
Counting on General Run-Length Grammars1

Gonzalo Navarro #2

Center for Biotechnology and Bioengineering (CeBiB)3

Department of Computer Science, University of Chile, Chile4

Alejandro Pacheco #5

Center for Biotechnology and Bioengineering (CeBiB)6

Department of Computer Science, University of Chile, Chile7

Abstract8

We introduce a data structure for counting pattern occurrences in texts compressed with any9

run-length context-free grammar. Our structure uses space proportional to the grammar size and10

counts the occurrences of a pattern of length m in a text of length n in time O(m log2+ϵ n), for11

any constant ϵ > 0 chosen at indexing time. This is the first solution to an open problem posed by12

Christiansen et al. [ACM TALG 2020] and enhances our abilities for computation over compressed13

data; we give an example application.14

2012 ACM Subject Classification Theory of computation → Data structures design and analysis15

Keywords and phrases Grammar-based indexing; Run-length context-free grammars, Counting16

pattern occurrences; Periods in strings.17

Digital Object Identifier 10.4230/LIPIcs.CPM.2025.18

Funding Gonzalo Navarro: Funded by Basal Funds FB0001, Mideplan, Chile, and Fondecyt Grant19

1-230755, Chile.20

Alejandro Pacheco: Funded by Basal Funds FB0001, Mideplan, Chile, Fondecyt Grant 1-230755,21

Chile, and ANID/Scholarship Program/DOCTORADO BECAS CHILE/2018-21180760.22

© Gonzalo Navarro and A. Pacheco;
licensed under Creative Commons License CC-BY 4.0

35th Annual Symposium on Combinatorial Pattern Matching (CPM 2025).
Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:gnavarro@dcc.uchile.cl
mailto:gnavarro@dcc.uchile.cl
https://doi.org/10.4230/LIPIcs.CPM.2025.
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

XX:2 Counting on General Run-Length Grammars

1 Introduction23

Context-free grammars (CFGs) have proven to be an elegant and efficient model for data24

compression. The idea of grammar-based compression [51, 29] is, given a text T [1 . . n], to25

construct a context-free grammar G of size g that only generates T . One can then store G26

instead of T , which achieves compression if g ≪ n. Compared to more powerful compression27

methods like Lempel-Ziv [35], grammar compression offers efficient direct access to arbitrary28

snippets of T without the need of full decompression [49, 3]. This has been extended to29

offering indexed searches (i.e., in time o(n)) for the occurrences of string patterns in T30

[8, 16, 10, 7, 40], as well as more complex computations over the compressed sequence31

[32, 21, 18, 19, 41, 28]. Since finding the smallest grammar G representing a given text T is32

NP-hard [49, 5], many algorithms have been proposed to find small grammars for a given33

text [34, 49, 46, 50, 36, 23, 24]. Grammar compression is particularly effective when handling34

repetitive texts; indeed, the size g∗ of the smallest grammar representing T is used as a35

measure of its repetitiveness [39].36

Nishimoto et al. [47] proposed enhancing CFGs with “run-length rules” to improve the37

compression of repetitive strings. These run-length rules have the form A → Bs, where B is38

a terminal or a non-terminal symbol and s ≥ 2 is an integer. CFGs that may use run-length39

rules are called run-length context-free grammars (RLCFGs). Because CFGs are RLCFGs,40

the size g∗
rl of the smallest RLCFG generating T always satisfies g∗

rl ≤ g∗, and it can be41

g∗
rl = o(g∗) in text families as simple as T = an, where g∗

rl = O(1) and g∗ = Θ(log n).42

The use of run-length rules has become essential to produce grammars with size guarantees43

and convenient regularities that speed up indexed searches and other computations [32, 21,44

18, 7, 28, 30]. The progress made in indexing texts with CFGs has been extended to RLCFGs,45

reaching the same status in most cases. These functionalities include extracting substrings,46

computing substring summaries, and locating all the occurrences of a pattern string [7,47

App. A]. It has also been shown that RLCFGs can be balanced [42] in the same way as CFGs48

[19], which simplifies many compressed computations on RLCFGs.49

Interestingly, counting, that is, determining how many times a pattern occurs in the text50

without spending the time to list those occurrences, can be done efficiently on CFGs, but51

not so far on RLCFGs. Counting is useful in various fields, such as pattern discovery and52

ranked retrieval, for example to help determine the frequency or relevance of a pattern in53

the texts of a collection [37].54

Navarro [44] showed how to count the occurrences of a pattern P [1 . . m] in T [1 . . n] in55

O(m2 + m log2+ϵ n) time using O(g) space if a CFG of size g represents T , for any constant56

ϵ > 0 chosen at indexing time. Christiansen et al. improved this time to O(m log2+ϵ n) by57

using more recent underlying data structures for tries. Christiansen et al. [7] and Kociumaka58

et al. [30] extended the result to particular RLCFGs, even achieving optimal O(m) time by59

using additional space, but could not extend their mechanism to general RLCFGs. Their60

paper [7] finishes, referring to counting, with “However, this holds only for CFGs. Run-length61

rules introduce significant challenges [...] An interesting open problem is to generalize this62

solution to arbitrary RLCFGs.”63

In this paper we give the first solution to this open problem, by introducing an index64

that counts the occurrences of a pattern P [1 . . m] in a text T [1 . . n] represented by a RLCFG65

of size grl. Our index uses O(grl) space and answers queries in time O(m log2+ϵ n) for any66

constant ϵ > 0 chosen at indexing time. This is the same time complexity that holds for67

CFGs, which puts on par our capabilities to handle RLCFGs and CFGs on all the considered68

functionalities. As an example of our new capabilities, we show how a recent result on finding69

G. Navarro and A. Pacheco XX:3

the maximal exact matches of P using CFGs [45] can now run on RLCFGs.70

While our solution builds on the ideas developed for CFGs and particular RLCFGs71

[44, 7, 30], arbitrary RLCFGs lack crucial structure that holds in those particular cases,72

namely that if there exists a run-length rule A → Bs, then the period [11] of the string73

represented by A is the length of that of B. We show, however, that the general case still74

retains some structure relating the shortest periods of P and the string represented by A.75

We exploit this relation to develop a solution that, while considerably more complex than76

that for those particular cases, retains the same theoretical guarantees obtained for CFGs.77

2 Basic Concepts78

2.1 Strings79

A string S[1 . . n] = S[1] · S[2] · · · S[n] is a sequence of symbols, where each symbol belongs80

to a finite ordered set of integers called an alphabet Σ = {1, 2, . . . , σ}. The length of S is81

denoted by |S| = n. We denote with ε the empty string, where |ε| = 0. A substring of S is82

S[i . . j] = S[i] · S[i + 1] · · · S[j] (which is ε if i > j). A prefix (suffix) is a substring of the83

form S[. . j] = S[1 . . j] (S[j . .] = S[j . . n]); we also say that S[. . j] (S[j . .]) prefixes (suffixes)84

S. We write S ⊑ S′ if S prefixes S′, and S ⊏ S′ if in addition S ̸= S′ (S strictly prefixes S′).85

We denote with S · S′ the concatenation of S and S′. A power t ∈ N of a string S, written86

St, is the concatenation of t copies of S. The reverse string of S[1 . . n] = S[1] · S[2] · · · S[n]87

refers to S[1 . . n]rev = S[n] · S[n − 1] · · · S[1]. We also use the term text to refer to a string.88

2.2 Periods of strings89

Periods of strings [11] are crucial in this paper. We recall their definition(s) and a key90

property, the renowned Periodicity Lemma.91

▶ Definition 1. A string S[1 . . n] has a period 1 ≤ p ≤ n if, equivalently,92

1. it consists of ⌊n/p⌋ consecutive copies of S[1 . . p] plus a (possibly empty) prefix of S[1 . . p],93

that is, S = (S[1 . . p]⌈n/p⌉)[1 . . n]; or94

2. S[1 . . n − p] = S[p + 1 . . n]; or95

3. S[i + p] = S[i] for all 1 ≤ i ≤ n − p.96

We also say that p is a period of S. We define p(S) as the shortest period of a non-empty97

string S and say S is periodic if p(S) ≤ n/2.98

▶ Lemma 2 ([14]). If p and p′ are periods of S and |S| ≥ p + p′ − gcd(p, p′), then gcd(p, p′)99

is a period of S. Thus, p(S) divides all other periods p ≤ |S|/2 of S.100

2.3 Karp-Rabin signatures101

Karp–Rabin [26] fingerprinting assigns a function k(S) = (
∑m

i=1 S[i] · ci−1) mod µ to the102

string S[1 . . m], where c is a suitable integer and µ a prime number. Bille et al. [4] showed103

how to build, in O(n log n) expected time, a Karp–Rabin signature κ(S) built from a pair of104

Karp–Rabin functions, which has no collisions between substrings S of T [1 . . n]. We always105

assume those kind of signatures in this paper.106

A well-known property is that we can compute the functions k(S[. . j]) for all the prefixes107

S[. . j] ⊑ S in time O(m), and then obtain any function k(S[i . . j]) (and, consequently, any108

signature κ(S[i . . j])) in constant time by using arithmetic operations.109

CPM 2025

XX:4 Counting on General Run-Length Grammars

2.4 Range summary queries on grids110

A discrete grid of r rows and c columns stores points at integer coordinates (x, y), with111

1 ≤ x ≤ c and 1 ≤ y ≤ r. Grids with m points can be stored in O(m) space, so that some112

summary queries are performed on orthogonal ranges of the grid. In particular, one can113

associate an integer with each point, and then, given an orthogonal range [x1, x2] × [y1, y2],114

compute the sum of all the integers associated with the points in that range. Chazelle [6]115

showed how to run that query in time O(log2+ϵ m), for any constant ϵ > 0, in O(m) space,116

which works for any semigroup. Navarro [44] describes a simpler solution for groups.117

2.5 Grammar compression and parse trees118

A context-free grammar (CFG) G = (V, Σ, R, S) is a language generation model consisting of119

a finite set of nonterminal symbols V and a finite set of terminal symbols Σ, disjoint from V .120

The set R contains a finite set of production rules A → α, where A is a nonterminal symbol121

and α is a string of terminal and nonterminal symbols. The language generation process122

starts from a sequence formed by just the nonterminal S ∈ V and, iteratively, chooses a rule123

A → α and replaces an occurrence of A in the sequence by α, until the sequence contains124

only terminals. The size of the grammar, g = |G|, is the sum of the lengths of the right-hand125

sides of the rules, g =
∑

A→α∈R |α|. Given a string T , we can build a CFG G that generates126

only T . Then, especially if T is repetitive, G is a compressed representation of T . The127

expansion exp(A) of a nonterminal A is the string generated by A, for instance exp(S) = T ;128

for terminals a we also say exp(a) = a. We use |A| = | exp(A)| and p(A) = p(exp(A)).129

The parse tree of a grammar is an ordinal labeled tree where the root is labeled with130

the initial symbol S, the leaves are labeled with terminal symbols, and internal nodes are131

labeled with nonterminals. If A → α1 · · · αt, with αi ∈ V ∪ Σ, then a node v labeled A has t132

children labeled, left to right, α1, . . . , αt. A more compact version of the parse tree is the133

grammar tree, which is obtained by pruning the parse tree such that only one internal node134

labeled A is kept for each nonterminal A, while the rest become leaves. Unlike the parse135

tree, the grammar tree of G has only g + 1 nodes. Consequently, the text T can be divided136

into at most g substrings, called phrases, each being the expansion of a grammar tree leaf.137

The starting phrase positions constitute a string attractor of the text [27]. Therefore, all text138

substrings of length more than 1 have at least one occurrence that crosses a phrase boundary.139

2.6 Run-length grammars140

Run-length CFGs (RLCFGs) [47] extend CFGs by allowing in R rules of the form A → βs,141

where s ≥ 2 is an integer and β is a string of terminals and nonterminals. These rules are142

equivalent to rules A → β · · · β with s repetitions of β. However, the length of the right-hand143

side of the rule A is defined as |β| + 1, not s · |β|. To simplify, we will only allow run-length144

rules of the form A → Bs, where B is a single terminal or nonterminal; this does not increase145

the asymptotic grammar size because we can rewrite A → Bs and B → β for a fresh B.146

RLCFGs are never larger than general CFGs, and they can be asymptotically smaller.147

For example, the size g∗
rl of the smallest RLCFG that generates T is in O(δ log n log |Σ|

δ log n),148

where δ is a measure of repetitiveness based on substring complexity [48, 31], but such a149

bound does not always hold for the size g∗ of the smallest grammar. The maximum stretch150

between g∗ and g∗
rl is O(log n), as we can replace each rule A → Bs by O(log s) CFG rules.151

We denote the size of an RLCFG G as grl = |G|. To maintain the invariant that the152

grammar tree has grl + 1 nodes, we represent rules A → Bs as a node labeled A with two153

children: the first is B and the second is a special leaf B[s−1], denoting s − 1 repetitions of B.154

G. Navarro and A. Pacheco XX:5

X4

X2 X3 X6 X1 X3

X1 X5 X8 X1 X7 X2 X7 X2

X1 X5 X8 X1 X1 X5 X8 X1

a b r a d a b r a c a d a b r a

a ab
ra

ad
ab

ra

br
a

ca
da

br
a

da
br

a

da
br

ac
ad

ab
ra

ra

a 4 12
arba 7

arbad 10
b 5
c 11
d 9
r 6

Figure 1 On the left, a grammar tree for T = abradabracadabra (with straight solid edges), so
exp(X4) = T . Dashed edges were removed from the parse tree. The only primary occurrence of
P = abra in T is marked with dark gray on the bottom; the secondary ones are in light gray. On
the right, the grid used for searching primary occurrences. Gray stripes indicate the search ranges
corresponding to the partition P = R | Q, where R = a and Q = bra. The value 4 stored in the
resulting cell is the preorder of the child X5 of the locus node X2 where Q starts.

3 Grammar Indexing for Locating155

A grammar index represents a text T [1 . . n] using a grammar G that generates only T . As156

opposed to mere compression, the index supports three primary pattern-matching queries:157

locate (returning all positions of a pattern in the text), count (returning the number of times158

a pattern appears in the text), and extract (extracting any desired substring of T). In order159

to locate, grammar indexes identify “initial” pattern occurrences and then track their “copies”160

throughout the text. The former are the primary occurrences, defined as those that cross161

phrase boundaries, and the latter are the secondary occurrences, which are confined to a162

single phrase. This approach [25] forms the basis of most grammar indexes [8, 9, 10] and163

related ones [16, 33, 12, 17, 13, 2, 43, 52], which first locate the primary occurrences and164

then derive their secondary occurrences through the grammar tree.165

As mentioned in Section 2.5, the grammar tree leaves cut the text into phrases. In order166

to report each primary occurrence of a pattern P [1 . . m] exactly once, let v be the lowest167

common ancestor of the first and last leaves the occurrence spans; v is called the locus168

node of the occurrence. Let v have t children and the first leaf that covers the occurrence169

descend from the ith child of v. If v represents A → α1 · · · αt, it follows that exp(αi) finishes170

with a pattern prefix R = P [1 . . q] and that exp(αi+1) · · · exp(αt) starts with the suffix171

Q = P [q + 1 . . m]. We will denote such cuts as P = R | Q. The alignment of R | Q within172

exp(αi) | exp(αi+1) · · · exp(αt) is the only possible one for that primary occurrence.173

Following the original scheme [25], grammar indexing builds two sets of strings, X and Y ,174

to find primary occurrences [8, 9, 10]. For each grammar rule A → α1 · · · αt, the set X contains175

all the reverse expansions of the children of A, exp(αi)rev, and Y contains all the expansions of176

the nonempty rule suffixes, exp(αi+1) · · · exp(αt). Both sets are sorted lexicographically and177

placed on a grid with (less than) g points, t − 1 for each rule A → α1 · · · αt. Given a pattern178

P [1 . . m], for each cut P = R | Q, we first find the lexicographic ranges [sx, ex] of Rrev in X179

and [sy, ey] of Q in Y. Each point (x, y) ∈ [sx, ex] × [sy, ey] represents a primary occurrence180

of P . Grid points are augmented with their locus node v and offset | exp(α1) · · · exp(αi)|.181

The cut-based approach naturally extends to the case m = 1 by allowing empty prefixes, that182

is, cuts of the form P = ε | P [1]. We then search for suffixes matching P [1] in Y, combining183

them with all rows in X to retrieve all primary occurrences of the character.184

Once we identify the locus node v (with label A) of a primary occurrence, every other185

CPM 2025

XX:6 Counting on General Run-Length Grammars

mention of A or its ancestors in the grammar tree, and recursively, of the ancestors of those186

mentions, yields a secondary occurrence of P . Those are efficiently tracked and reported187

[9, 10, 7]. An important consistency observation for counting is that the amount of secondary188

occurrences triggered by each primary occurrence is fixed. See Figure 1.189

The original approach [9, 10] spends time O(m2) to find the ranges [sx, ex] and [sy, ey]190

for the m − 1 cuts of P ; this was later improved to O(m log n) [7]. Each primary occurrence191

found in the grid ranges takes time O(logϵ g) using geometric data structures, whereas each192

secondary occurrence requires O(1) time. Overall, the occ occurrences of P in T are listed in193

time O(m log n + occ logϵ g).194

To generalize this solution to RLCFGs [7, App. A.4], rules A → Bs are added as a point195

(x, y) = (exp(B)rev, exp(B)s−1) in the grid. This suffices to capture every primary occurrence196

of the corresponding rule A → B · · · B: If there are primary occurrences with the cut197

P = R | Q in B · · · B, then one is aligned with the first phrase boundary, exp(B) | exp(B)s−1.198

Precisely, there is space to place Q right after the first t = s − ⌈|Q|/|B|⌉ phrase boundaries.199

When the point (x, y) is retrieved for a given cut, then, t primary occurrences are declared200

with offsets |B| − |R|, 2|B| − |R|, . . ., t|B| − |R| within exp(A). The amount of secondary201

occurrences triggered by each such primary occurrence still depends only on A.202

4 Counting with Grammars203

Navarro [44] obtained the first result in counting the number of occurrences of a pattern204

P [1 . . m] in a text T [1 . . n] represented by a CFG of size g, within time O(m2+m log2+ϵ g), for205

any constant ϵ > 0, and using O(g) space. His method relies on the consistency observation206

above, which allows enhancing the grid described in Section 3 with the number c(A) of207

(primary and) secondary occurrences associated with each point. At query time, for each208

pattern cut, one sums the number of occurrences in the corresponding grid range using209

the technique mentioned in Section 2.4. The final complexity is obtained by aggregating210

over all m − 1 cuts of P and considering the O(m2) time required to identify all the ranges.211

Christiansen et al. [7, Thm. A.5] later improved this time to just O(m log n + m log2+ϵ g), by212

using more modern techniques to find the grid range of all cuts of P .213

Christiansen et al. [7] also presented a method to count in O(m + log2+ϵ n) time on a214

particular RLCFG of size grl = O(γ log(n/γ)), where γ is the size of the smallest string215

attractor [27] of T . They also show that by increasing the space to O(γ log(n/γ) logϵ n) one216

can reach the optimal counting time, O(m). The grammar properties allow reducing the217

number of cuts of P to check to O(log m), instead of the m − 1 cuts used on general RLCFGs.218

Christiansen et al. build on the same idea of enhancing the grid with the number of219

secondary occurrences, but the process is considerably more complex on RLCFGs, because220

the consistency property exploited by Navarro [44] does not hold on run-length rules A → Bs:221

the number of occurrences triggered by a primary occurrence with cut P = R | Q found from222

the point (exp(B)rev, exp(B)s−1) depends on s, |B|, and |Q|. Their counting approach relies223

on another property that is specific of their RLCFG [7, Lem. 7.2]:224

▶ Property 1. For every run-length rule A → Bs, the shortest period of exp(A) is |B|.225

This property facilitates the division of the counting process into two cases. For each226

run-length rule A → Bs, they introduce two points, (x, y′) = (exp(B)rev, exp(B)) and227

(x, y′′) = (exp(B)rev, exp(B)2), in the grid. These points are associated with the values c(A)228

and (s−2)·c(A), respectively. The counting process is as follows: for a cut P = R | Q where R229

is a suffix of exp(B), if Q ⊑ exp(B), then it will be counted c(A)+(s−2) ·c(A) = (s−1) ·c(A)230

G. Navarro and A. Pacheco XX:7

times, as both points will be within the search range. If Q instead exceeds exp(B), but still231

Q ⊑ exp(B)2, then it will be counted (s − 2) · c(A) times, solely by point (x, y′′). Finally if232

Q exceeds exp(B)2, then Q is periodic (with p(Q) = |B|).233

They handle that remaining case as follows. Given a cut P = R | Q and the period234

p = p(Q) = |B|, where |Q| > 2p, the number of primary occurrences of this cut inside rule235

A → Bs is s − ⌈|Q|/p⌉ (cf. the end of Section 3). Let D be the set of rules A → Bs such236

that R is a suffix of exp(B) and Q is a prefix of exp(B)s−1, that is, those within the grid237

range of the cut, and c(A) the number of (primary and secondary) occurrences of A. Then,238

the number of occurrences triggered by the primary occurrences found within symbols in D239

for this cut is240 ∑
A→Bs∈D

c(A) · s − c(A) · ⌈|Q|/p⌉. (1)241

For each run-length rule A → Bs, they compute a Karp–Rabin signature (Section 2.3)242

κ(exp(B)) and store it in a perfect hash table [15, 1], associated with values243

C(B, s) =
∑

{c(A) : A → Bs′
, s′ ≥ s},244

C ′(B, s) =
∑

{s′ · c(A) : A → Bs′
, s′ ≥ s}.245

Additionally, for each such B, the authors store the set s(B) = {s : A → Bs}.246

At query time, they calculate the shortest period p = p(P). For each cut P = R | Q,247

Q is periodic if |Q| > 2p. If so, they compute k = κ(Q[1 . . p]), and if there is an entry B248

associated with k in the hash table, they add to the number of occurrences found up to then249

C ′(B, smin) − C(B, smin) · ⌈|Q|/p⌉, (2)250

where smin = min{s ∈ s(B), (s − 1) · |B| ≥ |Q|} is computed using exponential search over251

s(B) in O(log m) time. Note that they exploit the fact that the number of repetitions to252

subtract, ⌈|Q|/p⌉, depends only on p = |B|, and not on the exponent s of rules A → Bs.253

Since fingerprints κ(π) are collision-free on substrings of T , and the nonterminals in their254

particular RLSLP produce distinct expansions, each valid fingerprint κ(Q[1 . . p]) corresponds255

to at most one nonterminal B. This guarantees that, if a match is found in the hash table, it256

uniquely identifies a single candidate B. Further, they show how to filter out false positives257

for prefixes of Q that do not occur in the set [7, Lem. 6.5].258

The total counting time, on a grammar of size grl, is O(m log n + m log2+ϵ grl). In their259

grammar, the number of cuts to consider is O(log m), which allows reducing the cost of260

computing the grid ranges to O(m). The signatures of all substrings of P are also computed261

in O(m) time, as mentioned in Section 2.3. Considering the grid searches, the total cost for262

counting the pattern occurrences drops to O(m + log2+ϵ grl) ⊆ O(m + log2+ϵ n) [7, Sec. 7].263

Recently, Kociumaka et al. [30] employed this same approach to count the occurrences264

of a pattern in a smaller RLCFG that uses O(δ log n log |Σ|
δ log n) space, where δ ≤ γ. They265

demonstrated that the RLCFG they produce satisfies Property 1 [7, Lem. 7.2], which is266

necessary to apply the described scheme.267

5 Our Solution268

We now describe a solution to count the occurrences in arbitrary RLCFGs, where the269

convenient Property 1 used in the literature may not hold. We start with a simple observation.270

▶ Lemma 3. Let A → Bs be a rule in a RLCFG. Then p(A) divides |B|.271

CPM 2025

XX:8 Counting on General Run-Length Grammars

Proof. Clearly |B| is a period of exp(A) because exp(A) = exp(B)s. By Lemma 2, then,272

since |B| ≤ |A|/2, p(A) divides |B|. ◀273

Some parts of our solution make use of the shortest period of exp(A). We now define274

some related notation.275

▶ Definition 4. Given a rule A → Bs with s ≥ 2, let p = p(A) (which divides |B| by Lemma276

3). The corresponding transformed rule is A → B̂ŝ, where B̂ is a new nonterminal such that277

exp(B̂) = exp(A)[1 . . p], and ŝ = s · (|B|/p).278

There seems to be no way to just transform all run-length rules (which would satisfy279

Property 1, p(A) = |B̂|) without blowing up the RLCFG size by a logarithmic factor. We280

will use another approach instead. We classify the rules into two categories.281

▶ Definition 5. Given a rule A → Bs with s ≥ 2, we say that A is of type-E (for Equal) if282

p(A) = |B̂| = |B|; otherwise, p(A) = |B̂| < |B| and we say that A is of type-L (for Less).283

We build on Navarro’s solution [44] for counting on CFGs, which uses an enhanced grid284

where points count all the occurrences they trigger. The grid ranges are found with the more285

recent technique [7] that takes O(m log n) time. Further, we treat type-E rules exactly as286

Christiansen et al. [7] handle the run-length rules in their specific RLCFGs, as described287

in Section 4. This is possible because type-E rules, by definition, satisfy Property 1. Their288

method, however, assumes that no two symbols B ̸= B′ have the same expansion. To relax289

this assumption, symbols B with the same expansion should collectively contribute to the290

same entries of C(·, s) and C ′(·, s). We thus index those tables using κ(exp(B)) rather than291

B, and for simplicity write C(π, s), C ′(π, s), and s(π), where π = exp(B). Further, the time292

to filter our false positives using their Lemma 6.5 [7] is O(m log n) because we must explore293

all the m − 1 cuts of P .294

Since each primary occurrence is found in exactly one rule, we can decompose the process295

of counting by adding up the occurrences found inside type-E and type-L rules. We are then296

left with the more complicated problem of counting occurrences found from type-L rules.297

We start with another observation.298

▶ Observation 6. If A → Bs is a type-L rule, then |B| ≥ 2|B̂|299

Proof. If A is a type-L rule then p(A) = |B̂| < |B|. In addition, by Lemma 3, |B̂| divides300

|B|. Therefore |B| ≥ 2|B̂| ◀301

For type-L rules, we will generalize the strategy of Section 4: the cases where |Q| ≤ 2|B̂|302

will be handled by adding points to the enhanced grid; in the other cases we will use new303

data structures that exploit the fact (to be proved) that Q is periodic. Note that each cut304

P = R | Q may correspond to different cases for different run-length rules, so our technique305

will consider all the cases for each cut. Although the primary occurrences within a rule306

A → Bs will still be defined as those that cross boundaries of B, we will find them by307

aligning (all the possible) cuts P = R | Q with the boundaries of the nonterminals B̂ of the308

transformed rules A → B̂ŝ. The following definition will help us show how we capture every309

primary occurrence exactly once.310

▶ Definition 7. The alignment of a primary occurrence x found with cut P = R | Q inside311

the type-L rule A → Bs is align(x) = 1 + ((|R| − 1) mod |B̂|).312

G. Navarro and A. Pacheco XX:9

A

B

B̂ B̂

B

B̂ B̂

B

(cgta)2cc (cgta)2c c(cgta)2c
(cgta)2cc (cgta)2c c(cgta)2c

exp(A) = ((cgta)2c)6

exp(B) = ((cgta)2c)2

exp(B̂) = (cgta)2c
R = c

Q = (cgta)2cc

Figure 2 We show the occurrences captured by the point (xp, y′′
p) = (exp(B̂), exp(B̂)2). Note

how the occurrence in the first row is correctly captured by (xp, y′′
p), whereas that in the second row

is not captured by any point. Consequently, the first row is effectively counted twice. Given that the
point (xp, y′′

p) is assigned a weight of 2 · (s − 1) · c(A), the total number of occurrences is 4 · c(A).

The definition is sound because every primary occurrence is found using exactly one313

cut P = R | Q. Note that align ∈ [1 . . |B̂|] is the distance from the starting position of314

an occurrence, within exp(A), to the start of the next copy of exp(B̂). We will explore315

all the possible cuts of P , but each rule A → Bs will be probed only with the cuts where316

1 ≤ |R| ≤ |B̂|. From those cuts, all the corresponding primary occurrences aligned with the317

ŝ − 1 boundaries between copies of B̂ (i.e., with the same alignment, |R|) will be captured.318

5.1 Case |Q| ≤ 2|B̂|319

To capture the primary occurrences with cut P = R | Q inside type-L rules A → Bs where320

|Q| ≤ 2|B̂|, we will incorporate the points (xp, y′
p) = (exp(B̂)rev, exp(B̂)) and (xp, y′′

p) =321

(exp(B̂)rev, exp(B̂)2) into the enhanced grid outlined in Sections 3 and 4, assigning the values322

−(s − 1) · c(A) and 2 · (s − 1) · c(A) to each, respectively. The point (xp, y′
p) will capture323

the occurrences where |R|, |Q| ≤ |B̂|. Note that these occurrences will also find the point324

(xp, y′′
p), so the final result will be (2 − 1) · (s − 1) · c(A) = (s − 1) · c(A).325

The point (xp, y′′
p) will also account for the primary occurrences where |R| ≤ |B̂| and326

|B̂| < |Q| ≤ 2|B̂|. Observation 6 establishes that |B| ≥ 2|B̂|, so for each such primary327

occurrence of cut R | Q, with offset j in exp(A), there is a second primary occurrence at328

j − |B̂| with cut P = R′ | Q′, where |B̂| < |R′| = |R| + |B̂| ≤ 2|B̂| and |Q′| = |Q| − |B̂| ≤ |B̂|.329

This second cut will not be captured by the points we have inserted because |R′| > |B̂|. The330

other occurrences where P matches to the left of j − |B̂| fall within B (and thus are not331

primary), because we already have |Q′| ≤ |B̂| in this second occurrence. Thus, for each of332

the s copies of B (save the last), we will have two primary occurrences. This yields a total of333

2 · (s − 1) · c(A) occurrences, which are properly counted in the points (xp, y′′
p). See Figure 2.334

5.2 Case |Q| > 2|B̂|335

We first show that, for Q to be longer than 2|B̂| in some run-length rule, P must be periodic.336

▶ Lemma 8. Let P , with p = p(P), have a primary occurrence with cut P = R | Q in the337

rule A → Bs, with p(A) = |B̂| and |Q| > 2|B̂|. Then it holds that p = p(A).338

Proof. Since |P | ≥ |B̂| and P is contained within exp(A) = exp(B̂)ŝ, by branch 3 of339

Definition 1, |B̂| must be a period of P . Thus, p = p(P) ≤ |B̂|. Suppose, for contradiction,340

that p < |B̂|. According to Lemma 2, because |B̂| ≤ |Q|/2 ≤ |P |/2 is a period of P , it341

follows that p divides |B̂|. Since exp(B̂) is contained in P , again by branch 3 of Definition 1342

it follows that p < |B̂| ≤ |B| is a period of exp(B), and thus of exp(A), contradicting the343

assumption that p(A) = |B̂|. Hence, we conclude that p = |B̂|. ◀344

CPM 2025

XX:10 Counting on General Run-Length Grammars

A

B

B̂ B̂ B̂ B̂

B

B̂ B̂ B̂ B̂

cgta cgta cgta cgta
cgta cgta cgta cgta

cgta cgta cgta cgta

B B

exp(A) = (cgta)16

exp(B) = (cgta)4

exp(B̂) = cgta
R = a

Q = cgtacgtac

Figure 3 If 2|B̂| < |Q| ≤ |B|, there are ⌈|Q|/p⌉ primary occurrences around the boundary between
any two blocks B (we zoom on one) with the cut P = R | Q. We show the possible alignments of
P below the blocks B̂. For a rule A → Bs there are (s − 1) boundaries, yielding (s − 1) · ⌈|Q|/p⌉
primary occurrences. In this case, ⌈|Q|/p⌉ = 3 and s − 1 = 3, yielding 9 primary occurrences.

Note that P is then periodic because p(P) = p(A) = |B̂| < |Q|/2 ≤ |P |/2, and Q is also345

periodic by branch 3 of Def. 1, because it occurs inside P and |Q| ≥ 2p.346

We distinguish two subcases, depending on whether Q is longer than B or not. If it is,347

we must ensure that in the alignments we count the occurrence is fully within exp(A). If it348

is not, we must ensure that the alignments we count do correspond to primary occurrences349

(i.e., they cross a border between copies of B).350

5.2.1 Case 2|B̂| < |Q| ≤ |B|351

To handle this case, we construct a specific data structure based on the period |B̂|. The352

proposed solution is supported by the following lemma.353

▶ Lemma 9. Let P , with p = p(P), have a primary occurrence with cut P = R | Q in the354

type-L rule A → Bs, with p(A) = |B̂|, |R| ≤ |B̂|, and 2|B̂| < |Q| ≤ |B|. Then, the number355

of primary occurrences of P in exp(A) is (s − 1) · ⌈|Q|/p⌉.356

Proof. Since |R| ≤ |B̂|, R can be aligned at the end of the |B|/|B̂| positions where exp(B̂)357

starts in exp(B). No other alignments are possible for the cut R | Q because, by Lemma 8,358

p = |B̂| and another alignment would imply that P aligns with itself with an offset smaller359

than p, a contradiction by branch 2 of Definition 1.360

Those alignments correspond to primary occurrences only if P does not fall completely361

within exp(B). The alignments that correspond to primary occurrences are then those where362

R is aligned at the end of the last ⌈|Q|/|B̂|⌉ ending positions of copies of B̂, all of which363

start within exp(B) because |Q| ≤ |B|. This is equivalent to ⌈|Q|/p⌉, as p = |B̂| by Lemma364

8. Thus, the number of primary occurrences of P in A is (s − 1) · ⌈|Q|/p⌉. See Figure 3. ◀365

Based on Lemma 9 we introduce our first period-based data structure. Considering the366

solution described in Section 4, where Property 1 holds, the challenge with type-L rules367

A → Bs (i.e., rules that differ from their transformed version A → B̂ŝ) is that the number368

of alignments with cut R | Q inside exp(A) is (s − 1) · ⌈|Q|/p⌉, but |B| does not determine369

p = p(A). We will instead use B̂ to index those nonterminals A.370

For each type-L rule A → Bs (A → B̂ŝ being its transformed version), we compute its371

signature κ(exp(B̂)) (recall Section 2.3) and store it in a perfect hash table H. Each entry in372

table H, which corresponds to a specific signature κ(π), will be linked to an array Fπ. Each373

position Fπ[i] represents a type-L rule Ai → Bsi
i where κ(exp(B̂i)) = κ(π). The rules Ai are374

sorted in Fπ by decreasing lengths |Bi|. We also store a field with the cumulative sum375

Fπ[i].sum =
∑

1≤j≤i

(sj − 1) · c(Aj).376

G. Navarro and A. Pacheco XX:11

Given a pattern P [1 . . m], we first calculate its shortest period p = p(P). For each377

cut P = R | Q with 1 ≤ |R| ≤ min(p, m − 2p − 1), we compute κ(π) for π = Q[1 . . p] to378

identify the corresponding array Fπ in H. Note that we only consider the cuts R | Q where379

|R| ≤ p, as this corresponds precisely to |R| ≤ |B̂| for the rules stored in Fπ; note p = |π|.380

In addition, the condition |R| ≤ m − 2p − 1 ensures that |Q| > 2p = 2|B̂|, thus we are381

correctly enforcing the condition stated in this subsection and focusing, one by one, on the382

occurrences x for which each alignment satisfies align(x) = |R|. We will find in H every383

(transformed) rule A → B̂ŝ where B̂ = π, sharing the period p with Q, as well as its prefix384

π = exp(B)[1 . . p] = Q[1 . . p]. Once we have obtained the array Fπ, we find the largest i385

such that |Bi| ≥ |Q|. The number of primary occurrences for the cut P = R | Q in type-L386

rules where 2|B̂| < |Q| ≤ |B| is then Fπ[i].sum · ⌈|Q|/p⌉.387

5.2.2 Case |Q| > |B|388

Our analysis for the remaining case is grounded on the following lemma.389

▶ Lemma 10. Let P , with p = p(P), have a primary occurrence in a type-L rule A → Bs
390

with cut P = R | Q, with |R| ≤ p and |Q| > |B|. Then it holds that p = p(A) and |Q| > 2p.391

Proof. If A is a type-L rule and P has an occurrence within A such that |Q| > |B|, then392

we have |Q| > |B| ≥ 2|B̂| (by Observation 6). Since we can express A as A → B̂ŝ, we can393

similarly use Lemma 8 to conclude that p = p(A) = |B̂|; further, |Q| > 2p. ◀394

Analogously to Lemma 8, Lemma 10 establishes that, when Q is sufficiently long, it holds395

that p(P) = p(A), so all pertinent rules of the form A → Bs can be classified according to396

their minimal period, p(A). This period coincides with p = p(P) when P has an occurrence397

in a type-L rule such that |Q| > |B|. Further, |Q| > 2p.398

We also need an analogous to Lemma 9 for the case |Q| > |B|; this is given next.399

▶ Lemma 11. Let P , with p = p(P), have a primary occurrence with cut P = R | Q in400

the type-L rule A → Bs, with p(A) = |B̂|, |R| ≤ |B̂|, and |Q| > |B|. Then, the number of401

primary occurrences of P in exp(A) is ŝ − ⌈|Q|/p⌉.402

Proof. Since |R| ≤ |B̂|, R can be aligned at the end of the ŝ positions where exp(B̂) starts in403

exp(A). By the same argument of the proof of Lemma 9, no other alignments are possible for404

the cut R | Q. Unlike in Lemma 9, all those alignments correspond to primary occurrences,405

because Q is always long enough to exceed B. Also unlike in Lemma 9, Q may exceed A,406

in which case the occurrence must not be counted in this rule. The alignments that must407

not be counted are then those where R is aligned at the end of the last ⌈|Q|/|B̂|⌉ ending408

positions of copies of B̂. This is equivalent to ⌈|Q|/p⌉, as p = |B̂| by Lemma 10. Thus, the409

number of primary occurrences of P in A is ŝ − ⌈|Q|/p⌉. See Figure 4. ◀410

We then enhance table H, introduced in Section 5.2.1, with a second period-based data411

structure. Each entry in table H, corresponding to some κ(π), will additionally store a grid412

Gπ. In this grid, each row represents a type-L rule A → Bs whose transformed version is413

A → B̂ŝ, that is, such that π = exp(B̂) = exp(B)[1 . . p]. The rows are sorted by increasing414

lengths |B| (note |B| ≥ |π| = p for all B in Gπ). The columns represent the different415

exponents ŝ of the transformed rules. The row of rule A → Bs has then a unique point at416

CPM 2025

XX:12 Counting on General Run-Length Grammars

A

B

B̂ B̂

B

B̂ B̂

B

B̂ B̂

B

B̂ B̂

cgta cgta cgta cgta
cgta cgta cgta cgta

cgta cgta cgta cgta
cgta cgta cgta cgta

cgta cgta cgta cgta

exp(A) = (cgta)8

exp(B) = (cgta)2

exp(B̂) = cgta
R = a

Q = cgtacgtac

Figure 4 If |Q| > |B|, we can compute all occurrences of P around blocks B̂ without the risk
of any occurrence being fully contained in a block B: the number of primary occurrences of P in
exp(A) is simply s′ − ⌈|Q|/p⌉. In this example, with s′ = 8 and ⌈|Q|/p⌉ = 3, there are 5 occurrences.

column ŝ, and we associate two values with it: c(A) and c′(A) = ŝ · c(A). Since no rule417

appears in more than one grid, the total space for all grids is in O(grl).1418

Given a pattern P [1 . . m], we proceed analogously as explained at the end of Section 5.2.1419

in order to identify Fπ: We compute p = p(P), and for each cut P = R | Q with 1 ≤ |R| ≤420

min(p, m − 2p − 1), we calculate κ(π), for π = Q[1 . . p], to find the corresponding grid Gπ421

in H. On the type-L rules A → Bs, this tries out every possible occurrence x for which422

align(x) = |R|, one by one, from 1 to |B̂|. The limit |R| < m − 2p can also be set because,423

by Lemma 10, it must hold |Q| > 2|B̂| on the rules of Gπ we find with the cut P = R | Q.424

We must enforce two conditions on the rules of Gπ to consider: (a) |Q| > |B| as425

corresponds in this subsection, and (b) ŝ − ⌈|Q|/p⌉ ≥ 0, that is, Q fits within exp(A). The426

complying rules then contribute c(A) · (ŝ − ⌈|Q|/p⌉) = c′(A) − c(A) · ⌈|Q|/p⌉ by Lemma 11.427

To enforce those conditions, we find in Gπ the largest row y representing a rule A → Bs
428

such that |B| < |Q|. We also find the smallest column x where (ŝ =) x ≥ ⌈|Q|/p⌉. The set429

D of rules corresponding to points in the range [x, n] × [1, y] of the grid is then the set of430

type-L run-length rules where we have a primary occurrence with |Q| > |B|. We aggregate431

the values c(A) and c′(A) from the range, which yields the correct sum of all the pertinent432

occurrences (note the analogy with Eqs. (1) and (2)):433 (∑
A→Bs∈D

c′(A)
)

−

(∑
A→Bs∈D

c(A)
)

· ⌈|Q|/p⌉ =
∑

A→Bs∈D

c(A) · ŝ − c(A) · ⌈|Q|/p⌉ .434

Figure 5 gives a thorough example.435

5.3 The final result436

Our structure extends the grid of Section 4, built for non-run-length rules, with one point per437

run-length rule: those of type-E are handled as described in Section 4 and those of type-L as438

in Section 5. Thus the structure is of size O(grl) and range queries on the grid take time439

O(log2+ϵ grl). Occurrences on such a grid are counted in time O(m log n + m log2+ϵ grl) [7,440

Thm. A.5]. This is also the time to count the occurrences in type-E rules for our solution,441

and those in type-L rules when |Q| ≤ 2|Bp| (Section 5.1).442

For our period-based data structures (Sections 5.2.1 and 5.2.2), we calculate p(P) in443

O(m) time [11], and compute all prefix signatures of P in O(m) time as well, so that later444

1 We use the grid representation described in Section 2.4, which assumes that the point coordinates lie in
rank space. Our grids can be transformed accordingly without affecting the asymptotic space usage or
query time.

G. Navarro and A. Pacheco XX:13

S → X1X2tX7X8X9X11
X1 → cgta
X2 → X4

1
X3 → cg
X4 → ta
X5 → X3X4
X6 → X1X5
X7 → X3

6
X8 → X4

3
X9 → X5

12
X10 → X2X5
X11 → X5

10
X12 → X1X1cca

C(cgta, 4) 6
C′(cgta, 4) 24 type-E hash

s(cgta) {4}

X6

X1 X5

X3

c g

X4

t a

X
[2]
6

X1

c ag t

X2

X1 X
[3]
1

t X7 X8

X3 X
[3]
3

X9

X12 X
[4]
12

X1 X1 c c a

X11

X10 X
[4]
10

X2 X5

S

6 25

X
(8)
6 X

(1,6)
7

X
(20)
10 X

(1,25)
11

Gcgta

cg (cg)2 cgta (cgta)2 (cgta)2cca ((cgta)2cca)2

acc(atgc)2 X
(1)
9 X

(3)
9

atgc X
(6)
2 X

(−2)
7 X

(−4)
11 X

(12)
2 X

(4)
7 X

(8)
11

gc X
(1)
8 X

(2)
8

X11 X7
4 7

Fcgta

Figure 5 On top, a RLCFG on the left and its grammar tree on the right. Type-E rules are
enclosed in white rectangles and Type-L rules in gray rectangles. Below the rules we show the values
C(B, s) and C′(B, s) [7] we use to handle the E-type rules (see Section 4); we only show those for
exp(X1) = cgta. On the bottom left we show the points we add to the standard grid. The points for
type-E rules are represented as A(c(A)) and A((s−2)·c(A)) and those for type-L rules as A(−(s−1)·c(A))

and A(2·(s−1)·c(A)). The bottom right shows the grid Gπ and the array Fπ for the transformed rules
A → B̂s′

where B̂ = π = cgta. In Fπ we show the fields F [i].sum. In Gπ, the row labels show B(|B|)

and the column labels show s′; the points show A(c(A),c′(A)). Consider the cut P = a | cgtacgtac,
with p(P) = 4. We identify 10 occurrences in type-E rules: 4 are found within the rule X9 using the
standard grid, while the remaining 6 are determined via the values of C(X1, s) and C′(X1, s). These
6 occurrences specifically arise within exp(X2) = (cgta)4. Similarly, in the type-L rules, we detect
15 occurrences: 12 occur within the rule X11, identified using the Fcgta array, and the remaining 3
arise within exp(X7) = (cgta)6, captured using the Gcgta grid. The final two occurrences of this cut
are located using standard CFG rules at exp(S)[4 . . 13] (X1 · X2) and exp(S)[108 . . 117] (X9 · X11).
Note that there are 6 additional occurrences: five are obtained using Navarro’s solution for
counting on CFGs, triggered by a primary occurrence in X10, and the sixth is located using
standard CFG rules at exp(S)[37 . . 46] (X7 · X8). Both groups of occurrences are identified
using the cut P = acgtacgta | c, bringing the total to 33 occurrences of P in the text.

any substring signature is computed in O(1) time (Section 2.3). The limits in the arrays Fπ445

and in the grids Gπ can be binary searched in time O(log grl). The range sums over c(A)446

and c′(A) take time O(log2+ϵ grl). They are repeated for each of the O(m) cuts of P , adding447

up to time O(m log2+ϵ grl). Those are then within the previous time complexities as well.448

▶ Theorem 12. Let a RLCFG of size grl represent a text T [1 . . n]. Then, for any constant449

ϵ > 0, we can build in O(n log n) expected time an index of size O(grl) that counts the number450

of occurrences of a pattern P [1 . . m] in T in time O(m log n + m log2+ϵ grl) ⊆ O(m log2+ϵ n).451

Just as for previous schemes [7, Sec. 6.6], the construction time is dominated by the452

O(n log n) expected time to build the collision-free Karp–Rabin functions [4]. Although the453

construction is randomized, the algorithm is Las-Vegas type and thus it always produces454

a correct index; query results are always correct and their time is deterministic worst-case.455

Other construction costs specific of our index are the O(gr log gr) time to build Chazelle’s456

range sums structures [6], and the O(|A|) cost to compute the period p(A) of every run-length457

rule A → Bs. Those costs sum up to O(n) because the top-level run-length rules in the458

grammar tree add up to length at most n, and the top-level descendants of A expand at most459

CPM 2025

XX:14 Counting on General Run-Length Grammars

to |B| ≤ |A|/2. An easy induction shows that the expansions below A add up to length at460

most |A|, so the total expansion length is at most twice that of the top-level run-length rules.461

Space-time tradeoffs462

The bulk of the query cost owes to the O(log2+ϵ grl) time of the geometric queries. Other463

space-time tradeoffs are possible. We start with a geometric result of independent interest.464

▶ Lemma 13. For any constant 0 < δ < 1, we can build in O(r log r) time a data structure465

representing r weighted points on an r × r grid, using space O(r log1−δ r), which can sum the466

weights on any orthohonal range in time O(log1+δ r log log r). It is also possible to obtain (1)467

O(r log log r) space and O(log2 r log log r) time and (2) O(r log r) space and O(log r) time.468

Proof. Navarro’s solution [44, Thm. 3] represents such a grid with a wavelet tree [22]469

(assuming there is exactly one point per column, but it is easy to reduce the general case to470

this one). This structure has log r levels. The r grid points are represented in x-coordinate471

order in the first level, and their order is progressively shuffled until the last level, which472

represents the points in y-coordinate order. The coordinates are not represented explicitly;473

only one bit is used to represent each point at each level, for a total of O(r log r) bits (which474

is in O(r) space if measured in words). A two-dimensional query is projected onto O(log r)475

ranges along different levels, and the query must sum the weights of the points across all476

those ranges. To save (space and) time, (only) one cumulative sum is precomputed and477

stored every log r consecutive weights at every level, so that in total only O(r) sums are478

stored overall, and O(r) space is used for those accumulators.479

When adding the weights over one range, the sum over most of it is obtained by subtracting480

two accumulators, and just O(log r) weights must be explicitly obtained to complete the481

sum. Those weights are obtained with a structure [6, 38] that takes O((1/ϵ) logϵ r) time and482

O((1/ϵ)r log r) bits (or O(r/ϵ) words) of additional space, for any ϵ > 0. Multiplying the483

O(log r) ranges to sum, the O(log r) explicit weights to obtain in each range, and the cost to484

obtain each weight, we reach the O(log2+ϵ r) claimed term [44], using constant ϵ.485

To obtain the desired tradeoff, we will set accumulators every logδ r values, which yields486

O(r log1−δ r) space. The time will be then O((1/ϵ) log1+δ+ϵ r). By choosing a non-constant487

ϵ = 1/ log log r, the space of the data structure to compute individual weights raises to488

O(r log log r) ⊆ O(r log1−δ r), and the time becomes O(log1+δ r log log r).489

Tradeoff (1) is obtained by setting δ = 1, in which case the space O(r log log r) of the490

data structure to compute individual weights dominates. Tradeoff (2) is obtained by setting491

δ = 0, in which case we do not need at all that data structure: we have all precomputed492

prefix sums and answer each range sum in constant time, for a total of O(log r) time.2 All493

the variants are built in O(r log r) time [6]. ◀494

By using those grid representations, we obtain tradeoffs in our index.495

▶ Corollary 14. Let a RLCFG of size grl represent a text T [1 . . n]. Then, for any constant496

0 < δ < 1, we can build in O(n log n) expected time an index of size O(grl log1−δ grl) that497

counts the occurrences of a pattern P [1 . . m] in T in time O(m log n+m log1+δ grl log log grl) ⊆498

O(m log1+δ n log log n). We can also obtain O(grl log log grl) space with time O(m log n +499

m log2 grl log log grl) ⊆ O(m log2 n log log n), and O(grl log grl) space with time O(m log n).500

2 Chazelle [6] also obtains tradeoff (1) and explores the other spaces, but his time never goes below
Θ(log2 grl) because he addresses the more general case of semigroups, with no inverses. Our result is
presented for numeric sums, but it can be extended to algebraic groups.

G. Navarro and A. Pacheco XX:15

5.4 An application501

Recent work [20, 41] shows how to compute the maximal exact matches (MEMs) of P [1 . . m]502

in T [1 . . n], which are the maximal substrings of P that occur in T , in case T is represented503

with an arbitrary RLCFG. Navarro [45] extends the results to k-MEMs, which are maximal504

substrings of P that occur at least k times in T . To obtain good time complexities for large505

enough k, he resorts to counting occurrences of substrings P [i . . j] with the grammar. His506

Thm. 7, however, works only for CFGs, as no efficient counting algorithm existed on RLCFGs.507

In turn, his Thm. 8 works only for a particular RLCFG. We can now state his result on an508

arbitrary RLCFG; by his Thm. 11 this also extends to “k-rare MEMs”.509

▶ Corollary 15 (cf. [45, Thm. 7]). Let a RLCFG of size grl generate only T [1 . . n]. Then,510

for any constant ϵ > 0, we can build a data structure of size O(grl) that finds the k-MEMs511

of any given pattern P [1 . . m], for any k > 0 given with P , in time O(m2 log2+ϵ grl).512

6 Conclusion513

We have presented the first solution to the problem of counting the occurrences of a pattern514

in a text represented by an arbitrary RLCFG, which was posed by Christiansen et al. [7]515

in 2020 and solved only for particular cases. This required combining solutions to CFGs516

[44] and particular RLCFGs [7], but also new insights for the general case. The particular517

existing solutions required that |B| is the shortest period of exp(A) in rules A → Bs. While518

this does not hold in general RLCFGs, we proved that, except in some borderline cases519

that can be handled separately, the shortest periods of the pattern and of exp(A) must520

coincide. While the particular solutions could associate exp(B) with the period of the pattern,521

we must associate many strings exp(A) that share the same shortest period, and require522

a more sophisticated geometric data structure to collect only those that qualify for our523

search. Despite those complications, however, we manage to define a data structure of size524

O(grl) from a RLCFG of size grl, that counts the occurrences of P [1 . . m] in T [1 . . n] in time525

O(m log2+ϵ n) for any constant ϵ > 0, the same result that existed for the simpler case of526

CFGs. Our approach extends the applicability of arbitrary RLCFGs to cases where only527

CFGs could be used, equalizing the available tools to handle both types of grammars.528

Acknowledgement529

We thank the reviewers for their comments, particularly one that did an exhaustive and530

thoughtful job to improve our presentation.531

References532

1 Belazzougui, D., Botelho, F.C., Dietzfelbinger, M.: Hash, displace, and compress. In: Proc.533

European Symposium on Algorithms (ESA). pp. 682–693. Springer (2009)534

2 Bille, P., Ettienne, M.B., Gørtz, I.L., Vildhøj, H.W.: Time-space trade-offs for Lempel-Ziv535

compressed indexing. Theoretical Computer Science 713, 66–77 (2018)536

3 Bille, P., Landau, G.M., Raman, R., Sadakane, K., Rao, S.S., Weimann, O.: Random access537

to grammar-compressed strings and trees. SIAM Journal on Computing 44(3), 513–539 (2015)538

4 Bille, P., Gørtz, I.L., Sach, B., Vildhøj, H.W.: Time–space trade-offs for longest common539

extensions. Journal of Discrete Algorithms 25, 42–50 (2014)540

5 Charikar, M., Lehman, E., Liu, D., Panigrahy, R., Prabhakaran, M., Sahai, A., Shelat, A.:541

The smallest grammar problem. IEEE Transactions on Information Theory 51(7), 2554–2576542

(2005)543

CPM 2025

XX:16 Counting on General Run-Length Grammars

6 Chazelle, B.: A functional approach to data structures and its use in multidimensional544

searching. SIAM Journal on Computing 17(3), 427–462 (1988)545

7 Christiansen, A.R., Ettienne, M.B., Kociumaka, T., Navarro, G., Prezza, N.: Optimal-time546

dictionary-compressed indexes. ACM Transactions on Algorithms (TALG) 17(1), 1–39 (2020)547

8 Claude, F., Navarro, G.: Self-indexed grammar-based compression. Fundamenta Informaticae548

111(3), 313–337 (2010)549

9 Claude, F., Navarro, G.: Improved grammar-based compressed indexes. In: Proc. 19th550

International Symposium on String Processing and Information Retrieval (SPIRE). pp. 180–551

192 (2012)552

10 Claude, F., Navarro, G., Pacheco, A.: Grammar-compressed indexes with logarithmic search553

time. Journal of Computer and System Sciences 118, 53–74 (2021)554

11 Crochemore, M., Rytter, W.: Jewels of stringology: text algorithms. World Scientific (2002)555

12 Ferrada, H., Gagie, T., Hirvola, T., Puglisi, S.J.: Hybrid indexes for repetitive datasets.556

Philosophical Transactions of the Royal Society A 372(2016), article 20130137 (2014)557

13 Ferrada, H., Kempa, D., Puglisi, S.J.: Hybrid indexing revisited. In: Proc. 20th Workshop on558

Algorithm Engineering and Experiments (ALENEX). pp. 1–8 (2018)559

14 Fine, N.J., Wilf, H.S.: Uniqueness theorems for periodic functions. Proceedings of the American560

Mathematical Society 16(1), 109–114 (1965)561

15 Fredman, M.L., Komlós, J., Szemerédi, E.: Storing a sparse table with O(1) worst case access562

time. Journal of the ACM 31(3), 538–544 (1984)563

16 Gagie, T., Gawrychowski, P., Kärkkäinen, J., Nekrich, Y., Puglisi, S.J.: A faster grammar-564

based self-index. In: Proc. 6th International Conference on Language and Automata Theory565

and Applications (LATA). pp. 240–251. LNCS 7183 (2012)566

17 Gagie, T., Gawrychowski, P., Kärkkäinen, J., Nekrich, Y., Puglisi, S.J.: LZ77-based self-567

indexing with faster pattern matching. In: Proc. 11th Latin American Symposium on Theor-568

etical Informatics (LATIN). pp. 731–742 (2014)569

18 Gagie, T., Navarro, G., Prezza, N.: Fully-functional suffix trees and optimal text searching in570

BWT-runs bounded space. Journal of the ACM 67(1), article 2 (2020)571

19 Ganardi, M., Jez, A., Lohrey, M.: Balancing straight-line programs. Journal of the ACM572

68(4), 27:1–27:40 (2021)573

20 Gao, Y.: Computing matching statistics on repetitive texts. In: Proc. 32nd Data Compression574

Conference (DCC). pp. 73–82 (2022)575

21 Gawrychowski, P., Karczmarz, A., Kociumaka, T., Lacki, J., Sankowski, P.: Optimal dynamic576

strings. In: Proc. 29th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). pp.577

1509–1528 (2018)578

22 Grossi, R., Gupta, A., Vitter, J.S.: High-order entropy-compressed text indexes. In: Proc.579

14th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). pp. 841–850 (2003)580

23 Jez, A.: Approximation of grammar-based compression via recompression. Theoretical Com-581

puter Science 592, 115–134 (2015)582

24 Jez, A.: A really simple approximation of smallest grammar. Theoretical Computer Science583

616, 141–150 (2016)584

25 Kärkkäinen, J., Ukkonen, E.: Lempel-Ziv parsing and sublinear-size index structures for string585

matching. In: Proc. 3rd South American Workshop on String Processing (WSP). pp. 141–155586

(1996)587

26 Karp, R.M., Rabin, M.O.: Efficient randomized pattern-matching algorithms. IBM Journal of588

Research and Development 2, 249–260 (1987)589

27 Kempa, D., Prezza, N.: At the roots of dictionary compression: String attractors. In: Proc.590

50th Annual ACM Symposium on the Theory of Computing (STOC). pp. 827–840 (2018)591

28 Kempa, D., Kociumaka, T.: Collapsing the hierarchy of compressed data structures: Suffix592

arrays in optimal compressed space. In: Proc. 64th IEEE Annual Symposium on Foundations593

of Computer Science (FOCS). pp. 1877–1886 (2023)594

G. Navarro and A. Pacheco XX:17

29 Kieffer, J.C., Yang, E.H.: Grammar-based codes: A new class of universal lossless source595

codes. IEEE Transactions on Information Theory 46(3), 737–754 (2000)596

30 Kociumaka, T., Navarro, G., Olivares, F.: Near-optimal search time in δ-optimal space, and597

vice versa. Algorithmica 86(4), 1031–1056 (2024)598

31 Kociumaka, T., Navarro, G., Prezza, N.: Toward a definitive compressibility measure for599

repetitive sequences. IEEE Transactions on Information Theory 69(4), 2074–2092 (2023)600

32 Kociumaka, T., Radoszewski, J., Rytter, W., Walen, T.: Internal pattern matching queries in a601

text and applications. In: Proc. 26th Annual ACM-SIAM Symposium on Discrete Algorithms602

(SODA). pp. 532–551 (2015)603

33 Kreft, S., Navarro, G.: On compressing and indexing repetitive sequences. Theoretical Com-604

puter Science 483, 115–133 (2013)605

34 Larsson, J., Moffat, A.: Off-line dictionary-based compression. Proceedings of the IEEE 88(11),606

1722–1732 (2000)607

35 Lempel, A., Ziv, J.: On the complexity of finite sequences. IEEE Transactions on Information608

Theory 22(1), 75–81 (1976)609

36 Maruyama, S., Sakamoto, H., Takeda, M.: An online algorithm for lightweight grammar-based610

compression. Algorithms 5(2), 214–235 (2012)611

37 Navarro, G.: Spaces, trees and colors: The algorithmic landscape of document retrieval on612

sequences. ACM Computing Surveys 46(4), article 52 (2014), 47 pages613

38 Navarro, G.: Wavelet trees for all. Journal of Discrete Algorithms 25, 2–20 (2014)614

39 Navarro, G.: Indexing highly repetitive string collections, part I: Repetitiveness measures.615

ACM Computing Surveys 54(2), article 29 (2021)616

40 Navarro, G.: Indexing highly repetitive string collections, part II: Compressed indexes. ACM617

Computing Surveys 54(2), article 26 (2021)618

41 Navarro, G.: Computing MEMs on repetitive text collections. In: Proc. 34th Annual Sym-619

posium on Combinatorial Pattern Matching (CPM). p. article 22 (2023)620

42 Navarro, G., Olivares, F., Urbina, C.: Balancing run-length straight-line programs. In: Proc.621

29th International Symposium on String Processing and Information Retrieval (SPIRE). pp.622

117–131 (2022)623

43 Navarro, G., Prezza, N.: Universal compressed text indexing. Theoretical Computer Science624

762, 41–50 (2019)625

44 Navarro, G.: Document listing on repetitive collections with guaranteed performance. Theor-626

etical Computer Science 772, 58–72 (2019)627

45 Navarro, G.: Computing MEMs and relatives on repetitive text collections. ACM Transactions628

on Algorithms 21(1), article 12 (2025)629

46 Nevill-Manning, C., Witten, I., Maulsby, D.: Compression by induction of hierarchical630

grammars. In: Proc. 4th Data Compression Conference (DCC). pp. 244–253 (1994)631

47 Nishimoto, T., I, T., Inenaga, S., Bannai, H., Takeda, M.: Fully dynamic data structure for632

LCE queries in compressed space. In: Proc. 41st International Symposium on Mathematical633

Foundations of Computer Science (MFCS). pp. 72:1–72:15 (2016)634

48 Raskhodnikova, S., Ron, D., Rubinfeld, R., Smith, A.: Sublinear algorithms for approximating635

string compressibility. Algorithmica 65, 685–709 (2013)636

49 Rytter, W.: Application of Lempel-Ziv factorization to the approximation of grammar-based637

compression. Theoretical Computer Science 302(1-3), 211–222 (2003)638

50 Sakamoto, H.: A fully linear-time approximation algorithm for grammar-based compression.639

Journal of Discrete Algorithms 3(2–4), 416–430 (2005)640

51 Storer, J.A., Szymanski, T.G.: Data compression via textual substitution. Journal of the ACM641

29(4), 928–951 (1982)642

52 Tsuruta, K., Köppl, D., Nakashima, Y., Inenaga, S., Bannai, H., Takeda, M.: Grammar-643

compressed self-index with Lyndon words. CoRR 2004.05309 (2020)644

CPM 2025

	1 Introduction
	2 Basic Concepts
	2.1 Strings
	2.2 Periods of strings
	2.3 Karp-Rabin signatures
	2.4 Range summary queries on grids
	2.5 Grammar compression and parse trees
	2.6 Run-length grammars

	3 Grammar Indexing for Locating
	4 Counting with Grammars
	5 Our Solution
	5.1 Case |Q| 2 ||
	5.2 Case |Q| > 2||
	5.2.1 Case 2|| < |Q| |B|
	5.2.2 Case |Q| >|B|

	5.3 The final result
	5.4 An application

	6 Conclusion

