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Abstract. We introduce the first self-index based on the Lempel-Ziv
1977 compression format (LZ77). It is particularly competitive for highly
repetitive text collections such as sequence databases of genomes of re-
lated species, software repositories, versioned document collections, and
temporal text databases. Such collections are extremely compressible but
classical self-indexes fail to capture that source of compressibility. Our
self-index takes in practice a few times the space of the text compressed
with LZ77 (as little as 2.5 times), extracts 1-2 million characters of the
text per second, and finds patterns at a rate of 10—50 microseconds per
occurrence. It is smaller (up to one half) than the best current self-index
for repetitive collections, and faster in many cases.

1 Introduction and Related Work

Self-indexes [26] are data structures that represent a text collection in com-
pressed form, in such a way that not only random access to the text is supported,
but also indexed pattern matching. Invented in the past decade, they have been
enormously successful to drastically reduce the space burden posed by general
text indexes such as suffix trees or arrays. Their compression effectiveness is usu-
ally analyzed under the k-th order entropy model [21]: Hy(T) is the k-th order
entropy of text T', a lower bound to the bits-per-symbol compression achievable
by any statistical compressor that models symbol probabilities as a function of
the k symbols preceding it in the text. There exist self-indexes able to represent
a text Ty, over alphabet [1, 0], within nHy(T') 4+ o(nlog o) bits of space for any
k < alog, n and constant o < 1 [10,7].

This k-th order entropy model is adequate for many practical text collections.
However, it is not a realistic lower bound model for a kind of collections that we
call highly repetitive. This is formed by sets of strings that are mostly near-copies
of each other. For example, versioned document collections store all the history
of modifications of the documents. Most versions consist of minor edits on a
previous version. Good examples are the Wikipedia database and the Internet
archive. Another example are software repositories, which store all the versioning
history of software pieces. Again, except for major releases, most versions are
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minor edits of previous ones. In this case the versioning has a tree structure more
than a linear sequence of versions. Yet another example comes from bioinformat-
ics. Given the sharply decreasing sequencing costs, large sequence databases of
individuals of the same or closely related species are appearing. The genomes
of two humans, for example, share 99.9% to 99.99% of their sequence. No clear
structure such as a versioning tree is apparent in the general case.

If one concatenates two identical texts, the statistical structure of the con-
catenation is almost the same as that of the pieces, and thus the k-th order
entropy does not change. As a consequence, some indexes that are exactly tai-
lored to the k-th order entropy model [10, 7] are insensitive to the repetitiveness
of the text. Mékinen et al. [32,20] found that even the self-indexes that can
compress beyond the k-th order entropy model [31,25] failed to capture much
of the repetitiveness of such text collections.

Note that we are not aiming simply at representing the text collections to offer
extraction of individual documents. This is relatively simple as it is a matter of
encoding the edits with respect to some close sampled version; more sophisticated
techniques have been however proposed for this goal [17,18,16]. Our aim is
more ambitious: self-indexing the collection means providing not only access
but indexed searching, just as if the text was available in plain form. Other
restricted goals such as compressing the inverted index (but not the text) on
natural-language text collections [12] or indexing text g-grams and thus fixing
the pattern length in advance [5] have been pursued as well.

Miékinen et al. [32, 20] demonstrated that repetitiveness in the text collections
translates into runs of equal letters in its Burrows-Wheeler transform [4] or
runs of successive values in the ¥ function [11]. Based on this property they
engineered variants of FM-indexes [7] and Compressed Suffix Arrays (CSAs)
[31] that take advantage of repetitiveness. Their best structure, the Run-Length
CSA (RLCSA) still stands as the best self-index for repetitive collections, despite
of some preliminary attempts of self-indexing based on grammar compression [5].

Still, Méakinen et al. showed that their new self-indexes were very far (by a
factor of 10) from the space achievable by a compressor based on the Lempel-Ziv
1977 format (LZ77) [33]. They showed that the runs model is intrinsically inferior
to the LZ77 model to capture repetitions. The LZ77 compressor is particularly
able to capture repetitiveness, as it parses the text into consecutive maximal
phrases so that each phrase appears earlier in the text. A self-index based on
LZ77 was advocated as a very promising alternative approach to the problem.

Designing a self-index based on LZ77 is challenging. Even accessing LZ77-
compressed text at random is a difficult problem, which we partially solved [16]
with the design of a variant called LZ-End, which compresses only slightly less
and gives some time guarantees for the access time. There exists an early the-
oretical proposal for LZ77-based indexing by Kérkkéinen and Ukkonen [14,13],
but it requires to have the text in plain form and has never been implemented.
Although it guarantees an index whose size is of the same order of the LZ77
compressed text, the constant factors are too large to be practical. Nevertheless,
that was the first general compressed index in the literature and is the prede-



cessor of all the Lempel-Ziv indexes that followed [25, 6, 30]. These indexes have
used variants of the LZ78 compression format [34], which is more tractable but
still too weak to capture high repetitiveness [32].

In this paper we face the challenge of designing the first self-index based on
LZ77 compression. Our self-index can be seen as a modern variant of Karkkainen
and Ukkonen’s LZ77 index, which solves the problem of not having the text
at hand and also makes use of recent compressed data structures. This is not
trivial at all, and involves designing new solutions to some subproblems where
the original solution [14] was too space-consuming. Some of the solutions might
have independent interest.

The bounds obtained by our index are summarized in the following theorem.

Theorem 1. Let 11, be a text over alphabet [1,0], parsed into n’ phrases by
the LZ77 or LZ-End parsing. Then there exists an index occupying 2n'logn +
n'logn’ + 5n'logo + O(n') + o(n) bits, and able to locate the occ occurrences of
a pattern p1 m in T in time O(m?h + (m + occ) logn’), where h is the height of
the parsing (see Def. 3). Extracting any £ symbols from T takes time O(Lh) on
LZ77 and O(L+h) on LZ-End. The space term o(n) can be removed at the price
of multiplying time complexities by O(log ).

As the output of the Lempel-Ziv compressor has n'(2logn + log o) bits, it
follows that the index is asymptotically at most twice the size of the compressed
text (for logo = o(logn); 3 times otherwise).

In comparison, the time complexity of RLCSA is O(mlogn + occlog* ™ n),
that is, it depends less sharply on m but takes more time per occurrence reported.

We implemented our self-index over LZ77 and LZ-End parsings, and com-
pared it with the state of the art on a number of real-life repetitive collections
consisting of Wikipedia versions, versions of public software, periodic publica-
tions, and DNA sequence collections. We have left a public repository with those
repetitive collections in http://pizzachili.dcc.uchile.cl/repcorpus.html,
so that standardized comparisons are possible. Our implementations and that of
the RLCSA are also available in there.

Our experiments show that in practice the smallest-space variant of our index
takes 2.5-4.0 times the space of a LZ77-based encoding, it can extract 1-2 million
characters per second, and locate each occurrence of a pattern of length 10 in
10-50 microseconds. Compared to the state of the art (RLCSA), our self-index
always takes less space, less than a half on our DNA and Wikipedia corpus.
Searching for short patterns is faster than on the RLCSA. On longer patterns
our index offers competitive space/time trade-offs.

2 Direct Access to LZ-Compressed Texts

Let us first recall the classical LZ77 parsing [33], as well as the recent LZ-End
parsing [16]. This involves defining what is a phrase and its source, and the
number n’ of phrases.



Definition 1 ([33]). The LZ77 parsing of text 11, is a sequence Z[1,n'] of
phrases such that T = Z[1)Z[2] ... Z[n'], built as follows. Assume we have already
processed Ty ;_1 producing the sequence Z[1,p — 1]. Then, we find the longest
prefic T; 1 of T;  which occurs in Ty ;—1, set Z[p] = T; and continue with
i =14 + 1. The occurrence in T1 ;—1 of prefix T; 1 is called the source of the
phrase Z[p].

Definition 2 ([16]). The LZ-End parsing of text 11, is a sequence Z[1,n’]
of phrases such that T = Z[1]Z[2] ... Z[n], built as follows. Assume we have
already processed Ty ;—1 producing the sequence Z[1,p — 1]. Then, we find the
longest prefix T; i —1 of T;, that is a suffix of Z[1]...Z|q] for some q¢ < p, set
Z[p) =T, and continue with i = 14" + 1.

We will store Z in a particular way that enables efficient extraction of any
text substring T .. This is more complicated than in our previous proposal [16]
because these structures will be integrated into the self-index later. First, the
last characters of the phrases, T;: of Z[p] = T; /, are stored in a string Ly .
Second, we set up a bitmap B ,, that will mark with a 1 the ending positions of
the phrases in T4 ,, (or, alternatively, the positions where the successive symbols
of L lie in T'). Third, we store a bitmap S1 ,+n that describes the structure
of the sources in T', as follows. We traverse T left to right, from T; to T,,. At
step i, if there are k sources starting at position T}, we append 1¥0 to S (k
may be zero). Empty sources (i.e., i =4’ in Z[p] = T, /) are assumed to lie just
before T7 and appended at the beginning of S, followed by a 0. So the 0s in S
correspond to text positions, and the 1s correspond to the successive sources,
where we assume that those that start at the same point are sorted by shortest
length first. Finally, we store a permutation P[1,n'] that maps targets to sources,
that is, P[i] = j means that the source of the ith phrase starts at the position
corresponding to the jth 1 in S. Fig. 1(a) gives an example.

The bitmaps By, and S1 n4n are sparse, as they have only n’ bits set. They
are stored using a compressed representation [29] so that each takes n’log 7 +
O(n') + o(n) bits, and rank/select queries require constant time: rank,(B, %) is
the number of occurrences of bit b in Bj ;, and select, (B, j) is the position in
B of the jth occurrence of bit b (similarly for S). The o(n) term, the only one
that does not depend linearly on n’, can disappear at the cost of increasing
the time for rank to O(log ;7) [27]. Finally, permutations are stored using a
representation [23] that computes P[i] in constant time and P~1[j] in time O(l),
using (1+ 1/0)n’logn’ + O(n’) bits of space. We use parameter [ = logn’. Thus
our total space is n’logn’ 4 2n'log I + n’log o + O(n’) 4 o(n) bits.

To extract T . we proceed as follows. We compute s’ = rank;(B,s — 1) +1
and €' = rank; (B, e) to determine that we must extract characters from phrases
s’ to ¢’. For all phrases except possibly ¢ (where Ts . could end before its last
position) we have their last characters in L[s, e]. For all the other symbols, we
must go to the source of each phrase of length more than one and recursively
extract its text: to extract the rest of phrase s’ < k < €/, we compute its length
as | = select (B, k) — selecty (B, k—1) (except for k = ¢/, where the length is [ =
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(a) The LZ77 parsing of the string
‘alabar_a la_alabarda$’, showing the
sources of each phrase on top. On the
bottom, bitmap B marks the ends of
phrases, the bitmap S marks the start-
ing positions of sources, and the permu-
tation P connects phrases to sources. We
also show array D of depths and (virtual)
array E of ending source positions (these
arrays are exclusive).

(b) Top: The sparse suffix trie. The black
node is the one we arrive at when searching
for ‘la’, and the gray leaves of its subtree
represent the phrases that start with ‘la’.
Left: The reverse trie for the string. The gray
leaf is the node at which we stop searching
for ‘a’. Bottom: The range structure for the
string. The gray dot marks the only primary
occurrence of the pattern ‘ala’ (it is the only
dot in the range defined by the gray nodes).

Fig. 1. Our self-index structure over the example text 7' = ‘alabar_a_la alabarda$’
and part of the process of searching for p = ‘ala’.

e—select1 (B, k—1)) and its starting position as t = ranko(S, select1 (S, P[k]))
select1 (S, Pk]) — P[k]. Thus to obtain the rest of the characters of phrase k we
recursively extract Ty ;4—1

On LZ-End this method takes time O(e — s+ 1) if e coincides with the end
of a phrase [16]. In general, a worst-case analysis [16] yields extraction time
O(e — s+ h) for LZ-End and O(h(e — s+ 1)) for LZ77, where h is a measure of
how nested the parsing is.

Definition 3. Let T = Z[1)Z[2]...Z[n'] be a LZ-parsing of Ti,. Then the
height of the parsing is defined as h = maxi<;<n C[i], where C is defined as
follows. Let Z][i] ub be a phrase whose source is T, q. Then C[b] = 1 and
Clkl]=C[(k—a)++1 fora<k<b.

That is, h measures how many times a character is transitively copied in Z.
While in the worst case h can be as large as n/, it is usually a small value. It
is limited by the longest length of a phrase [15], thus on a text coming from a
Markovian source it is O(log, n). On our repetitive collection corpus h is between



22 and 259 for LZ-End, and between 22 and 1003 for LZ77. Its average values,
on the other hand, are 5-25 on LZ-End and 5-176 on LZ77.

Implementation considerations. As bitmaps B and S are very sparse in highly
repetitive collections, we opted for J-encoding the distances between the consec-
utive 1s, and adding a sampling where we store the absolute values and position
in the d-codes of every sth bit, where s is the sampling rate. So select consists
in going to the previous sample and decoding at most s -codes, whereas rank
requires a previous binary search over the samples.

3 Pattern Searches

Assume we have a text T of length n, which is partitioned into n’ phrases using a
LZ77-like compressor. Let p1 ,, be a search pattern. We call primary occurrences
of p those overlapping more than one phrase or ending at a phrase boundary;
and secondary occurrences the others. For example, in Fig. 1(a), the occurrence
of ‘lab’ starting at position 2 is primary as it spans two phrases. The second
occurrence, starting at position 14, is secondary.

We will find first the primary occurrences, and those will be used to re-
cursively find the secondary ones (which, in turn, will be used to find further
secondary occurrences).

3.1 Primary Occurrences

Each primary occurrence can be split as p = p1; Pi+1,m, where the left side p; ;
is a nonempty suffix of a phrase and the (possibly empty) right side p;t1,m is
the concatenation of zero or more consecutive phrases plus a prefix of the next
phrase. To find primary occurrences we partition the pattern into two in every
possible way. Then, we search for the left part in the suffixes of the phrases and
for the right part in the prefixes of the suffixes of T" starting at phrase boundaries.
Then, we find which pairs of left and right occurrences are concatenated, thus
representing actual primary occurrences of p.

Finding the Right Part of the Pattern. To find the right side p; 11, of the pattern
we use a suffix trie that indexes all the suffixes of T starting at the beginning of
a phrase. In the leaves of the trie we store the identifiers of the phrases where
the corresponding suffixes start. Conceptually, the identifiers form an array id
that stores the phrase identifiers in lexicographic order of their suffixes. As we
see later, we do not need to store id explicitly.

We represent the suffix trie as a Patricia tree [22], encoded using a succinct
representation for labeled trees called dfuds [2]. As the trie has at most 2n’ nodes,
the succinct representation requires at most 2n’logo 4+ O(n') bits. It supports
a large number of operations in constant time, such as going to a child labeled
¢, going to the leftmost and rightmost descendant leaf, etc. To search for p; 1
we descend through the tree using the next character of the pattern, skip as



many characters as the skip value of the child indicates, and repeat the process
until determining that p; i1, is not in the set or reaching a node or an edge,
whose leftmost and rightmost subtree leaves define the interval in array id whose
suffixes start with p;y1m,. Fig. 1(b) shows on top this trie, shading the range
[8,9] of leaves found when searching for p; 41, = ‘la’.

Recall that, in a Patricia tree, after searching for the positions we need to
check if they are actually a match, as some characters are not checked because
of the skips. Instead of doing the check at this point, we defer it for later, when
we connect both searches.

We do not explicitly store the skips, as they can be computed from the trie
and the text. Given a node in the trie corresponding to a string of length I, we go
to the leftmost and rightmost leaves and extract the corresponding suffixes from
their (I + 1)th symbols. The number s of symbols they share from that position
is the skip. This takes O(sh) time for LZ77 and LZ-End, since the extraction
is from left to right and we have to extract one character at a time until they
differ. Thus, the total time for extracting the skips as we descend is O(mh).

Finding the Left Part of the Pattern. We have another Patricia trie that indexes
all the reversed phrases, stored in the same way as the suffix trie. To find the
left part of the pattern in the text we search for (p; ;)™ in this trie. The array
that stores the leaves of the trie is called rev_id and is stored explicitly. The
total space is at most n'logn’ + 2n'logo + O(n’) bits. Fig. 1(b) shows this trie
on the left, with the result of searching for a left part p;; = ‘a’.

Connecting Both Searches. Actual occurrences of p are those formed by a phrase
rev_id[j] = k — 1 and the following one id[i{] = k, so that j and ¢ belong to the
lexicographical intervals found with the tries. To find those we use a n’ x n’
range structure that connects the consecutive phrases in both trees. If id[i] = k
and rev_id[j] = k — 1, the structure holds a point in (i, 7).

The range structure is represented compactly using a wavelet tree [10,19],
which requires n’ logn’ + O(n’ loglog n’) bits. This can be reduced to n’ logn’ +
O(n’) [28]. The wavelet tree stores the sequence R[1,n'] so that R[i] = j if
(¢,7) is a point (note there is only one j per i value). In O(logn') time it can
compute R[i], as well as find all the occ points in a given orthogonal range in
time O((occ + 1) logn'). With such an orthogonal range search for the intervals
of leaves found in both trie searches, the wavelet tree gives us all the primary
occurrences. It also computes any id[i] = rev_id[R[i]] + 1 in O(logn’) time, thus
we do not need to store id.

Fig. 1(b) gives an example, showing sequence R at the bottom. It also shows
how we find the only primary occurrence of p = ‘ala’ by partitioning it into
‘a’ and ‘la’.

At this stage we also verify that the answers returned by the searches in the
Patricia trees are valid. It is sufficient to extract the text of one of the occurrences
reported and compare it to p, to determine either that all or none of the answers
are valid, by the Patricia tree properties.



Note that the structures presented up to now are sufficient to determine
whether the pattern exists in the text or not, since p cannot appear if it does not
have primary occurrences. If we have to report the occ occurrences, instead, we
use bitmap B: An occurrence with partition p1; and p; 41, found at rev_id[j] =
k is to be reported at text position select;(B, k) — i+ 1.

Overall, the data structures introduced in this section add up to 2n’logn’ +
4n/log o + O(n') bits. The occ primary occurrences are found in time O(m?h +
mlogn’ + occlogn').

Implementation Considerations. As the average value for the skips is usually very
low and computing them from the text phrases is slow in practice, we actually
store the skips using Directly Addressable Codes [3]. These allow storing variable-
length codes while retaining fast direct access. In this case arrays ¢d and rev_id
are only accessed for reporting the occurrences.

We use a practical dfuds implementation [1] that binary searches for the child
labeled ¢, as the theoretical one [2] uses perfect hashing.

Instead of storing the tries we can do a binary search over the id or rev_id
arrays. This alternative modifies the complexity of searching for a prefix/suffix
of p to O(mhlogn') for LZ77 or O((m + h)logn’) for LZ-End. Independently,
we could store explicitly array id, instead of accessing it through the wavelet
tree. Although this alternative increases the space usage of the index and does
not improve the complexity, it gives an interesting trade-off in practice.

3.2 Secondary Occurrences

Secondary occurrences are found from the primary occurrences and, recursively,
from other previously discovered secondary occurrences. The idea is to locate all
sources covering the occurrence and then finding their corresponding phrases.
Each copy found is reported and recursively analyzed for sources containing it.
For each occurrence found 7; ;4,—1, we find the position pos of the 0 cor-
responding to its starting position in bitmap S, pos = selecto(S,i). Then we
consider all the 1s to the left of pos, looking for sources that start before
the occurrence. For each such S[j] = 1, j < pos, the source starts in T at
t = ranko(S,j) and is the sth source, for s = rank;(S,j). Its corresponding
phrase is f = P~1[s], which starts at text position ¢ = select(B, f — 1) + 1. Now
we compute the length of the source, which is the length of its phrase minus one,
I = selecti(B, f) —select1 (B, f —1) — 1. Finally, if T} ;4;—1 covers the occurrence
T} i+m—1, then this occurrence has been copied to Teyi—t cqi—t+m—1, Where we
report a secondary occurrence and recursively find sources covering it. The time
per occurrence reported is dominated by that of computing P~*, O(logn/).
Consider the only primary occurrence of pattern ‘la’ starting at position 2
in our example text. We find the third 0 in the bitmap of sources at position 12.
Then we consider all 1s starting from position 11 to the left. The 1 at position
11 maps to a phrase of length 2 that covers the occurrence, hence we report an
occurrence at position 10. The second 1 maps to a phrase of length 6 that also
covers the occurrence, thus we report another occurrence at position 15. The



third 1 maps to a phrase of length 1, hence it does not cover the occurrence
and we do not report it. We proceed recursively for the occurrences found at
positions 10 and 15.

Unfortunately, stopping looking for 1s to the left in S as soon as we find
the first source not covering the occurrence works only when no source contains
another. We present now a general solution that requires just 2n’ + o(n’) extra
bits and reports the occ secondary occurrences in time O(occlogn’).!

Consider a (virtual) array E[1,n’] where E[s] is the text position where
the sth source ends. Then an occurrence 7;;y,,—1 is covered by source s if
s < e =ranki (S, pos) (i.e., s starts at or before ¢ in T') and E[s] > i+m—1 (i.e., s
ends at or after i+m—1in T'). Then we must report all values E[1,e] > i+m—1.
Fig. 1(a) shows E on our running example.

A Range Mazimum Query (RMQ) data structure can be built on E[1,7n/]
so that it (i) occupies 2n’ 4+ o(n’) bits of space; (i¢) answers in constant time
queries RMQ(%,j) = arg max;<x<; E[k]; (éit) it does not access E for querying
[8]. We build such a data structure on E. The array F itself is not represented;
any desired value can be computed as E[s] =t + [ — 1, using the nomenclature
given three paragraphs above, in time O(logn’) as it involves computing P~![s].

Thus k = RMQ(1, €) gives us the rightmost-ending source among those start-
ing at or before i. If E[k] < i+m—1 then no source in [1, €] covers the occurrence.
Else, we report the copied occurrence within phrase P~1[k] (and process it re-
cursively), and now consider the intervals E[1, k — 1] and E[k + 1, ¢], which are
in turn recursively processed with RMQs until no source covering the occurrence
is found. This algorithm was already described by Muthukrishnan [24], who
showed that it takes 2 occ computations of RMQ to report occ occurrences. Each
step takes us O(logn’) time due to the need to compute the F[k] values.

In practice: prevLess data structure. The best implemented RMQ-based solution
requires in practice around 3n’ bits and a constant but significant number of
complex operations [8,9]. We present now an alternative development that, al-
though offering worse worst-case complexities, in practice requires 2.88-4.08n’
bits and is faster (it takes 1-3 microseconds in total per secondary occurrence,
whereas just one RMQ computation takes more than 1.5 microseconds, still ig-
noring the time to compute E[k] values). It has, moreover, independent interest.
In early attempts to solve the problem of reporting secondary occurrences,
Kérkkéinen [13] introduced the concept of levels. We use it in a different way.

Definition 4. Source s = [l1,71] is said to cover source so = [l2,72] if l1 < lo
and 11 > ro. Let cover(s) be the set of sources covering a source s. Then the
depth of source s is defined as depth(s) = 0 if cover(s) = (), and depth(s) =
1+ maxXy ¢ oover(s) depth(s’) otherwise. We define depth(e) = 0. Finally, we call
6 the mazimum depth in the parsing.

In our example, the four sources ‘a’ and the source ‘alabar’ have depth
zero, as all of them start at the same position. Source ‘la’ has depth 1, as it is
contained by source ‘alabar’.

! Thanks to the anonymous reviewer that suggested it.



We traverse S leftwards from pos. When we find a source not covering the
occurrence, we look for its depth d and then consider to the left only sources
with depth d’ < d, as those at depth > d are guaranteed not to contain the
occurrence. This works because sources to the left with the same depth d will
not end after the current source, and deeper sources to the left will be contained
in those of depth d. Thus for our traversal we need to solve a subproblem we
call prevLess(D, s,d): Let D[1,n/] be the array of depths of the sources; given a
position s and a depth d, we need to find the largest s’ < s such that D[s] < d.

We represent D using a wavelet tree [10]. This time we need to explain its
internal structure. The wavelet tree is a balanced tree where each node represents
a range of the alphabet [0, 0]. The root represents the whole range and each leaf
an individual alphabet member. Each internal node has two children that split
its alphabet range by half. Hence the tree has height [log(1 + d)]. At the root
node, the tree stores a bitmap aligned to D, where a 0 at position ¢ means that
DJi] is a symbol belonging to the range of the left child, and 1 that it belongs
to the right child. Recursively, each internal node stores a bitmap that refers to
the subsequence of D formed by the symbols in its range. All the bitmaps are
preprocessed for rank/select queries, needed for navigating the tree. The total
space is n’logd + O(n').

We solve prevLess(D, s, d) as follows. We descend on the wavelet tree towards
the leaf that represents d — 1. If d — 1 is to the left of the current node, then
no interesting values can be stored in the right child. So we recursively continue
in the left subtree, at position s’ = rankq(V,s), where V is the bitmap of the
current node. Otherwise we descend to the right child, and the new position is
s’ = rank;(V, s). In this case, however, the answer could be at the left child. Any
value stored at the left child is < d, so we are interested in the rightmost before
position s. Hence vy = selecty(V,ranko(V,s — 1)) is the last relevant position
with a value from the left subtree. We find, recursively, the best answer v; from
the right subtree, and return max(vg, v1). When the recursion ends at a leaf we
return with answer —1. The running time is O(log §).

Using this operation we proceed as follows. We keep track of the smallest
depth d that cannot cover an occurrence; initially d = d +1. We start considering
source s. Whenever s covers the occurrence, we report it, else we set d = D[s].
In both cases we then move to s’ = prevLess(D, s, d).

In the worst case the first source is at depth ¢ and then we traverse level by
level, finding in each level that the previous source does not contain the occur-
rence. Therefore the overall time is O(occ(logn’ + §log d)) to find oce secondary
occurrences. This worst case is, however, rather unlikely. Moreover, in practice
¢ is small: it is also limited by the maximum phrase length, and in our test
collections it is at most 46 and on average 1-4.

4 Experimental Evaluation

From the testbed in http://pizzachili.dcc.uchile.cl/repcorpus.html we
have chosen four real collections representative of distinct applications: Cere



(37 DNA sequences of Saccharomyces Cerevisiae), Einstein (the version of the
Wikipedia article on Albert Eintein up to Jan 12, 2010), Kernel (the 36 versions
1.0.x and 1.1.x of the Linux Kernel), and Leaders (pdf files of the CIA World
Leaders report, from Jan 2003 to Dec 2009, converted with pdftotext).

We have studied 5 variants of our indexes, from most to least space con-
suming: (1) with suffix and reverse trie; (2) binary search on explicit id array
and reverse trie; (3) suffix trie and binary search on rev_id; (4) binary search on
explicit id array and on rev_id; (5) binary search on implicit id and on rev_id.
In addition we test parsings LZ77 and LZ-End, so for example LZ-End3 means
variant (3) on parsing LZ-End.

Table 1 gives statistics about the texts, with the compression ratios achieved
with a good Lempel-Ziv compressor (p7zip, www.7-zip.org), grammar com-
pressor (repair, www.cbrc.jp/ rwan/en/restore.html), Burrows-Wheeler com-
pressor (bzip2, www.bzip.org), and statistical high-order compressor (ppmdi,
pizzachili.dcc.uchile.cl/utils/ppmdi.tar.gz). Lempel-Ziv and grammar-
based compressors capture repetitiveness, while the Burrows-Wheeler one cap-
tures only some due to the runs, and the statistical one is blind to repetitiveness.
We also give the space required by the RLCSA alone (which can count how many
times a pattern appears in T but cannot locate the occurrences nor extract text
at random), and RLCSA using a sampling of 512 (the minimum space that gives
reasonable times for locating and extraction). Finally we show the most and
least space consuming of our variants over both parsings.

Our least-space variants take 2.5-4.0 times the space of p7zip, the best
LZ77 compressor we know of and the best-performing in our dataset. They are
also always smaller than RLCSAj5;2 (up to 6.6 times less) and even competitive
with the crippled self-index RLCSA-with-no-sampling. The case of Einstein
is particularly illustrative. As it is extremely compressible, it makes obvious
how the RLCSA achieves much compression in terms of the runs of ¥, yet it is
unable to compress the sampling despite many theoretical efforts [20]. Thus even
a sparse sampling has a very large relative weight when the text is so repetitive.
The data our index needs for locating and extracting, instead, is proportional to
the compressed text size.

Fig. 2 shows times for extracting snippets and for locating random patterns
of length 10. We test RLCSA with various sampling rates (smaller rate requires
more space). It can be seen that our LZ-End-based index extracts text faster
than the RLCSA, while for LZ77 the results are mixed. For locating, our indexes
operate within much less space than the RLCSA, and are simultaneously faster
in several cases. See the extended version [15] for more results.

5 Conclusions

We have presented the first self-index based on LZ77 compression, showing it is
particularly effective on highly repetitive text collections, which arise in several
applications. The new indexes improve upon the state of the art in most aspects
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Fig. 2. Time performance on the four collections. On the left, extraction speed as a
function of the extracted snippet size (higher is better). On the right, time per located
occurrence for m = 10 as a function of the space used by the index, in percentage of
text size (lower and leftwards is better). On the right the points for RLCSA refer to
different sampling rates; for LZ77 and LZ-End the points refer to the 5 variants (LZs
is leftmost, LZ is rightmost).



Collection | Cere |Einstein|Kernel |Leaders

Size 440MB| 446MB |247MB| 45 MB
p7zip 1.14% 0.07%| 0.81% 1.29%
repair 1.86% 0.10% | 1.13%| 1.78%
bzip2 2.50% 5.38%(21.86% | 7.11%
ppmdi 24.09% 1.61% | 18.62% | 3.56%

RLCSA 7.60% 0.23% | 3.78%| 3.32%
RLCSA512 | 8.57% 1.20% | 4.711%| 4.20%
LZ775 3.74% 0.18% | 3.31%| 3.85%
LZ77, 5.94% 0.30%| 5.26%| 6.27%
LZ-Ends 6.16% 0.32% | 5.12%| 6.44%
LZ-End, 8.96% 0.48% | 7.50%| 9.63%

Table 1. Space statistics of our texts, giving the size when each symbol is represented
with one, and compression achieved as a percentage of such representation: first public-
domain compressors, then self-indexes.

and solve an interesting standing challenge. Our solutions to some subproblems,
such as that of prevLess, may be of independent interest.

Our construction needs 6-8 times the original text size and indexes 0.2—2.0
MB/sec. While this is usual in self-indexes and better than the RLCSA, it would
be desirable to build it within compressed space. Another important challenge
is to be able to restrict the search to a range of document numbers, that is,
within a particular version, time frame, or version subtree. Finally, dynamizing
the index, so that at least new text can be added, would be desirable.
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