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—— Abstract

We introduce a data structure for counting pattern occurrences in texts compressed with any

run-length context-free grammar. Our structure uses space proportional to the grammar size and
counts the occurrences of a pattern of length m in a text of length n in time O(mlog®*¢n), for
any constant € > 0 chosen at indexing time. This is the first solution to an open problem posed by
Christiansen et al. [ACM TALG 2020] and enhances our abilities for computation over compressed
data; we give an example application.
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Counting on General Run-Length Grammars

1 Introduction

Context-free grammars (CFGs) have proven to be an elegant and efficient model for data
compression. The idea of grammar-based compression [51, 29] is, given a text T'[1..n], to
construct a context-free grammar G of size g that only generates T'. One can then store G
instead of T, which achieves compression if g < n. Compared to more powerful compression
methods like Lempel-Ziv [35], grammar compression offers efficient direct access to arbitrary
snippets of T without the need of full decompression [49, 3]. This has been extended to
offering indexed searches (i.e., in time o(n)) for the occurrences of string patterns in T
[8, 16, 10, 7, 40], as well as more complex computations over the compressed sequence
[32, 21, 18, 19, 41, 28]. Since finding the smallest grammar G representing a given text T is
NP-hard [49, 5], many algorithms have been proposed to find small grammars for a given
text [34, 49, 46, 50, 36, 23, 24]. Grammar compression is particularly effective when handling
repetitive texts; indeed, the size g* of the smallest grammar representing 7' is used as a
measure of its repetitiveness [39].

Nishimoto et al. [47] proposed enhancing CFGs with “run-length rules” to improve the
compression of repetitive strings. These run-length rules have the form A — B*, where B is
a terminal or a non-terminal symbol and s > 2 is an integer. CFGs that may use run-length
rules are called run-length context-free grammars (RLCFGs). Because CFGs are RLCFGs,
the size g); of the smallest RLCFG generating T always satisfies g); < ¢*, and it can be
g5, = o(g*) in text families as simple as T' = ", where g, = O(1) and ¢g* = O(logn).

The use of run-length rules has become essential to produce grammars with size guarantees
and convenient regularities that speed up indexed searches and other computations [32, 21,
18, 7, 28, 30]. The progress made in indexing texts with CFGs has been extended to RLCFGs,
reaching the same status in most cases. These functionalities include extracting substrings,
computing substring summaries, and locating all the occurrences of a pattern string [7,
App. A]. Tt has also been shown that RLCFGs can be balanced [42] in the same way as CFGs
[19], which simplifies many compressed computations on RLCFGs.

Interestingly, counting, that is, determining how many times a pattern occurs in the text
without spending the time to list those occurrences, can be done efficiently on CFGs, but
not so far on RLCFGs. Counting is useful in various fields, such as pattern discovery and
ranked retrieval, for example to help determine the frequency or relevance of a pattern in
the texts of a collection [37].

Navarro [44] showed how to count the occurrences of a pattern P[1..m] in T[1..n] in
O(m? + mlog® ™ n) time using O(g) space if a CFG of size g represents T, for any constant
¢ > 0 chosen at indexing time. Christiansen et al. improved this time to O(mlog?**n) by
using more recent underlying data structures for tries. Christiansen et al. [7] and Kociumaka
et al. [30] extended the result to particular RLCFGs, even achieving optimal O(m) time by
using additional space, but could not extend their mechanism to general RLCFGs. Their
paper [7] finishes, referring to counting, with “However, this holds only for CFGs. Run-length
rules introduce significant challenges [...] An interesting open problem is to generalize this
solution to arbitrary RLCFGs.”

In this paper we give the first solution to this open problem, by introducing an index
that counts the occurrences of a pattern P[1..m] in a text T[1..n] represented by a RLCFG
of size g,;. Our index uses O(g,;) space and answers queries in time O(mlog®™“n) for any
constant € > 0 chosen at indexing time. This is the same time complexity that holds for
CFGs, which puts on par our capabilities to handle RLCFGs and CFGs on all the considered
functionalities. As an example of our new capabilities, we show how a recent result on finding
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the maximal exact matches of P using CFGs [45] can now run on RLCFGs.

While our solution builds on the ideas developed for CFGs and particular RLCFGs
[44, 7, 30], arbitrary RLCFGs lack crucial structure that holds in those particular cases,
namely that if there exists a run-length rule A — B* then the period [11] of the string
represented by A is the length of that of B. We show, however, that the general case still

retains some structure relating the shortest periods of P and the string represented by A.

We exploit this relation to develop a solution that, while considerably more complex than
that for those particular cases, retains the same theoretical guarantees obtained for CFGs.

2 Basic Concepts

2.1 Strings

A string S[1..n] = S[1]- S[2]--- S[n] is a sequence of symbols, where each symbol belongs
to a finite ordered set of integers called an alphabet ¥ = {1,2,...,0}. The length of S is
denoted by |S| = n. We denote with ¢ the empty string, where |¢| = 0. A substring of S is
Sli..jl = S[i] - S[i + 1] --- S[j] (which is € if i > j). A prefiz (suffiz) is a substring of the
form S[..j7] = S[1..4] (S[j..] = S[j..n]); we also say that S[..j] (S[j..]) prefizes (suffizes)

S. We write S C S’ if S prefixes S/, and S S’ if in addition S # S’ (S strictly prefixes S”).

We denote with S-S’ the concatenation of S and S’. A powert € N of a string S, written
St, is the concatenation of ¢ copies of S. The reverse string of S[1..n] = S[1] - S[2]---S[n]
refers to S[1..n]"*®" = S[n] - S[n — 1] --- S[1]. We also use the term text to refer to a string.

2.2 Periods of strings

Periods of strings [11] are crucial in this paper. We recall their definition(s) and a key
property, the renowned Periodicity Lemma.

» Definition 1. A string S[1..n] has a period 1 < p < n if, equivalently,

1. it consists of [n/p]| consecutive copies of S[1..p| plus a (possibly empty) prefix of S[1..p],
that is, S = (S[1..p]™/PN[1..n]; or

2. S1..n—p]=8p+1..n]; or

3. S[i+p]=S[i] foralll <i<n-—p.

We also say that p is a period of S. We define p(S) as the shortest period of a non-empty

string S and say S is periodic if p(S) < n/2.

» Lemma 2 ([14]). If p and p’ are periods of S and |S| > p+p' — ged(p,p’), then ged(p,p’)
is a period of S. Thus, p(S) divides all other periods p < |S|/2 of S.

2.3 Karp-Rabin signatures

Karp-Rabin [26] fingerprinting assigns a function k(S) = (-1, S[i] - ¢*~') mod p to the
string S[1..m], where c is a suitable integer and p a prime number. Bille et al. [4] showed
how to build, in O(nlogn) expected time, a Karp—Rabin signature «(S) built from a pair of
Karp—Rabin functions, which has no collisions between substrings S of T[1..n]. We always
assume those kind of signatures in this paper.

A well-known property is that we can compute the functions k(S].. j]) for all the prefixes
S[..j] E S in time O(m), and then obtain any function k(S[i..j]) (and, consequently, any
signature x(S[i..j])) in constant time by using arithmetic operations.
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Counting on General Run-Length Grammars

2.4 Range summary queries on grids

A discrete grid of r rows and ¢ columns stores points at integer coordinates (x,y), with
1<z <cand 1<y <r. Grids with m points can be stored in O(m) space, so that some
summary queries are performed on orthogonal ranges of the grid. In particular, one can
associate an integer with each point, and then, given an orthogonal range [x1, z2] X [y1, y2],
compute the sum of all the integers associated with the points in that range. Chazelle [6]
showed how to run that query in time O(log*"“m), for any constant € > 0, in O(m) space,
which works for any semigroup. Navarro [44] describes a simpler solution for groups.

2.5 Grammar compression and parse trees

A context-free grammar (CFG) G = (V, 3, R, S) is a language generation model consisting of
a finite set of nonterminal symbols V" and a finite set of terminal symbols ¥, disjoint from V.
The set R contains a finite set of production rules A — «a, where A is a nonterminal symbol
and « is a string of terminal and nonterminal symbols. The language generation process
starts from a sequence formed by just the nonterminal S € V' and, iteratively, chooses a rule
A — « and replaces an occurrence of A in the sequence by «, until the sequence contains
only terminals. The size of the grammar, g = |G|, is the sum of the lengths of the right-hand
sides of the rules, g = > ,_, . |a|. Given a string T', we can build a CFG G that generates
only T. Then, especially if T is repetitive, G is a compressed representation of 7. The
expansion exp(A) of a nonterminal A is the string generated by A, for instance exp(S) = T
for terminals a we also say exp(a) = a. We use |A| = |exp(A)| and p(A4) = p(exp(A)).

The parse tree of a grammar is an ordinal labeled tree where the root is labeled with
the initial symbol S, the leaves are labeled with terminal symbols, and internal nodes are
labeled with nonterminals. If A — a1 -+ - a4, with a; € V U X, then a node v labeled A has ¢
children labeled, left to right, aq,...,a;. A more compact version of the parse tree is the
grammar tree, which is obtained by pruning the parse tree such that only one internal node
labeled A is kept for each nonterminal A, while the rest become leaves. Unlike the parse
tree, the grammar tree of G has only g + 1 nodes. Consequently, the text T' can be divided
into at most g substrings, called phrases, each being the expansion of a grammar tree leaf.
The starting phrase positions constitute a string attractor of the text [27]. Therefore, all text
substrings of length more than 1 have at least one occurrence that crosses a phrase boundary.

2.6 Run-length grammars

Run-length CFGs (RLCFGs) [47] extend CFGs by allowing in R rules of the form A — 3%,
where s > 2 is an integer and f is a string of terminals and nonterminals. These rules are
equivalent to rules A — (§--- 8 with s repetitions of 8. However, the length of the right-hand
side of the rule A is defined as || + 1, not s - |3]. To simplify, we will only allow run-length
rules of the form A — B®, where B is a single terminal or nonterminal; this does not increase
the asymptotic grammar size because we can rewrite A — B® and B — [ for a fresh B.
RLCFGs are never larger than general CFGs, and they can be asymptotically smaller.
For example, the size g, of the smallest RLCFG that generates T is in O(dlog ";ffg‘fl),
where § is a measure of repetitiveness based on substring complexity [48, 31], but such a
bound does not always hold for the size g* of the smallest grammar. The maximum stretch
between g* and g, is O(logn), as we can replace each rule A — B® by O(log s) CFG rules.
We denote the size of an RLCFG G as g,y = |G|. To maintain the invariant that the
grammar tree has g,; + 1 nodes, we represent rules A — B® as a node labeled A with two
children: the first is B and the second is a special leaf Bl*~1 denoting s — 1 repetitions of B.
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Figure 1 On the left, a grammar tree for T = abradabracadabra (with straight solid edges), so
exp(X4) = T. Dashed edges were removed from the parse tree. The only primary occurrence of
P = abra in T is marked with dark gray on the bottom; the secondary ones are in light gray. On
the right, the grid used for searching primary occurrences. Gray stripes indicate the search ranges
corresponding to the partition P = R | @, where R = a and @ = bra. The value 4 stored in the
resulting cell is the preorder of the child X5 of the locus node X2 where @ starts.

3 Grammar Indexing for Locating

A grammar index represents a text T[1..n| using a grammar G that generates only T'. As
opposed to mere compression, the index supports three primary pattern-matching queries:
locate (returning all positions of a pattern in the text), count (returning the number of times
a pattern appears in the text), and extract (extracting any desired substring of T'). In order
to locate, grammar indexes identify “initial” pattern occurrences and then track their “copies’
throughout the text. The former are the primary occurrences, defined as those that cross
phrase boundaries, and the latter are the secondary occurrences, which are confined to a
single phrase. This approach [25] forms the basis of most grammar indexes [8, 9, 10] and
related ones [16, 33, 12, 17, 13, 2, 43, 52|, which first locate the primary occurrences and
then derive their secondary occurrences through the grammar tree.

As mentioned in Section 2.5, the grammar tree leaves cut the text into phrases. In order
to report each primary occurrence of a pattern P[1..m] exactly once, let v be the lowest
common ancestor of the first and last leaves the occurrence spans; v is called the locus
node of the occurrence. Let v have t children and the first leaf that covers the occurrence
descend from the ith child of v. If v represents A — a1 - - - ay, it follows that exp(«;) finishes
with a pattern prefix R = P[1..q] and that exp(a;1)---exp(ay) starts with the suffix
Q = Plg+1..m]. We will denote such cuts as P = R| Q. The alignment of R | Q within
exp(a;) | exp(aiy1) - - -exp(ay) is the only possible one for that primary occurrence.

Following the original scheme [25], grammar indexing builds two sets of strings, X and Y,

)

to find primary occurrences [8, 9, 10]. For each grammar rule A — aj - - - a4, the set X' contains
all the reverse expansions of the children of A, exp(a;)™
the nonempty rule suffixes, exp(a;+1) - - - exp(ay). Both sets are sorted lexicographically and
placed on a grid with (less than) g points, ¢t — 1 for each rule A — «; -+ - az. Given a pattern
P[1..m], for each cut P = R | Q, we first find the lexicographic ranges [s,, e,] of R"™¥ in X
and [sy, e,] of @ in ). Each point (x,y) € [sg, €] X [Sy, e,] represents a primary occurrence
of P. Grid points are augmented with their locus node v and offset |exp(aq)---exp(a;)].

, and ) contains all the expansions of

The cut-based approach naturally extends to the case m = 1 by allowing empty prefixes, that
is, cuts of the form P = ¢ | P[1]. We then search for suffixes matching P[1] in ), combining
them with all rows in X to retrieve all primary occurrences of the character.

Once we identify the locus node v (with label A) of a primary occurrence, every other
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Counting on General Run-Length Grammars

mention of A or its ancestors in the grammar tree, and recursively, of the ancestors of those
mentions, yields a secondary occurrence of P. Those are efficiently tracked and reported
[9, 10, 7]. An important consistency observation for counting is that the amount of secondary
occurrences triggered by each primary occurrence is fixed. See Figure 1.

The original approach [9, 10] spends time O(m?) to find the ranges [s,, e,] and [s,, e,]
for the m — 1 cuts of P; this was later improved to O(mlogn) [7]. Each primary occurrence
found in the grid ranges takes time O(log® g) using geometric data structures, whereas each
secondary occurrence requires O(1) time. Overall, the occ occurrences of P in T are listed in
time O(mlogn + occ log® g).

To generalize this solution to RLCFGs [7, App. A.4], rules A — B*® are added as a point
(x,y) = (exp(B)*,exp(B)*~1) in the grid. This suffices to capture every primary occurrence
of the corresponding rule A — B---B: If there are primary occurrences with the cut
P=R|Qin B--- B, then one is aligned with the first phrase boundary, exp(B) | exp(B)*~1.
Precisely, there is space to place @ right after the first t = s — [|Q|/|B|| phrase boundaries.
When the point (x,y) is retrieved for a given cut, then, ¢ primary occurrences are declared
with offsets |B| — |R|, 2|B| — |R], ..., t|B| — |R| within exp(A). The amount of secondary
occurrences triggered by each such primary occurrence still depends only on A.

4 Counting with Grammars

Navarro [44] obtained the first result in counting the number of occurrences of a pattern
P[1..m]in a text T[1 ..n] represented by a CFG of size g, within time O(m?+mlog®*€ g), for
any constant € > 0, and using O(g) space. His method relies on the consistency observation
above, which allows enhancing the grid described in Section 3 with the number ¢(A) of
(primary and) secondary occurrences associated with each point. At query time, for each
pattern cut, one sums the number of occurrences in the corresponding grid range using
the technique mentioned in Section 2.4. The final complexity is obtained by aggregating
over all m — 1 cuts of P and considering the O(m?) time required to identify all the ranges.
Christiansen et al. [7, Thm. A.5] later improved this time to just O(mlogn 4+ mlog** g), by
using more modern techniques to find the grid range of all cuts of P.

Christiansen et al. [7] also presented a method to count in O(m + log*"“n) time on a
particular RLCFG of size g, = O(vylog(n/v)), where v is the size of the smallest string
attractor [27] of T. They also show that by increasing the space to O(ylog(n/v)log®n) one
can reach the optimal counting time, O(m). The grammar properties allow reducing the
number of cuts of P to check to O(logm), instead of the m — 1 cuts used on general RLCFGs.

Christiansen et al. build on the same idea of enhancing the grid with the number of
secondary occurrences, but the process is considerably more complex on RLCFGs, because
the consistency property exploited by Navarro [44] does not hold on run-length rules A — B*:
the number of occurrences triggered by a primary occurrence with cut P = R | @ found from
the point (exp(B)™, exp(B)*~1) depends on s, |B|, and |Q|. Their counting approach relies
on another property that is specific of their RLCFG [7, Lem. 7.2]:

» Property 1. For every run-length rule A — B*, the shortest period of exp(A) is |B|.

This property facilitates the division of the counting process into two cases. For each
run-length rule A — B#*, they introduce two points, (z,y") = (exp(B)™",exp(B)) and
(x,9y") = (exp(B)*, exp(B)?), in the grid. These points are associated with the values c(A)
and (s—2)-c(A), respectively. The counting process is as follows: for a cut P = R | @ where R
is a suffix of exp(B), if @ C exp(B), then it will be counted ¢(A)+ (s —2)-c(A4) = (s—1)-c(A)
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times, as both points will be within the search range. If @) instead exceeds exp(B), but still
Q C exp(B)?, then it will be counted (s — 2) - ¢(A) times, solely by point (x,%”). Finally if
Q exceeds exp(B)?, then Q is periodic (with p(Q) = | B|).

They handle that remaining case as follows. Given a cut P = R | @ and the period
p = p(Q) = |B|, where |Q| > 2p, the number of primary occurrences of this cut inside rule
A — B®is s — [|Q|/p] (cf. the end of Section 3). Let D be the set of rules A — B® such
that R is a suffix of exp(B) and Q is a prefix of exp(B)*~!, that is, those within the grid
range of the cut, and ¢(A) the number of (primary and secondary) occurrences of A. Then,
the number of occurrences triggered by the primary occurrences found within symbols in D
for this cut is

Yo dA)-s—c(4)-N1Ql/p]. (1)

A—BseD

For each run-length rule A — B®, they compute a Karp—Rabin signature (Section 2.3)
k(exp(B)) and store it in a perfect hash table [15, 1], associated with values

C(B,s) = z:{c(A):A—)Bs/,s’ZS}7
C'(B,s) = Z{s'-c(A):A—)BS/,s’Zs}.

Additionally, for each such B, the authors store the set s(B) = {s: A — B*}.

At query time, they calculate the shortest period p = p(P). For each cut P = R | Q,
Q is periodic if |Q| > 2p. If so, they compute k = k(Q][1..p]), and if there is an entry B
associated with k in the hash table, they add to the number of occurrences found up to then

C,(B7 Smin) - C(B7 Snzin) : |—|Q‘/p-|7 (2)

where 8y, = min{s € s(B), (s — 1) - |B| > |Q|} is computed using exponential search over
s(B) in O(logm) time. Note that they exploit the fact that the number of repetitions to
subtract, [|Q|/p], depends only on p = |B|, and not on the exponent s of rules A — B*.

Since fingerprints x(m) are collision-free on substrings of T', and the nonterminals in their
particular RLSLP produce distinct expansions, each valid fingerprint «(Q[1..p]) corresponds
to at most one nonterminal B. This guarantees that, if a match is found in the hash table, it
uniquely identifies a single candidate B. Further, they show how to filter out false positives
for prefixes of @ that do not occur in the set [7, Lem. 6.5].

The total counting time, on a grammar of size g,;, is O(mlogn + mlog®® g,;). In their
grammar, the number of cuts to consider is O(logm), which allows reducing the cost of
computing the grid ranges to O(m). The signatures of all substrings of P are also computed
in O(m) time, as mentioned in Section 2.3. Considering the grid searches, the total cost for
counting the pattern occurrences drops to O(m + log** g,;) € O(m + log®t€n) [7, Sec. 7).

Recently, Kociumaka et al. [30] employed this same approach to count the occurrences
of a pattern in a smaller RLCFG that uses O(¢log ";%glfl) space, where § < 7. They
demonstrated that the RLCFG they produce satisfies Property 1 [7, Lem. 7.2], which is
necessary to apply the described scheme.

5  Our Solution

We now describe a solution to count the occurrences in arbitrary RLCFGs, where the

convenient Property 1 used in the literature may not hold. We start with a simple observation.

» Lemma 3. Let A — B? be a rule in a RLCFG. Then p(A) divides |B.
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Proof. Clearly |B| is a period of exp(A) because exp(A) = exp(B)*. By Lemma 2, then,
since |B| < |A|/2, p(A) divides |B]. <

Some parts of our solution make use of the shortest period of exp(A4). We now define
some related notation.

» Definition 4. Given a rule A — B® with s > 2, let p = p(A) (which divides |B| by Lemma

A

3). The corresponding transformed rule is A — B3, where B is a new nonterminal such that

A~

exp(B) = exp(A)[1..p], and § = s- (|B|/p).

There seems to be no way to just transform all run-length rules (which would satisfy
Property 1, p(A) = | B|) without blowing up the RLCFG size by a logarithmic factor. We
will use another approach instead. We classify the rules into two categories.

» Definition 5. Given a rule A — B*® with s > 2, we say that A is of type-E (for Equal) if
p(A) = |B| = |B|; otherwise, p(A) = |B| < |B| and we say that A is of type-L (for Less).

We build on Navarro’s solution [44] for counting on CFGs, which uses an enhanced grid
where points count all the occurrences they trigger. The grid ranges are found with the more
recent technique [7] that takes O(mlogn) time. Further, we treat type-E rules exactly as
Christiansen et al. [7] handle the run-length rules in their specific RLCFGs, as described
in Section 4. This is possible because type-E rules, by definition, satisfy Property 1. Their
method, however, assumes that no two symbols B # B’ have the same expansion. To relax
this assumption, symbols B with the same expansion should collectively contribute to the
same entries of C(-,s) and C'(-,s). We thus index those tables using x(exp(B)) rather than
B, and for simplicity write C(m,s), C'(m,s), and s(n), where m = exp(B). Further, the time
to filter our false positives using their Lemma 6.5 [7] is O(mlogn) because we must explore
all the m — 1 cuts of P.

Since each primary occurrence is found in exactly one rule, we can decompose the process
of counting by adding up the occurrences found inside type-E and type-L rules. We are then
left with the more complicated problem of counting occurrences found from type-L rules.
We start with another observation.

» Observation 6. If A — B® is a type-L rule, then |B| > 2|B|

Proof. If A is a type-L rule then p(4) = |B| < |B|. In addition, by Lemma 3, | B| divides
|B|. Therefore |B| > 2|B| <

For type-L rules, we will generalize the strategy of Section 4: the cases where |Q| < 2|B]
will be handled by adding points to the enhanced grid; in the other cases we will use new
data structures that exploit the fact (to be proved) that @ is periodic. Note that each cut
P = R | Q may correspond to different cases for different run-length rules, so our technique
will consider all the cases for each cut. Although the primary occurrences within a rule
A — B? will still be defined as those that cross boundaries of B, we will find them by
aligning (all the possible) cuts P = R | Q with the boundaries of the nonterminals B of the
transformed rules A — B*. The following definition will help us show how we capture every
primary occurrence exactly once.

» Definition 7. The alignment of a primary occurrence x found with cut P = R | Q inside
the type-L rule A — B® is align(z) =1+ ((|R| — 1) mod |B|).
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exp(A) = ((cgta)’c)° A
exp(B) = ((cgta)’c)” — ‘
exp(B) = (cgta)?c B B B
R=c B B B B
Q = (cgta)’ce ¢ (\‘f_;fz\}“)\‘ ¢
c (cgta )2c ¢

Figure 2 We show the occurrences captured by the point (z,,y.) = (exp(B),exp(B)?). Note
how the occurrence in the first row is correctly captured by (zp,y, ), whereas that in the second row
is not captured by any point. Consequently, the first row is effectively counted twice. Given that the
point (zp,y, ) is assigned a weight of 2- (s — 1) - ¢(A), the total number of occurrences is 4 - ¢(A).

The definition is sound because every primary occurrence is found using exactly one
cut P = R | Q. Note that align € [1..|B|] is the distance from the starting position of
an occurrence, within exp(A), to the start of the next copy of exp(B). We will explore
all the possible cuts of P, but each rule A — B® will be probed only with the cuts where
1 < |R| < |B|. From those cuts, all the corresponding primary occurrences aligned with the
§ — 1 boundaries between copies of B (i.e., with the same alignment, |R|) will be captured.

5.1 Case |Q| < 2|B]

To capture the primary occurrences with cut P = R | @ inside type-L rules A — B* where
Q| §A2\3|, we xivill incorporate the points (v,,y,) = (exp(B)™,exp(B)) and (zp,y,) =
(exp(B)™", exp(B)?) into the enhanced grid outlined in Sections 3 and 4, assigning the values
—(s—=1)-c(A) and 2- (s — 1) - ¢(A) to each, respectively. The point (z,,y,) will capture
the occurrences where |R|,|Q| < |B|. Note that these occurrences will also find the point
(Tp, Y, ), so the final result will be (2—1)- (s —1)-c(4) = (s — 1) - c(A). A

The point (x,,y,) will also account for the primary occurrences where |R| < |B| and
|B| < |Q| < 2|B|. Observation 6 establishes that |B| > 2|B|, so for each such primary
occurrence of cut R | @, with offset j in exp(A), there is a second primary occurrence at

J—|B| with cut P = R'| @, where |B| < |[R'| = |R|+|B| < 2/B| and |Q'| = |Q| - |B| < |B].

This second cut will not be captured by the points we have inserted because |R’| > |B|. The
other occurrences where P matches to the left of j — | B| fall within B (and thus are not
primary), because we already have |Q’'| < |B| in this second occurrence. Thus, for each of
the s copies of B (save the last), we will have two primary occurrences. This yields a total of

2-(s—1)-c(A) occurrences, which are properly counted in the points (x,y, ). See Figure 2.

5.2 Case |Q| > 2|B]

We first show that, for Q to be longer than 2|B| in some run-length rule, P must be periodic.

» Lemma 8. Let P, with p = p(P), have a primary occurrence with cut P = R | Q in the
rule A — B*®, with p(A) = |B| and |Q| > 2|B|. Then it holds that p = p(A).

Proof. Since |P| > |B| and P is contained within exp(A) = exp(B)*, by branch 3 of
Definition 1, \B\ must be a period of P. Thus, p = p(P) < |B| Suppose, for contradiction,
that p < |B|. According to Lemma 2, because |B| < |Q|/2 < |P|/2 is a period of P, it
follows that p divides |B|. Since exp(B) is contained in P, again by branch 3 of Definition 1
it follows that p < |B| < |B| is a period of exp(B), and thus of exp(A), contradicting the
assumption that p(A) = |B|. Hence, we conclude that p = |B]. <
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exp(A) = (cgta)'® A
exp(B) = (cgta)* - - \
exp(B) = cgta B B B B
R=a B B B B B B B B

(@ = cgtacgtac a

Figure 3 If 2| B| < |Q| < |B|, there are [|Q|/p] primary occurrences around the boundary between
any two blocks B (we zoom on one) with the cut P = R | Q). We show the possible alignments of
P below the blocks B. For a rule A — B® there are (s — 1) boundaries, yielding (s — 1) - [|Q|/p]
primary occurrences. In this case, [|Q|/p] = 3 and s — 1 = 3, yielding 9 primary occurrences.

Note that P is then periodic because p(P) = p(A) = |B| < |Q|/2 < |P|/2, and Q is also
periodic by branch 3 of Def. 1, because it occurs inside P and |Q| > 2p.

We distinguish two subcases, depending on whether @ is longer than B or not. If it is,
we must ensure that in the alignments we count the occurrence is fully within exp(A). If it
is not, we must ensure that the alignments we count do correspond to primary occurrences
(i.e., they cross a border between copies of B).

5.2.1 Case 2|B| <|Q| <|B|

To handle this case, we construct a specific data structure based on the period |B|. The
proposed solution is supported by the following lemma.

» Lemma 9. Let P, with p = p(P), have a primary occurrence with cut P = R | @ in the
type-L rule A — B, with p(A) = |B|, |R| < |B|, and 2|B| < |Q| < |B|. Then, the number
of primary occurrences of P in exp(A) is (s — 1) - [|Q]/p]-

Proof. Since |R| < |B|, R can be aligned at the end of the |B|/|B| positions where exp(B)
starts in exp(B). No other alignments are possible for the cut R | ) because, by Lemma 8,
p= |B | and another alignment would imply that P aligns with itself with an offset smaller
than p, a contradiction by branch 2 of Definition 1.

Those alignments correspond to primary occurrences only if P does not fall completely
within exp(B). The alignments that correspond to primary occurrences are then those where
R is aligned at the end of the last [|Q|/|B|] ending positions of copies of B, all of which
start within exp(B) because |Q| < |B|. This is equivalent to [|Q|/p], as p = |B| by Lemma
8. Thus, the number of primary occurrences of P in A is (s — 1) - [|Q|/p]. See Figure 3. <«

Based on Lemma 9 we introduce our first period-based data structure. Considering the
solution described in Section 4, where Property 1 holds, the challenge with type-L rules
A — B (i.e., rules that differ from their transformed version A — B?) is that the number
of alignments with cut R | @ inside exp(A) is (s — 1) - [|Q|/p], but |B| does not determine
p =p(A). We will instead use B to index those nonterminals A.

For each type-L rule A — B* (A — B? being its transformed version), we compute its
signature x(exp(B)) (recall Section 2.3) and store it in a perfect hash table H. Each entry in
table H, which corresponds to a specific signature x(7), will be linked to an array F,. Each
position Fy[i] represents a type-L rule A; — BS* where x(exp(B;)) = #(r). The rules A; are
sorted in F by decreasing lengths |B;|. We also store a field with the cumulative sum

F[i].sum = Z (sj —1)-c(4;).

1<j<i
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Given a pattern P[1..m], we first calculate its shortest period p = p(P). For each
cut P =R | Q with 1 < |R| < min(p,m — 2p — 1), we compute x(m) for 7 = Q[1..p] to
identify the corresponding array F, in H. Note that we only consider the cuts R | Q where
|R| < p, as this corresponds precisely to |R| < |B| for the rules stored in Fy; note p = |x|.
In addition, the condition |R| < m — 2p — 1 ensures that |Q| > 2p = 2|B|, thus we are
correctly enforcing the condition stated in this subsection and focusing, one by one, on the
occurrences x for which each alignment satisfies align(x) = |R|. We will find in H every
(transformed) rule A — B?® where B =T, sharing the period p with @, as well as its prefix
m =exp(B)[l..p] = Q[1..p]. Once we have obtained the array Fy, we find the largest i
such that |B;| > |@Q|. The number of primary occurrences for the cut P = R | Q) in type-L
rules where 2|B| < |Q| < |B| is then Fy[i].sum - [|Q|/p].

5.2.2 Case |Q| > |B|

Our analysis for the remaining case is grounded on the following lemma.

» Lemma 10. Let P, with p = p(P), have a primary occurrence in a type-L rule A — B*
with cut P = R | Q, with |R| < p and |Q| > |B|. Then it holds that p = p(A) and |Q| > 2p.

Proof. If A is a type-L rule and P has an occurrence within A such that |Q| > |B|, then
we have |Q| > |B| > 2|B| (by Observation 6). Since we can express A as A — B%, we can
similarly use Lemma 8 to conclude that p = p(A) = |B|; further, |Q| > 2p. <

Analogously to Lemma 8, Lemma 10 establishes that, when @ is sufficiently long, it holds
that p(P) = p(A), so all pertinent rules of the form A — B® can be classified according to
their minimal period, p(A). This period coincides with p = p(P) when P has an occurrence
in a type-L rule such that |Q| > |B|. Further, |Q| > 2p.

We also need an analogous to Lemma 9 for the case |Q| > |B|; this is given next.

» Lemma 11. Let P, with p = p(P), have a primary occurrence with cut P = R | Q in
the type-L rule A — B*, with p(A) = |B|, |R| < |B|, and |Q| > |B|. Then, the number of
primary occurrences of P in exp(A) is § — [|Q|/p].

Proof. Since |R| < |B|, R can be aligned at the end of the § positions where exp(B) starts in
exp(A). By the same argument of the proof of Lemma 9, no other alignments are possible for
the cut R | Q. Unlike in Lemma 9, all those alignments correspond to primary occurrences,
because @ is always long enough to exceed B. Also unlike in Lemma 9, ) may exceed A,
in which case the occurrence must not be counted in this rule. The alignments that must
not be counted are then those where R is aligned at the end of the last [|Q|/|B|] ending
positions of copies of B. This is equivalent to [|Q|/p], as p = |B| by Lemma 10. Thus, the
number of primary occurrences of P in A is § — [|Q|/p]. See Figure 4. <

We then enhance table H, introduced in Section 5.2.1, with a second period-based data
structure. Each entry in table H, corresponding to some k(7), will additionally store a grid
G. In this grid, each row represents a type-L rule A — B® whose transformed version is
A — B* that is, such that 7 = exp(B) = exp(B)[1..p]. The rows are sorted by increasing
lengths |B| (note |B| > |n| = p for all B in G;). The columns represent the different
exponents § of the transformed rules. The row of rule A — B* has then a unique point at
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[SRSE

Figure 4 If |Q| > | B|, we can compute all occurrences of P around blocks B without the risk
of any occurrence being fully contained in a block B: the number of primary occurrences of P in
exp(A) is simply s" — [|Q|/p]. In this example, with s’ = 8 and [|Q|/p] = 3, there are 5 occurrences.

column §, and we associate two values with it: ¢(A4) and ¢/(A) = §- ¢(A). Since no rule
appears in more than one grid, the total space for all grids is in O(g,;).!

Given a pattern P[1..m], we proceed analogously as explained at the end of Section 5.2.1
in order to identify F: We compute p = p(P), and for each cut P =R | Q with 1 < |R| <
min(p,m — 2p — 1), we calculate k(7), for 7 = Q[1..p|, to find the corresponding grid G,
in H. On the type-L rules A — B?, this tries out every possible occurrence x for which
align(z) = |R|, one by one, from 1 to |B|. The limit |R| < m — 2p can also be set because,
by Lemma 10, it must hold |Q| > 2|B| on the rules of G we find with the cut P = R | Q.

We must enforce two conditions on the rules of G, to consider: (a) |Q| > |B| as
corresponds in this subsection, and (b) § — [|Q|/p] > 0, that is, Q fits within exp(A). The
complying rules then contribute ¢(A4) - (8 — [|Q|/p]) = ¢/(4) — ¢(A) - [|Q]|/p] by Lemma 11.

To enforce those conditions, we find in G, the largest row y representing a rule A — B?*
such that |B| < |Q|. We also find the smallest column = where (§ =)z > [|Q|/p]. The set
D of rules corresponding to points in the range [z, n] X [1,y] of the grid is then the set of
type-L run-length rules where we have a primary occurrence with |Q| > |B|. We aggregate
the values ¢(A) and ¢/(A) from the range, which yields the correct sum of all the pertinent
occurrences (note the analogy with Egs. (1) and (2)):

( > 0’(A)>—< > C(A)>~HQI/M = D ) d—cA)-1Ql/p]

A—BseD A—BseD A—BseD

Figure 5 gives a thorough example.

5.3 The final result

Our structure extends the grid of Section 4, built for non-run-length rules, with one point per
run-length rule: those of type-E are handled as described in Section 4 and those of type-L as
in Section 5. Thus the structure is of size O(g,;) and range queries on the grid take time
O(log*"€ g,¢). Occurrences on such a grid are counted in time O(mlogn + mlog*" g,4) [7,
Thm. A.5]. This is also the time to count the occurrences in type-E rules for our solution,
and those in type-L rules when |Q| < 2|B,| (Section 5.1).

For our period-based data structures (Sections 5.2.1 and 5.2.2), we calculate p(P) in
O(m) time [11], and compute all prefix signatures of P in O(m) time as well, so that later

1 We use the grid representation described in Section 2.4, which assumes that the point coordinates lie in
rank space. Our grids can be transformed accordingly without affecting the asymptotic space usage or
query time.
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Figure 5 On top, a RLCFG on the left and its grammar tree on the right. Type-E rules are
enclosed in white rectangles and Type-L rules in gray rectangles. Below the rules we show the values
C(B,s) and C'(B, s) [7] we use to handle the E-type rules (see Section 4); we only show those for
exp(X1) = cgta. On the bottom left we show the points we add to the standard grid. The points for
type-E rules are represented as A(4) and A(5=2)¢(4) an( those for type-L rules as A(~(s=1)-<(4)
and A G~D¢(4)  The bottom right shows the grid G, and the array Fj for the transformed rules
A — B where B=1m = cgta. In F; we show the fields F[i].sum. In G, the row labels show BUBD
and the column labels show s; the points show A (A) - Consider the cut P = a | cgtacgtac,
with p(P) = 4. We identify 10 occurrences in type-E rules: 4 are found within the rule Xy using the
standard grid, while the remaining 6 are determined via the values of C'(X1, s) and C’(X1, s). These
6 occurrences specifically arise within exp(X2) = (cgta)®. Similarly, in the type-L rules, we detect
15 occurrences: 12 occur within the rule X1, identified using the Fcga array, and the remaining 3
arise within exp(X7) = (cgta)®, captured using the Gegra grid. The final two occurrences of this cut
are located using standard CFG rules at exp(S)[4..13] (X1 - X2) and exp(S5)[108..117] (Xo - X11).
Note that there are 6 additional occurrences: five are obtained using Navarro’s solution for
counting on CFGs, triggered by a primary occurrence in X1, and the sixth is located using
standard CFG rules at exp(S)[37..46] (X7 - Xs). Both groups of occurrences are identified

using the cut P = acgtacgta | ¢, bringing the total to 33 occurrences of P in the text.

any substring signature is computed in O(1) time (Section 2.3). The limits in the arrays Fy
and in the grids G, can be binary searched in time O(log g,;). The range sums over c(A)
and ¢/(A) take time O(log*" g,;). They are repeated for each of the O(m) cuts of P, adding
up to time O(mlog?*€ g,;). Those are then within the previous time complexities as well.

» Theorem 12. Let a RLCFG of size g, represent a text T[1..n]. Then, for any constant
€ > 0, we can build in O(nlogn) expected time an index of size O(gy) that counts the number
of occurrences of a pattern P[1..m)] in T in time O(mlogn +mlog®T® g.;) C O(mlog®Tn).

Just as for previous schemes [7, Sec. 6.6], the construction time is dominated by the
O(nlogn) expected time to build the collision-free Karp—Rabin functions [4]. Although the
construction is randomized, the algorithm is Las-Vegas type and thus it always produces
a correct index; query results are always correct and their time is deterministic worst-case.
Other construction costs specific of our index are the O(g, log g,) time to build Chazelle’s
range sums structures [6], and the O(] A|) cost to compute the period p(A) of every run-length
rule A — B*®. Those costs sum up to O(n) because the top-level run-length rules in the
grammar tree add up to length at most n, and the top-level descendants of A expand at most
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to |B| < |A]/2. An easy induction shows that the expansions below A add up to length at
most | A[, so the total expansion length is at most twice that of the top-level run-length rules.

Space-time tradeoffs

The bulk of the query cost owes to the O(logz‘”'€ gr1) time of the geometric queries. Other
space-time tradeoffs are possible. We start with a geometric result of independent interest.

» Lemma 13. For any constant 0 < § < 1, we can build in O(rlogr) time a data structure
representing r weighted points on an r X r grid, using space O(r logl_‘S ), which can sum the
weights on any orthohonal range in time O(log“'(s rloglogr). It is also possible to obtain (1)
O(rloglogr) space and O(log? rloglogr) time and (2) O(rlogr) space and O(logr) time.

Proof. Navarro’s solution [44, Thm. 3] represents such a grid with a wavelet tree [22]
(assuming there is exactly one point per column, but it is easy to reduce the general case to
this one). This structure has log r levels. The r grid points are represented in z-coordinate
order in the first level, and their order is progressively shuffled until the last level, which
represents the points in y-coordinate order. The coordinates are not represented explicitly;
only one bit is used to represent each point at each level, for a total of O(rlogr) bits (which
is in O(r) space if measured in words). A two-dimensional query is projected onto O(logr)
ranges along different levels, and the query must sum the weights of the points across all
those ranges. To save (space and) time, (only) one cumulative sum is precomputed and
stored every logr consecutive weights at every level, so that in total only O(r) sums are
stored overall, and O(r) space is used for those accumulators.

When adding the weights over one range, the sum over most of it is obtained by subtracting
two accumulators, and just O(logr) weights must be explicitly obtained to complete the
sum. Those weights are obtained with a structure [6, 38] that takes O((1/¢€)log®r) time and
O((1/€)rlogr) bits (or O(r/e) words) of additional space, for any € > 0. Multiplying the
O(log r) ranges to sum, the O(logr) explicit weights to obtain in each range, and the cost to
obtain each weight, we reach the O(log?* ¢ r)

To obtain the desired tradeoff, we will set accumulators every log‘S r values, which yields
O(rlog'~° r) space. The time will be then O((1/€)log' ™" ). By choosing a non-constant
e = 1/loglogr, the space of the data structure to compute individual weights raises to
O(rloglogr) C O(r log!—° r), and the time becomes O(log1+5 rloglogr).

Tradeoff (1) is obtained by setting § = 1, in which case the space O(rloglogr) of the
data structure to compute individual weights dominates. Tradeoff (2) is obtained by setting
0 = 0, in which case we do not need at all that data structure: we have all precomputed
prefix sums and answer each range sum in constant time, for a total of O(logr) time.2 All
the variants are built in O(rlogr) time [6]. <

claimed term [44], using constant e.

By using those grid representations, we obtain tradeoffs in our index.

» Corollary 14. Let a RLCFG of size g, represent a text T[1..n]. Then, for any constant
0 <4 <1, we can build in O(nlogn) expected time an index of size O(gylog'~° g.) that
counts the occurrences of a pattern P[1..m)] in T in time O(mlog n+mlog* ™ g, loglog g,1) €
O(mlog' ™ nloglogn). We can also obtain O(gyloglogg,) space with time O(mlogn +
mlog? g, loglog g,1) C O(mlog? nloglogn), and O(g,;1og g.) space with time O(mlogn).

2 Chazelle [6] also obtains tradeoff (1) and explores the other spaces, but his time never goes below
O(log? g;) because he addresses the more general case of semigroups, with no inverses. Our result is
presented for numeric sums, but it can be extended to algebraic groups.
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5.4 An application

Recent work [20, 41] shows how to compute the maximal exact matches (MEMs) of P[1..m)
in T'[1..n], which are the maximal substrings of P that occur in T, in case T is represented
with an arbitrary RLCFG. Navarro [45] extends the results to k-MEMs, which are maximal
substrings of P that occur at least k times in 7T". To obtain good time complexities for large
enough k, he resorts to counting occurrences of substrings PJi .. j] with the grammar. His

Thm. 7, however, works only for CFGs, as no efficient counting algorithm existed on RLCFGs.

In turn, his Thm. 8 works only for a particular RLCFG. We can now state his result on an
arbitrary RLCFG; by his Thm. 11 this also extends to “k-rare MEMs”.

» Corollary 15 (cf. [45, Thm. 7]). Let a RLCFG of size g, generate only T[1..n]. Then,
for any constant € > 0, we can build a data structure of size O(gr1) that finds the k-MEMs
of any given pattern P[1..m], for any k > 0 given with P, in time O(m?1og®*¢ g.).

6 Conclusion

We have presented the first solution to the problem of counting the occurrences of a pattern
in a text represented by an arbitrary RLCFG, which was posed by Christiansen et al. [7]
in 2020 and solved only for particular cases. This required combining solutions to CFGs
[44] and particular RLCFGs [7], but also new insights for the general case. The particular
existing solutions required that |B| is the shortest period of exp(A) in rules A — B®. While
this does not hold in general RLCFGs, we proved that, except in some borderline cases
that can be handled separately, the shortest periods of the pattern and of exp(A) must
coincide. While the particular solutions could associate exp(B) with the period of the pattern,
we must associate many strings exp(A) that share the same shortest period, and require
a more sophisticated geometric data structure to collect only those that qualify for our
search. Despite those complications, however, we manage to define a data structure of size
O(gr1) from a RLCFG of size g, that counts the occurrences of P[1..m] in T[1..n] in time
O(mlog**cn) for any constant ¢ > 0, the same result that existed for the simpler case of
CFGs. Our approach extends the applicability of arbitrary RLCFGs to cases where only
CFGs could be used, equalizing the available tools to handle both types of grammars.
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