
Counting on General Run-Length Grammars1

Gonzalo Navarro #2

Center for Biotechnology and Bioengineering (CeBiB)3

Department of Computer Science, University of Chile, Chile4

Alejandro Pacheco #5

Center for Biotechnology and Bioengineering (CeBiB)6

Department of Computer Science, University of Chile, Chile7

Abstract8

We introduce a data structure for counting pattern occurrences in texts compressed with any9

run-length context-free grammar. Our structure uses space proportional to the grammar size and10

counts the occurrences of a pattern of length m in a text of length n in time O(m log2+ϵ n), for11

any constant ϵ > 0 chosen at indexing time. This is the first solution to an open problem posed by12

Christiansen et al. [ACM TALG 2020] and enhances our abilities for computation over compressed13

data; we give an example application.14

2012 ACM Subject Classification Theory of computation → Data structures design and analysis15

Keywords and phrases Grammar-based indexing; Run-length context-free grammars, Counting16

pattern occurrences; Periods in strings.17

Digital Object Identifier 10.4230/LIPIcs.CPM.2025.18

Funding Gonzalo Navarro: Funded by Basal Funds FB0001, Mideplan, Chile, and Fondecyt Grant19

1-230755, Chile.20

Alejandro Pacheco: Funded by Basal Funds FB0001, Mideplan, Chile, Fondecyt Grant 1-230755,21

Chile, and ANID/Scholarship Program/DOCTORADO BECAS CHILE/2018-21180760.22

© Gonzalo Navarro and A. Pacheco;
licensed under Creative Commons License CC-BY 4.0

35th Annual Symposium on Combinatorial Pattern Matching (CPM 2025).
Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:gnavarro@dcc.uchile.cl
mailto:gnavarro@dcc.uchile.cl
https://doi.org/10.4230/LIPIcs.CPM.2025.
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

XX:2 Counting on General Run-Length Grammars

1 Introduction23

Context-free grammars (CFGs) have proven to be an elegant and efficient model for data24

compression. The idea of grammar-based compression [47, 26] is, given a text T [1 . . n],25

to construct a context-free grammar G of size g that only generates T . One can then26

store G instead of T , which achieves compression if g ≪ n. Compared to more powerful27

compression methods like Lempel-Ziv [32], grammar compression offers efficient direct access28

to arbitrary snippets of T without the need of full decompression [45, 2]. This has been29

extended to offering indexed searches (i.e., in time o(n)) for the occurrences of string patterns30

in T [7, 14, 9, 6, 36], as well as more complex computations over the compressed sequence31

[29, 19, 16, 17, 37, 25]. Since finding the smallest grammar G representing a given text T is32

NP-hard [45, 4], many algorithms have been proposed to find small grammars for a given33

text [31, 45, 42, 46, 33, 20, 21]. Grammar compression is particularly effective when handling34

repetitive texts; indeed, the size g∗ of the smallest grammar representing T is used as a35

measure of its repetitiveness [35].36

Nishimoto et al. [43] proposed enhancing CFGs with “run-length rules” to improve the37

compression of repetitive strings. These run-length rules have the form A → Bs, where B is38

a terminal or a non-terminal symbol and s ≥ 2 is an integer. CFGs that may use run-length39

rules are called run-length context-free grammars (RLCFGs). Because CFGs are RLCFGs,40

the size g∗
rl of the smallest RLCFG generating T always satisfies g∗

rl ≤ g∗, and it can be41

g∗
rl = o(g∗) in text families as simple as T = an, where g∗

rl = O(1) and g∗ = Θ(log n).42

The use of run-length rules has become essential to produce grammars with size guarantees43

and convenient regularities that speed up indexed searches and other computations [29, 19,44

16, 6, 25, 27]. The progress made in indexing texts with CFGs has been extended to RLCFGs,45

reaching the same status in most cases. These functionalities include extracting substrings,46

computing substring summaries, and locating all the occurrences of a pattern string [6,47

App. A]. It has also been shown that RLCFGs can be balanced [38] in the same way as CFGs48

[17], which simplifies many compressed computations on RLCFGs.49

Interestingly, counting, that is, determining how many times a pattern occurs in the text50

without spending the time to list those occurrences, can be done efficiently on CFGs, but51

not so far on RLCFGs. Counting is useful in various fields, such as pattern discovery and52

ranked retrieval, for example to help determine the frequency or relevance of a pattern in53

the texts of a collection [34].54

Navarro [40] showed how to count the occurrences of a pattern P [1 . . m] in T [1 . . n] in55

O(m2 + m log2+ϵ n) time using O(g) space if a CFG of size g represents T , for any constant56

ϵ > 0 chosen at indexing time. Christiansen et al. improved this time to O(m log2+ϵ n) by57

using more recent underlying data structures for tries. Christiansen et al. [6] and Kociumaka58

et al. [27] extended the result to particular RLCFGs, even achieving optimal O(m) time by59

using additional space, but could not extend their mechanism to general RLCFGs.60

In this paper we give the first solution to this open problem, by introducing an index61

that counts the occurrences of a pattern P [1 . . m] in a text T [1 . . n] represented by a RLCFG62

of size grl. Our index uses O(grl) space and answers queries in time O(m log2+ϵ n) for any63

constant ϵ > 0 chosen at indexing time. This is the same time complexity that holds for64

CFGs, which puts on par our capabilities to handle RLCFGs and CFGs on all the considered65

functionalities. As an example of our new capabilities, we show how a recent result on finding66

the maximal exact matches of P using CFGs [41] can now run on RLCFGs.67

While our solution builds on the ideas developed for CFGs and particular RLCFGs68

[40, 6, 27], arbitrary RLCFGs lack crucial structure that holds in those particular cases,69

G. Navarro and A. Pacheco XX:3

namely that if there exists a run-length rule A → Bs, then the period [10] of the string70

represented by A is the length of that of B. We show, however, that the general case still71

retains some structure relating the shortest periods of P and the string represented by A.72

We exploit this relation to develop a solution that, while considerably more complex than73

that for those particular cases, retains the same theoretical guarantees obtained for CFGs.74

2 Basic Concepts75

2.1 Strings76

A string S[1 . . n] = S[1] · S[2] · · · S[n] is a sequence of symbols, where each symbol belongs77

to a finite ordered set of integers called an alphabet Σ = {1, 2, . . . , σ}. The length of S is78

denoted by |S| = n. We denote with ε the empty string, where |ε| = 0. A substring of S is79

S[i . . j] = S[i] · S[i + 1] · · · S[j] (which is ε if i > j). A prefix (suffix) is a substring of the80

form S[. . j] = S[1 . . j] (S[j . .] = S[j . . n]); we also say that S[. . j] (S[j . .]) prefixes (suffixes)81

S. We write S ⊑ S′ if S prefixes S′, and S ⊏ S′ if in addition S ̸= S′ (S strictly prefixes S′).82

We denote with S · S′ the concatenation of S and S′. A power t ∈ N of a string S, written83

St, is the concatenation of t copies of S. The reverse string of S[1 . . n] = S[1] · S[2] · · · S[n]84

refers to S[1 . . n]rev = S[n] · S[n − 1] · · · S[1]. We also use the term text to refer to a string.85

2.2 Periods of strings86

Periods of strings [10] are crucial in this paper. We recall their definition(s) and a key87

property, the renowned Periodicity Lemma.88

▶ Definition 1. A string S[1 . . n] has a period 1 ≤ p ≤ n if, equivalently,89

1. it consists of ⌊n/p⌋ consecutive copies of S[1 . . p] plus a (possibly empty) prefix of S[1 . . p],90

that is, S = (S[1 . . p]⌈n/p⌉)[1 . . n]; or91

2. S[1 . . n − p] = S[p + 1 . . n]; or92

3. S[i + p] = S[i] for all 1 ≤ i ≤ n − p.93

We also say that p is a period of S. We define p(S) as the shortest period of S and say S is94

periodic if p(S) ≤ n/2.95

▶ Lemma 2 ([13]). If p and p′ are periods of S and |S| ≥ p + p′ − gcd(p, p′), then gcd(p, p′)96

is a period of S. Thus, p(S) divides all other periods p ≤ |S|/2 of S.97

2.3 Karp-Rabin signatures98

Karp–Rabin [23] fingerprinting assigns a function k(S) = (
∑m

i=1 S[i] · ci−1) mod µ to the99

string S[1 . . m], where c is a suitable integer and µ a prime number. Bille et al. [3] showed100

how to build, in O(n log n) expected time, a Karp–Rabin signature κ(S) built from a pair of101

Karp–Rabin functions, which has no collisions between substrings S of T [1 . . n]. We always102

assume those kind of signatures in this paper.103

A well-known property is that we can compute the signatures of all the prefixes S[. . j] ⊑ S104

in time O(m), and then obtain any κ(S[i . . j]) in constant time by using arithmetic operations.105

2.4 Range summary queries on grids106

A discrete grid of r rows and c columns stores points at integer coordinates (x, y), with107

1 ≤ x ≤ c and 1 ≤ y ≤ r. Grids with m points can be stored in O(m) space, so that some108

summary queries are performed on orthogonal ranges of the grid. In particular, one can109

CPM 2025

XX:4 Counting on General Run-Length Grammars

associate an integer with each point, and then, given an orthogonal range [x1, x2] × [y1, y2],110

compute the sum of all the integers associated with the points in that range. Chazelle [5]111

showed how to run that query in time O(log2+ϵ m), for any constant ϵ > 0, in O(m) space.112

2.5 Grammar compression and parse trees113

A context-free grammar (CFG) G = (V, Σ, R, S) is a language generation model consisting of114

a finite set of nonterminal symbols V and a finite set of terminal symbols Σ, disjoint from V .115

The set R contains a finite set of production rules A → α, where A is a nonterminal symbol116

and α is a string of terminal and nonterminal symbols. The language generation process117

starts from a sequence formed by just the nonterminal S ∈ V and, iteratively, chooses a rule118

A → α and replaces an occurrence of A in the sequence by α, until the sequence contains119

only terminals. The size of the grammar, g = |G|, is the sum of the lengths of the right-hand120

sides of the rules, g =
∑

A→α∈R |α|. Given a string T , we can build a CFG G that generates121

only T . Then, especially if T is repetitive, G is a compressed representation of T . The122

expansion exp(A) of a nonterminal A is the string generated by A, for instance exp(S) = T ;123

for terminals a we also say exp(a) = a. We use |A| = | exp(A)| and p(A) = p(exp(A)).124

The parse tree of a grammar is an ordinal labeled tree where the root is labeled with125

the initial symbol S, the leaves are labeled with terminal symbols, and internal nodes are126

labeled with nonterminals. If A → α1 · · · αt, with αi ∈ V ∪ Σ, then a node v labeled A has t127

children labeled, left to right, α1, . . . , αt. A more compact version of the parse tree is the128

grammar tree, which is obtained by pruning the parse tree such that only one internal node129

labeled A is kept for each nonterminal A, while the rest become leaves. Unlike the parse130

tree, the grammar tree of G has only g + 1 nodes. Consequently, the text T can be divided131

into at most g substrings, called phrases, each being the expansion of a grammar tree leaf.132

The starting phrase positions constitute a string attractor of the text [24]. Therefore, all text133

substrings of length more than 1 have at least one occurrence that crosses a phrase boundary.134

2.6 Run-length grammars135

Run-length CFGs (RLCFGs) [43] extend CFGs by allowing in R rules of the form A → βs,136

where s ≥ 2 is an integer and β is a string of terminals and nonterminals. These rules are137

equivalent to rules A → β · · · β with s repetitions of β. However, the length of the right-hand138

side of the rule A is defined as |β| + 1, not s · |β|. To simplify, we will only allow run-length139

rules of the form A → Bs, where B is a single terminal or nonterminal; this does not increase140

the asymptotic grammar size because we can rewrite A → Bs and B → β for a fresh B.141

RLCFGs are never larger than general CFGs, and they can be asymptotically smaller.142

For example, the size g∗
rl of the smallest RLCFG that generates T is in O(δ log n log |Σ|

δ log n),143

where δ is a measure of repetitiveness based on substring complexity [44, 28], but such a144

bound does not always hold for the size g∗ of the smallest grammar. The maximum stretch145

between g∗ and g∗
rl is O(log n), as we can replace each rule A → Bs by O(log s) CFG rules.146

We denote the size of an RLCFG G as grl = |G|. To maintain the invariant that the147

grammar tree has grl + 1 nodes, we represent rules A → Bs as a node labeled A with two148

children: the first is B and the second is a special leaf B[s−1], denoting s − 1 repetitions of B.149

3 Grammar Indexing for Locating150

A grammar index represents a text T [1 . . n] using a grammar G that generates only T . As151

opposed to mere compression, the index supports three primary pattern-matching queries:152

G. Navarro and A. Pacheco XX:5

X4

X2 X3 X6 X1 X3

X1 X5 X8 X1 X7 X2 X7 X2

X1 X5 X8 X1 X1 X5 X8 X1

a b r a d a b r a c a d a b r a

a ab
ra

ad
ab

ra

br
a

ca
da

br
a

da
br

a

da
br

ac
ad

ab
ra

ra

a 4 12
arba 7

arbad 10
b 5
c 11
d 9
r 6

Figure 1 On the left, a grammar tree for T = abracadabra (with straight solid edges), so
exp(X4) = T . Dashed edges were removed from the parse tree. The only primary occurrence of
P = abra in T is marked with dark gray on the bottom; the secondary ones are in light gray. On
the right, the grid used for searching primary occurrences. Gray stripes indicate the search ranges
corresponding to the partition P = R | Q, where R = a and Q = bra. The value 4 stored in the
resulting cell is the preorder of the child X5 of the locus node X2 where Q starts.

locate (returning all positions of a pattern in the text), count (returning the number of times153

a pattern appears in the text), and extract (extracting any desired substring of T). In order154

to locate, grammar indexes identify “initial” pattern occurrences and then track their “copies”155

throughout the text. The former are the primary occurrences, definde as those that cross156

phrase boundaries, and the latter are the secondary occurrences, which are confined to a157

single phrase. This approach [22] forms the basis of most grammar indexes [7, 8, 9] and158

related ones [14, 30, 11, 15, 12, 1, 39, 48], which first locate the primary occurrences and159

then derive their secondary occurrences through the grammar tree.160

As mentioned in Section 2.5, the grammar tree leaves cut the text into phrases. In order161

to report each primary occurrence of a pattern P [1 . . m] exactly once, let v be the lowest162

common ancestor of the first and last leaves the occurrence spans; v is called the locus163

node of the occurrence. Let v have t children and the first leaf that covers the occurrence164

descend from the ith child of v. If v represents A → α1 · · · αt, it follows that exp(αi) finishes165

with a pattern prefix R = P [1 . . q] and that exp(αi+1) · · · exp(αt) starts with the suffix166

Q = P [q + 1 . . m]. We will denote such cuts as P = R | Q. The alignment of R | Q within167

exp(αi) | exp(αi+1) · · · exp(αt) is the only possible one for that primary occurrence.168

Following the original scheme [22], grammar indexing builds two sets of strings, X and Y ,169

to find primary occurrences [7, 8, 9]. For each grammar rule A → α1 · · · αt, the set X contains170

all the reverse expansions of the children of A, exp(αi)rev, and Y contains all the expansions of171

the nonempty rule suffixes, exp(αi+1) · · · exp(αt). Both sets are sorted lexicographically and172

placed on a grid with (less than) g points, t − 1 for each rule A → α1 · · · αt. Given a pattern173

P [1 . . m], for each cut P = R | Q, we first find the lexicographic ranges [sx, ex] of Rrev in X174

and [sy, ey] of Q in Y. Each point (x, y) ∈ [sx, ex] × [sy, ey] represents a primary occurrence175

of P . Grid points are augmented with their locus node v and offset | exp(α1) · · · exp(αi)|.176

Once we identify the locus node v (with label A) of a primary occurrence, every other177

mention of A or its ancestors in the grammar tree, and recursively, of the ancestors of those178

mentions, yields a secondary occurrence of P . Those are efficiently tracked and reported179

[8, 9, 6]. An important consistency observation for counting is that the amount of secondary180

occurrences triggered by each primary occurrence is fixed. See Figure 1.181

The original approach [8, 9] spends time O(m2) to find the ranges [sx, ex] and [sy, ey] for182

the m − 1 cuts of P ; this was later improved to O(m log n) [6]. Each primary occurrence183

CPM 2025

XX:6 Counting on General Run-Length Grammars

found in the grid ranges takes time O(logϵ g) using geometric data structures, whereas each184

secondary occurrence requires O(1) time. Overall, the occ occurrences of P in T are listed in185

time O(m log n + occ logϵ g).186

To generalize this solution to RLCFGs [6, App. A.4], rules A → Bs are added as a point187

(x, y) = (exp(B)rev, exp(B)s−1) in the grid. This suffices to capture every primary occurrence188

of the corresponding rule A → B · · · B: If there are primary occurrences with the cut189

P = R | Q in B · · · B, then one is aligned with the first phrase boundary, exp(B)| exp(B)s−1.190

Precisely, there is space to place Q right after the first t = s − ⌈|Q|/|B|⌉ phrase boundaries.191

When the point (x, y) is retrieved for a given cut, then, t primary occurrences are declared192

with offsets |B| − |R|, 2|B| − |R|, . . ., t|B| − |R| within exp(A). The amount of secondary193

occurrences triggered by each such primary occurrence still depends only on A.194

4 Counting with Grammars195

Navarro [40] obtained the first result in counting the number of occurrences of a pattern196

P [1 . . m] in a text T [1 . . n] represented by a CFG of size g, within time O(m2+m log2+ϵ g), for197

any constant ϵ > 0, and using O(g) space. His method relies on the consistency observation198

above, which allows enhancing the grid described in Section 3 with the number c(A) of199

(primary and) secondary occurrences associated with each point. At query time, for each200

pattern cut, one sums the number of occurrences in the corresponding grid range using201

the technique mentioned in Section 2.4. The final complexity is obtained by aggregating202

over all m − 1 cuts of P and considering the O(m2) time required to identify all the ranges.203

Christiansen et al. [6, Thm. A.5] later improved this time to just O(m log n + m log2+ϵ g), by204

using more modern techniques to find the grid range of all cuts of P .205

Christiansen et al. [6] also presented a method to count in O(m + log2+ϵ n) time on a206

particular RLCFG of size grl = O(γ log(n/γ)), where γ is the size of the smallest string207

attractor [24] of T . They also show that by increasing the space to O(γ log(n/γ) logϵ n) one208

can reach the optimal counting time, O(m). The grammar properties allow reducing the209

number of cuts of P to check to O(log m), instead of the m − 1 cuts used on general RLCFGs.210

Christiansen et al. build on the same idea of enhancing the grid with the number of211

secondary occurrences, but the process is considerably more complex on RLCFGs, because212

the consistency property exploited by Navarro [40] does not hold on run-length rules A → Bs:213

the number of occurrences triggered by a primary occurrence with cut P = R | Q found from214

the point (exp(B)rev, exp(B)s−1) depends on s, |B|, and |R|. Their counting approach relies215

on another property that is specific of their RLCFG [6, Lem. 7.2]:216

▶ Property 1. For every run-length rule A → Bs, the shortest period of exp(A) is |B|.217

This property facilitates the division of the counting process into two cases. For each218

run-length rule A → Bs, they introduce two points, (x, y′) = (exp(B)rev, exp(B)) and219

(x, y′′) = (exp(B)rev, exp(B)2), in the grid. These points are associated with the values c(A)220

and (s − 2) · c(A), respectively. The counting process is as follows: for a cut P = R | Q, if221

Q ⊑ exp(B), then it will be counted c(A) + (s − 2) · c(A) = (s − 1) · c(A) times, as both points222

will be within the search range. If Q instead exceeds exp(B), but still Q ⊑ exp(B)2, then it223

will be counted (s − 2) · c(A) times, solely by point (x, y′′). Finally if Q exceeds exp(B)2,224

then Q is periodic (with p(Q) = |B|).225

They handle that remaining case as follows. Given a cut P = R | Q and the period226

p = p(Q) = |B|, where |Q| > 2p, the number of primary occurrences of this cut inside rule227

A → Bs is s − ⌈|Q|/p⌉ (cf. the end of Section 3). Let D be the set of rules A → Bs within228

G. Navarro and A. Pacheco XX:7

the grid range of the cut, and c(A) the number of (primary and secondary) occurrences of A.229

Then, the number of occurrences triggered by the primary occurrences found within symbols230

in D for this cut is231 ∑
A→Bs∈D

c(A) · s − c(A) · ⌈|Q|/p⌉.232

For each run-length rule A → Bs, they compute a Karp–Rabin signature (Section 2.3)233

κ(exp(B)) and store it in a perfect hash table, associated with values234

C(B, s) =
∑

{c(A) : A → Bs′
, s′ ≥ s},235

C ′(B, s) =
∑

{s′ · c(A) : A → Bs′
, s′ ≥ s}.236

Additionally, for each such B, the authors store the set s(B) = {s : A → Bs}.237

At query time, they calculate the shortest period p = p(P). For each cut P = R | Q,238

Q is periodic if |Q| > 2p. If so, they compute k = κ(Q[1 . . p]), and if there is an entry B239

associated with k in the hash table, they add to the number of occurrences found up to then240

C ′(B, smin) − C(B, smin) · ⌈|Q|/p⌉,241

where smin = min{s ∈ s(B), (s − 1) · |B| ≥ |Q|} is computed using exponential search over242

s(B) in O(log m) time. Note that they exploit the fact that the number of repetitions to243

subtract, ⌈|Q|/p⌉, depends only on p = |B|, and not on the exponent s of rules A → Bs.244

The total counting time, on a grammar of size grl, is O(m log n + m log2+ϵ grl). In their245

particular grammar, the number of cuts to consider is O(log m), which allows reducing the246

cost of computing the grid ranges to O(m). The signatures of all substrings of P are also247

computed in O(m) time, as mentioned in Section 2.3. Considering the grid searches, the total248

cost for counting the pattern occurrences drops to O(m + log2+ϵ grl) ⊆ O(m + log2+ϵ n).249

Recently, Kociumaka et al. [27] employed this same approach to count the occurrences250

of a pattern in a smaller RLCFG that uses O(δ log n log |Σ|
δ log n) space, where δ ≤ γ. They251

demonstrated that the RLCFG they produce satisfies Property 1 [6, Lem. 7.2], which is252

necessary to apply the described scheme.253

5 Our Solution254

We now describe a solution to count the occurrences in arbitrary RLCFGs, where the255

convenient Property 1 used in the literature may not hold. We start with a simple observation.256

▶ Lemma 3. Let A → Bs be a rule in a RLCFG. Then p(A) divides |B|.257

Proof. Clearly |B| is a period of exp(A) because exp(A) = exp(B)s. By Lemma 2, then,258

since |B| ≤ |A|/2, p(A) divides |B|. ◀259

Some parts of our solution make use of the shortest period of exp(A). We now define260

some related notation.261

▶ Definition 4. Given a rule A → Bs with s ≥ 2, let p = p(A) (which divides |B| by Lemma262

3). The corresponding transformed rule is A → B̂s′ , where B̂ is a new nonterminal such that263

exp(B̂) = exp(A)[1 . . p], and s′ = s · (|B|/p).264

There seems to be no way to just transform all run-length rules (which would satisfy265

Property 1, p(A) = |B̂|) without blowing up the RLCFG size by a logarithmic factor. We266

will use another approach instead. We classify the rules into two categories.267

CPM 2025

XX:8 Counting on General Run-Length Grammars

▶ Definition 5. Given a rule A → Bs with s ≥ 2, we say that A is of type-E (for Equal) if268

p(A) = |B̂| = |B|; otherwise, p(A) = |B̂| < |B| and we say that A is of type-L (for Less).269

We build on Navarro’s solution [40] for counting on CFGs, which uses an enhanced grid270

where points count all the occurrences they trigger. The grid ranges are found with the more271

recent technique [6] that takes O(m log n) time. Further, we treat type-E rules exactly as272

Christiansen et al. [6] handle the run-length rules in their specific RLCFGs, as described273

in Section 4. This is possible because type-E rules, by definition, satisfy Property 1. Their274

method, however, assumes that no two symbols B ̸= B′ have the same expansion. To relax275

this assumption, symbols B with the same expansion should collectively contribute to the276

same entries of C(·, s) and C ′(·, s). We thus index those tables using κ(exp(B)) rather than277

B, and for simplicity write C(π, s), C ′(π, s), and s(π), where π = exp(B).278

Since each primary occurrence is found in exactly one rule, we can decompose the process279

of counting by adding up the occurrences found inside type-E and type-L rules. We are then280

left with the more complicated problem of counting occurrences found from type-L rules.281

We start with another observation.282

▶ Observation 6. If A → Bs is a type-L rule, then |B| ≥ 2|B̂|283

Proof. If A is a type-L rule then p(A) = |B̂| < |B|. In addition, by Lemma 3, |B̂| divides284

|B|. Therefore |B| ≥ 2|B̂| ◀285

For type-L rules, we will generalize the strategy of Section 4: the cases where |Q| ≤ 2|B̂|286

will be handled by adding points to the enhanced grid; in the other cases we will use new data287

structures that exploit the fact (to be proved) that Q is periodic. Note that each partition288

P = R | Q may correspond to different cases for different run-length rules, so our technique289

will consider all the cases for each partition.290

5.1 Case |Q| ≤ 2|B̂|291

To capture the primary occurrences with cut P = R | Q inside type-L rules A → Bs where292

|Q| ≤ 2|B̂|, we will incorporate the points (xp, y′
p) = (exp(B̂)rev, exp(B̂)) and (xp, y′′

p) =293

(exp(B̂)rev, exp(B̂)2) into the enhanced grid outlined in Sections 3 and 4, assigning the values294

−(s − 1) · c(A) and 2 · (s − 1) · c(A) to each, respectively. The point (xp, y′
p) will capture295

the occurrences where |R|, |Q| ≤ |B̂|. Note that these occurrences will also find the point296

(xp, y′′
p), so the final result will be (2 − 1) · (s − 1) · c(A) = (s − 1) · c(A).297

The point (xp, y′′
p) will also account for the primary occurrences where |R| ≤ |B̂| and298

|B̂| < |Q| ≤ 2|B̂|. Observation 6 establishes that |B| ≥ 2|B̂|, so for each such primary299

occurrence of cut R | Q, with offset j in exp(A), there is a second primary occurrence at300

j − |B̂| with cut P = R′ | Q′, where |B̂| < |R′| = |R| + |B̂| ≤ 2|B̂| and |Q′| = |Q| − |B̂| ≤ |B̂|.301

This second cut will not be captured by the points we have inserted because |R′| > |B̂|. The302

other occurrences where P matches to the left of j − |B̂| fall within B (and thus are not303

primary), because we already have |Q′| ≤ |B̂| in this second occurrence. Thus, for each of304

the s copies of B (save the last), we will have two primary occurrences. This yields a total of305

2 · (s − 1) · c(A) occurrences, which are properly counted in the points (xp, y′′
p). See Figure 2.306

5.2 Case |Q| > 2|B̂|307

We first show that, for Q to be longer than 2|B̂| in some run-length rule, P must be periodic.308

G. Navarro and A. Pacheco XX:9

A

B

B̂ B̂

B

B̂ B̂

B

(cgta)2cc (cgta)2c c(cgta)2c
(cgta)2cc (cgta)2c c(cgta)2c

exp(A) = ((cgta)2c)6

exp(B) = ((cgta)2c)2

exp(B̂) = (cgta)2c
R = c

Q = (cgta)2cc

Figure 2 We show the occurrences captured by the point (xp, y′′
p) = (exp(B̂), exp(B̂)2). Note

how the occurrence in the first row is correctly captured by (xp, y′′
p), whereas that in the second row

is not captured by any point. Consequently, the first row is effectively counted twice. Given that the
point (xp, y′′

p) is assigned a weight of 2 · (s − 1) · c(A), the total number of occurrences is 4 · c(A).

▶ Lemma 7. Let P , with p = p(P), have a primary occurrence with cut P = R | Q in the309

rule A → Bs, with p(A) = |B̂| and |Q| > 2|B̂|. Then it holds that p = p(A).310

Proof. Since |P | ≥ |B̂| and P is contained within exp(A) = exp(B̂)s′ , by branch 3 of311

Definition 1, |B̂| must be a period of P . Thus, p = p(P) ≤ |B̂|. Suppose, for contradiction,312

that p < |B̂|. According to Lemma 2, because |B̂| ≤ |Q|/2 ≤ |P |/2 is a period of P , it313

follows that p divides |B̂|. Since exp(B̂) is contained in P , again by branch 3 of Definition 1314

it follows that p < |B̂| ≤ |B| is a period of exp(B), and thus of exp(A), contradicting the315

assumption that p(A) = |B̂|. Hence, we conclude that p = |B̂|. ◀316

Note that P is then periodic because p(P) = p(A) = |B̂| < |Q|/2 ≤ |P |/2, and Q is317

also periodic by branch 3 of Def. 1, because it occurs inside P and |Q| ≥ 2p. The following318

definition will help us show that we capture every primary occurrence exactly once.319

▶ Definition 8. The alignment of a primary occurrence x found with cut P = R | Q inside320

the type-L rule A → Bs is align(x) = 1 + ((|R| − 1) mod |B̂|).321

The definition is sound because every primary occurrence is found using exactly one322

cut P = R | Q. Note that align ∈ [1 . . |B̂|] is the distance from the starting position of323

an occurrence, within exp(A), to the start of the next copy of exp(B̂). We will explore324

all the possible cuts of P , but each rule A → Bs will be probed only with the cuts where325

1 ≤ |R| ≤ |B̂|. From those cuts, all the corresponding primary occurrences aligned with the326

s′ − 1 boundaries between copies of B̂ (i.e., with the same alignment, |R|) will be captured.327

We distinguish two subcases, depending on whether Q is longer than B or not. If it is,328

we must ensure that in the alignments we count the occurrence is fully within exp(A). If it329

is not, we must ensure that the alignments we count do correspond to primary occurrences330

(i.e., they cross a border between copies of B).331

5.2.1 Case 2|B̂| < |Q| ≤ |B|332

To handle this case, we construct a specific data structure based on the period |B̂|. The333

proposed solution is supported by the following lemma.334

▶ Lemma 9. Let P , with p = p(P), have a primary occurrence with cut P = R | Q in the335

type-L rule A → Bs, with p(A) = |B̂|, |R| ≤ |B̂|, and 2|B̂| < |Q| ≤ |B|. Then, the number336

of primary occurrences of P in exp(A) is (s − 1) · ⌈|Q|/p⌉.337

Proof. Since |R| ≤ |B̂|, R can be aligned at the end of the |B|/|B̂| positions where exp(B̂)338

starts in exp(B). No other alignments are possible for the cut R | Q because, by Lemma 7,339

p = |B̂| and another alignment would imply that P aligns with itself with an offset smaller340

than p, a contradiction by branch 2 of Definition 1.341

CPM 2025

XX:10 Counting on General Run-Length Grammars

A

B

B̂ B̂ B̂ B̂

B

B̂ B̂ B̂ B̂

cgta cgta cgta cgta
cgta cgta cgta cgta

cgta cgta cgta cgta

B B

exp(A) = (cgta)16

exp(B) = (cgta)4

exp(B̂) = cgta
R = a

Q = cgtacgtac

Figure 3 If 2|B̂| < |Q| ≤ |B|, there are ⌈|Q|/p⌉ primary occurrences around the boundary between
any two blocks B (we zoom on one) with the cut P = R | Q. We show the possible alignments of
P below the blocks B̂. For a rule A → Bs there are (s − 1) boundaries, yielding (s − 1) · ⌈|Q|/p⌉
primary occurrences. In this case, ⌈|Q|/p⌉ = 3 and s − 1 = 3, yielding 9 primary occurrences.

Those alignments correspond to primary occurrences only if P does not fall completely342

within exp(B). The alignments that correspond to primary occurrences are then those where343

R is aligned at the end of the last ⌈|Q|/|B̂|⌉ ending positions of copies of B̂, all of which344

start within exp(B) because |Q| ≤ |B|. This is equivalent to ⌈|Q|/p⌉, as p = |B̂| by Lemma345

7. Thus, the number of primary occurrences of P in A is (s − 1) · ⌈|Q|/p⌉. See Figure 3. ◀346

Based on Lemma 9 we introduce our first period-based data structure. Considering the347

solution described in Section 4, where Property 1 holds, the challenge with type-L rules348

A → Bs (i.e., rules that differ from their transformed version A → B̂s′) is that the number of349

alignments with cut R | Q inside exp(A) is s′ − ⌈|Q|/p⌉, but B does not determine p = p(A).350

We will instead use B̂ to index those nonterminals A.351

For each type-L rule A → Bs (A → B̂s′ being its transformed version), we compute its352

signature κ(exp(B̂)) (recall Section 2.3) and store it in a perfect hash table H. Each entry in353

table H, which corresponds to a specific signature κ(π), will be linked to an array Fπ. Each354

position Fπ[i] represents a type-L rule Ai → Bsi
i where κ(exp(B̂i)) = κ(π). The rules Ai are355

sorted in Fπ by decreasing lengths |Bi|. We also store a field with the cumulative sum356

Fπ[i].sum =
∑

1≤j≤i

(sj − 1) · c(Aj).357

Given a pattern P [1 . . m], we first calculate its shortest period p = p(P). For each cut358

P = R | Q with 1 ≤ |R| ≤ min(p, m − 2p − 1), we compute κ(π) for π = Q[1 . . p] to identify359

the corresponding array Fπ in H. Note that we only consider the cuts R | Q where |R| ≤ p,360

as this corresponds precisely to |R| ≤ |B̂| for the rules stored in Fπ; note p = |π|. In addition,361

the condition |R| ≤ m−2p−1 ensures that |Q| > 2p = 2|B̂|, so we are correctly enforcing the362

condition of this subsection and focusing on the occurrences of each alignment align = |R|363

one by one. We will find in H every (transformed) rule A → B̂s′ where B̂ = π, sharing the364

period p with Q, as well as its prefix π = exp(B)[1 . . p] = Q[1 . . p]. Once we have obtained365

the array Fπ, we find the largest i such that |Bi| ≥ |Q|. The number of primary occurrences366

for the cut P = R | Q in type-L rules where 2|B̂| < |Q| ≤ |B| is then Fπ[i].sum · ⌈|Q|/p⌉.367

5.2.2 Case |Q| > |B|368

Our analysis for the remaining case is grounded on the following lemma.369

▶ Lemma 10. Let P , with p = p(P), have a primary occurrence in a type-L rule A → Bs
370

with cut P = R | Q, with |R| ≤ p and |Q| > |B| . Then it holds that p = p(A) and |Q| > 2p.371

Proof. If A is a type-L rule and P has an occurrence within A such that |Q| > |B|, then372

we have |Q| > |B| ≥ 2|B̂| (by Observation 6). Since we can express A as A → B̂s′ , we can373

similarly use Lemma 7 to conclude that p = p(A) = |B̂|; further, |Q| > 2p. ◀374

G. Navarro and A. Pacheco XX:11

A

B

B̂ B̂

B

B̂ B̂

B

B̂ B̂

B

B̂ B̂

cgta cgta cgta cgta
cgta cgta cgta cgta

cgta cgta cgta cgta
cgta cgta cgta cgta

cgta cgta cgta cgta

exp(A) = (cgta)8

exp(B) = (cgta)2

exp(B̂) = cgta
R = a

Q = cgtacgtac

Figure 4 If |Q| > |B|, we can compute all occurrences of P around blocks B̂ without the risk
of any occurrence being fully contained in a block B: the number of primary occurrences of P in
exp(A) is simply s′ − ⌈|Q|/p⌉. In this example, with s′ = 8 and ⌈|Q|/p⌉ = 3, there are 5 occurrences.

Analogously to Lemma 7, Lemma 10 establishes that, when Q is sufficiently long, it holds375

that p(P) = p(A), so all pertinent rules of the form A → Bs can be classified according to376

their minimal period, p(A). This period coincides with p = p(P) when P has an occurrence377

in a type-L rule such that |Q| > |B| . Further, |Q| > 2p.378

We also need an analogous to Lemma 9 for the case |Q| > |B|; this is given next.379

▶ Lemma 11. Let P , with p = p(P), have a primary occurrence with cut P = R | Q in380

the type-L rule A → Bs, with p(A) = |B̂|, |R| ≤ |B̂|, and |Q| > |B|. Then, the number of381

primary occurrences of P in exp(A) is s′ − ⌈|Q|/p⌉.382

Proof. Since |R| ≤ |B̂|, R can be aligned at the end of the s′ positions where exp(B̂) starts in383

exp(A). By the same argument of the proof of Lemma 9, no other alignments are possible for384

the cut R | Q. Unlike in Lemma 9, all those alignments correspond to primary occurrences,385

because Q is always long enough to exceed B. Also unlike in Lemma 9, Q may exceed A,386

in which case the occurrence must not be counted in this rule. The alignments that must387

not be counted are then those where R is aligned at the end of the last ⌈|Q|/|B̂|⌉ ending388

positions of copies of B̂. This is equivalent to ⌈|Q|/p⌉, as p = |B̂| by Lemma 10. Thus, the389

number of primary occurrences of P in A is s′ − ⌈|Q|/p⌉. See Figure 4. ◀390

We then enhance table H, introduced in Section 5.2.1, with a second period-based data391

structure. Each entry in table H, corresponding to some κ(π), will additionally store a grid392

Gπ. In this grid, each row represents a type-L rule A → Bs whose transformed version is393

A → B̂s′ , that is, such that π = exp(B̂) = exp(B)[1 . . p]. The rows are sorted by increasing394

lengths |B| (note |B| ≥ |π| = p for all B in Gπ). The columns represent the different395

exponents s′ of the transformed rules. The row of rule A → Bs has then a unique point at396

column s′, and we associate two values with it: C ′
π(A) = c(A) and C ′′

π(A) = s′ · c(A). Since397

no rule appears in more than one grid, the total space for all grids is in O(grl).398

Given a pattern P [1 . . m], we proceed analogously as explained at the end of Section 5.2.1399

in order to identify Fπ: We compute p = p(P), and for each cut P = R | Q with 1 ≤ |R| ≤400

min(p, m − 2p − 1), we calculate κ(π), for π = Q[1 . . p], to find the corresponding grid Gπ in401

H. On the type-L rules A → Bs, this tries out every possible alignment align = |R|, one by402

one, from 1 to |B̂|. The limit |R| < m − 2p can also be set because, by Lemma 10, it must403

hold |Q| > 2|B̂| on the rules of Gπ we find with the cut P = R | Q.404

We must enforce two conditions on the rules of Gπ to consider: (a) |Q| > |B| as405

corresponds in this subsection, and (b) s′ − ⌈|Q|/p⌉ ≥ 0, that is, Q fits within exp(A). The406

complying rules then contribute c(A) · (s′ −⌈|Q|/p⌉) = C ′′
π (A)−C ′

π(A) · ⌈|Q|/p⌉ by Lemma 11.407

To enforce those conditions, we find in Gπ the largest row y representing a rule A → Bs
408

such that |B| < |Q|. We also find the smallest column x where (s′ =) x ≥ ⌈|Q|/p⌉. The409

CPM 2025

XX:12 Counting on General Run-Length Grammars

S → X1X2tX7X8X9X11
X1 → cgta
X2 → X4

1
X3 → cg
X4 → ta
X5 → X3X4
X6 → X1X5
X7 → X4

6
X8 → X4

3
X9 → X5

12
X10 → X2X5
X11 → X4

10
X12 → X1X1cca

C(cgta, 4) 5
C′(cgta, 4) 20 type-E hash

s(cgta) {4}

X6

X1 X5

X3

c g

X4

t a

X
[3]
6

X1

c ag t

X2

X1 X
[3]
1

t X7 X8

X3 X
[3]
3

X9

X12 X
[4]
12

X1 X1 c c a

X11

X10 X
[3]
10

X2 X5

S

8 20

X
(8)
6 X

(1,8)
7

X
(20)
10 X

(1,20)
11

Gcgta

cg (cg)2 cgta (cgta)2 (cgta)2cca ((cgta)2cca)2

acc(atgc)2 X
(1)
9 X

(3)
9

atgc X
(5)
2 X

(−3)
7 X

(−3)
11 X

(10)
2 X

(6)
7 X

(6)
11

gc X
(1)
8 X

(2)
8

X7 X11
3 6

Fcgta

Figure 5 On top, a RLCFG on the left and its grammar tree on the right. Type-E rules are
enclosed in white rectangles and Type-L rules in gray rectangles. Below the rules we show the values
C(B, s) and C′(B, s) [6] we use to handle the E-type rules (see Section 4); we only show those for
exp(X1) = cgta. On the bottom left we show the points we add to the standard grid. The points for
type-E rules are represented as A(c(A)) and A((s−2)·c(A)) and those for type-L rules as A(−(s−1)·c(A))

and A(2·(s−1)·c(A)). The bottom right shows the grid Gπ and the array Fπ for the transformed rules
A → B̂s′

where B̂ = π = cgta. In Fπ we show the fields F [i].sum. In Gπ, the row labels show B(|B|)

and the column labels show s′; the points show A(C′,C′′). Consider the cut P = a | cgtacgtac, with
p(P) = 4. We identify 9 occurrences in type-E rules: 4 are found within the rule X9 using the
standard grid, while the remaining 5 are determined via the values of C(X1, s) and C′(X1, s). These
5 occurrences specifically arise within exp(X2) = (cgta)4. Similarly, in the type-L rules, we detect
14 occurrences: 9 occur within the rule X11, identified using the Fcgta array, and the remaining 5
arise within exp(X7) = (cgta)8, captured using the Gcgta grid. The final two occurrences of this cut
are located using standard CFG rules at exp(S)[4 . . 13] (X1 · X2) and exp(S)[111 . . 120] (X9 · X11).

points in the range [x, n] × [1, y] of the grid then correspond to the set D of type-L run-length410

rules where we have a primary occurrence with |Q| > |B|. We aggregate the values C ′
π and411

C ′′
π from the range, which yields the correct sum of all the pertinent occurrences:412 (∑

A→Bs∈D

C ′′
π(A)

)
−

(∑
A→Bs∈D

C ′′
π(A)

)
· ⌈|Q|/p⌉ =

∑
A→Bs∈D

c(A) · s′ − c(A) · ⌈|Q|/p⌉ .413

Figure 5 gives a thorough example.414

5.3 The final result415

Our structure extends the grid of Section 4, built for non-run-length rules, with one point per416

run-length rule: those of type-E are handled as described in Section 4 and those of type-L as417

in Section 5. Thus the structure is of size O(grl) and range queries on the grid take time418

O(log2+ϵ grl). Occurrences on such a grid are counted in time O(m log n + m log2+ϵ grl) [6,419

Thm. A.5]. This is also the time to count the occurrences in type-E rules for our solution,420

and those in type-L rules when |Q| ≤ 2|Bp| (Section 5.1).421

For our period-based data structures (Sections 5.2.1 and 5.2.2), we calculate p(P) in422

O(m) time [10], and compute all prefix signatures of P in O(m) time as well, so that later423

any substring signature is computed in O(1) time (Section 2.3). The limits in the arrays Fπ424

and in the grids Gπ can be found with exponential search in time O(log m) (we might need425

G. Navarro and A. Pacheco XX:13

to group rows/columns with identical values to achieve this time). The range sums for C ′
π426

and C ′′
π take time O(log2+ϵ grl). They are repeated for each of the O(m) cuts of P , adding427

up to time O(m log2+ϵ grl). Those are then within the previous time complexities as well.428

▶ Theorem 12. Let a RLCFG of size grl represent a text T [1 . . n]. Then, for any constant429

ϵ > 0, we can build in O(n log n) expected time an index of size O(grl) that counts the number430

of occurrences of a pattern P [1 . . m] in T in time O(m log n + m log2+ϵ grl) ⊆ O(m log2+ϵ n).431

Just as for previous schemes [6], the construction time is dominated by the O(n log n)432

expected time to build the collision-free Karp–Rabin functions [3].433

Note that the bulk of the search cost are the geometric queries, which are easily done in434

O(log n) time if we store cumulative sums in all the levels of the data structure [5, 40]. More435

generally, setting Navarro’s ϵ to 1/ log1−δ grl [40, Thm. 3], we obtain the following tradeoff.436

▶ Corollary 13. Let a RLCFG of size grl represent a text T [1 . . n]. Then, for any constant 0 ≤437

δ < 1, we can build in O(n log n) expected time an index of size O(grl log1−δ grl) that counts438

the occurrences of a pattern P [1 . . m] in T in time O(m log n+m log1+δ grl) ⊆ O(m log1+δ n).439

5.4 An application440

Recent work [18, 37] shows how to compute the maximal exact matches (MEMs) of P [1 . . m]441

in T [1 . . n], which are the maximal substrings of P that occur in T , in case T is represented442

with an arbitrary RLCFG. Navarro [41] extends the results to k-MEMs, which are maximal443

substrings of P that occur at least k times in T . To obtain good time complexities for large444

enough k, he resorts to counting occurrences of substrings P [i . . j] with the grammar. His445

Thm. 7, however, works only for CFGs, as no efficient counting algorithm existed on RLCFGs.446

In turn, his Thm. 8 works only for a particular RLCFG. We can now state his result on an447

arbitrary RLCFG; by his Thm. 11 this also extends to “k-rare MEMs”.448

▶ Corollary 14 (cf. [41, Thm. 7]). Let a RLCFG of size grl generate only T [1 . . n]. Then,449

for any constant ϵ > 0, we can build a data structure of size O(grl) that finds the k-MEMs450

of any given pattern P [1 . . m], for any k > 0 given with P , in time O(m2 log2+ϵ grl).451

6 Conclusion452

We have presented the first solution to the problem of counting the occurrences of a pattern453

in a text represented by an arbitrary RLCFG, which was posed by Christiansen et al. [6]454

in 2020 and solved only for particular cases. This required combining solutions to CFGs455

[40] and particular RLCFGs [6], but also new insights for the general case. The particular456

existing solutions required that |B| is the shortest period of exp(A) in rules A → Bs. While457

this does not hold in general RLCFGs, we proved that, except in some borderline cases458

that can be handled separately, the shortest periods of the pattern and of exp(A) must459

coincide. While the particular solutions could associate exp(B) with the period of the pattern,460

we must associate many strings exp(A) that share the same shortest period, and require461

a more sophisticated geometric data structure to collect only those that qualify for our462

search. Despite those complications, however, we manage to define a data structure of size463

O(grl) from a RLCFG of size grl, that counts the occurrences of P [1 . . m] in T [1 . . n] in time464

O(m log2+ϵ n) for any constant ϵ > 0, the same result that existed for the simpler case of465

CFGs. Our approach extends the applicability of arbitrary RLCFGs to cases where only466

CFGs could be used, equalizing the available tools to handle both types of grammars.467

CPM 2025

XX:14 Counting on General Run-Length Grammars

References468

1 Bille, P., Ettienne, M.B., Gørtz, I.L., Vildhøj, H.W.: Time-space trade-offs for Lempel-Ziv469

compressed indexing. Theoretical Computer Science 713, 66–77 (2018)470

2 Bille, P., Landau, G.M., Raman, R., Sadakane, K., Rao, S.S., Weimann, O.: Random access471

to grammar-compressed strings and trees. SIAM Journal on Computing 44(3), 513–539 (2015)472

3 Bille, P., Gørtz, I.L., Sach, B., Vildhøj, H.W.: Time–space trade-offs for longest common473

extensions. Journal of Discrete Algorithms 25, 42–50 (2014)474

4 Charikar, M., Lehman, E., Liu, D., Panigrahy, R., Prabhakaran, M., Sahai, A., Shelat, A.:475

The smallest grammar problem. IEEE Transactions on Information Theory 51(7), 2554–2576476

(2005)477

5 Chazelle, B.: A functional approach to data structures and its use in multidimensional478

searching. SIAM Journal on Computing 17(3), 427–462 (1988)479

6 Christiansen, A.R., Ettienne, M.B., Kociumaka, T., Navarro, G., Prezza, N.: Optimal-time480

dictionary-compressed indexes. ACM Transactions on Algorithms (TALG) 17(1), 1–39 (2020)481

7 Claude, F., Navarro, G.: Self-indexed grammar-based compression. Fundamenta Informaticae482

111(3), 313–337 (2010)483

8 Claude, F., Navarro, G.: Improved grammar-based compressed indexes. In: Proc. 19th484

International Symposium on String Processing and Information Retrieval (SPIRE). pp. 180–485

192 (2012)486

9 Claude, F., Navarro, G., Pacheco, A.: Grammar-compressed indexes with logarithmic search487

time. Journal of Computer and System Sciences 118, 53–74 (2021)488

10 Crochemore, M., Rytter, W.: Jewels of stringology: text algorithms. World Scientific (2002)489

11 Ferrada, H., Gagie, T., Hirvola, T., Puglisi, S.J.: Hybrid indexes for repetitive datasets.490

Philosophical Transactions of the Royal Society A 372(2016), article 20130137 (2014)491

12 Ferrada, H., Kempa, D., Puglisi, S.J.: Hybrid indexing revisited. In: Proc. 20th Workshop on492

Algorithm Engineering and Experiments (ALENEX). pp. 1–8 (2018)493

13 Fine, N.J., Wilf, H.S.: Uniqueness theorems for periodic functions. Proceedings of the American494

Mathematical Society 16(1), 109–114 (1965)495

14 Gagie, T., Gawrychowski, P., Kärkkäinen, J., Nekrich, Y., Puglisi, S.J.: A faster grammar-496

based self-index. In: Proc. 6th International Conference on Language and Automata Theory497

and Applications (LATA). pp. 240–251. LNCS 7183 (2012)498

15 Gagie, T., Gawrychowski, P., Kärkkäinen, J., Nekrich, Y., Puglisi, S.J.: LZ77-based self-499

indexing with faster pattern matching. In: Proc. 11th Latin American Symposium on Theor-500

etical Informatics (LATIN). pp. 731–742 (2014)501

16 Gagie, T., Navarro, G., Prezza, N.: Fully-functional suffix trees and optimal text searching in502

BWT-runs bounded space. Journal of the ACM 67(1), article 2 (2020)503

17 Ganardi, M., Jez, A., Lohrey, M.: Balancing straight-line programs. Journal of the ACM504

68(4), 27:1–27:40 (2021)505

18 Gao, Y.: Computing matching statistics on repetitive texts. In: Proc. 32nd Data Compression506

Conference (DCC). pp. 73–82 (2022)507

19 Gawrychowski, P., Karczmarz, A., Kociumaka, T., Lacki, J., Sankowski, P.: Optimal dynamic508

strings. In: Proc. 29th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). pp.509

1509–1528 (2018)510

20 Jez, A.: Approximation of grammar-based compression via recompression. Theoretical Com-511

puter Science 592, 115–134 (2015)512

21 Jez, A.: A really simple approximation of smallest grammar. Theoretical Computer Science513

616, 141–150 (2016)514

22 Kärkkäinen, J., Ukkonen, E.: Lempel-Ziv parsing and sublinear-size index structures for string515

matching. In: Proc. 3rd South American Workshop on String Processing (WSP). pp. 141–155516

(1996)517

23 Karp, R.M., Rabin, M.O.: Efficient randomized pattern-matching algorithms. IBM Journal of518

Research and Development 2, 249–260 (1987)519

G. Navarro and A. Pacheco XX:15

24 Kempa, D., Prezza, N.: At the roots of dictionary compression: String attractors. In: Proc.520

50th Annual ACM Symposium on the Theory of Computing (STOC). pp. 827–840 (2018)521

25 Kempa, D., Kociumaka, T.: Collapsing the hierarchy of compressed data structures: Suffix522

arrays in optimal compressed space. In: Proc. 64th IEEE Annual Symposium on Foundations523

of Computer Science (FOCS). pp. 1877–1886 (2023)524

26 Kieffer, J.C., Yang, E.H.: Grammar-based codes: A new class of universal lossless source525

codes. IEEE Transactions on Information Theory 46(3), 737–754 (2000)526

27 Kociumaka, T., Navarro, G., Olivares, F.: Near-optimal search time in δ-optimal space, and527

vice versa. Algorithmica 86(4), 1031–1056 (2024)528

28 Kociumaka, T., Navarro, G., Prezza, N.: Toward a definitive compressibility measure for529

repetitive sequences. IEEE Transactions on Information Theory 69(4), 2074–2092 (2023)530

29 Kociumaka, T., Radoszewski, J., Rytter, W., Walen, T.: Internal pattern matching queries in a531

text and applications. In: Proc. 26th Annual ACM-SIAM Symposium on Discrete Algorithms532

(SODA). pp. 532–551 (2015)533

30 Kreft, S., Navarro, G.: On compressing and indexing repetitive sequences. Theoretical Com-534

puter Science 483, 115–133 (2013)535

31 Larsson, J., Moffat, A.: Off-line dictionary-based compression. Proceedings of the IEEE 88(11),536

1722–1732 (2000)537

32 Lempel, A., Ziv, J.: On the complexity of finite sequences. IEEE Transactions on Information538

Theory 22(1), 75–81 (1976)539

33 Maruyama, S., Sakamoto, H., Takeda, M.: An online algorithm for lightweight grammar-based540

compression. Algorithms 5(2), 214–235 (2012)541

34 Navarro, G.: Spaces, trees and colors: The algorithmic landscape of document retrieval on542

sequences. ACM Computing Surveys 46(4), article 52 (2014), 47 pages543

35 Navarro, G.: Indexing highly repetitive string collections, part I: Repetitiveness measures.544

ACM Computing Surveys 54(2), article 29 (2021)545

36 Navarro, G.: Indexing highly repetitive string collections, part II: Compressed indexes. ACM546

Computing Surveys 54(2), article 26 (2021)547

37 Navarro, G.: Computing MEMs on repetitive text collections. In: Proc. 34th Annual Sym-548

posium on Combinatorial Pattern Matching (CPM). p. article 22 (2023)549

38 Navarro, G., Olivares, F., Urbina, C.: Balancing run-length straight-line programs. In: Proc.550

29th International Symposium on String Processing and Information Retrieval (SPIRE). pp.551

117–131 (2022)552

39 Navarro, G., Prezza, N.: Universal compressed text indexing. Theoretical Computer Science553

762, 41–50 (2019)554

40 Navarro, G.: Document listing on repetitive collections with guaranteed performance. Theor-555

etical Computer Science 772, 58–72 (2019)556

41 Navarro, G.: Computing MEMs and relatives on repetitive text collections. ACM Transactions557

on Algorithms 21(1), article 12 (2025)558

42 Nevill-Manning, C., Witten, I., Maulsby, D.: Compression by induction of hierarchical559

grammars. In: Proc. 4th Data Compression Conference (DCC). pp. 244–253 (1994)560

43 Nishimoto, T., I, T., Inenaga, S., Bannai, H., Takeda, M.: Fully dynamic data structure for561

LCE queries in compressed space. In: Proc. 41st International Symposium on Mathematical562

Foundations of Computer Science (MFCS). pp. 72:1–72:15 (2016)563

44 Raskhodnikova, S., Ron, D., Rubinfeld, R., Smith, A.: Sublinear algorithms for approximating564

string compressibility. Algorithmica 65, 685–709 (2013)565

45 Rytter, W.: Application of Lempel-Ziv factorization to the approximation of grammar-based566

compression. Theoretical Computer Science 302(1-3), 211–222 (2003)567

46 Sakamoto, H.: A fully linear-time approximation algorithm for grammar-based compression.568

Journal of Discrete Algorithms 3(2–4), 416–430 (2005)569

47 Storer, J.A., Szymanski, T.G.: Data compression via textual substitution. Journal of the ACM570

29(4), 928–951 (1982)571

CPM 2025

XX:16 Counting on General Run-Length Grammars

48 Tsuruta, K., Köppl, D., Nakashima, Y., Inenaga, S., Bannai, H., Takeda, M.: Grammar-572

compressed self-index with Lyndon words. CoRR 2004.05309 (2020)573

	1 Introduction
	2 Basic Concepts
	2.1 Strings
	2.2 Periods of strings
	2.3 Karp-Rabin signatures
	2.4 Range summary queries on grids
	2.5 Grammar compression and parse trees
	2.6 Run-length grammars

	3 Grammar Indexing for Locating
	4 Counting with Grammars
	5 Our Solution
	5.1 Case |Q| 2 ||
	5.2 Case |Q| > 2||
	5.2.1 Case 2|| < |Q| |B|
	5.2.2 Case |Q| >|B|

	5.3 The final result
	5.4 An application

	6 Conclusion

