unive.it
mailto:steiner@imada.sdu.dk
mailto:sruta@dtu.dk
https://doi.org/10.4230/LIPIcs.CPM.2025.1
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

1:2 Text Indexing for Simple Regular Expressions

1 Introduction46

A regular expression R specifies a set of strings formed by characters from an alphabet Σ47

combined with concatenation (·), union (|), and Kleene star (∗) operators. For instance,48

(a|(b · a))∗ describes the set of strings of as and bs such that every b is followed by an a. The49

text indexing for regular expressions problem is to preprocess a text T to support efficient50

regular expression matching queries on T , that is, given a regular expression R, report all51

occurrences of R in T . Here, an occurrence is a substring T [i..j] that matches any of the52

strings belonging to the regular language of R. We also consider existential regular expression53

matching queries, that is, determining whether or not there is an occurrence of R in T . The54

goal is to obtain a compact data structure while supporting efficient queries.55

Regular expressions are a fundamental concept in formal language theory introduced by56

Kleene in the 1950s [25], and regular expression pattern matching queries are a basic tool in57

computer science for searching and processing text. Standard tools such as grep and sed58

provide direct support for regular expression matching in files, and the scripting language59

perl [46] is a complete programming language designed to support regular expression match-60

ing queries easily. Regular expression matching appears in many large-scale data processing61

applications, such as internet traffic analysis [23, 29, 47], data mining [18], databases [33, 34],62

computational biology [38], and human-computer interaction [24]. Most of the solutions are63

based on the efficient algorithms for the classic regular expression matching problem, where64

we are given both the text T and the regular expression R as input, and the goal is to report65

the occurrences of R in T . However, in many scenarios, the text T is available before we are66

given the regular expressions, and we may want to ask multiple regular expression matching67

queries on T . In this case, we ideally want to take advantage of preprocessing to speed up68

the queries, and thus, the indexing version of the problem applies.69

While the regular expression matching problem is a well-studied classic problem [2, 3,70

5, 6, 8, 12, 13, 14, 17, 35, 44, 45], surprisingly few results are known for the text indexing for71

regular expressions problem. Let n and m be the length of T and R, respectively. Gibney72

and Thankachan [20] recently showed that text indexing for regular expression is hard73

to solve efficiently under popular complexity conjectures. More precisely, they showed74

that conditioned on the online matrix-vector multiplication conjecture, even with arbitrary75

polynomial preprocessing time, we cannot answer existential queries in O(n1−ε) for any76

ε > 0. They also show that if conditioned on a slightly stronger assumption, we cannot even77

answer existential queries in O(n3/2−ε) time, for any ε > 0. Gibney and Thankachan also78

studied upper bound time-space trade-offs with exponential preprocessing. Specifically, given79

a parameter t, 1 ≤ t ≤ n, fixed at preprocessing, we can solve the problem using 2O(tn) space80

and preprocessing time and O(nm/t) query time.81

On the other hand, a few text indexing solutions have been studied for highly restricted82

kinds of regular expressions or regular expression-like patterns. These include text index-83

ing for string patterns (simple strings corresponding to regular expressions that only use84

concatenations) and string patterns with wildcards and gaps (strings that include special85

characters or sequences of special characters that match any other character) and similar86

extensions [7, 9, 11,15,19,22,28,30,31,32,42].87

Thus, we should not hope to efficiently solve text indexing for general regular expressions,88

and efficient solutions are only known for highly restricted regular expressions. Hence, a89

natural question is if there are simple regular expressions for which efficient solutions are90

possible and that form a large subset of those used in practice. This paper considers the91

following two such kinds of regular expressions and provides either efficient solutions or92

H. Bannai et al. 1:3

conditional lower bounds to them:93

Character-class Kleene-star patterns. These are patterns of the form P1D∗P2 where94

P1 and P2 are strings and D = {c1, . . . , ck} ⊂ Σ is a character-class that is shorthand for95

the regular expression (c1|c2| · · · |ck).96

String Kleene-star patterns. These are patterns of the form P1P ∗P2 where P , P197

and P2 are strings.98

In other words, we provide solutions (or lower bounds) for all regular patterns containing99

only concatenations and at most one occurrence of a Kleene star (either of a string or a100

character-class). Using the notation introduced by the seminal paper of Backurs and Indyk [3]101

on the hardness of (non-indexed) regular expression matching, character-class Kleene-star102

patterns belong to the “· ∗ |” type: a concatenation of Kleene stars of (possibly degenerate,103

i.e. |D| = 1) unions. To see this, observe that the characters of P1 and P2 can be interpreted104

as degenerate unions of one character (without Kleene). String Kleene-star patterns, on the105

other hand, belong to the “· ∗ ·” type: a concatenation of Kleene stars of concatenations.106

Again (as discussed in [3]), since any level of the regular expression tree is allowed to contain107

leaves (i.e. an individual character), patterns of the form P1P ∗P2 belong to this type by108

interpreting the characters of P1 and P2 as leaves in the regular expression tree. Our main109

results are new text indices that use near-linear space while supporting both kind of queries110

in time near-linear in the length of the pattern (under certain unavoidable assumptions111

discussed in detail below: if the assumptions fail, we show that the problem becomes again112

hard). Below, we introduce our results and discuss them in the context of the results obtained113

in [3].114

1.1 Setup and Results115

We first consider text indexing for character-class Kleene-star patterns R = P1D∗P2, where116

D is a characters class. We say that the pattern is anchored if either P1 or P2 has a character117

that is not in D, and we call such a character an anchor. If the pattern is anchored, we show118

the following result.119

▶ Theorem 1. Let T be a text of length n over an alphabet Σ. Given a parameter kmax < |Σ|120

and a constant ϵ > 0 fixed at preprocessing time, we can build a data structure that uses121

O(kmax n log1+ϵ n) space and supports anchored character-class Kleene-star queries P1D∗P2,122

where D is a characters class with |D| = k ≤ kmax characters in O(m+2k log n/ log log n+occ)123

time with high probability. Here, m = |P1| + |D| + |P2| and occ is the number of occurrences124

of the pattern in T .125

In particular, our solution supports queries in almost optimal O(m+log n/ log log n+occ)126

time for constant-sized alphabets. We also extend Theorem 1 result to handle slightly more127

general character-class interval patterns of the form P1D≥lP2, P1D≤rP2, and P1D[l,r]P2,128

meaning that there are at least, at most, and between l and r copies of characters from D.129

Intuitively, our strategy is to identify all the right-maximal substrings T [i..j] of T , for130

every possible starting position i, that contain only symbols in D for every possible set D.131

Such a substring will form the “D∗” part of the occurrences. For each such T [i..j], we then132

insert in a range reporting data structure a three-dimensional point with (lexicographically-133

sorted) coordinates (T [1..i − 1]rev, T [1..j]rev, T [j + 1..n]). The data structure is labeled by134

set D. We finally observe that the pattern R can be used to query the right range data135

structure and report all matches of R in T .136

CPM 2025

1:4 Text Indexing for Simple Regular Expressions

Conversely, we show the following conditional lower bound if the pattern is not anchored.137

138

▶ Theorem 2. Let T be a text of length n over an alphabet Σ with |Σ| ≥ 4 and let δ ∈ [0, 1/2].139

Assuming the strong Set Disjointness Conjecture, any data structure that supports existential140

(non-anchored) character-class Kleene-star pattern matching queries P1D∗P2, where D is a141

character class with at least 3 characters, in O(nδ) time, requires Ω̃(n2−2δ−o(1)) space.142

With δ = 1/2, Theorem 2 implies that any near linear space solution must have query143

time Ω̃(
√

n). On the other hand, with δ = 0, Theorem 2 implies that any solution using time144

independent from n must use Ω̃(n2−o(1)) space.145

To get Theorem 2, we reduce from the Set Disjointness Problem: preprocessing some sets146

so we can quickly answer, for any pair of sets, if they are disjoint or not. [10] showed that147

wlog, we can assume every element appears in the same number of sets. The idea is then148

to define a string gadget representing any set, and a block for each element in the universe149

containing the string gadget for every set it is included in. The blocks are separated by a150

character not in the block. This way, the intersection of two sets is non-empty if and only if151

their gadgets appear somewhere in the string only separated by characters which appear in a152

block.153

As noted above, character-class Kleene-star patterns belong to the “· ∗ |” type. Backurs154

and Indyk [3] prove a quadratic lower bound for this class of regular expressions. Our result155

shows that even the more restricted sub-class P1D∗P2 of “· ∗ |” is hard if no anchors are156

present.157

We then consider text indexing for String Kleene-star patterns R = P1P ∗P2. We show158

the following result.159

▶ Theorem 3. Let T be a text of length n over an alphabet Σ. Given a constant ϵ > 0 fixed160

at preprocessing time, we can build a data structure that uses O(n) space and supports String161

Kleene-star patterns P1P ∗P2 in time O(m + (occ + 1) logϵ n), where m = |P1| + |P | + |P2|162

and occ is the number of occurrences of the pattern in T .163

As discussed above, String Kleene-star patterns belong to the “· ∗ ·” type. For this type164

of patterns, Backurs and Indyk [3] proved a conditional lower bound of Ω((mn)1−ϵ) (for any165

constant ϵ > 0) in the offline setting for both pattern matching and membership queries.166

Our result, instead, implies an offline solution running in O(m + logϵ n) time (by stopping167

after locating the first pattern occurrence) after the indexing phase. This does not contradict168

Backurs and Indyk’s lower bound, since our patterns P1P ∗P2 are a very specific case of the169

(broader) type “· ∗ ·”. Equivalently, this indicates that including more than one Kleene star170

makes the problem hard again and thus justifies an index for the simpler case P1P ∗P2.171

The main idea behind the strategy for Theorem 3 is to preprocess all maximal periodic172

substrings (called runs) in the string, so we can quickly find patterns ending just before or173

starting just after a run. However, there are some difficulties to overcome: firstly, P may be174

periodic - e. g. if P = ww, we do not want to report occurrences of P1w3P2; secondly, a run175

may end with a partial occurrence of the period; and lastly, P may share a suffix with P1 or176

a prefix with P2, in which case their occurrences should overlap with the run. We show how177

to deal with these difficulties in Section 4.178

2 Preliminaries179

A string T of length |T | = n is a sequence T [1] · · · T [n] of n characters drawn from an ordered180

alphabet Σ of size |Σ|. The string T [i] · · · T [j], denoted T [i..j], is called a substring of T ;181

H. Bannai et al. 1:5

T [1..j] and T [i..n] are called the jth prefix and ith suffix of T , respectively. We use ϵ to182

denote the empty string (i.e., the string of length 0). The reverse string of a string T of183

length n, denoted by T rev, is given by T rev = T [n] . . . T [1]. Let P and T be strings over an184

alphabet Σ. We say that the range [i..j] is an occurrence of P in T iff T [i..j] = P .185

Lexicographic order and Lyndon words. The order of the alphabet defines a lexicographic186

order on the set of strings as follows: For two strings T1 ̸= T2, let i be the length of the187

longest common prefix of T1 and T2. We have T1 < T2 if and only if either i) |T1| = i188

or ii) both T1 and T2 have a length at least i + 1 and T1[i + 1] < T2[i + 1]. A string T189

is a Lyndon word if it is lexicographically smaller than any of its proper cyclic shifts, i.e.,190

T < T [i..n]T [1..i − 1], for all 1 < i ≤ n.191

Concatenation of strings. The concatenation of two strings A and B is defined as AB =192

A[1] · · · A[|A|]B[1] · · · B[|B|]. The concatenation of k copies of a string A is denoted by Ak,193

where k ∈ N; i.e. A0 = ϵ and Ak = AAk−1. A string B is called primitive if there is no string194

A and k > 1 such that B = Ak.195

Sets of strings. We denote by A≥l =
⋃

k≥l{Ak}, A≤r =
⋃

k≤r{Ak}, A[l,r] =
⋃

l≤k≤r{Ak},196

and A∗ = A≥0. The concatenation of a string A with a set of strings S is defined as197

AS = {AB : B ∈ S}. Similarly, the concatenation of two sets of strings S1 and S2 is defined198

as S1S2 = {AB : A ∈ S1, B ∈ S2}. We define S≥l, S≤r, S[l,r], and S∗ = S≥0 for sets199

analogously. We say that the range [i..j] is an occurrence of a set of strings S if there is a200

P ∈ S such that [i..j] is an occurrence of P in T .201

Period of a string. An integer p is a period of a string T of length n if and only if202

T [i] = T [i + p] for all 1 ≤ i ≤ n − p. A string T is called periodic if it has a period p ≤ n/2.203

The smallest period of T will be called the period of T .204

Tries and suffix trees. A trie for a collection of strings C = {T1, . . . , Tn}, is a rooted labeled205

tree T such that: (1) The label on each edge is a character in some Ti (i ∈ [1, n]). (2) Each206

string in C is represented by a path in T going from the root down to some node (obtained207

by concatenating the labels on the edges of the path). (3) Each root-to-leaf path represents208

a string from C. (4) Common prefixes of two strings share the same path maximally. A209

compact trie is obtained from T by dissolving all nodes except the root, the branching nodes,210

and the leaves, and concatenating the labels on the edges incident to dissolved nodes to211

obtain string labels for the remaining edges.212

Let T be a string over an alphabet Σ. The suffix tree of a string T is the compacted trie213

of the set of all suffixes of T . Throughout this paper, we assume that nodes in a compact214

trie or the suffix tree use deterministic dictionaries to store their children.215

3 Character-class Kleene-star Patterns216

In this section we give our data structure for answering anchored character-class Kleene-star217

pattern queries. Without loss of generality, we can assume that the anchor belongs to P2218

(the other case is captured by building our structures on the reversed text and querying the219

reversed pattern).220

CPM 2025

1:6 Text Indexing for Simple Regular Expressions

a
n
c
h
o
r

P2P1

pref
D

k−run with symbols in D

Figure 1 Illustration of the general strategy to capture patterns of the form P1D∗P2. A k-run is
a right-maximal substring T [i..j] containing exactly k distinct symbols.

Recall that we assume k = |D| ≤ kmax for some parameter kmax < |Σ| fixed at construction221

time. We first describe a solution for the case kmax < log n, and then in Section 3.3 show222

how to handle the case where kmax ≥ log n.223

Our general strategy is to identify all the right-maximal substrings T [i..j] of T , for every224

possible starting position i, that contain all and only the symbols of D (we later generalize225

the solution to consider all the possible subsets of D). Such a substring forms the “D∗” part226

of the occurrences. For this sake, D∗ must be preceded by P1 and followed by P2. However, if227

P2 starts with some symbols in D, those symbols will belong to the right-maximal substring228

T [i..j]. We therefore separate P2 = prefD · suffD, where prefD is the longest prefix of P2229

that contains only symbols from D, and suffD starts with the anchor. The new condition is230

then that the substring T [i..j] ends with prefD and is followed by suffD. See Figure 1.231

We need the following definitions.232

▶ Definition 4. The D-prefix of P2, denoted prefD(P2) is the longest prefix of P2 that is233

formed only by symbols in D. We define suffD(P2) so that P2 = prefD(P2) · suffD(P2)234

▶ Definition 5. The k-run of T that starts at position i is the maximal range [i..j] such235

that T [i..j] contains exactly k distinct symbols. If the suffix T [i..n] has less than k different236

symbols, then there is no k-run starting at i. We call Di,k the set of k symbols that occur in237

the k-run that starts at position i.238

Note that T contains at most n k-runs, each starting at a distinct position i ∈ [1..n].239

We first show how to find occurrences matching all k symbols of D in the D∗ part of the240

pattern P1D∗P2. Then, we complete this solution by allowing matches with any subset of D.241

3.1 Matching all k Characters of D242

We show how to build a data structure for the case where k = |D| is known at construction243

time, and we only find the occurrences that match exactly all k distinct letters in the D∗
244

part of the occurrence. Recall that we also assume that P2 contains an anchor.245

Data structure. Let Dk be the set of subsets D ⊆ Σ of size k that occur as a k-run in T .246

Our data structure consists of the following:247

The suffix tree T of T and the suffix tree T rev of the reversed text, T rev.248

A data structure SD for each set D ∈ Dk indexing all the text positions PD = {i | Di,k =249

D}. The structure consists of an orthogonal range reporting data structure for a four-250

dimensional grid in [1..n]4 with |PD| points, one per k-run [i..j] with i ∈ PD. For each251

such k-run [i..j] we store a point with coordinates (xi, yi, zi, j − i + 1), where252

xi is the lexicographic rank of T [1..i − 1]rev among all the reversed prefixes of T .253

H. Bannai et al. 1:7

yi is the lexicographic rank of T [1..j]rev among all the reversed prefixes of T .254

zi is the lexicographic rank of T [j + 1..n] among all the suffixes of T .255

Each point stores the limits [i..j] of its k-run (so as to report occurrence positions).256

A trie τk storing all the strings sD of length k formed by sorting in increasing order the k257

characters of D, for every D ∈ Dk.258

Note that the fourth coordinate j − i + 1 of point (xi, yi, zi, j − i + 1) could be avoided259

(i.e. using a 3D range reporting data structure) by defining yi to be the lexicographic rank of260

T [1..j]rev$ (where $ is a special terminator character) in the set formed by all the reversed261

prefixes of T and strings of the form T [1..j]rev$, for all k-runs T [i..j]. While this solution262

would work in the same asymptotic space and query time (because we will only need one-sided263

queries on the fourth coordinate), we will need the fourth dimension in Subsection 3.4.264

Basic search. At query time, we first compute prefD(P2). For any occurrence of the query265

pattern, prefD(P2) will necessarily be the suffix of a k-run. This is why we need P2 to contain266

an anchor; P1 is not restricted because we index every possible initial position i.267

We then sort the symbols of D and use the trie τk to find the data structure SD.268

We now find the lexicographic range [x1, x2] × [y1, y2] × [z1, z2] × [|prefD(P2)|, +∞] using269

the suffix tree T of T and the suffix tree T rev of the reversed text, T rev. The range [x1, x2]270

then corresponds to the leaf range of the locus of P rev
1 in T rev, the range [y1, y2] to the leaf271

range of the locus of prefD(P2)rev in T rev, and the range [z1, z2] to the leaf range of the272

locus of suffD(P2) in T .273

Once the four-dimensional range is identified, we extract all the points from SD in the274

range using the range reporting data structure.275

Time and space. The suffix trees use space O(n). The total number of points in the276

range reporting data structures is O(n) as there are at most n k-runs. Because we will277

perform one-sided searches on the fourth coordinate, the grid of SD can be represented278

in O(|PD| log1+ϵ n) space, for any constant ϵ > 0, so that range searches on it take time279

O(occ + log n/ log log n) to report the occ points in the range [39, Thm. 7]. Thus, the total280

space for the range reporting data structures is O(n log1+ϵ n). The space of the trie τk is281

k|Dk| ∈ O(kn).282

The string prefD(P2) can easily be computed in O(k + |P2|) time with high probability283

using a dictionary data structure [16]. Sorting D can be done in O(k log log k) time [1].284

By implementing the pointers of node children in τk and in the suffix trees T and T rev
285

using perfect hashing (see [37]), the search in τk takes O(k) worst-case time and the three286

searches in T and T rev take total time O(|P1| + |P2|). The range reporting query takes time287

O(log n/ log log n + occ). In total, a query takes O(m + k log log k + log n/ log log n + occ)288

time with high probability1.289

3.2 Matching any Subset of D290

We now show how to find all occurrences of P1D∗P2, that is, also the ones containing only a291

subset of the characters of D in the D∗ part of the occurrence.292

Our previous search will not capture the (k − i)-runs, for 1 ≤ i < k, containing only293

characters appearing in subsets of D, as we only find P1 and suffD(P2) surrounding the k-runs294

1 Unfortunately, [39, Thm. 7] does not describe construction of the range reporting data structure that
we use, so we are not able to provide construction time and working space of our index.

CPM 2025

1:8 Text Indexing for Simple Regular Expressions

containing all characters from D. To solve this we will build an orthogonal range reporting295

data structure for all D ∈
⋃

1≤k≤kmax
Dk. To capture all the occ occurrences of P1D∗P2, we296

search the corresponding grids of all the 2k − 1 nonempty subsets of D, which leads to the297

cost O(2k log n/ log log n + occ). We wish to avoid, however, the cost of searching for P1,298

prefD′(P2), and suffD′(P2) in the suffix trees for every subset D′ of D. In the following we299

show how to do this.300

Data Structure. Let D =
⋃

1≤k≤kmax
Dk. Our data structure consists of the following.301

The suffix tree T of T and the suffix tree T rev of the reversed text, T rev.302

The data structure SD from Section 3.1 for each set D ∈ D.303

A trie τ storing all the strings of length 1 to kmax, in increasing alphabetic order of304

characters, that correspond to some D ∈ D.305

The suffix trees uses linear space. The space for each of the k range reporting data struc-306

tures is O(n log1+ϵ n). Added over all k ∈ [1..kmax], the total space becomes O(kmax n log1+ϵ n).307

The space for the trie τ is O(nk2
max) since there are at most kmaxn strings each of length at308

most kmax. Since we assume kmax < log n, the total space is O(kmaxn log1+ϵ n).309

Search. To perform the search, we traverse τ to find all the subsets of D as follows. Let310

sD = c1c2 . . . ck be the string formed by concatenating all symbols of D in sorted order.311

Letting Ni be the set of nodes of τ reached after processing sD[1..i] (initially, i = 0 and312

N0 contains only the root of τ), Ni+1 is obtained by inserting in Ni the nodes reached by313

following the edges labeled with character sD[i + 1] from nodes in Ni. In other words, for314

each symbol of sD we try both skipping it or descending by it in τ . The last set, Nk, contains315

all the 2k − 1 nodes of τ corresponding to subsets of D. Each time we are in a node of τ316

corresponding to some set D′ ⊆ D which has an associated range reporting data structure317

SD′ , we perform a range reporting query (x1, x2, y1, y2, z1, z2, |prefD′(P2)|, ∞).318

Note that the range [x1, x2] is the same for all queries, so we only compute this once.319

This is done by a search for P rev
1 in T rev. The intervals [y1, y2] and [z1, z2], on the other320

hand, change during the search, as the split of P2 into prefD′(P2) and suffD′(P2) depends321

on the subset D′. To compute these intervals we first preprocess P2 as follows. Compute the322

ranges [y1, y2] for all reversed prefixes of P2 using the suffix tree T rev: Start by looking up323

the locus for P rev
2 and then find the remaining ones by following suffix links. Similarly, we324

compute the ranges [z1, z2] for the suffixes of P2 following suffix links in T . If we know the325

length ℓ of prefD′(P2), we can then easily look up the corresponding intervals.326

327

Maintaining ℓ. We now explain how to maintain the length ℓ of prefD′(P2) for D′ ⊂ D in328

constant time for every trie node we meet during the traversal of τ . The difficulty with329

maintaining |prefD′(P2)| while D′ changes is that we when traversing the trie we add the330

characters to D′ in lexicographical order and not in the order they occur in P2 (see Figure 2).331

First we compute for each character c ∈ D the position pc of the first occurrence of c in332

prefD(P2). If c does not occur in prefD(P2), we set pc = ∞. For each c ∈ D, we furthermore333

compute the position rank rc of c, i.e., the rank of pc in the sorted set {pc : c ∈ D}. We334

build:335

a dictionary R saving the position rank rc of each element c ∈ D.336

an array B containing the characters in D in position rank order such that B[rc] = c for337

all c ∈ D (define B[0] = −1).338

an array P containing the position of the first occurrence of the characters in D in rank339

order, i.e., P [i] is the first position of character B[i].340

H. Bannai et al. 1:9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

P2 = b b a a b e a b e e c e a d a h . . .

D = {a, b, c, d, e} D in position rank order: [b, a, e, c, d]

D1 = {a} ℓ = 0 A = [0, 0, 2, 0, 0, 0, 0] ID1 = {[2, 2]}
D2 = {a, b} ℓ = 5 A = [0, 2, 1, 0, 0, 0, 0] ID2 = {[1, 2]}
D3 = {a, b, c} ℓ = 5 A = [0, 2, 1, 0, 4, 0, 0] ID3 = {[1, 2], [4, 4]}
D4 = {a, b, c, d} ℓ = 5 A = [0, 2, 1, 0, 5, 4, 0] ID4 = {[1, 2], [4, 5]}
D5 = {a, b, c, d, e} ℓ = 15 A = [0, 5, 1, 3, 5, 1, 0] ID5 = {[1, 5]}
D6 = {b} ℓ = 2 A = [0, 1, 0, 0, 0, 0, 0] ID6 = {[1, 1]}
...

...
...

...

Figure 2 Computing ℓ = |prefD′ (P2)| as D′ changes during the traversal of the trie. The array
A maintains the intervals of characters in position rank order (the order in which the characters
appear in P2) that are in D′.

Let α be the first character in position rank order that is not in D′. Then ℓ = pα − 1. The341

main idea is to maintain the intervals ID′ of characters in D′ in position rank order. The342

position rank rα of α can then easily be computed from the set of intervals ID′ and used343

to compute pα = P [rα]. We use array A[0..|D| + 1] to store the intervals of ID′ . Initially,344

all positions in A are 0. We will maintain the invariant that the first, respectively last,345

position of an interval of nonzero entries in A contains the position of the end, respectively346

start, of the interval. Initialize ℓ = 0 and initialize an empty stack S. We now maintain347

ℓ = |prefD′(P2)| as follows:348

When we go down during the traversal adding a character c to the set, we first lookup rc349

in R and set pc = P [rc]. If pc = ∞ there are no changes. Otherwise, we set set A[rc] = rc350

and compute the leftmost position lp of the nonzero interval containing c: If A[rc − 1] = 0351

then set lp = rc. Else lp = A[rc − 1]. To compute the rightmost position rp of the nonzero352

interval containing c: If A[rc + 1] = 0 then set rp = rc. Else rp = A[rc + 1]. We then push353

(lp, A[lp], rp, A[rp], ℓ) onto the stack to be able to quickly undo the operations later. Then354

we update A by setting A[lp] = rp and A[rp] = lp. Finally, we update ℓ: If A[1] ≥ rc set355

ℓ = P [A[1] + 1] − 1. Otherwise, ℓ does not change.356

When going up in the traversal removing character c we first lookup pc. If pc = ∞357

there are no changes. Otherwise, we pop (lp, lv, rp, rv, ℓ′) from the stack and set A[lp] = lv,358

A[rp] = rv, A[rc] = 0, and ℓ = ℓ′.359

Time. It takes O(|P1|) time to search for P rev
1 in T rev. Computing [y1, y2] and [z1, z2] for all360

splits of P2 takes time O(|P2|). Sorting D can be done in time O(k log log k) [1]. Computing361

pc for all characters in D, sorting them, computing the ranks rc, and constructing the arrays362

B and P and the dictionary R takes linear time in the pattern length with high probability.363

The size of the subtrie we visit in the search is O(2k) and in each step we use constant time364

to compute the length of ℓ. The total time for the range queries is O(2k log n/ log log n+occ).365

Thus, in total we use O(m + 2k log n/ log log n + occ) time with high probability.366

CPM 2025

1:10 Text Indexing for Simple Regular Expressions

3.3 Solution for kmax ≥ log n.367

In the discussion above, we assumed that kmax < log n. If kmax ≥ log n, we build the data368

structure described above by replacing kmax with k′
max = log n. The space of the data369

structure is still O(k′
max n log1+ϵ n) ⊆ O(kmax n log1+ϵ n). At query time, if |D| = k ≤ log n370

we use the data structure to answer queries in O(m + 2k log n/ log log n + occ) time.371

If, on the other hand, |D| = k > log n then n ∈ O(2k log n/ log log n). We first find372

all occurrences of P1 and P2 using the suffix tree T . Let L1 be the end positions of the373

occurrences of P1 and let P2 be the start positions of the occurrences of P2. We sort the lists374

L1 and L2. This can all be done in O(m + n) time and linear space using radix sort. We also375

mark with a 1 in a bitvector BD of length n all text positions i such that T [i] ∈ D. This can be376

done in O(n) time with high probability, with a simple scan of T and a dictionary over D [16].377

We build a data structure over the bitvector supporting rank queries in constant time [43].378

We can now find all occurrences of the pattern by considering the occurrences in sorted order379

in a merge like fashion. Recall, that P2 has an anchor. We consider the first occurrence p1380

in the list L1 and find the first occurrence p2 in L2 that comes after L1, i.e. p2 > p1. If381

all characters between p1 and p2 are from D (constant time with two rank operations over382

bitvector BD) we output the occurrence. We delete p1 from the list and continue the same383

way. In total, we find all occurrences in O(n + occ) ∈ O(2k log n/ log log n + occ) time with384

high probability. In summary, this proves Theorem 1.385

3.4 Character-Class Interval Patterns386

We extend our solution to handle patterns of the form P1D≥lP2, P1D≤rP2, and P1D[l,r]P2,387

meaning that there are at least, at most, and between l and r copies of characters from D.388

We collectively call these character-class interval patterns.389

By using one-sided restrictions on the fourth dimension, we can easily handle queries of390

the form P1D≥lP2 in our solution from the previous section. Handling queries of the form391

P1D≤rP2 or P1D[l,r]P2 requires a two-sided restriction on the fourth dimension. This raises392

the space of the grid to O(|PD| log2+ϵ n), while retaining its query time [39, Thm. 7] [40].393

With these observations we obtain the following results.394

▶ Theorem 6. Let T be a text of length n over an alphabet Σ. Given a parameter kmax < |Σ|395

and a constant ϵ > 0 fixed at preprocessing time, we can build a data structure that uses396

O(kmax n log1+ϵ n) space and supports anchored character-class interval queries of the form397

P1D≥lP2 in time O(m+2k log n/ log log n+occ), where D is a character class with k ≤ kmax398

characters, m = |P1| + |D| + |P2|, and occ is the number of occurrences of the pattern in T .399

▶ Theorem 7. Let T be a text of length n over an alphabet Σ. Given a parameter kmax < |Σ|400

and a constant ϵ > 0 fixed at preprocessing time, we can build a data structure that uses401

O(kmax n log2+ϵ n) space and supports anchored character-class interval queries of the form402

P1D≤rP2 or P1D[l,r]P2 in time O(m + 2k log n/ log log n + occ), where D is a characters403

class with k ≤ kmax characters, m = |P1| + |D| + |P2|, and occ is the number of occurrences404

of the pattern in T .405

An alternative solution, when longer matches are more interesting than shorter ones, is to406

store the points (xi, yi, zi) in a three-dimensional grid, and use j − i + 1 as the point weights.407

Three-dimensional grids on weighted points can use O(|PD| log2+ϵ n) space and report points408

from larger to smaller weight (i.e., j − i + 1) in time O(p + log n) [36, Lem. A.5]. We can409

use this to report the occurrences from longer to shorter k-runs, thereby stopping when410

the length drops below |prefD(P2)|. We insert the first answer of each of the 2k − 1 grids411

H. Bannai et al. 1:11

into a priority queue, where the priority will be the length j − i + 1 of the matched k′-run412

[i..j] minus |prefD′(P2)|, then extract the longest answer and replace it by the next point413

from the same grid, repeating until returning all the desired answers. The time per returned414

element now includes a factor O(log log n) if we implement the priority queue with a dynamic415

predecessor search data structure, plus O(2k log log n) for the initial insertions. We can also416

return t longest answers in this case, within a total time of O(m + 2k log n + t log log n).417

4 String Kleene-star Patterns418

In this section we give our data structure for supporting string Kleene-star pattern queries.419

As an intermediate step, we first create a structure that, given strings S1 and S2, a420

primitive string w, and numbers a, b, c, d ∈ N with b < a and d < |w|, where S1 and w do421

not share a suffix and S2 and w[d + 1..] do not share a prefix, finds all occurrences in T of422

patterns of the form S1waq+bw[1..d]S2, where q ≥ c and q ∈ N. Later we will show that this423

is sufficient to find occurrences of P1P ∗P2. For now, we assume that S1 and S2 are not the424

empty string; we will handle these cases later. We will also assume that w is not the empty425

string - in our transformation from P1P ∗P2 to S1waq+bw[1..d]S2, w will be empty if and only426

if P is empty. In this case, the problem reduces to matching P1P2 = S1S2 in the suffix tree.427

To define our data structures, we need the notion of a run (or maximal repetition) in T .428

▶ Definition 8. A run of T is a periodic substring T [i..j], such that the period cannot429

be extended to the left or the right. That is, if the smallest period of T [i..j] is p, then430

T [i − 1] ̸= T [i + p − 1] and T [j + 1] ̸= T [j − p + 1]. We can write T [i..j] = wtw[1..r], where431

t ∈ N, |w| = p and r < |w|. We also call T [i..j] a run of w. The Lyndon root of a run of w432

is the cyclic shift of w that is a Lyndon word.433

Our general strategy is to preprocess all runs into a data structure, such that we can quickly434

determine the runs preceded by S1 and followed by S2, which additionally end on w[1..d]435

and have a length that matches the query.436

Data structure. Let T [i..j + r] = wtw[1..r] with r < |w| be a run in T . For each 1 ≤ a ≤ t437

we insert a point in a three-dimensional grid Gw,a,b where b = t mod a. Each point stores438

the positions i, j and has coordinates x, y, z defined as follows:439

x is the lexicographic rank of T [1..i − 1]rev among all the reversed prefixes of T .440

y is the lexicographical rank of T [j + 1..n] among all the suffixes of T .441

z = ⌊t/a⌋.442

Furthermore, we construct a compact trie of the strings w of all runs and a lookup table443

such that given a and b we can find Gw,a,b. Finally, we store the suffix tree T of T and the444

suffix tree T rev of the reversed text T rev.445

By the runs theorem, the sum of exponents of all runs in T is O(n) [4,27], hence the total446

number of grids and points is O(n). Let |Gw,a,b| be the number of points in the grid Gw,a,b.447

We store Gw,a,b in the orthogonal range reporting data structure [40] using O(|Gw,a,b|) space,448

so that 5-sided searches on it take time O((p + 1) logϵ |Gw,a,b|), for any constant ϵ > 0, to449

report the p points in the range. Hence, our structure uses O(n) space in total.450

Query. To answer a query as above, we find the query ranges [x1, x2] × [y1, y2] using the451

suffix trees T and T rev. The ranges [x1, x2] and [y1, y2] correspond to the leaf ranges of452

the loci of Srev
1 in T rev and w[1..d]S2 in T , respectively. Finally, we find all occurrences453

CPM 2025

1:12 Text Indexing for Simple Regular Expressions

DBC(ABCABCABC)∗ABCABCABCABCABCB

D(BCABCABCA)∗BCABCABCABCABCABCB // S1 = D and P rotated
D(BCA)3qBCABCABCABCABCABCB // P ′ reduced to w3 = (BCA)3

D(BCA)3qBCABCABCB q ≥ c = 1 // w3 occurs at least once
D(BCA)3q+2BCB, q ≥ c = 1 // S1w3q+2w[1..2]S2

Figure 3 An example of the transformation applied when P1 = DBC, P = ABCABCABC,
and P2 = ABCABCABCABCABCB. Here S1 = D, w = BCA, S2 = B, a = 3, b = 2, c = 1 and
d = 2.

of S1waq+bw[1..d]S2 with q ≥ c as the points in Gw,a,b inside the 5-sided query [x1, x2] ×454

[y1, y2] × [c, +∞].455

The ranges in T and T rev can be found in time O(|d| + |S1| + |S2|) = O(|w| + |S1| + |S2|)456

if the suffix tree nodes use deterministic dictionaries to store their children (see [37]). Again,457

we augment each suffix tree node x with the lexicographic range of the suffixes represented458

by the leaves below x. We then do a single query to the range data structure Gw,a,b, which459

reports occ points in O((occ + 1) logϵ n) time. We have proven the following:460

▶ Lemma 9. Given a text T [1..n] over alphabet Σ, we can build a data structure that uses461

O(n) space and can answer the following queries: Given two non-empty strings S1 and S2,462

a primitive string w, and numbers a, b, c, d ∈ N with b < a and d < |w|, where S1 and w463

do not share a suffix and S2 and w[d + 1..] do not share a prefix, find all occurrences in464

T of patterns of the form S1waq+bw[1..d]S2, where q ≥ c and q ∈ N. The query time is465

O(|S1S2w| + (occ + 1) logϵ n), where occ is the number of occurrences of S1waq+bw[1..d]S2.466

Transforming P1P ∗P2 into S1waq+bw[1..d]S2. Given P1P ∗P2 we compute the strings S1,467

w and S2 and the numbers a, b, c, and d as follows: The string S1 is P1[1..|P1| − i] where i468

is the length of the longest common suffix of P1 and P ⌈|P1|/|P |⌉. Let P ′ = P [(−i mod |P |) +469

1..|P |] · P [1..(−i mod |P |)] and P ′
2 = P1[|P1| − i + 1..|P1|]P2. We compute w and a such that470

P ′ = wa and a ∈ N is maximal (this can be done in time O(|P ′|) e.g. using KMP [26]). By471

definition of P ′ and i, we have that P ′[|P ′|] = P [−i mod |P |] ̸= P1[|P1| − i]. Therefore, S1472

and w do not share a suffix.473

Let j be the length of the longest common prefix of P ′
2 and w⌈|P ′

2|/|w|⌉. We define S2 as474

P ′
2[j + 1..|P ′

2|] and d = j mod |w|. Note that by definition of S2, S2 and w[d + 1..] do not475

share a prefix. Finally, we let b = (j − d)/|w| mod a and c = ⌈ j−d
a|w| ⌉ − b. See Figure 3.476

The transformation can be done in O(|P1| + |P2| + |P |) time: The longest common suffix477

of P1 and P ⌈|P1|/|P |⌉ can be computed in O(|P1|) time and the longest common prefix of478

P ′
2 and w⌈|P ′

2|/|w|⌉ in O(|P ′
2|) = O(|P1| + |P2|) time. Further, as mentioned, the period of479

|P ′| can be found in O(|P ′|) = O(|P |) time. Other than that, the transformation consists of480

modulo calculations and cyclic shifts, which clearly can be done in linear time.481

4.1 When one of S1 and S2 is the Empty String.482

In the transformation above, it might happen that S1 or S2 or both are empty, in which483

case the data structure from Lemma 9 cannot be used. We give additional data structures484

to handle these cases in this and the next subsection. Let us first consider the case where485

H. Bannai et al. 1:13

S2 = ϵ and S1 ̸= ϵ. The general idea is that to answer a query S1waq+bw[1..d], q ≥ c, where486

S1 and w do not share a suffix, we need to find all occurrences of S1 followed by a long487

enough run of w. Note that each one of these occurrences can contain multiple occurrences488

of our pattern, for different choices of q.489

Data structure. Let T [i..j + r] = wtw[1..r] with r < |w| be a run in T . For each run in T ,490

we insert a point into a two-dimensional grid Gw. Each point stores the positions i, j and r491

of the occurrence of the run. The coordinates x, y of the point in Gw are defined as follows:492

x is the lexicographic rank of T [1..i − 1]rev among all reversed prefixes of T .493

y = t|w| + r.494

In terms of space complexity, as before, by the runs theorem, the sum of exponents of all495

runs in T is O(n) [4, 27]. Thus, the total number of points in Gw is O(n). Further, we store496

a compact trie of all w’s together with a dictionary for finding t and d using linear space.497

The two-dimensional points can be processed into a data structure allowing 3-sided range498

queries in linear space and O((occ + 1) logϵ n) running time [41], where occ is the number of499

reported points.500

Query. To answer a query S1waq+bw[1..d], as before, we find the lexicographical range501

[x1, x2] for S1 using the suffix tree T . Then, we query the grid Gw for [x1, x2] × [(ac + b)|w| +502

d, ∞]. For a point (x, y) with (i, j, r) obtained this way, we report T [i − |S1| + 1, i + |w|(aq +503

b) + d] for all q such that c ≤ q and i + |w|(aq + b) + d ≤ j + r, which is equivalent to504

q ≤ ⌊ (y−d)/|w|−b
a ⌋.505

The querying of the grid reports occ points in O((occ + 1) logϵ n) running time, and each506

reported point gives at least one occurrence. The additional occurrences can be found in507

constant time per occurrence. Thus, the total query time is O(|S1S2w| + (1 + occ) logϵ n).508

We can deal with the case where S1 = ϵ analogously, by building the same structure on509

T rev and reversing the pattern.510

4.2 When both S1 and S2 are the Empty String.511

If both S1 and S2 are the empty string, then we cannot “anchor” our occurrences at the512

start of a run—i.e., waq+bw[1..d] may occur in runs whose period is a shift of w. To deal513

with this, we characterize all runs by their Lyndon root, and write waq+bw[1..d] as a query514

of the form w′[|w| − e + 1]w′a′q+b′
w′[1..d′], where w′ is a Lyndon word. In the following, we515

show how to answer these kinds of queries.516

We create a structure that given a primitive string w that is a Lyndon word, numbers a, b,517

c, d < |w|, and e < |w|, finds all occurrences of patterns of the form w[|w|−e+1]waq+bw[1..d]518

in T , where q ≥ c and q ∈ N.519

Data structure. For a run T [i′..j′ + r′] = ut′
u[1..r′] with r′ < |u| in T , let w be the Lyndon520

root of the run, and let r < |w|, l < |w| and t be such that T [i′..j′ + r′] = T [i − l + 1..j + r] =521

w[|w|− l + 1]wtw[1..r]. We build a three-dimensional grid Gw. For each run, we store i, j and522

the point (x, y, z) = (l, t, r). We store Gw in a linear space data structure which supports523

five-sided range queries in time O((occ + 1) logϵ n), where occ is the number of reported524

points, given in [40]. By the runs theorem, the total number of points in all Gws is bounded525

by O(n), and thus so is the space of our data structure.526

CPM 2025

1:14 Text Indexing for Simple Regular Expressions

Query. Assume we are given a query w, a, b, c, d, e. In the following, we have to again527

find runs of w which are long enough, but with an extra caveat: we need to treat the runs528

w[|w| − l + 1]wtw[1..r] differently depending on i) if e ≤ l and ii) if d ≤ r, since depending529

on those, the leftmost and rightmost occurrences in the run have different positions. This530

gives us four cases to investigate.531

1. We find all points in [e, ∞] × [ac + b, ∞] × [d, ∞]. For each such, we output the following532

occurrences: T [i−e+k·|w|, i+(k+aq+b)|w|+d], where k ≤ t−ac−b and c ≤ q ≤ ⌊ t−b−k
a ⌋.533

2. We find all points in [e, ∞] × [ac + b + 1, ∞] × [0, d − 1]. For each such, we output all534

occurrences of the form T [i − e + k · |w|, i + (k + aq + b)|w| + d], where k ≤ t − 1 − ac − b535

and c ≤ q ≤ ⌊ t−1−b−k
a ⌋.536

3. We find all points in [0, e − 1] × [ac + b + 1, ∞] × [d, ∞] and output the occurrences of the537

form T [i + |w| − e + k · |w|, i + |w| + (k + aq + b)|w| + d], where k ≤ t − ac − b − 1 and538

c ≤ q ≤ ⌊ t−b−k−1
a ⌋.539

4. We find all points in [0, e − 1] × [ac + b + 2, ∞] × [0, d − 1] and output all occurrences of540

the form T [i + |w| − e + k · |w|, i + |w| + (k + aq + b)|w| + d], where k ≤ t − ac − b − 2541

and c ≤ q ≤ ⌊ t−b−k−2
a ⌋.542

Each range query uses O((occ+1) logϵ n) time, where occ is the number of reported points,543

and each reported point gives at least one occurrence. Additional occurrences within the same544

run can be found in constant time per occurrence. Thus, the total time is O((occ + 1) logϵ n).545

In summary, we have proved Theorem 3.546

5 Conditional Lower Bound for Character-class Kleene-star Patterns547

without an Anchor548

We now prove Theorem 2. The conditional lower bound is based on the Strong Set Disjointness549

Conjecture formulated in [21] and stated in the following.550

▶ Definition 10 (The Set Disjointness Problem). In the Set Disjointness problem, the goal is551

to preprocess sets S1, . . . , Sm of elements from a universe U into a data structure, to answer552

the following kind of query: For a pair of sets Si and Sj, is Si ∩ Sj empty or not?553

▶ Conjecture 11 (The Strong Set Disjointness Conjecture). For an instance S1, . . . , Sm554

satisfying
∑m

i=1 |Si| = N , any solution to the Set Disjointness problem answering queries in555

O(t) time must use Ω̃
(

N2

t2

)
space.556

The lower bound example in [10], Section 5.2, specifically shows that, assuming Conjec-557

ture 11, indexing T [1..n] to solve queries of the form P1Σ≤rP2 requires Ω̃(n2−2δ−o(1)) space,558

assuming one desires to answer queries in O(nδ) time, for any δ ∈ [0, 1/2]. The alphabet559

size in their lower bound example is 3. To extend this lower bound to queries of the form560

P1D∗P2, we have to slightly adapt this lower bound and increase the alphabet size to 4 (kmax561

will equal 3 in the example).562

When reducing from Set Disjointness, as a first step, [10] shows that we can assume that563

every universe element appears in the same number of sets (Lemma 6 in [10]). Call this564

number f . Then, they construct a string of length 2N log m + 2N from alphabet {0, 1, $} as565

follows: For each element e ∈ U , they build a gadget consisting of the concatenation of the566

binary encodings of the sets e is contained in, each encoding followed by a $. Such a gadget567

has length B = f log m + f . To each gadget, they append a block of B many $, and then568

append the resulting strings of length 2B in an arbitrary order.569

H. Bannai et al. 1:15

We adapt this reduction as follows: the gadgets are defined in the same way as before,570

only each gadget is followed by a symbol #, where # /∈ {0, 1, $}, instead of a block $B . The571

rest of the construction is the same. Now, if we want to answer a query Si, Sj to the Set572

Disjointness problem, we set P1 to the binary encoding of i, P2 to the binary encoding of j,573

and D = {0, 1, $}. It will find an occurrence if and only if there is a gadget corresponding to574

an element e, which contains both the encoding of i and j, which means that e is contained575

in both Si and Sj . The rest of the proof proceeds as in [10].576

References577

1 Arne Andersson, Torben Hagerup, Stefan Nilsson, and Rajeev Raman. Sorting in linear time?578

In Proceedings of the twenty-seventh annual ACM symposium on Theory of computing, pages579

427–436, 1995.580

2 Arturs Backurs and Piotr Indyk. Which regular expression patterns are hard to match? In581

Proc. 57th FOCS, pages 457–466, 2016.582

3 Arturs Backurs and Piotr Indyk. Which regular expression patterns are hard to match? In583

2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS), pages584

457–466. IEEE, 2016.585

4 Hideo Bannai, Tomohiro I, Shunsuke Inenaga, Yuto Nakashima, Masayuki Takeda, and Kazuya586

Tsuruta. The "runs" theorem. SIAM J. Comput., 46(5):1501–1514, 2017.587

5 Philip Bille. New algorithms for regular expression matching. In Proc. 33rd ICALP, pages588

643–654, 2006.589

6 Philip Bille and Martin Farach-Colton. Fast and compact regular expression matching. Theoret.590

Comput. Sci., 409:486 – 496, 2008.591

7 Philip Bille and Inge Li Gørtz. Substring range reporting. Algorithmica, 69:384–396, 2014.592

8 Philip Bille and Inge Li Gørtz. Sparse regular expression matching. In Proc. 35th SODA,593

pages 3354–3375, 2024.594

9 Philip Bille, Inge Li Gørtz, Max Rishøj Pedersen, and Teresa Anna Steiner. Gapped indexing595

for consecutive occurrences. Algorithmica, 85(4):879–901, 2023.596

10 Philip Bille, Inge Li Gørtz, Max Rishøj Pedersen, and Teresa Anna Steiner. Gapped indexing597

for consecutive occurrences. Algorithmica, 85(4):879–901, 2023. URL: https://doi.org/10.598

1007/s00453-022-01051-6, doi:10.1007/S00453-022-01051-6.599

11 Philip Bille, Inge Li Gørtz, Hjalte Wedel Vildhøj, and Søren Vind. String indexing for patterns600

with wildcards. Theory Comput. Syst., 55(1):41–60, 2014.601

12 Philip Bille and Mikkel Thorup. Faster regular expression matching. In Proc. 36th ICALP,602

pages 171–182, 2009.603

13 Philip Bille and Mikkel Thorup. Regular expression matching with multi-strings and intervals.604

In Proc. 21st SODA, 2010.605

14 Karl Bringmann, Allan Grønlund, and Kasper Green Larsen. A dichotomy for regular606

expression membership testing. In Proc. 58th FOCS, pages 307–318, 2017.607

15 Richard Cole, Lee-Ad Gottlieb, and Moshe Lewenstein. Dictionary matching and indexing608

with errors and don’t cares. In Proc. 36th STOC, pages 91–100, 2004.609

16 Martin Dietzfelbinger and Friedhelm Meyer auf der Heide. A new universal class of hash610

functions and dynamic hashing in real time. In International Conference on Automata,611

Languages and Programming, pages 6–19, Berlin, Heidelberg, 1990. Springer Berlin Heidelberg.612

17 Bartłomiej Dudek, Paweł Gawrychowski, Garance Gourdel, and Tatiana Starikovskaya. Stream-613

ing regular expression membership and pattern matching. In Proc. 33rd SODA, pages 670–694,614

2022.615

18 Minos N Garofalakis, Rajeev Rastogi, and Kyuseok Shim. SPIRIT: Sequential pattern mining616

with regular expression constraints. In Proc. 25th VLDB, pages 223–234, 1999.617

19 Daniel Gibney. An efficient elastic-degenerate text index? not likely. In Proc. 27th SPIRE,618

pages 76–88, 2020.619

CPM 2025

https://doi.org/10.1007/s00453-022-01051-6
https://doi.org/10.1007/s00453-022-01051-6
https://doi.org/10.1007/s00453-022-01051-6
https://doi.org/10.1007/S00453-022-01051-6

1:16 Text Indexing for Simple Regular Expressions

20 Daniel Gibney and Sharma V. Thankachan. Text indexing for regular expression matching.620

Algorithms, 14(5), 2021. URL: https://www.mdpi.com/1999-4893/14/5/133, doi:10.3390/621

a14050133.622

21 Isaac Goldstein, Tsvi Kopelowitz, Moshe Lewenstein, and Ely Porat. Conditional lower623

bounds for space/time tradeoffs. In Proc. 15th WADS, pages 421–436, 2017. doi:10.1007/624

978-3-319-62127-2_36.625

22 Costas S. Iliopoulos and M. Sohel Rahman. Indexing factors with gaps. Algorithmica,626

55(1):60–70, 2009.627

23 Theodore Johnson, S. Muthukrishnan, and Irina Rozenbaum. Monitoring regular expressions628

on out-of-order streams. In Proc. 23nd ICDE, pages 1315–1319, 2007.629

24 Kenrick Kin, Björn Hartmann, Tony DeRose, and Maneesh Agrawala. Proton: multitouch630

gestures as regular expressions. In Proc. SIGCHI, pages 2885–2894, 2012.631

25 S. C. Kleene. Representation of events in nerve nets and finite automata. In C. E. Shannon632

and J. McCarthy, editors, Automata Studies, Ann. Math. Stud. No. 34, pages 3–41. Princeton633

U. Press, 1956.634

26 Donald E. Knuth, James H. Morris Jr., and Vaughan R. Pratt. Fast pattern matching in635

strings. SIAM J. Comput., 6(2):323–350, 1977. doi:10.1137/0206024.636

27 Roman M. Kolpakov and Gregory Kucherov. Finding maximal repetitions in a word in637

linear time. In 40th Annual Symposium on Foundations of Computer Science, FOCS ’99,638

17-18 October, 1999, New York, NY, USA, pages 596–604. IEEE Computer Society, 1999.639

doi:10.1109/SFFCS.1999.814634.640

28 Tsvi Kopelowitz and Robert Krauthgamer. Color-distance oracles and snippets. In Proc. 27th641

CPM, pages 24:1–24:10, 2016.642

29 Sailesh Kumar, Sarang Dharmapurikar, Fang Yu, Patrick Crowley, and Jonathan Turner.643

Algorithms to accelerate multiple regular expressions matching for deep packet inspection. In644

Proc. SIGCOMM, pages 339–350, 2006.645

30 Moshe Lewenstein. Indexing with gaps. In Proc. 18th SPIRE, pages 135–143, 2011.646

31 Moshe Lewenstein, J. Ian Munro, Venkatesh Raman, and Sharma V. Thankachan. Less space:647

Indexing for queries with wildcards. Theor. Comput. Sci., 557:120–127, 2014.648

32 Moshe Lewenstein, Yakov Nekrich, and Jeffrey Scott Vitter. Space-efficient string indexing for649

wildcard pattern matching. In Proc. 31st STACS, pages 506–517, 2014.650

33 Quanzhong Li and Bongki Moon. Indexing and querying XML data for regular path expressions.651

In Proc. 27th VLDB, pages 361–370, 2001.652

34 Makoto Murata. Extended path expressions of XML. In Proc. 20th PODS, pages 126–137,653

2001.654

35 E. W. Myers. A four-russian algorithm for regular expression pattern matching. J. ACM,655

39(2):430–448, 1992.656

36 G. Navarro and Y. Nekrich. Top-k document retrieval in compressed space. In Proc. 36th657

Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 4009–4030, 2025.658

37 Gonzalo Navarro and Veli Mäkinen. Compressed full-text indexes. ACM Comput. Surv.,659

39(1):2–es, April 2007. doi:10.1145/1216370.1216372.660

38 Gonzalo Navarro and Mathieu Raffinot. Fast and simple character classes and bounded gaps661

pattern matching, with applications to protein searching. J. Comput. Bio., 10(6):903–923,662

2003.663

39 Yakov Nekrich. New data structures for orthogonal range reporting and range minima queries.664

arXiv preprint arXiv:2007.11094, 2020.665

40 Yakov Nekrich. New data structures for orthogonal range reporting and range minima queries.666

In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA), pages667

1191–1205. SIAM, 2021.668

41 Yakov Nekrich and Gonzalo Navarro. Sorted range reporting. In Proc. 13th SWAT, pages669

271–282, 2012. doi:10.1007/978-3-642-31155-0_24.670

https://www.mdpi.com/1999-4893/14/5/133
https://doi.org/10.3390/a14050133
https://doi.org/10.3390/a14050133
https://doi.org/10.3390/a14050133
https://doi.org/10.1007/978-3-319-62127-2_36
https://doi.org/10.1007/978-3-319-62127-2_36
https://doi.org/10.1007/978-3-319-62127-2_36
https://doi.org/10.1137/0206024
https://doi.org/10.1109/SFFCS.1999.814634
https://doi.org/10.1145/1216370.1216372
https://doi.org/10.1007/978-3-642-31155-0_24

H. Bannai et al. 1:17

42 Pierre Peterlongo, Julien Allali, and Marie-France Sagot. Indexing gapped-factors using a tree.671

Int. J. Found. Comput. Sci., 19(1):71–87, 2008.672

43 Rajeev Raman, Venkatesh Raman, and S. Srinivasa Rao. Succinct indexable dictionaries with673

applications to encoding k-ary trees and multisets. In Proceedings of the Thirteenth Annual674

ACM-SIAM Symposium on Discrete Algorithms, SODA ’02, page 233–242, USA, 2002. Society675

for Industrial and Applied Mathematics.676

44 Philipp Schepper. Fine-grained complexity of regular expression pattern matching and677

membership. In Proc. 28th ESA, 2020.678

45 K. Thompson. Regular expression search algorithm. Commun. ACM, 11:419–422, 1968.679

46 Larry Wall. The Perl Programming Language. Prentice Hall Software Series, 1994.680

47 Fang Yu, Zhifeng Chen, Yanlei Diao, T. V. Lakshman, and Randy H. Katz. Fast and memory-681

efficient regular expression matching for deep packet inspection. In Proc. ANCS, pages 93–102,682

2006.683

CPM 2025

	1 Introduction
	1.1 Setup and Results

	2 Preliminaries
	3 Character-class Kleene-star Patterns
	3.1 Matching all k Characters of D
	3.2 Matching any Subset of D
	3.3 Solution for k n.
	3.4 Character-Class Interval Patterns

	4 String Kleene-star Patterns
	4.1 When one of S1 and S2 is the Empty String.
	4.2 When both S1 and S2 are the Empty String.

	5 Conditional Lower Bound for Character-class Kleene-star Patterns without an Anchor

