
Encodings for Range Majority Queries ?

Gonzalo Navarro1 and Sharma V. Thankachan2

1 Dept. of Computer Science, Univ. of Chile. gnavarro@dcc.uchile.cl
2 Cheriton School of Computer Science, Univ. of Waterloo. thanks@uwaterloo.ca

Abstract. We face the problem of designing a data structure that can
report the majority within any range of an array A[1, n], without storing
A. We show that Ω(n) bits are necessary for such a data structure, and
design a structure using O(n log∗ n) bits that answers majority queries
in O(logn) time. We extend our results to τ -majorities.

1 Introduction

Given an array A[1, n] of n numbers or arbitrary elements, an array range query
problem asks to build a data structure over A, such that whenever an interval
[i, j] with 1 ≤ i ≤ j ≤ n comes as an input, we can efficiently answer queries on
the elements in A[i, j] [16]. Many array range queries arise naturally as subprob-
lems of combinatorial problems, and are also of direct interest in data mining
applications. Well-known examples are range maximum queries (RMQs, which
seek the largest element in A[i, j]) [7] and top-k queries (which report the k
largest elements in A[i, j]) [3].

An encoding for array range queries is a data structure that answers the
queries without accessing A. This is useful when the values of A are not of
interest themselves, and thus A may be deleted, potentially saving much space.
It is also useful when array A does not fit in main memory, so it can be kept
in secondary storage while a much smaller encoding can be maintained in main
memory, speeding up queries. In this setting, instead of reporting an element
in A, we only report a position in A where it occurs. Otherwise in many cases
the encodings would be able to reconstruct A, and thus could not be small. As
examples of encodings, RMQs can be solved in constant time using just 2n+o(n)
bits [7], and top-k queries can be solved in O(k) time using O(n log k) bits [10].

Frequency based array range queries, in particular variants of heavy-hitter-
like problems, are very popular in data mining. Queries such as finding the most
frequent element in a range (known as the range mode query) are known to be
harder than problems like RMQs. For range mode queries, known data structures
with constant query time require nearly quadratic space [14, 13]. The best known
linear space solution requires O(

√
n/ log n) query time [4], and conditional lower

bounds in that paper show that a significant improvement is highly unlikely.

? Funded in part by Millennium Nucleus Information and Coordination in Networks
ICM/FIC P10-024F, Chile.

Still, efficient solutions exist for some useful variations of the range mode
problem. An example are approximate range mode queries, where we are required
to output an element whose number of occurrences in A[i, j] is at least 1/(1 + ε)
times the number of occurrences of the mode in A[i, j] [9, 2].

In this paper we focus on a popular variation of range mode queries called
range majority queries, which ask to report the range mode in A[i, j] only if
it occurs more than half of the times in A[i, j]. We also consider an extension
where any element occurring a fraction larger than τ of the times in A[i, j] can
be reported. More formally, a majority is defined in the following way.

Definition 1. A majority in an array B[1,m], if it exists, is the element that
occurs more than m/2 times in B. Given a real number 0 < τ ≤ 1/2, a τ -
majority in an array B[1,m], if it exists, is any element that occurs more than
τm times in B. Thus a majority is a τ -majority for τ = 1/2.

The problem we address in this paper can be stated as follows.

Definition 2. Given an array A[1, n], a range majority query gives an interval
[i, j] and must return whether A[i, j] has a majority, and if it has, also return
any position i ≤ k ≤ j where the majority of A[i, j] occurs. A range τ -majority
query is defined analogously, returning any position of any τ -majority in A[i, j].

Range majority queries can be answered in constant time by maintaining a
linear space (i.e., O(n) words or O(n log n) bits) data structure [6]. Similarly,
range τ -majority queries can be solved in time O(1/τ) and linear space if τ is
fixed at construction time, or O(n log log n) space (i.e., O(n log n log log n) bits)
if τ is given at query time [1].

In this paper, we focus for the first time on encodings for range majority
(and τ -majority) queries. In this scenario, a valid question is how much space is
necessary for an encoding that correctly answers such queries (where we recall
that A itself is not available at query time). We easily show in Section 2 that
any such encoding needs Ω(n) bits, which reduces to Ω(τ log(1/τ)n) bits for τ -
majorities. Our main result is that it is possible to solve range majority queries
within logarithmic time and almost linear-bit space. We achieve O(n log log n)
bits in Section 3, and our final result in Section 4:

Theorem 1. There exists an encoding using O(n log∗ n) bits answering range
majority queries in time O(log n).

In Section 5 we extend the results to τ -majorities, where the time and space
obtained for range majority queries are divided by τ . Finally, in Section 6 we
show how to build our structures in O(n log n) time.

Related work. Range τ -majority queries were introduced by Karpinski and
Nekrich [11], who presented an O(n/τ)-words structure with O((1/τ)(log logn)2)
query time. Durocher et al. [6] improved their space and query time toO(n log(1/τ))
and O(1/τ), respectively. The currently best result is by Belazzougui et al. [1],

where the space is O(n) words and the query time is O(1/τ). All these results
assume τ is fixed during the construction time. For the case where τ is also a
part of the query input, a data structure of O(n log n) words was proposed by
Chan et al. [5]. Very recently, Belazzougui et al. [1] brought down the space oc-
cupancy to O(n log logn) words. The query time is O(1/τ) in all cases. All these
solutions include a representation of A (sometimes aiming at compressing it [8,
1]), thus they are not encodings. As far as we know, ours is the first encoding
for this problem.

2 Lower Bounds

We first derive a couple of simple lower bounds on the minimum size our encod-
ings may have. First, Ω(n) bits are needed to answer majority queries.

Lemma 1. Any encoding for range majority queries requires bn/2c bits, even
for an array with 2 distinct symbols.

Proof. We can encode any bitmap C[1, n] using an encoding for range majorities
on an array A[1, 2n], hence establishing the result. Set A[2k+ 1] = 0 for all valid
k values, and A[2k] = C[k]. For example, let C[1, 3] = 〈0 1 1〉, then A[1, 6] =
〈0 0 0 1 0 1〉. Then, if C[k] = 0 then A[2k − 1, 2k] has a majority, whereas if
C[k] = 1 it does not. ut

Second, we show that τ -majority queries require Ω(τ log(1/τ)n) bits.

Lemma 2. Any encoding for range τ -majority queries requires n lgd1/τe/(1 +
d1/τe) > (τ lg(1/τ)/2)n bits.

Proof. Let c = d1/τe. We can encode any array C[1, n] over alphabet [1, c]
using an encoding for range majorities on an array A[1, (c+ 1)n]. In each bucket
A[(c+ 1)k+ 1, (c+ 1)(k+ 1)] we write the values 〈1, 2, 3, . . . , c〉, except that the
value C[k + 1] is written twice. Therefore, A[(c + 1)k + 1, (c + 1)(k + 1)] has
only one τ -majority, precisely at offset C[k + 1] within the bucket. Therefore,
the encoding for τ -majorities in A[1, (c+ 1)n] requires at least n lg c bits, as any
possible array C can be reconstructed from it. ut

3 An O(n log logn) Bits Encoding for Range Majorities

In this section we obtain an encoding using O(n log log n) bits and solving ma-
jority queries in O(log n) time. In the next section we reduce the space.

Consider each distinct symbol x appearing in A[1, n]. Now consider the set
of segments Sx within [1, n] where x is a majority (this includes, in particular,
all the segments [k, k] where A[k] = x). Segments in Sx may overlap each other.
For example, if A[1, 7] = 〈1 3 2 3 3 1 1〉, then

S1 = {[1, 1], [6, 6], [7, 7], [6, 7], [5, 7]},
S2 = {[3, 3]},
S3 = {[2, 2], [4, 4], [5, 5], [4, 5], [2, 4], [3, 5], [4, 6], [2, 5], [1, 5], [2, 6]}.

Now let Ax[1, n] be a bitmap such that Ax[k] = 1 iff position k belongs to
some segment in Sx. In our example, A1 = 〈1 0 0 0 1 1 1〉, A2 = 〈0 0 1 0 0 0 0〉,
and A3 = 〈1 1 1 1 1 1 0〉.

We recall operation rank(B, i) in bitmaps B[1,m], which returns the number
of 1s in B[1, i]. Operation rank can be implemented using o(m) bits on top of
B and in constant time [12].

We define a second bitmap related to x, Mx, so that if Ax[k] = 1, then
Mx[rank(Ax, k)] = 1 iff A[k] = x. In our example, M1 = 〈1 0 1 1〉, M2 = 〈1〉,
and M3 = 〈0 1 0 1 1 0〉. Then the following result is not difficult to prove.

Lemma 3. An element x is a majority in A[i, j] iff Ax[k] = 1 for all i ≤ k ≤ j,
and 1 is a majority in Mx[rank(Ax, i), rank(Ax, j)].

Proof. If x is a majority in A[i, j], then by definition [i, j] ∈ Sx, and therefore all
the positions k ∈ [i, j] are set to 1 in Ax. Therefore, the whole segment Ax[i, j] is
mapped bijectively to Mx[rank(Ax, i), rank(Ax, j)], which is of the same length.
Finally, the number of occurrences of x in A[i, j] is the number of occurrences
of 1 in Mx[rank(Ax, i), rank(Ax, j)], which establishes the result.

Conversely, if Ax[k] = 1 for all i ≤ k ≤ j, then A[i, j] is bijectively mapped to
Mx[rank(Ax, i), rank(Ax, j)], and the 1s in this range correspond one to one with
occurrences of x inA[i, j]. Thus, if 1 is a majority inMx[rank(Ax, i), rank(Ax, j)],
then x is a majority in A[i, j]. ut

In our example, 1 is a majority in A[5, 7], and it holds A1[5, 7] = 〈1 1 1〉 and
M1[rank(A1, 5), rank(A1, 7)] = M1[2, 4] = 〈0 1 1〉, where 1 is a majority. Thus,
with Ax and Mx we can determine whether x is a majority in any range.

Lemma 4. It is sufficient to have rank-enabled bitmaps Ax and Mx to deter-
mine, in constant time, whether x is a majority in any A[i, j].

Proof. We use Lemma 3. We compute i′ = rank(Ax, i) and j′ = rank(Ax, j). If
j′− i′ 6= j− i, then Ax[k] = 0 for some i ≤ k ≤ j and thus x is not a majority in
A[i, j]. Otherwise, we find out whether 1 is a majority in Mx[i′, j′], by checking
whether rank(Mx, j

′)− rank(Mx, i
′ − 1) > (j′ − i′ + 1)/2. ut

To find out any position i ≤ k ≤ j where A[k] = x, we need operation
select(B, j), which gives the position of the jth 1 in a bitmap B[1,m]. This
operation can also be solved in constant time with o(m) bits on top of B [12].
Then, for example, if x is a majority in A[i, j], its first occurrence in A[i, j] is
i− i′ + select(Mx, rank(Mx, i

′ − 1) + 1). With a similar formula we can retrieve
any of the positions of x in A[i, j].

We cannot afford to store all the bitmaps Ax and Mx for all x, however. The
next lemma is the first step to reduce the total space to slightly superlinear.

Lemma 5. Any position A[k] = x induces at most five 1s in Ax.

Proof. Consider a process where we start with A[k] =⊥ for all k, and set the
values A[k] = x for increasing positions k (left to right). Setting A[k] = x induces

a segment [k, k] ∈ Sx, which may induce a new 1 in Ax. It might also induce
some segments of the form [i, k] ∈ Sx, for i < k, depending on previous values.
If x is a majority in [i, k] with A[k] = x and it was not a majority in [i, k] with
A[k] =⊥, then x occurs b(k− i+ 1)/2c times in A[i, k− 1]. If A[k− 1] 6= x, then
x also occurs b(k − i + 1)/2c > (k − i − 1)/2 times in A[i, k − 2], and thus it
is a majority in A[i, k − 2]. Thus all the range Ax[i, k − 2] was already 1s and
setting A[k] = x has only induced two new 1s, Ax[k − 1] = Ax[k] = 1. If, on the
other hand, A[k − 1] = x, let l be the smallest value such that [l, k − 1] ∈ Sx.
Setting A[k] = x will add new 1s to Ax only if i < l. By the definition of l, it
must hold that A[l − 1] 6= x and A[l − 2] 6= x, that x occurs b(k − l + 1)/2c
times in A[l, k − 1], and that b(k − l + 1)/2c > (k − l)/2. That is, k − l must
be odd and therefore b(k − l + 1)/2c = (k − l + 1)/2. Now, this implies that x
occurs b(k− l+ 1)/2c+ 1 = (k− l+ 3)/2 times in A[l− 1, k], so x is a majority
in A[l − 1, k] and setting A[k] = x could induce a new 1 in Ax[l − 1] = 1. On
the other hand, x is not a majority in A[l − 2, k]. To be a majority in A[i, k]
with i < l− 2, x has to be a majority in A[i, l− 3], and therefore only positions
Ax[l − 2] = Ax[l − 1] = 1 could be new 1s induced by A[k] = x.

The consideration of the new induced segments of the form [i, k + 1] ∈ Sx is
simpler, because we know that at this point A[k + 1] =⊥. Therefore, if x is a
majority in A[i, k+ 1], it occurs more than (k− i+ 2)/2 times in A[i, k+ 1], and
thus it occurs more than (k− i)/2 times in A[i, k− 1], thus it is also a majority
in A[i, k − 1]. Therefore the only new 1 that can be added is Ax[k + 1] = 1.

Finally, we consider the new induced segments of the form [i, j] ∈ Sx, with
i < k and j > k + 1. We know that at this point A[k + 1, j] =⊥. Therefore, if
x is a majority in A[i, j], it occurs more than (j − i+ 1)/2 times in A[i, j], and
thus it occurred more than (j − i− 1)/2 times in A[i, j] before setting A[k] = x.
Thus x occurred more than (j − i − 1)/2 times in A[i, j − 2] and thus it was
already a majority in A[i, j − 2]. Therefore the only new 1s that can be added
by setting A[k] = x are Ax[j − 1] = Ax[j] = 1.

Overall, each new value A[k] = x may induce up to five new 1s in Ax. ut

The lemma shows that all the Ax bitmaps add up to O(n) 1s, and the lengths
of the Mx bitmaps adds up to O(n) as well (recall that Mx has one position per
1 in Ax). Therefore, we can store all the Mx bitmaps within O(n) bits of space.
We cannot, however, store all the Ax bitmaps, as they may add up to O(n2) 0s
(note there can be O(n) distinct symbols x).

Instead, we will coalesce different bitmaps Ax into one, as long as their areas
of contiguous 1s do not overlap or touch (that is, there must be at least one
0 between any two areas of 1s of two coalesced bitmaps). The bitmaps Mx

are merged accordingly, in the same order of the areas. In our example, we
can coalesce A1 and A2 into A12 = 〈1 0 1 0 1 1 1〉, with the corresponding
M12 = 〈1 1 0 1 1〉.

Then, at query time, we check for the area [i, j] of each coalesced bitmap
using Lemma 4. We cannot confuse the areas of different symbols x because we
force that there is at least one 0 between any two areas. If we find one majority
in one coalesced bitmap, we know that there is a majority and can spot all of

its occurrences (or one, as the problem is defined), even if we cannot tell which
particular symbol x is the majority.

This scheme will work well if we obtain just a few coalesced bitmaps overall.
Next we show how to obtain only O(log n) coalesced bitmaps.

Lemma 6. At most 2 lg n distinct values of x can have Ax[k] = 1 for a given k.

Proof. First, A[k] = x is a majority in A[k, k], thus Ax[k] = 1. Now consider
any other element x′ 6= x such that Ax′ [k] = 1. This means that x′ is a majority
in some [i, j] that contains k. Since A[k] 6= x′, it must be that x′ is a majority
in [i, k] or in [k, j] (or in both). We say x′ is a left-majority in the first case
and a right-majority in the second. Let us call y1, y2, . . . the x′ values that are
left-majorities, and i1, i2, . . . the left endpoints of their segments (if they are
majorities in several segments covering k, we choose one arbitrarily). Similarly,
let z1, z2, . . . be the x′ values that are right-majorities, and j1, j2, . . . the right
endpoints of their segments. Assume the left-majorities are sorted by decreasing
values of ir and the right-majorities are sorted by increasing values of jr. If a
same value x′ appears in both lists, we arbitrarily remove one of them. As an
exception, we will start both lists with y0 = z0 = x, with i0 = j0 = k.

It is easy to see by induction that yr must appear at least 2r times in the
interval [ir, k]. This clearly holds for y0 = x. Now, by the inductive hypothe-
sis, values y0, y1, . . . , yr−1 appear at least 20, 21, . . . , 2r−1 times within [ir−1, k]
(which contains all the intervals), adding up to 2r−1 occurrences. In order to be
a left-majority, element yr must appear at least 2r times in [ir, k], to outweight
all the 2r − 1 occurrences of the previous symbols. The case of right-majorities
is analogous. This shows that there cannot be more than lg n left-majorities and
lg n right-majorities. ut

In the following it will be useful to define Cx as the set of maximal contiguous
areas of 1s in Ax. That is, Cx is obtained by merging all the segments of Sx
that touch or overlap. In our example, C1 = {[1, 1], [5, 7]}, C2 = {[3, 3]}, and
C3 = {[1, 6]}. Note that segments of Cx do not overlap, unlike those of Sx. Since
a segment of Cx covers a position k iff some segment of Sx covers position k (and
iff Ax[k] = 1), it follows by Lemma 6 that any position is covered by at most 2 lg n
segments of Cx of distinct symbols x. Clearly, a pair of consecutive positions is
covered by at most 4 lg n such segments (this is a crude upper bound).

We obtain O(log n) coalesced bitmaps as follows. We take the union of all
the sets Cx of all the symbols x and sort the segments by their starting points.
Then we start filling coalesced bitmaps. We check if the current segment can
be added to an existing bitmap without producing overlaps (and leaving a 0 in
between). If we can, we choose any appropriate bitmap, otherwise we start a
new bitmap. If at some point we need more than 4 lg n bitmaps, it is because all
the last segments of the current 4 lg n bitmaps overlap the starting point of the
current segment or the previous position, a contradiction.

In our example, we take C1 ∪ C2 ∪ C3 = {[1, 1], [1, 6], [3, 3], [5, 7]}, and the
process produces precisely the coalesced bitmaps A12, corresponding to the set
{[1, 1], [3, 3], [5, 7]} and A3, corresponding to {[1, 6]}. Note that in general the

coalesced bitmaps may not correspond to the union of complete original bitmaps
Ax, but areas of a bitmap Ax may end up in different coalesced bitmaps.

Therefore, the coalescing process produces O(log n) bitmaps. Consequently,
we obtain O(log n) query time by simply checking the coalesced bitmaps one by
one using Lemma 4.

Finally, representing the O(log n) coalesced bitvectors, which contain O(n)
1s and have total length O(n log n), requires O(n log log n) bits if we use a com-
pressed bitmap representation [15] that still offers constant-time rank and select
queries. This concludes the first part of our result.

4 An O(n log∗ n) Bits Encoding for Range Majorities

We introduce a different representation of the coalesced bitmaps that allows us
storing them in O(n log∗ n) bits, while retaining all the mechanism and query
time complexity. We will distinguish segments of Cx by their lengths, separating
lengths by ranges between 2` and 2`+1 − 1, for any `. In the process of creating
the coalesced bitmaps described in the previous section, we will have separate
coalesced bitmaps for inserting segments within each range of lengths; these will
be called bitmaps of level `. There may be several bitmaps of the same level.
It is important that, even with this restriction, our coalescing process will still
generate O(log n) bitmaps, because only O(1) coalesced bitmaps of each level `
will be generated.

Lemma 7. There can be at most 8 segments of any Cx, of length between 2`

and 2`+1 − 1, covering a given position k, for any `.

Proof. Any such segment must be contained in the area A[k − 2`+1, k + 2`+1],
and if x is a majority in it, it must appear more than 2`−1 times. There can be
only 8 different values of x appearing 2`−1 times in an area of length 2`+2. ut

To represent any coalesced bitmap B[1, n], we cut the universe [1, n] into
chunks of length b = lg n. We store a string K of length n/ lg n, where for each
position a 0 indicates that the chunk is all 0s, a 1 that the chunk is all 1s, and
a 2 indicates that there are 0s and 1s in the chunk. We store explicitly only the
chunks with value 2, concatenated one after the other. Let B1 be a bitmap such
that B1[k] = 1 iff K[k] = 1, B2 such that B2[k] = 1 iff K[k] = 2, and C the
bitmap where the explicit chunks are concatenated. Then it holds

rank(B, i) = b · rank(B1, b(i− 1)/bc) +

rank(C, b · rank(B2, bi/bc) + [if B2[1 + bi/bc] = 1 then i mod b else 0]),

which takes constant time. Operation select(B, j) can be done by binary search
on rank, which takes O(log n) time but has to be done once per query, hence
retaining the O(log n) query time. Note that K is not explicitly stored, but it is
represented with B1 and B2.

In our example, we would have three coalesced bitmaps: B0 = 〈1 0 1 0 0 0 0〉,
of level ` = 0, for the segments [1, 1] and [3, 3]; B1 = 〈0 0 0 0 1 1 1〉, of level

` = 1, for the segment [5, 7]; and B2 = 〈1 1 1 1 1 1 0〉, of level ` = 2, for the
segment [1, 6]. Assume b = 2. Then, for B0 we would have K0 = 〈2 2 0 0〉,
B0

1 = 〈0 0 0 0〉, B0
2 = 〈1 1 0 0〉, and C0 = 〈1 0 1 0〉. For B1 we would have

K1 = 〈0 0 1 1〉, B1
1 = 〈0 0 1 1〉, B1

2 = 〈0 0 0 0〉, and C1 = 〈〉. Finally, for B2 we
would have K2 = 〈1 1 1 0〉, B2

1 = 〈1 1 1 0〉, B2
2 = 〈0 0 0 0〉, and C2 = 〈〉.

Consider a fixed bitmap B of some level `, which has been formed by adding
n′ segments. We store at most 2n′ lg n bits in the explicit chunks of C, as there are
only n′ transitions from 0 to 1 and n′ from 1 to 0 in B. For any level ` ≥ lg lg n,
there are at least n′ lg n 1s, because the segments have length at least 2` ≥ lg n.
Therefore, in those levels, the number of bits stored in C bitmaps is of the same
order of the total number of 1s in the corresponding bitmaps B. Thus we store
only O(n) bits over all the chunks of all coalesced bitmaps of levels ` ≥ lg lg n.
As for the sequences B1 and B2 describing the chunks, they are of length n/ lg n,
so they add up to O(n) bits over all the possible O(log n) levels.

Now, for the levels up to lg lg n, we use chunk size b = lg lg n, storing a
sequence of length n/ lg lg n. The explicitly stored chunks C add up to n′ lg lg n
bits, and for any level ` ≥ lg lg lg n, the total number of 1s is over n′ lg lg n, thus
the total number of stored bits is of the same order of the 1s. The sequences B1

and B2 describing the chunks add up to O(n), because there are only O(log log n)
levels where this is applied.

We continue with the remaining (lowest) lg lg lg n levels, and so on. Then the
total number of stored bits is O(n log∗ n), dominated by the sequences B1 and
B2. This proves Theorem 1.

5 Extension to τ -Majorities

We first consider the case where τ is fixed at the time the data structure is built,
and then move on to the case of τ given at query time. For lack of space we only
sketch the results, which follow relatively easily from our results on majorities.
First, Lemmas 3 and 4 hold verbatim if we define Sx as the segments where x is a
τ -majority. Lemma 5 can be extended to this case, so that any position A[k] = x
induces O(1/τ) 1s in Ax. As a consequence, there are O(n/τ) 1s in all the Ax
bitmaps. Lemma 6 can also be extended, so thatO(log1/(1−τ) n) = O((1/τ) log n)
distinct values of x can have Ax[k] = 1 for a given k. Therefore, the coalescing
process produces O((1/τ) log n) bitmaps, and this is the query time. Lemma 7
can be extended similarly, so that there can be only O(1/τ) coalesced bitmaps
of any given level, and there are lg n levels. Thus the mechanism of Section 4 can
be applied verbatim, so that the total number of bits used is O((n/τ) log∗ n).
Therefore we obtain the following result.

Theorem 2. For a fixed threshold 0 < τ ≤ 1/2, there exists an encoding using
O((n/τ) log∗ n) bits answering range τ -majority queries in time O((1/τ) log n).

In order to allow τ to be specified at query time, we build the encoding of
Theorem 2 for values τ = 1/2, 1/4, 1/8, . . . , 1/2dlg 1/µe, where µ is the minimum
τ value to support. Then, given a τ -majority query, we run the query on the

structure built for τ ′ = 1/2dlg 1/τe. Note that τ/2 < τ ′ ≤ τ , therefore the query
time is O((1/τ ′) log n) = O((1/τ) log n). For each possible answer to the τ ′-
majority query, we use rank on the coalesced Mx bitmaps to find out whether
the answer is actually a τ -majority. This verification does not change the worst-
case time complexity. As for the space, the factor multiplying O(n log∗ n) is
2 + 4 + 8 + . . .+ 2dlg 1/µe = O(1/µ). Therefore we obtain the following result.

Theorem 3. For a fixed threshold 0 < µ ≤ 1/2, there exists an encoding using
O((n/µ) log∗ n) bits answering range τ -majority queries, for any µ ≤ τ ≤ 1/2
given at query time, in O((1/τ) log n) time.

6 Construction

The most complex part of the construction of our encoding is to build the sets
Cx; once these are built, the construction of the structure of Section 4 can be
easily carried out in O(n log∗ n) additional time.

We separate the set of increasing positions Px where x appears in A, for
each x. The Px sets are easily built in O(n log n) time. Now we build Cx from
each Px using a divide and conquer approach, in O(|Px| log |Px|) time, for a total
construction time of O(n log n).

We pick the middle element k ∈ Px and compute in linear time the segment
[l, r] ∈ Cx that contains k. To compute l, we find the leftmost element pl ∈ Px
such that x is a majority in [pl, kr], for some kr ∈ Px with kr ≥ k.

To find pl, we note that it must hold (w(pl, k− 1) +w(k, kr))/(kr− pl + 1) >
1/2, where w(i, j) is the number of occurrences of x in A[i, j]. The condition
is equivalent to 2w(pl, k − 1) + pl − 1 > kr − 2w(k, kr). Thus we compute in
linear time the minimum value v of kr − 2w(k, kr) over all those kr ∈ Px to the
right of k, and then traverse all those pl ∈ Px to the left of k, left to right, to
find the first one that satisfies 2w(pl, k − 1) + pl + 1 > v, also in linear time.
Once we find the proper pl and its corresponding kr, the starting position of
the segment is slightly adjusted to the left of pl, to be the smallest value that
satisfies w(pl, kr)/(kr − l+ 1) > 1/2, that is, l satisfies l > −2w(pl, kr) + kr + 1,
that is, l = kr − 2w(pl, kr) + 2.

Once pr and then r are computed analogously, we insert [l, r] into Cx and
continue recursively with the elements of Px to the left of pl and to the right of
pr. Upon return, it might be necessary to join [l, r] with the rightmost segment
of the left part and/or with the leftmost segment of the right part, in constant
time. The total construction time is T (n) = O(n) + 2T (n/2) = O(n log n). The
construction for τ -majorities is similar, although for τ given at query time we
must build O(log(1/µ)) similar structures.

7 Final Remarks

We have obtained the first result about encodings for answering range majority
queries, that is, data structures that use less space than the data and do not need

to access it. We have proved that Ω(n) bits are necessary for any such encoding,
and have presented a particular encoding that uses O(n log∗ n) bits and O(log n)
time. It can be built in O(n log n) time. An open question is whether it is possible
to reach O(n) bits of space and/or constant query time.

We have also extended our result to range τ -majorities, where we have
proved a lower bound of O(τ log(1/τ)n) bits and presented an encoding using
O((n/τ) log∗ n) bits and O((1/τ) log n) query time. An intriguing aspect of this
result is that our lower bound suggests that τ -majorities require less space for
smaller τ , whereas our upper bound uses more space (and time) for smaller τ ,
in line with previous work on data structures that are not encodings. It is an
interesting problem to determine which is the case.

References

1. D. Belazzougui, T. Gagie, and G. Navarro. Better space bounds for parameterized
range majority and minority. In WADS, pages 121–132, 2013.

2. P. Bose, E. Kranakis, P. Morin, and Y. Tang. Approximate range mode and range
median queries. In STACS, pages 377–388, 2005.

3. G. Brodal, R. Fagerberg, M. Greve, and A. López-Ortiz. Online sorted range
reporting. In ISAAC, pages 173–182, 2009.

4. T. Chan, S. Durocher, K. Larsen, J. Morrison, and B. Wilkinson. Linear-space
data structures for range mode query in arrays. In STACS, pages 290–301, 2012.

5. T. Chan, S. Durocher, M. Skala, and B. Wilkinson. Linear-space data structures
for range minority query in arrays. In SWAT, pages 295–306, 2012.

6. S. Durocher, M. He, I. Munro, P. Nicholson, and M. Skala. Range majority in
constant time and linear space. Inf. Comput., 222:169–179, 2013.

7. J. Fischer and V. Heun. Space-efficient preprocessing schemes for range minimum
queries on static arrays. SIAM J. Comput., 40(2):465–492, 2011.

8. T. Gagie, M. He, I. Munro, and P. Nicholson. Finding frequent elements in com-
pressed 2d arrays and strings. In SPIRE, pages 295–300, 2011.

9. M. Greve, A. Jørgensen, K. D. Larsen, and J. Truelsen. Cell probe lower bounds
and approximations for range mode. In ICALP, pages 605–616, 2010.

10. R. Grossi, J. Iacono, G. Navarro, R. Raman, and S. Rao Satti. Encodings for range
selection and top-k queries. In ESA, pages 553–564, 2013.

11. M. Karpinski and Y. Nekrich. Searching for frequent colors in rectangles. In CCCG,
2008.

12. I. Munro. Tables. In FSTTCS, pages 37–42, 1996.
13. H. Petersen. Improved bounds for range mode and range median queries. In

SOFSEM, pages 418–423, 2008.
14. H. Petersen and S. Grabowski. Range mode and range median queries in constant

time and sub-quadratic space. Inf. Process. Lett., 109(4):225–228, 2009.
15. R. Raman, V. Raman, and S. Srinivasa Rao. Succinct indexable dictionaries with

applications to encoding k-ary trees, prefix sums and multisets. ACM Trans. Alg.,
3(4):article 43, 2007.

16. M. Skala. Array range queries. In Space-Efficient Data Structures, Streams, and
Algorithms, pages 333–350, 2013.

