
Bi-directional r-indexes1

Yuma Arakawa2

Department of Mathematical Informatics, The University of Tokyo, Tokyo, Japan3

Gonzalo Navarro Envelope4

CeBiB and Department of Computer Science, University of Chile, Santiago, Chile5

Kunihiko Sadakane Envelope6

Department of Mathematical Informatics, The University of Tokyo, Tokyo, Japan7

Abstract8

Indexing highly repetitive texts is important in fields such as bioinformatics and versioned9

repositories. The run-length compression of the Burrows-Wheeler transform (BWT) provides a10

compressed representation particularly well-suited to text indexing. The r-index is one such index. It11

enables fast locating of occurrences of a pattern within O(r) words of space, where r is the number12

of equal-letter runs in the BWT. Its mechanism of locating is to maintain one suffix array sample13

along the backward-search of the pattern, and to compute all the pattern positions from that sample14

once the backward-search is complete. In this paper we develop this algorithm further, and propose15

a new bi-directional text index called the br-index, which supports extending the matched pattern16

both in forward and backward directions, and locating the occurrences of the pattern at any step17

of the search, within O(r + rR) words of space, where rR is the number of equal-letter runs in the18

BWT of the reversed text. Our experiments show that the br-index captures the long repetitions of19

the text, and outperforms the existing indexes in text searching allowing some mismatches except in20

an internal part.21

2012 ACM Subject Classification Theory of computation → Data compression22

Keywords and phrases Compressed text indexes, Burrows-Wheeler Transform, highly repetitive text23

collections24

Digital Object Identifier 10.4230/LIPIcs.CPM.2022.825

Supplementary Material https://github.com/U-Ar/br-index26

Funding Gonzalo Navarro: Funded in part by Basal Funds FB0001 and Fondecyt Grant 1-200038,27

ANID, Chile.28

1 Introduction29

A text index is a data structure equipped with search operations on a text string. The suffix30

tree [23], which is the compacted trie whose paths to the leaves spell out the suffixes of the31

text, enables various complex operations useful in bioinformatics [8]. The suffix array [14]32

is a simplified variant of the suffix tree with less space usage but also less functionality. It33

still supports the most basic searches, counting and locating the occurrences of a pattern34

in the text, among more sophisticated ones [11]. Compressed suffix arrays are suffix array35

representations that retain its functionality within further compressed space. One of those,36

the FM-index [3], is based on the Burrows-Wheeler transform (BWT) [2], which searches37

for the pattern by starting from its last character and extends the match leftwards. The38

bi-directional BWT [10] also supports rightward extension by constructing FM-indexes on39

both the text and the reversed text, thus using roughly twice the space of the FM-index.40

This extended functionality allows retrieving some of the lost suffix tree functionality.41

Classical compressed suffix arrays are based on statistical compression. This cannot42

capture repetitions of long text substrings when indexing highly repetitive texts, so the43

index sizes grow proportionally to the input sizes. Large highly repetitive texts are arising44

© Yuma Arakawa, Gonzalo Navarro, and Kunihiko Sadakane;
licensed under Creative Commons License CC-BY 4.0

33rd Annual Symposium on Combinatorial Pattern Matching (CPM 2022).
Editors: Hideo Bannai and Jan Holub; Article No. 8; pp. 8:1–8:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:gnavarro@dcc.uchile.cl
mailto:sada@mist.i.u-tokyo.ac.jp
https://doi.org/10.4230/LIPIcs.CPM.2022.8
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


8:2 Bi-directional r-indexes

index space left-extension
bi-directional BWT [10] O(nHk(T )) + o(n log σ) bits O( log σ

log log n
)

Belazzougui and Cunial [1] O(r + rR) words O(H2 log log n)
br-index (Theorem 1) O(r + rR) words O(σ + log logw(n/r))
br-index (Theorem 2) O(r + rR) words O( 1

ε
log2+ε r)

index left-contraction locate
bi-directional BWT [10] not supported O(occ · log1+ε n)

Belazzougui and Cunial [1] O(H2 log log n) not supported
br-index (Theorem 1) not supported O(occ)
br-index (Theorem 2) not supported O(occ)

Table 1 Comparison of space and time with the existing compressed bi-directional indexes. H is
the length of the longest maximal repeat in the text. right-extension(contraction) is symmetric to
left-extension(contraction). Here w is the number of bits in the computer word.

in bioinformatic applications and versioned document and software stores. For those texts,45

indexes based on compression methods such as Lempel-Ziv and grammar compression have46

been proposed [17]. While those indexes can locate, and in some cases count, the pattern47

occurrences, they are not based on suffix arrays and therefore lack the potential to enable48

other more sophisticated suffix array functionalities. The r-index [5, 6] is the first compressed49

suffix array suitable for highly repetitive texts. It is based on the run-length compression50

of the BWT and uses O(r) space, where r, the number of equal-letter runs in the BWT,51

stays low on repetitive texts. The r-index enables efficient count and locate queries within52

that space, but more complex operations that are supported on classical suffix arrays are53

yet to be studied. In particular, an index supporting bi-directional extensions based on this54

compression method has been proposed [1], but it does not support the key locate operation.55

Our contribution We introduce the br-index, an r-index extension that supports bi-56

directional extensions along the pattern search process, within O(r + rR) words of space,57

where rR is the number of equal-letter runs in the BWT of the reversed text. The simpler58

version of Theorem 1 is easily built on top of the r-index of both of the text and its reverse.59

The refined version of Theorem 2 reduces the σ term in the computation time of left-extension60

and right-extension (where σ is the alphabet size), and is more advantageous when σ is large.61

Compared to the bi-directional BWT [10], the br-index captures long repetitions in the text62

and thus compresses highly repetitive text collections. Compared to the index proposed63

by Belazzougui and Cunial [1], the br-index enables locate in efficient time and is easier to64

implement, though it does not support contractions (i.e., the inverses of expansions). See65

Table 1 for a detailed comparison. We also implemented the version of Theorem 1 and66

compared its practical performance with the bi-directional BWT and the r-index.67

This paper is organized as follows. In Section 2 we describe the needed concepts to68

present our results. In Section 3 we introduce the algorithmic details of the br-index. Section69

4 shows the experimental results. We conclude in Section 5.70

2 Preliminaries71

2.1 Basic notions72

In this paper, we call a sequence of characters T = T [1]T [2] · · ·T [n] a string of length n.73

Each character T [i] (i = 1, . . . , n) is an element of an ordered alphabet Σ = {1, 2, . . . , σ}.74



Y. Arakawa, G. Navarro, and K. Sadakane 8:3

Here we assume Σ is the effective alphabet, which means that each character in Σ appears at75

least once in T . For convenience, we assume T [n] = 1 and T [i] 6= 1 (i = 1, . . . , n− 1), that is,76

the last character is a unique endmarker with the minimum lexicographic rank. In addition,77

we call the sequence of characters T R = T [n− 1]T [n− 2] · · ·T [1].1 the reversed string. In78

other words, we obtain T R by reversing the meaningful content of the string and attaching79

the character 1 at the end.80

We define two queries on T , where P is a sequence of m characters:81

count(P ) returns the number of the occurrences of the pattern P in T .82

locate(P ) returns the starting positions of the occurrences of the pattern P in T .83

We write [l, r] for the set of integers {l, l + 1, . . . , r} (∅ if l > r). This notation is used84

to describe substrings and subsequences as well; T [l, r] is the substring T [l]T [l + 1] · · ·T [r],85

which is the empty string ε if l > r.86

A bitvector B is an array whose elements are 0 or 1. We define two queries on a bitvector,87

rank1(B, j) returns the number of 1-bits in B[1, j] and select1(B, i) returns the position of88

the i-th 1-bit in B.89

A predecessor data structure on the totally ordered set S supports the query pred(S, i),90

which returns the maximum element that is smaller than or equal to i, max{s ∈ S | s ≤ i}.91

2.2 Suffix array, Burrows-Wheeler transform, and LCP array92

The suffix array [14] of T is an array of integers SA[1, n], where SA[i] is the starting position93

in T of the i-th lexicographically smallest suffix of T , that is, the lexicographic rank of94

the suffix T [SA[i], n] is i. We also denote the inverse of the suffix array by ISA, that is,95

SA[ISA[i]] = i (i = 1, . . . , n).96

The Burrows-Wheeler transform (BWT) [2] of T is a sequence L[1, n] of characters that97

satisfies98

L[i] =
{

T [SA[i]− 1] (SA[i] 6= 1)
1 (SA[i] = 1)

99

Note that L[i] is the character preceding the i-th suffix in lexicographic order. Exceptionally100

L[i] = 1 when the i-th suffix is the whole string T . We also define a function rank on L:101

rankc(L, i) is the number occurrences of the character c in L[1, i]. It is 0 if i = 0.102

The longest common prefix array (LCP) of T is an array LCP[1, n] of integers satisfying103

LCP[i] =
{

lcp(T [SA[i− 1], n], T [SA[i], n]) (i 6= 1)
0 (i = 1)

104

where lcp(P, P ′) is the length of the longest common prefix between strings P and P ′.105

2.3 Backward search106

The suffix array SA and the BWT L are useful for computing count and locate of a pattern107

P [1, m] [3]. Given P , there exists a unique range [s, e] on SA corresponding to the occurrences108

of P (the range is empty when P does not occur in T ). In this case, SA[s, e] is the list of109

the starting positions of P in T . We can then represent (the occurrences of) P by the range110

[s, e]. With rank on L we can extend the current pattern leftwards. Specifically, we can111

CPM 2022



8:4 Bi-directional r-indexes

compute the range [s′, e′] corresponding to the pattern cP , from the character c and [s, e]112

corresponding to P , with the following formula. We call this a left-extension.113 {
s′ = C[c] + rankc(L, s− 1) + 1
e′ = C[c] + rankc(L, e)

114

Here, C[1, σ] is the array of integers where C[c] is the number of occurrences of the characters115

c′ satisfying c′ < c in T . When cP does not occur in T , the formula yields e′ > s′.116

The FM-index [3] is a statistically compressed suffix array. When it computes count(P )117

and locate(P ), it starts from the end of P and extends leftwards with the formula above. It118

starts with the empty string ε, whose SA range is [1, n]. Then, from the range [si+1, ei+1]119

corresponding to P [i + 1, m] (1 ≤ i ≤ m), it obtains [si, ei] with120 {
si = C[P [i]] + rankP [i](L, si+1 − 1) + 1
ei = C[P [i]] + rankP [i](L, ei+1)

121

ending if si > ei or i = 1 holds. In the first case, count(P ) is zero, otherwise it is e1 − s1 + 1,122

and the results of locate(P ) are in SA[s1, e1]. This searching algorithm is called the backward123

search. We denote the time to compute left-extension by tLF , whose name comes from124

LF-mapping LF (i) = C[L[i]] + rankL[i](L, i). Similarly, the time to access an element of SA125

is denoted by tSA.126

With the backward search algorithm, count takes O(m · tLF ) time and locate takes127

O(m · tLF + occ · tSA) time, where occ is the number of the occurrences of P in T . On an128

alphabet of size σ, the FM-index achieved tLF = O( log σ
log log n ) and tSA = O(log1+ε n) with129

nHk(T ) + o(n log σ) bits of space for any constant 0 < ε < 1, where Hk(T ) is the k-th130

empirical entropy of T [4].131

2.4 Run-length compression of BWT and r-index132

The size of the representation of L grows linearly with the input size n even if we use133

statistical compression as in the FM-index. To handle large repetitive text collections we134

need to capture the repetitions in T and compress them.135

Mäkinen and Navarro [12] focused on equal-letter runs in L to capture the repetitiveness.136

A run of the BWT is a maximal substring of L whose characters are equal. Since the suffixes137

are ordered lexicographically, the sequence of their preceding characters, L, is expected to138

have long runs if T is highly repetitive. They showed that the number r of such runs is139

sensitive to the statistical entropy of T , r ≤ nHk(T ) + σk for any k ≥ 0. In particular,140

r ≤ nHk(T )+o(n) for any k ≤ α logσ n, for any constant 0 < α < 1. It was later realized that141

r was sensitive to the repetitiveness of T , and the run-length-based FM-index (RLFM-index),142

which compressed the BWT by run-length encoding, was designed [13]. The RLFM-index143

achieved tLF = O( log σ
log log r +(log log n)2) in O(r) words of space by emulating access and rank144

on L. From this, we can compute count within O(r) words with the RLFM-index, but locate145

is not supported in the same space. To do that, additional O(n/s) words of space, where s is146

a sampling parameter, is required to store samples of SA at regularly spaced intervals. Since147

this method yields tSA = O(s · tLF ), saving spaces with larger s in turn worsens the time148

complexity.149

The r-index [5, 6] made it possible to compute locate in O(m · (tLF + log logw(n/r)) +150

occ · tφ) time within O(r) words of space, without the SA samplings at regular intervals.151

To compute rank on L, it uses an updated version of the RLFM-index, which achieves152

tLF = O(log logw(σ + n/r)). The removal of SA samplings is achieved by maintaining one153



Y. Arakawa, G. Navarro, and K. Sadakane 8:5

SA sample during the backward search and designing inverse functions φ and φ−1, whose154

computation time is denoted by tφ:155

φ(i) =

{
SA[ISA[i] − 1] (ISA[i] 6= 1)
SA[n] (ISA[i] = 1)

φ−1(i) =

{
SA[ISA[i] + 1] (ISA[i] 6= n)
SA[1] (ISA[i] = n)

156

These functions enable us to compute neighboring SA values from an SA sample. From157

a sample SA[i], we obtain SA[i − 1] by applying φ and SA[i + 1] by applying φ−1. They158

compute those functions in time tφ = O(log logw(n/r)). To explain our results later, we159

describe next the algorithm to maintain an SA sample during the backward search.160

We say character T [i] is sampled if and only if i = 1 or T [i] is the first or last character of161

a BWT run. The number of the sampled characters is O(r). In addition to the RLFM-index,162

we store a predecessor data structure Rc for each c, with the BWT positions of all the163

sampled characters equal to c. We associate each BWT position q ∈ Rc with the pair164

〈q, SA[q]− 1〉. During the backward search, we know an SA sample (p, SA[p]) in the current165

SA range [s, e] and update it using Rc. Assume we are extending P [i+1, m] to P [i, m] during166

the backward search. We want to compute the SA range [si, ei] corresponding to P [i, m]167

and the new sample p′, SA[p′] (si ≤ p′ ≤ ei), from the range [si+1, ei+1] corresponding to168

P [i + 1, m] and the current sample (p, SA[p]) (si+1 ≤ p ≤ ei+1). [si, ei] is computed using169

the RLFM-index. If L[p] = P [i], LF (p) ∈ [si, ei] holds, so the sample can be updated to170

(p′ = LF (p), SA[p′] = SA[p]− 1). In the other case, where L[p] 6= P [i] but P [i] still occurs171

somewhere else, we obtain a predecessor 〈q, SA[q]− 1〉 by querying pred(RP [i], ei+1). Since172

L[q] = P [i] holds, the sample is updated to (p′ = LF (q), SA[p′] = SA[q]− 1).173

Nishimoto and Tabei [19] recently managed to improve the times of the operations to174

tLF = O(1) and tφ = O(1), still within O(r) words, by avoiding predecessor queries.175

3 Bi-directional r-index176

With the r-index, we can compute left-extension and locate all the occurrences of the current177

pattern at any step of the extensions. However, the extension is unidirectional; right-extension178

cannot be carried out. The text index we propose, br-index, enables us to extend in both179

directions and compute locate at an arbitrary step, as shown in the following theorem.180

I Theorem 1. We can store O(r) + O(rR) words such that, at an arbitrary step of the181

search, we can execute left-extension in O(σtLF + log logw(n/r)) time, right-extension in182

O(σtLF R + log logw(n/rR)) time, compute count of the current pattern in O(1) time, and183

compute locate of the current pattern in O(occ) time, where occ is the number of the184

occurrences of the current pattern in the string, w is the number of bits in the computer word,185

and rR is the number of runs in the BWT LR of the reversed string T R.186

I Remark. The best known upper bound of rR by r is rR = O(r log r max(1, log n
r log r )) [9].187

In practice, their values are very close; see Section 4.188

In Sections 3.1 and 3.2 we prove Theorem 1. In Section 3.3, we propose a variant189

using the wavelet tree [7], which achieves the improved time bounds of left-extension and190

right-extension, as seen in Theorem 2.191

I Theorem 2. For any ε > 0, we can store O(r) + O(rR) words such that, at any arbitrary192

step of the search, we can execute left-extension in O( 1
ε log2+ε r) time, right-extension in193

O( 1
ε log2+ε rR) time, compute count of the current pattern in O(1) time, and compute locate194

of the current pattern in O(occ) time, where occ is the number of the occurrences of the195

current pattern in the string.196

CPM 2022



8:6 Bi-directional r-indexes

The key idea of the br-index is to compute locate efficiently by maintaining one SA sample197

and one SAR sample at the same time. These samples are not necessarily starting or ending198

positions of the current pattern. Instead, we also maintain their offsets towards both ends,199

and the length of the current pattern.200

3.1 Left-extension and right-extension201

Updating the ranges on SA and SAR
202

Let [s, e] be the range on SA corresponding to the current pattern P . Similarly, let [sR, eR]203

be the range on SAR corresponding to P R.204

When we compute left-extension P → cP , we update [s, e] by s← C[c] + rankc(L, s−205

1) + 1, e← C[c] + rankc(L, e). To update [sR, eR], we use another idea [10]. We count the206

total number acc of occurrences of patterns aP for all a < c, by applying LF iteratively for207

each such a. Since the size of the range of any pattern is equal on SA and SAR, we can208

update [sR, eR] by sR ← sR + acc, eR ← sR + acc + e− s. right-extension is symmetric. In209

this case, we apply LF R, which is LF-mapping on the BWT of T R, instead of LF .210

The required structures to update the ranges are just the RLFM-indexes on T and T R.211

The space used is O(r + rR) words, the time complexity is O(σtLF ) when we extend leftward,212

and O(σtLF R) when we extend rightward, where tLF R is the time to compute LF R.213

Updating the sample214

In addition to the SA range [s, e] and the SAR range [sR, eR], we maintain seven variables215

during the search: p, j, d, pR, jR, dR, len. We call the tuple of these variables the sample: p216

is the position of the sample in SA, j is the value of SA[p], and d is the offset of j to the217

starting position of the current pattern. That is, it holds j = SA[p] and T [j − d, j − d +218

|P | − 1] = P . The corresponding values for the reversed direction are jR = SAR[pR] and219

T R[jR − dR, jR − dR + |P | − 1] = P R. Finally, len is the length of the pattern.220

We note, however, that we will not be able to maintain p and pR in all cases; we will221

manage without them. We still speak of those variables for reasoning about correctness.222

Assume we are computing left-extension P → cP . If the size of the range [s, e] on SA223

corresponding to the pattern does not change, only the character c precedes P in T . In this224

case, we simply increment d and len. Otherwise, we compute the predecessor pred(Rc, e),225

to obtain 〈q, SA[q]− 1〉. We then update j ← SA[q]− 1 and jR ← n− j. Also, offsets are226

updated to d← 0, dR ← len, and len ← len + 1. The case of right-extension is symmetric.227

The details are shown in Algorithms 1 and 2. In the following lemma, we prove the228

invariant conditions that hold during the extensions. These conditions are important for the229

correctness of the locate algorithm presented in the next section.230

I Lemma 3. Assume we are computing left-extension and right-extension, and the current231

pattern is P . Then the following conditions are invariant, except when P is empty.232

(1) len = |P |233

(2) d + dR + 1 = len234

(3) Let j = SA[p] and jR = SAR[pR], then s ≤ LF d(p) ≤ e and sR ≤ (LF R)dR(pR) ≤ eR235

Proof. When we start with an empty pattern P = ε, we initialize the ranges and the sample236

with s = sR = 1, e = eR = n, len = d = dR = 0. We then obtain an arbitrary predecessor237

〈q, SA[q]−1〉 and set j = y and jR = n−y. We now prove that the invariants are maintained238

by left-extension; right-extension is symmetric.239



Y. Arakawa, G. Navarro, and K. Sadakane 8:7

Algorithm 1 Left-extension P → cP .

Input: A character c and values corresponding to P : [s, e], [sR, eR], j, d, len
Output: Values corresponding to cP : [s′, e′], [s′

R, e′
R], j′, j′

R, d′, d′
R, len′

1: s′ ← C[c] + rankc(L, s− 1) + 1
2: e′ ← C[c] + rankc(L, e)
3: if s′ > e′ then
4: cP does not occur.
5: else
6: acc ← 0
7: for a = 1 to c− 1 do
8: acc ← acc + ranka(L, e)− ranka(L, s− 1)
9: end for

10: [s′
R, e′

R]← [sR + acc, sR + acc + e′ − s′]
11: if e′ − s′ 6= e− s (cP and c′P occur for some c′ 6= c) then
12: (q, j′)← pred(Rc, e), d′ ← 0
13: else
14: j′ ← j, d′ ← d + 1
15: end if
16: j′

R ← n− j′, d′
R ← len − d′

17: len′ ← len + 1
18: end if

First, consider the case where e′ − s′ 6= e − s in line 11 of Algorithm 1. (1) Since len′
240

is incremented from len, len′ = |cP | holds. (2) d′ + d′
R + 1 = 0 + len + 1 = len′ holds.241

(3) From the definition of Rc, j′ = SA[q] − 1, so the new value for p is p′ = LF (q). Also,242

since j′
R = n − j′ = n − (SA[q] − 1) = SAR[ISAR[n − SA[q] + 1]], it holds that the new243

value for pR is p′
R = ISAR[n − SA[q] + 1]. Now, cP and c′P (c′ 6= c) occur in this case,244

which means an end of a BWT run of the character c exists in [s, e]. Thus, s ≤ q ≤ e245

and L[q] = c holds, which in turn implies s′ ≤ LF (q) = p′ ≤ e′. On the other hand,246

SAR[(LF R)d′
R(p′

R)] = SAR[p′
R]− d′

R = j′
R − d′

R = (n− j′)− d′
R = n− (j′ + d′

R) holds. This247

position in T R corresponds to the position j′ +d′
R = j′ + len′−d′−1 = SA[LF d′(p′)]+ len′−1248

in T . This is the ending position of the pattern cP in T , and the starting position of P Rc in249

T R. Therefore s′
R ≤ (LF R)d′

R(p′
R) ≤ e′

R holds.250

Second, consider the other case, where e′ − s′ = e − s in line 13 of Algorithm 1. This251

case does not happen when P is empty since T contains at least two distinct characters.252

Thus, the inductive assumption can be used. That is, we assume that the three conditions253

hold before the execution of left-extension. (1) Same as the former case. (2) d′ + d′
R + 1 =254

d + 1 + dR + 1 = len + 1 = len′ holds from the inductive assumption. (3) Note that j255

and jR do not change, so p′ = p and p′
R = pR. In this case c precedes all the occurrences256

of P . Thus, s′
R = sR and e′

R = eR, and since we also maintain d′
R = dR, the relation257

sR = s′
R ≤ (LF R)d′

R(p′
R) = (LF R)dR(pR) ≤ e′

R = eR stays true by induction. On the258

other hand, s′ = C[c] + rankc(L, s − 1) + 1 = C[c] + rankc(L, s), e′ = C[c] + rankc(L, e),259

and LF d′(p′) = LF (LF d(p)) = C[c] + rankc(L, LF d(p)) holds since L[s] = L[LF d(p)] = c.260

Therefore, s′ ≤ LF d′(p′) ≤ e′ holds from the inductive assumption. J261

CPM 2022



8:8 Bi-directional r-indexes

Algorithm 2 Right-extension P → P c.

Input: A character c and values corresponding to P : [s, e], [sR, eR], jR, dR, len
Output: Values corresponding to Pc : [s′, e′], [s′

R, e′
R], j′, j′

R, d′, d′
R, len′

1: s′
R ← C[c] + rankc(LR, sR − 1) + 1

2: e′
R ← C[c] + rankc(LR, eR)

3: if s′
R > e′

R then
4: Pc does not occur.
5: else
6: acc ← 0
7: for a = 1 to c− 1 do
8: acc ← acc + ranka(LR, eR)− ranka(LR, sR − 1)
9: end for

10: [s′, e′]← [s + acc, s + acc + e′
R − s′

R]
11: if e′

R − s′
R 6= eR − sR (Pc and Pc′ occur for some c′ 6= c) then

12: (qR, j′
R)← pred(RR

c , eR), d′
R ← 0

13: else
14: j′

R ← jR, d′
R ← dR + 1

15: end if
16: j′ ← n− j′

R, d′ ← len − d′
R

17: len′ ← len + 1
18: end if

3.2 Determining the end of locate with run-length compressed PLCP262

We now present the algorithm for locate. We can obtain the values SA[i− 1], SA[i + 1] from263

SA[i], using just the functions φ and φ−1 of the r-index. Therefore, neighboring SA values264

are obtained sequentially from component j, d of the sample. However, because we do not265

know p′ = LF d(p), we cannot determine how many values i < p′ and i > p′ are within the266

range [s, e] corresponding to the current pattern P .267

In order to determine the ends of the iterative computations of φ and φ−1, we make use of268

the permuted LCP array PLCP[1, n], which satisfies PLCP[i] = LCP[ISA[i]] (i = 1, . . . , n).269

Let the current position in SA be p′ ∈ [s, e]. When we are computing the value of SA[p′ − 1]270

from SA[p′], we compare PLCP[SA[p′]] with |P |. If PLCP[SA[p′]] is smaller than |P |,271

SA[p′ − 1] does not correspond to an occurrence of the whole pattern P . Thus, p′ = s holds272

in this case. Otherwise we go on and compute φ. Similarly, when we compute SA[p′ + 1]273

from SA[p′], we compare PLCP[SA[p′ + 1]] with |P |.274

The details are shown in Algorithm 3. In the following lemma, we prove that Algorithm 3275

runs properly if the invariant conditions hold. Combining Lemmas 3 and 4, we obtain the276

correctness of locate.277

I Lemma 4. Let [s, e] be the range on SA that corresponds to the current pattern P . Assume278

the input of Algorithm 3 satisfies j = SA[p], s ≤ LF d(p) ≤ e, len = |P |. Then Algorithm 3279

correctly outputs all the positions of the occurrences of P .280

Proof. The correctness of φ, φ−1 is proved in [6, Lem. 3.5]. Since j = SA[p], j′ = j − d is281

equal to SA[p′] (p′ = LF d(p)). Provided s ≤ p′ ≤ e, we have to prove282

PLCP[SA[p′]] ≥ |P | ⇒ p′ > s283

PLCP[SA[p′]] < |P | ⇒ p′ = s284



Y. Arakawa, G. Navarro, and K. Sadakane 8:9

Algorithm 3 Locate the current pattern P .

Input: p, j(= SA[p]), d, len(= |P |)
Output: All the starting positions of the occurrences of P in T

1: j′ ← j − d (= SA[LF d(p)])
2: pos ← j′

3: output pos
4: while PLCP[pos] ≥ len do
5: pos ← φ(pos)
6: output pos
7: end while
8: pos ← j′

9: while true do
10: if pos = SA[n] then return
11: pos ← φ−1(pos)
12: if PLCP[pos] < len then return
13: output pos
14: end while

In the case where PLCP[SA[p′]] ≥ |P |, PLCP[SA[p′]] = LCP[ISA[SA[p′]]] = LCP[p′] =285

lcp(T [SA[p′], n], T [SA[p′ − 1], n]) ≥ |P | holds. Since the first |P | characters of T [SA[p′], n]286

are identical to P from the assumption, the first |P | characters of T [SA[p′ − 1], n] are also287

the same as P . Thus, p′ − 1 is also within the range [s, e], which means p′ > s. On the288

other hand, when PLCP[SA[p′]] < |P |, lcp(T [SA[p′], n], T [SA[p′ − 1], n]) < |P | holds. In this289

case, at least one character among the first |P | characters of T [SA[p′], n] and T [SA[p′− 1], n]290

differ. Since the first |P | characters of T [SA[p′], n] are identical to P , the first |P | characters291

of T [SA[p′ − 1], n] are not the same as P . Thus, p′ − 1 is out of the range [s, e], which means292

p′ = s. Similarly,293

PLCP[SA[p′ + 1]] ≥ |P | ⇒ p′ < e294

PLCP[SA[p′ + 1]] < |P | ⇒ p′ = e295

holds when p′ ≤ n− 1, so we can correctly decide whether s ≤ p′ ≤ e holds.296

From the above arguments, we can locate all the occurrences of P using Algorithm 3. J297

If we use a predecessor data structure to store PLCP in O(r) words of space, we can298

access one value of PLCP in O(log logw(n/r)) time [6, Lem. 3.8.]. As a more sophisticated299

solution, φ, φ−1 and PLCP can be computed simultaneously in O(1) time within O(r) words300

of space, with a move data structure [19]. The algorithm to compute φ−1 is explained in301

[19]. φ is symmetric. We integrate a procedure to compute PLCP into the algorithm. In302

addition to the values of φ and φ−1 stored in the structure, we store the values of PLCP303

at the same sampled positions. We compute the predecessor by a move query, obtain its304

PLCP value, and subtract the offset between the current position and the predecessor from305

the value. Therefore we obtain Theorem 1.306

3.3 Improving the extend time with wavelet tree307

In lines 7-9 of Algorithm 1, rank on L is computed for O(σ) times in order to calculate the308

accumulated number of occurrences of c′P (c′ < c). These computations are costly when σ is309

large. We could easily compute the accumulated number in O(log σ) time on the wavelet tree310

of the BWT, since it is a range-counting problem [15]. This is not that simple, however, on311

CPM 2022



8:10 Bi-directional r-indexes

the run-length BWT representation. We now show that polylogarithmic time is still possible,312

however.313

Consider the sequence L′[1, r] of the run heads in the BWT, that is, the first characters314

of the BWT runs. Regard L′ as the 2-dimensional grid G of size r × σ which has r points,315

whose x-coordinates are the positions in L′ and y-coordinates are the characters. That is, if316

L′[i] = c, there is a grid point at (i, c). Give to that point a weight, equal to the length of317

the corresponding run in L. We can apply the following theorem on that grid (simplified for318

our purpose).319

I Theorem 5 ([16]). Let a grid of size r × r store r points with associated non-negative320

integers whose values are at most n. For any ε > 0, a structure of O( 1
ε r log n) bits can321

compute the sum of the integers in any rectangular range in time O( 1
ε log2+ε r).322

Since the shape of the grid is required to be r × r in Theorem 5, we extend the r × σ grid323

with an empty area. We also need a way to determine, given a position L[i], the run it324

belongs to, and the start/end positions of that run in L. This is already supported by the325

r-index structures, in time O(log logw(n/r)).326

With these structures, we count the number of symbols < c in L[l, r] as follows. (1)327

Compute the runs x1 and x2 where l and r belong, respectively, the ending position l′ of the328

x1-th run and the starting position r′ of the x2-th run. (2) Compute, using Theorem 5, the329

sum of the weights of the points falling in [x1 + 1, x2 − 1]× [1, c− 1]. (3) Add l′ − l + 1 if330

L[l] < c, and r − r′ + 1 if L[r] < c.331

We thus construct the structure of Theorem 5 on L and on LR. We obtain Theorem 2 by332

noting that all the times of the form O(log logw(n/r)) come from predecessor queries, which333

can also be done in time O(log r) by resorting to binary search.334

4 Experiments335

4.1 Experimental setup336

In order to test the practical performance of the index, we experimented on repetitive337

datasets taken from the Pizza&Chili Repetitive Corpus.1 Their characteristics are shown338

in Table 2. We compared the br-index with the r-index and the bi-directional FM-index339

(2BWT) built on the same datasets. For the br-index, we implemented the differentially340

encoded PLCP with a sparse bitmap [22, 20]. For the 2BWT, we tested s = 16, 32, 64, 128 as341

the sampling parameter of SA. Also, as the components of the 2BWT, we used the wavelet342

trees implemented with RRR bitvectors [21].343

We evaluated all the experiments in a machine with Intel Xeon CPU E5-2650 v2 clocked344

at 2.60GHz and the 128GB memory. The compiler was gcc 4.8.5 and the compiler options345

were -std=c++11 -Ofast -march=native.346

In addition to comparing the spaces used by the indexes, we demonstrate the power of the347

extended primitives on a simplified variant of a popular bioinformatics query, the so-called348

seed-and-extend approach used in BLAST. In the query, we consider a pattern divided into349

three parts, P = P1P2P3. We locate all the occurrences of P allowing up to k mismatches350

in P1 and P3, while P2 is matched exactly. Note that we do not locate the occurrences of351

P with mismatches in P2, even if the total number of mismatches in P is within k. On352

the 2BWT and the br-index, we execute the query by first searching for P2 in exact form.353

1 http://pizzachili.dcc.uchile.cl/repcorpus.html



Y. Arakawa, G. Navarro, and K. Sadakane 8:11

datasets n σ r rR r/n

cere 461,286,644 6 11,574,641 11,575,583 0.0251
coreutils 205,281,778 237 4,684,460 4,732,795 0.0228

einstein.de 92,758,441 118 101,370 99,834 0.0011
einstein.en 467,626,544 140 290,239 286,698 0.0006
escherichia 112,689,515 16 15,044,487 15,045,278 0.1335
influenza 154,808,555 16 3,022,822 3,018,825 0.0195

kernel 258,961,616 161 2,791,368 2,780,096 0.0108
para 429,265,758 6 15,636,740 15,635,178 0.0364

world-leaders 46,968,181 90 573,487 583,397 0.0122
Table 2 The statistics for the datasets. The lexicographically minimum character attached to

the end is included.

2BWT r-index br-index
s = 16 s = 32 s = 64 s = 128

cere 8.44 6.33 5.27 4.73 1.93 5.63
coreutils 12.80 10.68 9.61 9.07 1.87 4.92

einstein.de 11.08 8.96 7.90 7.36 0.099 0.276
einstein.en 11.97 9.86 8.79 8.24 0.057 0.162
escherichia 10.18 8.07 7.00 6.46 9.20 26.89
influenza 8.80 6.69 5.62 5.09 1.49 4.32

kernel 12.32 10.20 9.14 8.60 0.90 2.54
para 8.61 6.50 5.43 4.90 2.76 8.07

world-leaders 11.38 9.26 8.20 7.66 0.96 2.74
Table 3 The sizes (bits/symbol) of the indexes on the repetitive datasets. s is the sampling

parameter for SA.

Then we extend the match leftwards to any P ′
1P2, where P ′

1 has 0 ≤ k′ ≤ k mismatches with354

respect to P1. This is done with the usual backtracking mechanism starting from the range355

of P2, using left-extension on every possible symbol as long as the error threshold permits.356

Finally, we extend each resulting range rightwards using right-extension, finding P3 with at357

most k − k′ mismatches, and report all the occurrences found.358

This strategy cannot be used on the r-index, because it cannot extend rightwards. In359

this case, we tested two different algorithms. The first algorithm, which we call match-first,360

searches for the pattern from the end to the beginning using left-extension, allowing up to k361

mismatches when matching P3 and P1. This is likely to be considerably slower because it362

does not restrict the matches to P2 before starting to allow errors. The second algorithm,363

which we call locate-first, finds all the occurrences of P2 with just the r-index, and extracts364

the text around each occurrence to check if the number of mismatches in P ′
1 and P ′

3 is within365

k. This algorithm is similar to the approach of BLAST, although we extract the characters366

around P2 using LF and FL (the inverse function of LF ) because we were not storing the367

plain text. This approach can work well if P2 is long enough, although it scales linearly with368

the text size.369

We extracted 100 random substrings of length 16, 32, 64 as the target patterns from370

influenza, and computed seed-and-extend for each pattern. P2 is set at the middle of P , with371

length d|P |/3e. The number of allowed mismatches was between 0 and 10.372

CPM 2022



8:12 Bi-directional r-indexes

0 2 4 6 8 10
allowed mismatches

0

5

10

15

20

25

30

35
tim

e 
(s)

influenza |P| = 64

br-index
r-index(match-first)
r-index(locate-first)
2BWT(s=16)

0 2 4 6 8 10
allowed mismatches

0

5

10

15

20

25

tim
e 

(s)

influenza |P| = 32

br-index
r-index(match-first)
r-index(locate-first)
2BWT(s=16)

0 2 4 6 8 10
allowed mismatches

0

5

10

15

20

25

30

tim
e 

(s)

influenza |P| = 16

br-index
r-index(match-first)
r-index(locate-first)
2BWT(s=16)

Figure 1 The total computation times of seed-and-extend query for all the target patterns on
influenza with the number of allowed mismatches between 0 and 10. The 2BWT sometimes mistakenly
locates positions for unknown reasons, but the number of reported patterns is very close to that of
other indexes.

4.2 Experimental results373

The index sizes are shown in Table 3. The br-index is smaller than the 2BWT in many cases.374

Exceptionally, the br-index is larger when built on escherichia, where r/n is relatively large.375

The br-index is about 3 times larger than the r-index in all cases. This is expected because376

we store L, LR, PLCP , and the structures to compute φ−1 (in practice the r-index works377

with only φ).378

Figure 1 shows the computation times of seed-and-extend. As it can be seen, the br-index379

and the 2BWT yield curves with similar shape, though the br-index is an order of magnitude380

faster. The match-first algorithm we use on the r-index, instead, is sharply outperformed as381

soon as we allow a few mismatches, as expected. When the pattern is short, the approach382

manages to outperform the 2BWT, but still the br-index is considerably faster. The br-index383

is also faster than the locate-first algorithm on the r-index in all cases, and is robust to the384

increase of allowed mismatches when the pattern is long. The locate-first approach, instead,385

worsens significantly on short patterns, because in that case P2 has too many occurrences to386

verify.387

5 Conclusions388

We introduced the br-index, which supports the bi-directional extension of the currently389

searched pattern while efficiently locating all of its occurrences within O(r + rR) words, by390



Y. Arakawa, G. Navarro, and K. Sadakane 8:13

maintaining an SA sample and its offset to the current pattern, and determining the end of391

the locate area using the run-length compressed PLCP. In practice, the size of the br-index392

was observed to be around 3 times as large as that of the r-index [6], and comparable to that393

of the 2BWT [1], on repetitive datasets. Also, as an application of interleaving left-extension394

and right-extension, we tested the seed-and-extend query, which finds a pattern allowing395

some mismatches except in an internal part. The br-index is shown to sharply outperform396

the r-index on this query, and the gap is likely to grow when allowing more mismatches.397

Our work can be seen as a first step towards a fully-functional compressed suffix tree398

whose size is as close to O(r + rR) words as possible. The br-index can serve as a component399

of such a suffix tree, since we can compute child and weiner-link with it: these operations400

correspond to right-extension and left-extension, respectively. On the other hand, suffix-link401

and parent are not supported because they need bi-directional pattern contraction. These402

operations can be carried out with the representation of the suffix tree topology or the403

random access to LCP, both of which require some queries on it. From the perspective404

of the computation time, the former is more promising in practice [18], while the latter is405

guaranteed to use O(r log n
r ) words [6]. We wonder if the functionality can be supported406

in O(r + rR) words, or if another reasonable repetitiveness measure can be defined within407

which we can represent, for example, the compressed suffix tree topology.408

References409

1 Djamal Belazzougui and Fabio Cunial. Smaller fully-functional bidirectional BWT indexes. In410

International Symposium on String Processing and Information Retrieval, pages 42–59, 2020.411

2 Michael. Burrows and David J. Wheeler. A block sorting lossless data compression algorithm.412

Digital SRC Research Report, 1994.413

3 Paolo Ferragina and Giovanni Manzini. Indexing compressed text. Journal of the ACM,414

52(4):552–581, 2005.415

4 Paolo Ferragina, Giovanni Manzini, Veli Mäkinen, and Gonzalo Navarro. Compressed repres-416

entations of sequences and full-text indexes. ACM Transactions on Algorithms, 3(2):article 20,417

2007.418

5 Travis Gagie, Gonzalo Navarro, and Nicola Prezza. Optimal-time text indexing in BWT-runs419

bounded space. Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms,420

pages 1459–1477, 2018.421

6 Travis Gagie, Gonzalo Navarro, and Nicola Prezza. Fully functional suffix trees and optimal422

text searching in BWT-runs bounded space. Journal of the ACM, 67(1):1–54, 2020.423

7 Roberto Grossi, Ankur Gupta, and Jeffrey Scott Vitter. High-order entropy-compressed text424

indexes. In Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms, pages425

841–850, 2003.426

8 Dan Gusfield. Algorithms on Strings, Trees and Sequences: Computer Science and Computa-427

tional Biology. Cambridge University Press, 1997.428

9 Dominik Kempa and Tomasz Kociumaka. Resolution of the burrows-wheeler transform429

conjecture. In IEEE 61st Annual Symposium on Foundations of Computer Science, pages430

1002–1013, 2020.431

10 T. W. Lam, Ruiqiang Li, Alan Tam, Simon Wong, Edward Wu, and S. M. Yiu. High432

throughput short read alignment via bi-directional BWT. 2009 IEEE International Conference433

on Bioinformatics and Biomedicine, pages 31–36, 2009.434

11 Veli Mäkinen, Djamal Belazzougui, Fabio Cunial, and Alexandru I. Tomescu. Genome-Scale435

Algorithm Design. Cambridge University Press, 2015.436

12 Veli Mäkinen and Gonzalo Navarro. Succinct suffix arrays based on run-length encoding. In437

Annual Symposium on Combinatorial Pattern Matching, pages 45–56, 2005.438

CPM 2022



8:14 Bi-directional r-indexes

13 Veli Mäkinen, Gonzalo Navarro, Jouni Sirén, and Niko Välimäki. Storage and retrieval of439

highly repetitive sequence collections. Journal of Computational Biology, 17(3):281–308, 2010.440

14 Udi Manber and Gene Myers. Suffix arrays: a new method for on-line string searches. SIAM441

Journal on Computing, 22(5):935–948, 1993.442

15 Gonzalo Navarro. Wavelet trees for all. Journal of Discrete Algorithms, 25:2–20, 2014.443

16 Gonzalo Navarro. Document listing on repetitive collections with guaranteed performance.444

Theoretical Computer Science, 772:58–72, jun 2019.445

17 Gonzalo Navarro. Indexing highly repetitive string collections, part i. ACM Computing Surveys,446

54(2), 2021.447

18 Gonzalo Navarro and Alberto Ordóñez. Faster compressed suffix trees for repetitive collections.448

ACM Journal of Experimental Algorithmics, 21(1):article 1.8, 2016.449

19 Takaaki Nishimoto and Yasuo Tabei. Optimal-time queries on BWT-runs compressed indexes.450

In Leibniz International Proceedings in Informatics, pages 101:1–101:15, 2021.451

20 Daisuke Okanohara and Kunihiko Sadakane. Practical entropy-compressed rank/select dic-452

tionary. In Proceedings of the 9th Workshop on Algorithm Engineering and Experiments, pages453

60–70, 2007.454

21 Rajeev Raman, Venkatesh Raman, and Srinivasa Rao. Succinct indexable dictionaries with455

applications to encoding k-ary trees and multisets. In Proceedings of the thirteenth annual456

ACM-SIAM symposium on Discrete algorithms, pages 233–242, 2002.457

22 Kunihiko Sadakane. Compressed suffix trees with full functionality. Theory of Computing458

Systems, 41(4):589–607, 2007.459

23 Peter Weiner. Linear pattern matching algorithms. 14th Annual Symposium on Switching and460

Automata Theory, pages 1–11, 1973.461


	1 Introduction
	2 Preliminaries
	2.1 Basic notions
	2.2 Suffix array, Burrows-Wheeler transform, and LCP array
	2.3 Backward search
	2.4 Run-length compression of BWT and r-index

	3 Bi-directional r-index
	3.1 Left-extension and right-extension
	3.2 Determining the end of locate with run-length compressed PLCP
	3.3 Improving the extend time with wavelet tree

	4 Experiments
	4.1 Experimental setup
	4.2 Experimental results

	5 Conclusions

