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—— Abstract

We study the problem of indexing a text T[1..n] € ¥™ so that, later, given a query regular expression
pattern R of size m = |R|, we can report all the occ substrings T'[i..j] of T matching R. The problem
is known to be hard for arbitrary patterns R, so in this paper we consider the following two types of
patterns. (1) Character-class Kleene-star patterns of the form P; D* P>, where P; and P, are strings
and D = {c1,...,ck} C X is a character-class (2) String Kleene-star patterns of the form Py P* P
where P, P; and P» are strings. In case (1), we describe an index of O(nlog'tn) space (for any
constant € > 0) solving queries in time O(m + log n/loglogn + occ) on constant-sized alphabets. We
also describe a more general solution working on any alphabet size. This result is conditioned on the
existence of an anchor: a character of P, P> that does not belong to D. We justify this assumption
by proving that if an anchor is not present, no efficient indexing solution can exist unless the Set
Disjointness Conjecture fails. In case (2), we describe an index of size O(n) answering queries in
time O(m + (occ + 1) log® n) on any alphabet size.
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Text Indexing for Simple Regular Expressions

1 Introduction

A regular expression R specifies a set of strings formed by characters from an alphabet X
combined with concatenation (-), union (|), and Kleene star (*) operators. For instance,
(al(b-a))* describes the set of strings of as and bs such that every b is followed by an a. The
text indexing for regular expressions problem is to preprocess a text T to support efficient
regular expression matching queries on T, that is, given a regular expression R, report all
occurrences of R in T. Here, an occurrence is a substring T'[i..j] that matches any of the
strings belonging to the regular language of R. We also consider ezistential reqular expression
matching queries, that is, determining whether or not there is an occurrence of R in T. The
goal is to obtain a compact data structure while supporting efficient queries.

Regular expressions are a fundamental concept in formal language theory introduced by
Kleene in the 1950s [25], and regular expression pattern matching queries are a basic tool in
computer science for searching and processing text. Standard tools such as grep and sed
provide direct support for regular expression matching in files, and the scripting language
perl [46] is a complete programming language designed to support regular expression match-
ing queries easily. Regular expression matching appears in many large-scale data processing
applications, such as internet traffic analysis [23,29,47], data mining [18], databases [33,34],
computational biology [38], and human-computer interaction [24]. Most of the solutions are
based on the efficient algorithms for the classic reqular expression matching problem, where
we are given both the text T and the regular expression R as input, and the goal is to report
the occurrences of R in T. However, in many scenarios, the text T is available before we are
given the regular expressions, and we may want to ask multiple regular expression matching
queries on T'. In this case, we ideally want to take advantage of preprocessing to speed up
the queries, and thus, the indexing version of the problem applies.

While the regular expression matching problem is a well-studied classic problem [2,3,
5,6,8,12,13,14,17,35,44,45], surprisingly few results are known for the text indexing for
regular expressions problem. Let n and m be the length of T and R, respectively. Gibney
and Thankachan [20] recently showed that text indexing for regular expression is hard
to solve efficiently under popular complexity conjectures. More precisely, they showed
that conditioned on the online matrix-vector multiplication conjecture, even with arbitrary
polynomial preprocessing time, we cannot answer existential queries in O(n!=¢) for any
€ > 0. They also show that if conditioned on a slightly stronger assumption, we cannot even
answer existential queries in O(n?/27¢) time, for any ¢ > 0. Gibney and Thankachan also
studied upper bound time-space trade-offs with exponential preprocessing. Specifically, given
a parameter t, 1 <t < n, fixed at preprocessing, we can solve the problem using 20" space
and preprocessing time and O(nm/t) query time.

On the other hand, a few text indexing solutions have been studied for highly restricted
kinds of regular expressions or regular expression-like patterns. These include text index-
ing for string patterns (simple strings corresponding to regular expressions that only use
concatenations) and string patterns with wildcards and gaps (strings that include special
characters or sequences of special characters that match any other character) and similar
extensions [7,9,11,15,19,22,28,30,31,32,42].

Thus, we should not hope to efficiently solve text indexing for general regular expressions,
and efficient solutions are only known for highly restricted regular expressions. Hence, a
natural question is if there are simple regular expressions for which efficient solutions are
possible and that form a large subset of those used in practice. This paper considers the
following two such kinds of regular expressions and provides either efficient solutions or
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conditional lower bounds to them:

Character-class Kleene-star patterns. These are patterns of the form P; D* P, where
Py and P, are strings and D = {cy,...,cx} C X is a character-class that is shorthand for
the regular expression (cq|ca|- - |ck).

String Kleene-star patterns. These are patterns of the form P, P*P, where P, P,
and P, are strings.

In other words, we provide solutions (or lower bounds) for all regular patterns containing
only concatenations and at most one occurrence of a Kleene star (either of a string or a
character-class). Using the notation introduced by the seminal paper of Backurs and Indyk [3]
on the hardness of (non-indexed) regular expression matching, character-class Kleene-star
patterns belong to the “ x |” type: a concatenation of Kleene stars of (possibly degenerate,
i.e. |D| =1) unions. To see this, observe that the characters of P, and P, can be interpreted
as degenerate unions of one character (without Kleene). String Kleene-star patterns, on the
other hand, belong to the “- % -” type: a concatenation of Kleene stars of concatenations.
Again (as discussed in [3]), since any level of the regular expression tree is allowed to contain
leaves (i.e. an individual character), patterns of the form P; P* P, belong to this type by
interpreting the characters of P, and P, as leaves in the regular expression tree. Our main
results are new text indices that use near-linear space while supporting both kind of queries
in time near-linear in the length of the pattern (under certain unavoidable assumptions
discussed in detail below: if the assumptions fail, we show that the problem becomes again
hard). Below, we introduce our results and discuss them in the context of the results obtained
in [3].

1.1 Setup and Results

We first consider text indexing for character-class Kleene-star patterns R = P, D* P, where
D is a characters class. We say that the pattern is anchored if either P; or P, has a character
that is not in D, and we call such a character an anchor. If the pattern is anchored, we show
the following result.

» Theorem 1. Let T be a text of length n over an alphabet X. Given a parameter kpmax < |2
and a constant € > 0 fixed at preprocessing time, we can build a data structure that uses
O (kmax nlog'™e n) space and supports anchored character-class Kleene-star queries Py D* Ps,
where D is a characters class with |D| = k < kmyax characters in O(m+2%logn/ loglog n-+occ)
time with high probability. Here, m = |Py| 4 |D| + |P| and occ is the number of occurrences
of the pattern in T.

In particular, our solution supports queries in almost optimal O(m +logn/loglogn+ occ)
time for constant-sized alphabets. We also extend Theorem 1 result to handle slightly more
general character-class interval patterns of the form P,DZ'P,, P, D<"P,, and P, DLTIP,,
meaning that there are at least, at most, and between [ and r copies of characters from D.

Intuitively, our strategy is to identify all the right-maximal substrings T'[i..j] of T, for
every possible starting position ¢, that contain only symbols in D for every possible set D.
Such a substring will form the “D*” part of the occurrences. For each such Ti..j], we then
insert in a range reporting data structure a three-dimensional point with (lexicographically-
sorted) coordinates (T[1..i — 1]"¢¥, T[1..4]"*", T[j + 1..n]). The data structure is labeled by
set D. We finally observe that the pattern R can be used to query the right range data
structure and report all matches of R in T'.
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Text Indexing for Simple Regular Expressions

Conversely, we show the following conditional lower bound if the pattern is not anchored.

» Theorem 2. Let T be a text of length n over an alphabet ¥ with |X| > 4 and let § € [0,1/2].
Assuming the strong Set Disjointness Conjecture, any data structure that supports existential
(non-anchored) character-class Kleene-star pattern matching queries Py D* Py, where D is a

character class with at least 3 characters, in O(n®) time, requires Q(n?>=2°=°(M) space.

With 6 = 1/2, Theorem 2 implies that any near linear space solution must have query
time Q(y/n). On the other hand, with § = 0, Theorem 2 implies that any solution using time
independent from n must use Q(n?~°(M) space.

To get Theorem 2, we reduce from the Set Disjointness Problem: preprocessing some sets
so we can quickly answer, for any pair of sets, if they are disjoint or not. [10] showed that
wlog, we can assume every element appears in the same number of sets. The idea is then
to define a string gadget representing any set, and a block for each element in the universe
containing the string gadget for every set it is included in. The blocks are separated by a
character not in the block. This way, the intersection of two sets is non-empty if and only if
their gadgets appear somewhere in the string only separated by characters which appear in a
block.

As noted above, character-class Kleene-star patterns belong to the “- x|” type. Backurs
and Indyk [3] prove a quadratic lower bound for this class of regular expressions. Our result
shows that even the more restricted sub-class Py D* P, of “- % |” is hard if no anchors are
present.

We then consider text indexing for String Kleene-star patterns R = P, P*P,. We show
the following result.

» Theorem 3. Let T be a text of length n over an alphabet .. Given a constant € > 0 fized
at preprocessing time, we can build a data structure that uses O(n) space and supports String
Kleene-star patterns Py P* P, in time O(m + (occ + 1) log® n), where m = |Pi| + |P| + | P
and occ is the number of occurrences of the pattern in T.

As discussed above, String Kleene-star patterns belong to the “- x -7 type. For this type
of patterns, Backurs and Indyk [3] proved a conditional lower bound of Q((mn)!=¢) (for any
constant € > 0) in the offline setting for both pattern matching and membership queries.
Our result, instead, implies an offline solution running in O(m + log® n) time (by stopping
after locating the first pattern occurrence) after the indexing phase. This does not contradict
Backurs and Indyk’s lower bound, since our patterns P; P* P, are a very specific case of the
(broader) type “- x - Equivalently, this indicates that including more than one Kleene star
makes the problem hard again and thus justifies an index for the simpler case P, P*P;.

The main idea behind the strategy for Theorem 3 is to preprocess all maximal periodic
substrings (called runs) in the string, so we can quickly find patterns ending just before or
starting just after a run. However, there are some difficulties to overcome: firstly, P may be
periodic - e. g. if P = ww, we do not want to report occurrences of Pyw?P;; secondly, a run
may end with a partial occurrence of the period; and lastly, P may share a suffix with P, or
a prefix with P», in which case their occurrences should overlap with the run. We show how
to deal with these difficulties in Section 4.

2 Preliminaries

A string T of length |T'| = n is a sequence T'[1] - - - T'[n] of n characters drawn from an ordered
alphabet ¥ of size |X|. The string T[] - - - T[], denoted T7i..j], is called a substring of T
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T[1..7] and T[i..n] are called the j** prefix and i*" suffiz of T, respectively. We use ¢ to
denote the empty string (i.e., the string of length 0). The reverse string of a string T of
length n, denoted by T7¢, is given by T7¢” = T'[n]...T[1]. Let P and T be strings over an
alphabet X. We say that the range [i..j] is an occurrence of P in T iff T[i..j] = P.

Lexicographic order and Lyndon words. The order of the alphabet defines a lexicographic
order on the set of strings as follows: For two strings 77 # T3, let i be the length of the
longest common prefix of 71 and T>. We have T} < T if and only if either i) |T}| = ¢
or ii) both Ty and T have a length at least ¢ + 1 and T1[i + 1] < T»[i + 1]. A string T
is a Lyndon word if it is lexicographically smaller than any of its proper cyclic shifts, i.e.,
T <T[i.n]T[1..i—1], for all 1 <i <n.

Concatenation of strings. The concatenation of two strings A and B is defined as AB =
A[l]--- A[|A|)B[1] - -- B[|B|]. The concatenation of k copies of a string A is denoted by A",
where k € N;ie. A° = e and A¥ = AA*~1. A string B is called primitive if there is no string
A and k > 1 such that B = A*.

Sets of strings. We denote by AZ! =, ., {AF}, AST =, . {AF}, Al =, {AF},
and A* = AZ°. The concatenation of a string A with a set of strings S is defined as
AS = {AB: B € S}. Similarly, the concatenation of two sets of strings S; and Ss is defined
as 519y = {AB : A € S1,B € Sy}. We define S2!, S=7, Slrland S* = S20 for sets
analogously. We say that the range [i..j] is an occurrence of a set of strings S if there is a
P € S such that [i..j] is an occurrence of P in T

Period of a string. An integer p is a period of a string T of length n if and only if

T[] =T[i+p|] for all 1 <4 <n —p. A string T is called periodic if it has a period p < n/2.

The smallest period of T will be called the period of T.

Tries and suffix trees. A trie for a collection of strings C = {T1,...,T,}, is a rooted labeled
tree 7 such that: (1) The label on each edge is a character in some T; (i € [1,n]). (2) Each
string in C is represented by a path in 7 going from the root down to some node (obtained
by concatenating the labels on the edges of the path). (3) Each root-to-leaf path represents
a string from C. (4) Common prefixes of two strings share the same path maximally. A
compact trie is obtained from 7 by dissolving all nodes except the root, the branching nodes,
and the leaves, and concatenating the labels on the edges incident to dissolved nodes to
obtain string labels for the remaining edges.

Let T be a string over an alphabet ¥. The suffix tree of a string T is the compacted trie
of the set of all suffixes of T'. Throughout this paper, we assume that nodes in a compact
trie or the suffix tree use deterministic dictionaries to store their children.

3 Character-class Kleene-star Patterns

In this section we give our data structure for answering anchored character-class Kleene-star
pattern queries. Without loss of generality, we can assume that the anchor belongs to P,
(the other case is captured by building our structures on the reversed text and querying the
reversed pattern).
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Text Indexing for Simple Regular Expressions

k—run with symbols in D

S
Joyou

Figure 1 Illustration of the general strategy to capture patterns of the form Py D*P,. A k-run is
a right-maximal substring T'[i..j] containing exactly k distinct symbols.

Recall that we assume k = | D| < kyax for some parameter kpax < |X| fixed at construction
time. We first describe a solution for the case kp.x < logn, and then in Section 3.3 show
how to handle the case where ky.x > logn.

Our general strategy is to identify all the right-maximal substrings T'[i..j] of T, for every
possible starting position ¢, that contain all and only the symbols of D (we later generalize
the solution to consider all the possible subsets of D). Such a substring forms the “D*” part
of the occurrences. For this sake, D* must be preceded by P; and followed by P». However, if
P, starts with some symbols in D, those symbols will belong to the right-maximal substring
T[i..j]. We therefore separate P, = pref, - suff p, where pref, is the longest prefix of Py
that contains only symbols from D, and suff p starts with the anchor. The new condition is
then that the substring T[i..j] ends with pref, and is followed by suff p. See Figure 1.

We need the following definitions.

» Definition 4. The D-prefix of P, denoted pref ,(Ps) is the longest prefiz of Py that is
formed only by symbols in D. We define suff p(P2) so that Py = prefp(Py) - suff p(Ps)

» Definition 5. The k-run of T that starts at position i is the maximal range [i..]] such
that T'[i..j] contains exactly k distinct symbols. If the suffiz T[i..n] has less than k different
symbols, then there is no k-run starting at i. We call D; j, the set of k symbols that occur in
the k-run that starts at position 1.

Note that T' contains at most n k-runs, each starting at a distinct position i € [1..n].
We first show how to find occurrences matching all k symbols of D in the D* part of the
pattern Py D*P,. Then, we complete this solution by allowing matches with any subset of D.

3.1 Matching all £ Characters of D

We show how to build a data structure for the case where k = |D| is known at construction
time, and we only find the occurrences that match ezactly all k distinct letters in the D*
part of the occurrence. Recall that we also assume that P, contains an anchor.

Data structure. Let D; be the set of subsets D C X of size k that occur as a k-run in 7.
Our data structure consists of the following:
The suffix tree 7 of T" and the suffix tree 77¢" of the reversed text, T7¢".
A data structure Sp for each set D € Dy, indexing all the text positions Pp = {i | D, =
D}. The structure consists of an orthogonal range reporting data structure for a four-
dimensional grid in [1..n]*
such k-run [i..j] we store a point with coordinates (x;,y;, i, — @ + 1), where

with |Pp| points, one per k-run [i..j] with ¢ € Pp. For each

x; is the lexicographic rank of T'[1..i — 1]"* among all the reversed prefixes of T.
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y; is the lexicographic rank of T'[1..5]"¢Y among all the reversed prefixes of T

z; is the lexicographic rank of T[j + 1..n] among all the suffixes of T'.
Each point stores the limits [i..] of its k-run (so as to report occurrence positions).
A trie 7, storing all the strings sp of length k formed by sorting in increasing order the k
characters of D, for every D € Dy.

Note that the fourth coordinate j — i + 1 of point (x4, ¥y, 2,7 — ¢ + 1) could be avoided
(i.e. using a 3D range reporting data structure) by defining y; to be the lexicographic rank of
T[1..7]"¢"$ (where $ is a special terminator character) in the set formed by all the reversed
prefixes of T' and strings of the form T'[1..5]7¢V$, for all k-runs T'[i..j]. While this solution
would work in the same asymptotic space and query time (because we will only need one-sided
queries on the fourth coordinate), we will need the fourth dimension in Subsection 3.4.

Basic search. At query time, we first compute pref ,(P2). For any occurrence of the query
pattern, pref ,,(Ps) will necessarily be the suffix of a k-run. This is why we need P, to contain
an anchor; P is not restricted because we index every possible initial position 4.

We then sort the symbols of D and use the trie 74 to find the data structure Sp.

We now find the lexicographic range [21, 2] X [y1,y2] X [21, 22] X [|pref p (P2)|, +00] using
the suffix tree 7 of T and the suffix tree 7"V of the reversed text, 77¢V. The range [x1, Z2]
then corresponds to the leaf range of the locus of P/ in 77", the range [y1, y2] to the leaf
range of the locus of pref ,(P)" in 77", and the range |21, 23] to the leaf range of the
locus of suff p(P2) in T.

Once the four-dimensional range is identified, we extract all the points from Sp in the
range using the range reporting data structure.

Time and space. The suffix trees use space O(n). The total number of points in the
range reporting data structures is O(n) as there are at most n k-runs. Because we will
perform one-sided searches on the fourth coordinate, the grid of Sp can be represented
in O(|Pp|log'™ n) space, for any constant € > 0, so that range searches on it take time
O(occ +logn/loglogn) to report the occ points in the range [39, Thm. 7]. Thus, the total
space for the range reporting data structures is O(n log!Te n). The space of the trie 7 is
k|Dy| € O(kn).

The string pref 5 (P,) can easily be computed in O(k + | Pz|) time with high probability
using a dictionary data structure [16]. Sorting D can be done in O(kloglogk) time [1].
By implementing the pointers of node children in 74 and in the suffix trees 7 and 7€
using perfect hashing (see [37]), the search in 75, takes O(k) worst-case time and the three
searches in 7 and 77" take total time O(|Py| + |P2|). The range reporting query takes time
O(logn/loglogn + occ). In total, a query takes O(m + kloglogk + logn/loglogn + occ)
time with high probability".

3.2 Matching any Subset of D

We now show how to find all occurrences of Py D*Ps, that is, also the ones containing only a
subset of the characters of D in the D* part of the occurrence.

Our previous search will not capture the (k — i)-runs, for 1 < i < k, containing only
characters appearing in subsets of D, as we only find P; and suff p(P») surrounding the k-runs

1 Unfortunately, [39, Thm. 7] does not describe construction of the range reporting data structure that
we use, so we are not able to provide construction time and working space of our index.
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Text Indexing for Simple Regular Expressions

containing all characters from D. To solve this we will build an orthogonal range reporting
data structure for all D € U1< k< ks Dy. To capture all the occ occurrences of Py D*P,, we
search the corresponding grids of all the 2% — 1 nonempty subsets of D, which leads to the
cost O(2Flogn/loglogn + occ). We wish to avoid, however, the cost of searching for P,
pref / (P2), and suff p/ (P2) in the suffix trees for every subset D’ of D. In the following we
show how to do this.

Data Structure. Let D =J, ; <, Di. Our data structure consists of the following.
The suffix tree 7 of T and the suffix tree 77¢ of the reversed text, T7¢.
The data structure Sp from Section 3.1 for each set D € D.
A trie 7 storing all the strings of length 1 to knax, in increasing alphabetic order of
characters, that correspond to some D € D.

The suffix trees uses linear space. The space for each of the k range reporting data struc-
tures is O(n log' **n). Added over all k € [1..kpmay], the total space becomes O(kmax nlog™ ™ n).
The space for the trie 7 is O(nk2,,) since there are at most kpaxn strings each of length at
most kmax. Since we assume kpyax < logn, the total space is O(kmaxn log!*e n).

Search. To perform the search, we traverse 7 to find all the subsets of D as follows. Let
Sp = c1C2...ck be the string formed by concatenating all symbols of D in sorted order.
Letting N; be the set of nodes of 7 reached after processing sp[l..i] (initially, ¢ = 0 and
Ny contains only the root of 7), N;y; is obtained by inserting in N; the nodes reached by
following the edges labeled with character sp[i + 1] from nodes in N;. In other words, for
each symbol of sp we try both skipping it or descending by it in 7. The last set, N, contains
all the 2 — 1 nodes of 7 corresponding to subsets of D. Each time we are in a node of 7
corresponding to some set D’ C D which has an associated range reporting data structure
Spr, we perform a range reporting query (z1, T2, y1, Yo, 21, 22, |pref p, (P2)|, 00).

Note that the range [x1,x2] is the same for all queries, so we only compute this once.
This is done by a search for Py in T"¢. The intervals [y, y2] and [z1, 23], on the other
hand, change during the search, as the split of P into pref, (P) and suff p/ (P) depends
on the subset D’. To compute these intervals we first preprocess P» as follows. Compute the
ranges [y, y2] for all reversed prefixes of P, using the suffix tree 77¢V: Start by looking up
the locus for P3¢¥ and then find the remaining ones by following suffix links. Similarly, we
compute the ranges [21, 23] for the suffixes of P following suffix links in 7. If we know the
length ¢ of pref,, (P2), we can then easily look up the corresponding intervals.

Maintaining . We now explain how to maintain the length ¢ of pref ), (Py) for D’ C D in
constant time for every trie node we meet during the traversal of 7. The difficulty with
maintaining |pref ,, (P2)| while D’ changes is that we when traversing the trie we add the
characters to D’ in lexicographical order and not in the order they occur in P, (see Figure 2).

First we compute for each character ¢ € D the position p. of the first occurrence of ¢ in
pref 5 (Ps). If ¢ does not occur in pref ,(Ps), we set p. = oo. For each ¢ € D, we furthermore
compute the position rank r. of ¢, i.e., the rank of p. in the sorted set {p. : ¢ € D}. We
build:

a dictionary R saving the position rank r. of each element c € D.

an array B containing the characters in D in position rank order such that Blr.] = ¢ for

all ¢ € D (define B[0] = —1).

an array P containing the position of the first occurrence of the characters in D in rank

order, i.e., P[i] is the first position of character BJi].
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Po= Db b a a b e a b e e ¢c e ad a h
D = {a,b,c,d, e} D in position rank order: [b,a,e,c,d]
Dl:{a’} ZZO A:[070727030a070} IDl :{[272]}
Dzz{a‘?b} £:5 A:[052717030a070} ‘ID2:{[172]}
Ds = {a,b,c} £=5 A=10,2,1,0,4,0,0] Ip, ={[1,2],[4,4]}
Dy ={a,b,c,d} =5 A=10,2,1,0,5,4,0] Ip, ={[1,2],[4,5]}
Ds = {a,b,c,d, e} (=15 A=10,5,1,3,5,1,0] Ip, = {[1,5]}
£=2 ] {11}

Ds = {b} A=1[0,1,0,0,0,0,0

Figure 2 Computing ¢ = |pref ,, ()| as D’ changes during the traversal of the trie. The array
A maintains the intervals of characters in position rank order (the order in which the characters
appear in P,) that are in D'.

Let o be the first character in position rank order that is not in D’. Then £ = p, — 1. The
main idea is to maintain the intervals Ips of characters in D’ in position rank order. The
position rank r, of a can then easily be computed from the set of intervals Ip and used
to compute p, = P[r,]. We use array A[0..|D| + 1] to store the intervals of Ip/. Initially,
all positions in A are 0. We will maintain the invariant that the first, respectively last,
position of an interval of nonzero entries in A contains the position of the end, respectively
start, of the interval. Initialize £ = 0 and initialize an empty stack S. We now maintain
¢ = |pref ), (Py)| as follows:

When we go down during the traversal adding a character ¢ to the set, we first lookup r,
in R and set p. = P[r¢]. If p. = oo there are no changes. Otherwise, we set set A[r.| = r.
and compute the leftmost position Ip of the nonzero interval containing ¢: If Afr, —1] =0
then set Ip = r.. Else Ip = A[r. — 1]. To compute the rightmost position p of the nonzero
interval containing ¢: If Afr. + 1] = 0 then set rp = r.. Else rp = A[r. + 1]. We then push
(Ip, A[lp], rp, A[rp], £) onto the stack to be able to quickly undo the operations later. Then
we update A by setting A[lp] = rp and A[rp] = Ip. Finally, we update ¢: If A[1] > r. set
¢ = P[A[1] + 1] — 1. Otherwise, ¢ does not change.

When going up in the traversal removing character ¢ we first lookup p.. If p, = oo
there are no changes. Otherwise, we pop (Ip, v, rp,rv,£') from the stack and set A[lp] = lv,
A[Tp] =Tv, A[Tc] - O, and ¢ = él.

Time. It takes O(| P1]) time to search for P¢” in T"¢. Computing [y1, y2] and [z1, 23] for all
splits of P, takes time O(|P2]). Sorting D can be done in time O(kloglog k) [1]. Computing
pe for all characters in D, sorting them, computing the ranks r., and constructing the arrays
B and P and the dictionary R takes linear time in the pattern length with high probability.
The size of the subtrie we visit in the search is O(2*) and in each step we use constant time
to compute the length of £. The total time for the range queries is O(2* logn/ log log n + occ).
Thus, in total we use O(m + 2¥logn/loglogn + occ) time with high probability.
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3.3 Solution for k., > logn.

In the discussion above, we assumed that kpnax < logn. If kynax > logn, we build the data
! ax = logn. The space of the data
nlog't¢n) C O(kmax nlog' T¢n). At query time, if |[D| = k < logn
we use the data structure to answer queries in O(m + 2¥ logn/loglogn + occ) time.

If, on the other hand, |D| = k > logn then n € O(2*logn/loglogn). We first find
all occurrences of P; and P, using the suffix tree 7. Let L; be the end positions of the
occurrences of P; and let P, be the start positions of the occurrences of P,. We sort the lists
Ly and Ly. This can all be done in O(m + n) time and linear space using radix sort. We also
mark with a 1 in a bitvector Bp of length n all text positions ¢ such that T'[i] € D. This can be
done in O(n) time with high probability, with a simple scan of T" and a dictionary over D [16].
We build a data structure over the bitvector supporting rank queries in constant time [43].
We can now find all occurrences of the pattern by considering the occurrences in sorted order
in a merge like fashion. Recall, that P, has an anchor. We consider the first occurrence p;
in the list L; and find the first occurrence ps in Ly that comes after L1, i.e. py > py. If
all characters between p; and ps are from D (constant time with two rank operations over
bitvector Bp) we output the occurrence. We delete p; from the list and continue the same
way. In total, we find all occurrences in O(n + occ) € O(2¥logn/loglogn + occ) time with
high probability. In summary, this proves Theorem 1.

structure described above by replacing kpnax with &
structure is still O(k!

max

3.4 Character-Class Interval Patterns

We extend our solution to handle patterns of the form Py D='P,, P, D="P,, and P, D" Py,
meaning that there are at least, at most, and between [ and r copies of characters from D.
We collectively call these character-class interval patterns.

By using one-sided restrictions on the fourth dimension, we can easily handle queries of
the form Py DZ!'P, in our solution from the previous section. Handling queries of the form
P,DS"P, or P,DU"IP, requires a two-sided restriction on the fourth dimension. This raises
the space of the grid to O(|Pp|log®>"*n), while retaining its query time [39, Thm. 7] [40].
With these observations we obtain the following results.

» Theorem 6. Let T be a text of length n over an alphabet X2. Given a parameter kpmax < |X|
and a constant € > 0 fized at preprocessing time, we can build a data structure that uses
O(kmaxnlog1+6 n) space and supports anchored character-class interval queries of the form
Py DZ'Py in time O(m+2F logn/loglogn+occ), where D is a character class with k < kuyax
characters, m = |P1| + |D| 4+ | P2|, and occ is the number of occurrences of the pattern in T.

» Theorem 7. Let T be a text of length n over an alphabet ¥. Given a parameter kmax < |X|
and a constant € > 0 fized at preprocessing time, we can build a data structure that uses
O(kmaxnlog2+6 n) space and supports anchored character-class interval queries of the form
PyDS"Py or PLDUTIP, in time O(m + 2Flogn/loglogn + occ), where D is a characters
class with k < kmax characters, m = |Py| + |D| + | P2|, and occ is the number of occurrences
of the pattern in T.

An alternative solution, when longer matches are more interesting than shorter ones, is to
store the points (z;,y;, z;) in a three-dimensional grid, and use j — i + 1 as the point weights.
Three-dimensional grids on weighted points can use O(|Pp|log®** n) space and report points
from larger to smaller weight (i.e., 5 — ¢ + 1) in time O(p + logn) [36, Lem. A.5]. We can
use this to report the occurrences from longer to shorter k-runs, thereby stopping when
the length drops below |pref,(P)|. We insert the first answer of each of the 2% — 1 grids
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into a priority queue, where the priority will be the length 7 — i + 1 of the matched k’-run
[i..7] minus |pref ; (Py)|, then extract the longest answer and replace it by the next point
from the same grid, repeating until returning all the desired answers. The time per returned
element now includes a factor O(loglogn) if we implement the priority queue with a dynamic
predecessor search data structure, plus O(2k loglogn) for the initial insertions. We can also
return ¢ longest answers in this case, within a total time of O(m + 2¥logn + tloglogn).

4 String Kleene-star Patterns

In this section we give our data structure for supporting string Kleene-star pattern queries.

As an intermediate step, we first create a structure that, given strings S; and Ss, a
primitive string w, and numbers a,b,¢,d € N with b < a and d < |w|, where S; and w do
not share a suffix and Sy and w(d + 1..] do not share a prefix, finds all occurrences in T of
patterns of the form S;w?®@+bw[1..d]S,, where ¢ > ¢ and ¢ € N. Later we will show that this
is sufficient to find occurrences of P; P*P,. For now, we assume that S; and Sy are not the
empty string; we will handle these cases later. We will also assume that w is not the empty
string - in our transformation from Py P*P; to Sw®tPw(1..d)S,, w will be empty if and only

if P is empty. In this case, the problem reduces to matching P; P, = 5155 in the suffix tree.

To define our data structures, we need the notion of a run (or maximal repetition) in T

» Definition 8. A run of T is a periodic substring T[i..j], such that the period cannot
be extended to the left or the right. That is, if the smallest period of T[i..j] is p, then
Tli—1#£Tli+p—1] and T[j+ 1] #T[j —p+1]. We can write T[i..j] = wlw|[l..r], where
teN, |lw|=pandr <|w|. We also call T[i..j] a run of w. The Lyndon root of a run of w
1s the cyclic shift of w that is a Lyndon word.

Our general strategy is to preprocess all runs into a data structure, such that we can quickly
determine the runs preceded by S; and followed by Ss, which additionally end on w[1..d]
and have a length that matches the query.

Data structure. Let T'[i..j + r] = w'w[l..r] with r < |w| be a Tun in 7. For each 1 < a <t
we insert a point in a three-dimensional grid G, ., where b = ¢ mod a. Each point stores
the positions 7, 7 and has coordinates x,y, z defined as follows:

rev

x is the lexicographic rank of T[1..i — 1]"*” among all the reversed prefixes of T

y is the lexicographical rank of T'[j + 1..n] among all the suffixes of T'.
z=|t/a].

Furthermore, we construct a compact trie of the strings w of all runs and a lookup table
such that given a and b we can find G, 4. Finally, we store the suffix tree 7 of T and the
suffix tree 77 of the reversed text T7¢".

By the runs theorem, the sum of exponents of all runs in 7" is O(n) [4,27], hence the total

number of grids and points is O(n). Let |Gy q,5| be the number of points in the grid Gay,q,p.

We store G 4,5 in the orthogonal range reporting data structure [40] using O(|Gu,q,5|) space,
so that 5-sided searches on it take time O((p + 1) log® |Gy q4|), for any constant € > 0, to
report the p points in the range. Hence, our structure uses O(n) space in total.

Query. To answer a query as above, we find the query ranges [x1,z2] X [y1,y2] using the
suffix trees 7 and T7"¢. The ranges [z1, z2] and [y1,y2] correspond to the leaf ranges of
the loci of STV in 7" and w[l..d]S2 in T, respectively. Finally, we find all occurrences
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DBC(ABCABCABC)* ABCABCABCABCABCB
D(BCABCABCA)*BCABCABCABCABCABCB // S =D and P rotated

D(BCA)**BCABCABCABCABCABCB // P’ reduced to w® = (BCA)?
D(BCA)**BCABCABCB q¢>c=1 // w® occurs at least once
D(BCA)*™BCB, ¢>c=1 /] S1wTw[1..2]S,

Figure 3 An example of the transformation applied when P, = DBC, P = ABCABCABC,
and P, = ABCABCABCABCABCB. Here S1 = D, w=BCA, Sa=B,a=3,b=2,c=1 and
d=2.

of Sjw*w[1..d]Sy with ¢ > ¢ as the points in Gh,a,p inside the 5-sided query [z, z2] X
[y1,y2] x [c, +o0].

The ranges in 7 and 77" can be found in time O(|d| + |S1|+ |S2]) = O(Jw| + |S1| + |S2])
if the suffix tree nodes use deterministic dictionaries to store their children (see [37]). Again,
we augment each suffix tree node = with the lexicographic range of the suffixes represented
by the leaves below x. We then do a single query to the range data structure G, 4,5, which
reports occ points in O((occ + 1)log® n) time. We have proven the following:

» Lemma 9. Given a text T[1..n] over alphabet &, we can build a data structure that uses
O(n) space and can answer the following queries: Given two non-empty strings S1 and Sa,
a primitive string w, and numbers a,b,c,d € N with b < a and d < |w|, where S1 and w
do not share a suffix and Sa and w[d + 1..] do not share a prefiz, find all occurrences in
T of patterns of the form Sjw®+bw(1..d]Ss, where ¢ > ¢ and ¢ € N. The query time is
O(]S1S2w| + (occ + 1) log® n), where occ is the number of occurrences of S1w®+w[1..d]S,.

Transforming P, P*P; into S;wtbw[1..d]S,.  Given P P*P; we compute the strings S,
w and Sy and the numbers a, b, ¢, and d as follows: The string S; is Pi[1..|P;| — i] where ¢
is the length of the longest common suffix of P; and PIP/IPI1 Tet P’ = P[(—i mod |P|) +
1..|P|] - P[1..(—i mod |P])] and Py = Pi[|P1| —i+ 1..|P1|]P,. We compute w and a such that
P’ = w® and a € N is maximal (this can be done in time O(|P’|) e.g. using KMP [26]). By
definition of P’ and i, we have that P'[|P’|] = P[—i mod |P|] # Pi[|P1]| — i]. Therefore, Sy
and w do not share a suffix.

Let j be the length of the longest common prefix of P} and wllP21/1911 - We define S, as
Pj[j + 1..|Pi|] and d = j mod |w|. Note that by definition of Sy, Sz and w[d + 1..] do not
share a prefix. Finally, we let b = (j — d)/|w| mod a and ¢ = [ifwd\ —b. See Figure 3.

The transformation can be done in O(|Py| + |Pz| + | P|) time: The longest common suffix
of Py and PIP/IPIN can be computed in O(|P|) time and the longest common prefix of
Py and wlZ2/1@ll in O(|P}|) = O(|P1| + |P2|) time. Further, as mentioned, the period of
|P’| can be found in O(]P’|) = O(|P|) time. Other than that, the transformation consists of
modulo calculations and cyclic shifts, which clearly can be done in linear time.

4.1 When one of S; and S, is the Empty String.

In the transformation above, it might happen that S; or Ss or both are empty, in which
case the data structure from Lemma 9 cannot be used. We give additional data structures
to handle these cases in this and the next subsection. Let us first consider the case where
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Sy = ¢ and S; # €. The general idea is that to answer a query S;w®Pw(1..d], ¢ > ¢, where
S1 and w do not share a suffix, we need to find all occurrences of S; followed by a long
enough run of w. Note that each one of these occurrences can contain multiple occurrences
of our pattern, for different choices of q.

Data structure. Let T'[i..j + r] = w'w[l..r] with r < |w| be a run in T". For each run in 7,
we insert a point into a two-dimensional grid G,,. Each point stores the positions i, j and r
of the occurrence of the run. The coordinates x,y of the point in GG, are defined as follows:

rev

x is the lexicographic rank of T'[1..i — 1]"°¥ among all reversed prefixes of T

y = tlw| +r.

In terms of space complexity, as before, by the runs theorem, the sum of exponents of all
runs in T is O(n) [4,27]. Thus, the total number of points in G,, is O(n). Further, we store
a compact trie of all w’s together with a dictionary for finding ¢t and d using linear space.
The two-dimensional points can be processed into a data structure allowing 3-sided range
queries in linear space and O((occ + 1)log® n) running time [41], where occ is the number of
reported points.

Query. To answer a query S;w?+bw[l1..d], as before, we find the lexicographical range
[z1, z2] for Sy using the suffix tree 7. Then, we query the grid G, for [z1,x2] X [(ac+ b)|w|+
d, oc]. For a point (z,y) with (4, j, ) obtained this way, we report T[i — |S1|+ 1,7 + |w|(ag +
b) + d] for all ¢ such that ¢ < ¢ and i + |w|(ag + b) + d < j + r, which is equivalent to
q< L(y*d)éIW\*bJ'

The querying of the grid reports occ points in O((occ + 1) log® n) running time, and each
reported point gives at least one occurrence. The additional occurrences can be found in
constant time per occurrence. Thus, the total query time is O(]S1S2w| + (1 4 occ) log® n).

We can deal with the case where S; = € analogously, by building the same structure on
T7°" and reversing the pattern.

4.2 When both S} and S, are the Empty String.

If both S7 and Sy are the empty string, then we cannot “anchor” our occurrences at the
start of a run—i.e., w®*bw[1..d] may occur in runs whose period is a shift of w. To deal
with this, we characterize all runs by their Lyndon root, and write w?®*bw[1..d] as a query
of the form w’'[|w| — e + 1w’ 4" w/[1..d'], where w’ is a Lyndon word. In the following, we
show how to answer these kinds of queries.

We create a structure that given a primitive string w that is a Lyndon word, numbers a, b,
¢, d < Jw|, and e < |w], finds all occurrences of patterns of the form w[|w|— e+ 1w Pw(1..d]
in T, where ¢ > c and ¢ € N.

Data structure. For a run T[i’..5" + 7] = u" u[1..'] with 7 < |u| in T, let w be the Lyndon
root of the run, and let r < |w|, I < |w| and ¢ be such that T[¢'..7;' +7' | =T[i—1+1..j+7r] =
w(|w| — 1+ 1wtw|[1..r]. We build a three-dimensional grid G,,. For each run, we store 4, j and
the point (z,y,z) = (I,t,7). We store G, in a linear space data structure which supports
five-sided range queries in time O((occ + 1)log®n), where occ is the number of reported
points, given in [40]. By the runs theorem, the total number of points in all G,,s is bounded
by O(n), and thus so is the space of our data structure.
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Query. Assume we are given a query w,a,b,c,d,e. In the following, we have to again

find runs of w which are long enough, but with an extra caveat: we need to treat the runs

w(|w| — I 4+ 1w'w[1..r] differently depending on i) if e <[ and ii) if d < r, since depending

on those, the leftmost and rightmost occurrences in the run have different positions. This

gives us four cases to investigate.

1. We find all points in [e, 00] X [ac + b, 00] X [d, 00]. For each such, we output the following
occurrences: T[i—e+k-|wl,i+(k+ag+b)|w|+d], where k < t—ac—band ¢ < ¢ < | =2=E],

2. We find all points in [e,00] x [ac + b+ 1,00] x [0,d — 1]. For each such, we output all
occurrences of the form T'[i —e+ k- |wl|,i + (k4 ag + b)|w| + d], where k <t —1—ac—b
and ¢ < ¢ < ==k

3. We find all points in [0,e — 1] X [ac+ b+ 1, 00] x [d, 0] and output the occurrences of the
form T[i + |w| — e+ k- |w|,i + |w| + (k + ag + b)|w| + d], where k <t —ac—b—1 and
c< q < Lt_b;k_lj~

4. We find all points in [0,e — 1] X [ac + b+ 2, 00] x [0,d — 1] and output all occurrences of
the form T[i + |w| — e+ k- |w|,i + |w| + (k + ag + b)|w| + d], where k <t —ac—b—2
and ¢ < ¢ < | ==E=2

Each range query uses O((occ+1)log®n) time, where occ is the number of reported points,
and each reported point gives at least one occurrence. Additional occurrences within the same
run can be found in constant time per occurrence. Thus, the total time is O((occ+ 1) log® n).

In summary, we have proved Theorem 3.

5 Conditional Lower Bound for Character-class Kleene-star Patterns
without an Anchor

We now prove Theorem 2. The conditional lower bound is based on the Strong Set Disjointness
Conjecture formulated in [21] and stated in the following.

» Definition 10 (The Set Disjointness Problem). In the Set Disjointness problem, the goal is
to preprocess sets Sy,...,Sy of elements from a universe U into a data structure, to answer
the following kind of query: For a pair of sets S; and S;, is S; NS; empty or not?

» Conjecture 11 (The Strong Set Disjointness Conjecture). For an instance Si,...,Snm
satisfying Z?Ll |Si| = N, any solution to the Set Disjointness problem answering queries in

O(t) time must use Q (sz—;) space.

The lower bound example in [10], Section 5.2, specifically shows that, assuming Conjec-
ture 11, indexing T'[1..n] to solve queries of the form P;X="P, requires Q(n?~20=°(1) space,
assuming one desires to answer queries in O(n°) time, for any § € [0,1/2]. The alphabet
size in their lower bound example is 3. To extend this lower bound to queries of the form
P, D* Py, we have to slightly adapt this lower bound and increase the alphabet size to 4 (kmax
will equal 3 in the example).

When reducing from Set Disjointness, as a first step, [10] shows that we can assume that
every universe element appears in the same number of sets (Lemma 6 in [10]). Call this
number f. Then, they construct a string of length 2N logm + 2N from alphabet {0, 1, $} as
follows: For each element e € U, they build a gadget consisting of the concatenation of the
binary encodings of the sets e is contained in, each encoding followed by a $. Such a gadget
has length B = flogm + f. To each gadget, they append a block of B many $, and then
append the resulting strings of length 2B in an arbitrary order.
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We adapt this reduction as follows: the gadgets are defined in the same way as before,

only each gadget is followed by a symbol #, where # ¢ {0,1,$}, instead of a block $Z. The
rest of the construction is the same. Now, if we want to answer a query S;,S; to the Set
Disjointness problem, we set P; to the binary encoding of 7, P> to the binary encoding of 7,

and D = {0,1,$}. It will find an occurrence if and only if there is a gadget corresponding to

an element e, which contains both the encoding of ¢ and j, which means that e is contained
in both S; and S;. The rest of the proof proceeds as in [10].
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