
On–line Approximate String Matching with

Bounded Errors

Marcos Kiwi1⋆, Gonzalo Navarro2⋆⋆, and Claudio Telha3⋆ ⋆ ⋆
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Abstract. We introduce a new dimension to the widely studied on-line
approximate string matching problem, by introducing an error threshold

parameter ǫ so that the algorithm is allowed to miss occurrences with
probability ǫ. This is particularly appropriate for this problem, as approx-
imate searching is used to model many cases where exact answers are not
mandatory. We show that the relaxed version of the problem allows us
breaking the average-case optimal lower bound of the classical problem,
achieving average case O(n logσ m/m) time with any ǫ = poly(k/m),
where n is the text size, m the pattern length, k the number of errors
for edit distance, and σ the alphabet size. Our experimental results show
the practicality of this novel and promising research direction.

1 Introduction

In string matching one is interested in determining the positions (sometimes just
deciding the occurrence) of a given pattern P on a text T , where both pattern
and text are strings over some fixed finite alphabet Σ of size σ. The lengths
of P and T are typically denoted by m and n respectively. In approximate
string matching there is also a notion of distance between strings, given say by
d : Σ∗ × Σ∗ → R. One is given an additional non-negative input parameter
k and is interested in listing all positions (or just deciding the occurrence) of
substrings S of T such that S and P are at distance at most k. In the “on-line”
or “sequential” version of the problem, one is not allowed to preprocess the text.

Since the 60’s several approaches were proposed for addressing the approxi-
mate matching problem, see for example the survey by Navarro [5]. Most of the
work focused on the edit or Levenshtein distance d, which counts the number
of character insertions, deletions, and substitutions needed to make two strings
equal. This distance turns out to be sufficiently powerful to model many relevant
applications (e.g., text searching, information retrieval, computational biology,
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transmission over noisy channels, etc.), and at the same time sufficiently simple
to admit efficient solutions (e.g., O(mn) and even O(kn) time).

A lower bound to the (worst-case) problem complexity is obviously Ω(n) for
the meaningful cases, k < m. This bound can be reached by using automata,
which introduce an extra additive term in the time complexity which is expo-
nential in m or k. If one is restricted to polynomially-bounded time complexities
on m and k, however, the worst-case problem complexity is unknown.

Interestingly, the average-case complexity of the problem is well understood.
If the characters in P and T are chosen uniformly and independently, the average
problem complexity is Θ(n(k + logσ m)/m). This was proved in 1994 by Chang
and Marr [2], who gave an algorithm reaching the lower bound for k/m < 1/3−
O(σ−1/2). In 2004, Fredriksson and Navarro [3] gave an improved algorithm
achieving the lower bound for k/m < 1/2 − O(σ−1/2). In addition to covering
the range of interesting k values for virtually all applications, the algorithm was
shown to be highly practical.

It would seem that, except for determining the worst-case problem com-
plexity (which is mainly of theoretical interest), the on-line approximate string
matching problem is closed. In this paper, however, we reopen the problem under
a relaxed scenario that is still useful for most applications and admits solutions
that beat the lower bound. More precisely, we relax the goal of listing all posi-
tions where pattern P occurs in the text T to that of listing each such position
with probability 1− ǫ, where ǫ is a new input parameter.

There are several relevant scenarios where fast algorithms that make errors
(with a user-controlled probability) are appropriate. Obvious cases are those
where approximate string matching is used to increase recall when searching
data that is intrinsically error-prone. Consider for example an optical charac-
ter recognition application, where errors will inevitably arise from inaccurate
scanning or printing imperfections, or a handwriting recognition application, or
a search on a text with typos and misspells. In those cases, there is no hope
to find exactly all the correct occurrences of a word. Here, uncertainty of the
input translates into approximate pattern matching and approximate searching
is used to increase the chance of finding relevant occurrences, hopefully without
introducing too many false matches. As the output of the system, even using a
correct approximate string matching technique, is an approximation to the ideal
answer, a second approximation might be perfectly tolerable, and even welcome
if allows for faster searches.

A less obvious application arises in contexts where we might have a priori
knowledge that some pattern is either approximately present in the text many
times, or does not even approximately occur. Some examples are genetic markers
that might often appear or not at all, some modisms that might appear in several
forms in certain type of texts, some typical pattern variants that might appear
in the denomination of certain drugs, people names, or places, of which typically
several instances occur in the same text. Further, we might only be interested
in determining whether the pattern occurs or not. (A feature actually available
in the well known grep string searching utility as options -l and -L, and also
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the approximate string searching utilities agrep and ngrep.) In this context, a
text with N approximate pattern occurrences will be misclassified by the inexact
algorithm with very low probability, ǫN .

Another interesting scenario is that of processing data streams which flow
so fast that there is no hope for scanning them exhaustively (e.g. radar derived
meteorological data, browser clicks, user queries, IP traffic logs, peer-to-peer
downloads, financial data, etc.). Hence even an exact approximate search over
part of the data would give only partial results. A faster inexact algorithm could
even give better quality answers as it could scan a larger portion of the data,
even if making mistakes on it with controlled probability.

The new framework proposed in this work comes from the so-called testing
and property testing literature where the aim is to devise sublinear time algo-
rithms obtained by avoiding having to read all of the input of a problem instance.
These procedures typically read a very small fraction of the input. For most nat-
ural problems the algorithm must use randomization and provide answers which
in some sense are approximate, or wrong with some probability. See the many
surveys on the topic, e.g. [7, 8].

1.1 Main Contributions

We focus in particular on the so-called filtering algorithms [5, § 8]. These al-
gorithms quickly discard areas of the text that cannot approximately match
the pattern, and then verify the remaining areas with a classical algorithm. In
practice, filtering algorithms are also the fastest approximate string matching
algorithms. They also turn out to be natural candidates to design probabilistic
variants in this paper.

In Section 3.1 we describe a procedure based on sampling q-grams mo-
tivated by the filtering algorithm of Ukkonen [9]. For a fixed constant t >
0 and k < m/ logσ m, the derived algorithm has an average case complex-
ity of O(tn logσ m/m) and misses pattern occurrences with probability ǫ =
O((k logσ m/m)t). Note that the time equals Yao’s lower bound for exact string
matching (k = 0). In contrast, Ukkonen’s original algorithm takes O(n) time.
In Section 3.2 we describe an algorithm based on Chang and Marr’s [2] average-
optimal algorithm. For fixed t > 0, we derive an O(tn logσ m/m) average-time
approximate matching algorithm with error ǫ = O((k/m)t). Note that the latter
achieves the same time complexity for a smaller error, and that it works for any
k < m, whereas the former needs k < m/ logσ m.

The discrepancy between both algorithms inherits from that of the original
classical algorithms they derive from, where the original differences in time com-
plexities has now translated into their error probabilities. It is important to stress
that both algorithms beat the average-complexity lower bound of the problem
when errors are not allowed, Ω(n(k + logσ m)/m), as they remove the Ω(kn/m)
term in the complexity (the k/m term now shows up in the error probability).

The aforementioned average case complexity results are for random text,
but hold even for fixed patterns. Our analyzes focus exclusively on Levenshtein
distance d, but should be easily adapted to other metrics.
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In Section 4 we present some experimental results that corroborate the the-
oretical results of Section 3 and give supporting evidence for the practicality of
our proposals. In particular, the experiments favor the technique of Section 3.1
over that of Section 3.2, despite the theoretical superiority of the latter.

2 Model for Approximate Searching allowing Errors

In this section we formalize the main concepts concerning the notion of ap-
proximate matching algorithms with errors. We adopt the standard convention
of denoting the substring Si . . . Sj of S = S1 . . . Sn by Si..j and refer to the
number of characters of S by the length of S which we also denote by |S|.
We start by recalling the formal definition of the approximate string matching
problem when the underlying distance function is d. Henceforth, we abbreviate
d-Approximate String Matching as d-ASM.

Problem d-Approximate String Matching

Input Text T ∈ Σ∗, pattern P ∈ Σ∗ and parameter k ∈ N.
Output S = S(T, P, k) ⊆ {1, . . . , n} such that j ∈ S if and only if there is

an i such that d(Ti..j , P ) ≤ k.

When the text T and pattern P are both in Σ∗, and the parameter k is
in N we say that (T, P, k) is an instance of the d-ASM problem, or simply
an instance for short. We henceforth refer to S(T, P, k) as the solution set of
instance (T, P, k). We say that algorithm A solves the d-ASM problem if on
instance (T, P, k) it outputs the solution set S(T, P, k). Note that A might be a
probabilistic algorithm, however its output is fully determined by (T, P, k).

For a randomized algorithm A that takes as input an instance (T, P, k), let
A(T, P, k) be the distribution over sets S ⊆ {1, . . . , n} that it returns.

Henceforth we denote by X ← D the fact that the random variable X is
chosen according to distribution D. For a set C we denote the probability that
X ∈ C when X is chosen according to the distribution D by Pr [X ∈ C; X ← D]
or PrX←D [X ∈ C]. Also, we might simply write PrX [X ∈ C] or Pr [X ∈ C]
when it is clear from context that X ← D. The notation generalizes in the
obvious way to the case where X is a random vector, and/or when instead of a
probability one is interested in taking expectation.

We say that randomized algorithm A solves the d-ASM problem with (ǫ, ǫ′)-
error provided that on any instance (T, P, k) the following holds:

Completeness: if i ∈ S(T, P, k), then Pr [i ∈ S′; S′ ← A(T, P, k)] ≥ 1− ǫ,
Soundness: if i 6∈ S(T, P, k), then Pr [i ∈ S′; S′ ← A(T, P, k)] ≤ ǫ′,

where the two probabilities above are taken only over the source of randomness
of A.

When ǫ′ = 0 we say that A has one–sided ǫ-error or that it is one–sided for
short. When ǫ = ǫ′ = 0 we say that A is an errorless or exact algorithm.

4



We say that randomized algorithm F is a d-ASM probabilistic filter with α-
error or simply is an α-filter for short, provided that on any instance (W, P, k)
the following holds: if d(Pi..j , W ) ≤ k for some pattern substring Pi..j , then
Pr [F(W, P, k) = Check] ≥ 1−α, where the probability is taken over the source
of randomness of F . If a filter does not return Check we assume without loss of
generality that it returns Discard.

The notion of an α-filter is crucial to the ensuing discussion. Roughly said, a
filter F will allow us to process a text T by considering non-overlapping consec-
utive substrings W of T , running the filter on instance (W, P, k) and either: (1)
in case the filter returns Check, perform a costly approximate string matching
procedure to determine whether P approximately occurs in T in the surround-
ings of window W , or (2) in case the filter does not return Check, discard the
current window from further consideration and move forward in the text and
process the next text window. The previously outlined general mechanism is the
basis of the generic algorithm we illustrate in Fig. 1 and describe below. The

Text T
Current window W

Discard

Apply filter to next windowFilter F

Check

Approximate search

Fig. 1. Generic algorithm d-Approximate String Matching algorithm.

attentive reader would have noticed that when defining probabilistic filters we
substituted the notation T for texts by W . This is done in order to stress that
the probabilistic filters that we will talk about access the text T by sequentially
examining substrings of T which we will refer to as windows. These windows will
typically have a length which is independent of n, more precisely they will be of
length O(m).

We now precisely describe the central role played by probabilistic filters in the
design of d-ASM algorithms with errors. First, from now on, let w denote ⌊(m−
k)/2⌋. Henceforth let W1, . . . , Ws be such that T = W1 . . . Ws and |Wp| = w (pad
T with an additional character not in Σ as necessary). Note that s = ⌈n/w⌉ and
Wp = T(p−1)w+1..pw. Given any probabilistic filter F and an exact algorithm E
we can devise a generic d-ASM algorithm with errors such as the one specified
in Algorithm 1.4

We will shortly show that the generic algorithm G is correct. We also would
like to analyze its complexity in terms of the efficiencies of both the probabilistic
filter F and the exact algorithm E . However, we first need to introduce the
complexity measures that we will be looking at. Let TimeA(T, P, k) ∈ N ∪

4 For A ⊆ Z we use the standard convention of denoting {a + x : x ∈ A} by a + A.
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Algorithm 1 Generic d-Approximate String Matching with Errors

1: procedure G(T, P, k) ⊲ T ∈ Σn, P ∈ Σm, k ∈ N

2: S ← ∅
3: w← ⌊(m− k)/2⌋
4: s← ⌈n/w⌉
5: for p ∈ {1, . . . , s} do

6: if F(Wp, P, k) = Check then ⊲ Where Wp = T(p−1)w+1..pw

7: S ← S ∪
`

(pw −m− k + 1) + E(Tpw−m−k+1..(p−1)w+m+k−1, P, k)
´

8: return S

{+∞} be the expected time complexity of A on the instance (T, P, k), where
the expectation is taken over the random choices of A. We also associate to A
the following average time complexity measures:

AvgA(n, P, k) = ExT [TimeA(T, P, k)] ,

AvgA(n, m, k) = ExT,P [TimeA(T, P, k)] .

Let MemA(T, P, k) ∈ N∪ {+∞} be the maximum amount of memory required
by A on instance (T, P, k), where the maximum is taken over all possible se-
quences of random bits on which A may act, and let

MemA(n, P, k) = max
T∈Σn

MemA(T, P, k),

MemA(n, m, k) = max
T∈Σn,P∈Σm

MemA(T, P, k).

We similarly define RndA(T, P, k), RndA(n, P, k), and RndA(n, m, k), but with
respect to the maximum number of random bits used by A. Also, the same
complexity measures can be defined for probabilistic filters and exact algorithms.

Theorem 1. Suppose m > k. Let F be an α-filter and let E be the standard
deterministic O(kn) dynamic programming algorithm for the d-ASM problem.
Let w = ⌊(m− k)/2⌋, s = ⌈n/w⌉, and W ⊆ Σw. Then, the generic algorithm G
is a d-ASM algorithm with one-sided α-error such that

AvgG(n, P, k) ≤ s ·AvgF (w, P, k)

+s ·O (mk) · (PrW←Σw [W ∈ W ] + maxW 6∈W Pr [F(W, P, k)=Check]) + O(s).

Also, MemG(n, P, k) = MemE(3w + 4k + 2, P, k) (ignoring the space required
to output the result), and RndG(n, P, k) = O( n

m−k ) ·RndF(w, P, k).

Proof. First, let us establish completeness of G. Assume i ∈ S(T, P, k). Let p+1
be the index of the window to which the character Ti belongs. As any occurrence
has length at least m−k, Wp is completely contained in the occurrence finishing
at i, and thus Wp must be at distance at most k of a substring of P . It follows
that F(Wp, P, k) = Check with probability at least 1−α, in which case line 7 of
the algorithm will run an exact verification with E over a text area comprising
any substring of length m + k that contains Wp. Since m + k is the maximum
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length of an occurrence, it follows that i will be included in the output returned
by G. Hence, with probability at least 1−α we have that i is in the output of G.

To establish soundness, assume i 6∈ S(T, P, k). In this case, i will never be
included in the output of G in line 7 of the algorithm.

We now determine G’s complexity. By linearity of expectation and since
TimeE(O(m), m, k) = O(mk), we have

AvgG(n, P, k) =
s

∑

p=1

(ExT [TimeF (Wp, P, k)] + O(mk) ·PrT [F(Wp, P, k) = Check] + O(1))

= s ·AvgF(w, P, k) + O(mk) ·

s
∑

p=1

PrT [F(Wp, P, k) = Check] + O(s) .

Conditioning according to whether Wp belongs to W , we get for any W that

PrT [F(Wp, P, k)=Check] ≤ PrW←Σw [W ∈ W ]+ max
W 6∈W

Pr [F(W, P, k)=Check] .

The stated bound on AvgG(n, P, k) follows immediately. The memory and ran-
domized complexity bounds are obvious. ⊓⊔

The intuition behind the preceding theorem is that, given any class W of
“interesting” windows, if we have a filter that discards the uninteresting windows
with high probability, then the probability that the algorithm has to verify a
given text window can be bounded by the sum of two probabilities: (i) that of
the window being interesting, (ii) the maximum probability that the filter fails to
discard a noninteresting window. As such, the theorem gives a general framework
to analyze probabilistic filtration algorithms. An immediate consequence of the
result is the following:

Corollary 1. Under the same conditions as in Theorem 1, if in addition

PrW←Σw [W ∈ W ] = max
W 6∈W

Pr [F(W, P, k) = Check] = O
(

1/m2
)

,

then AvgG(n, P, k) = O(s ·AvgF (w, P, k)). This also holds if E is the classical
O(m2) time algorithm.

The previous results suggests an obvious strategy for the design of d-ASM

algorithms with errors. Indeed, it suffices to identify a small subset of windows
W ⊆ Σw that contain all windows of length w that are at distance at most k
of a pattern substring, and then design a filter F such that: (1) the probability
that F(W, P, k) = Check is high when W ∈ W (in order not to miss pattern
occurrences), and (2) the probability that F(W, P, k) = Check is low when W 6∈
W (in order to avoid running an expensive procedure over regions of the text
where there are no pattern occurrences).

The next result is a simple observation whose proof we omit since it follows
by standard methods (running A repeatedly).
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Proposition 1. Let A be a randomized algorithm that solves the d-ASM prob-
lem with (ǫ, ǫ′)-error.

– Let α ≤ ǫ = ǫ′ < 1/2 and N = O(log(1/α)/(1−2ǫ)2). Then, there is
a randomized algorithm A′ that solves the d-ASM problem with (α, α)-
error such that AvgA′(n, P, k) = N · AvgA(n, P, k), MemA′(n, P, k) =
MemA(n, P, k)+O(log N), and where RndA′(n, P, k) = N ·RndA(n, P, k).

– If A is one-sided, then there is a randomized algorithm A′solving the d-ASM

problem with (ǫN , 0)-error such that AvgA′(n, P, k) = N · AvgA(n, P, k),
MemA′(n, P, k) = MemA(n, P, k) +O(log N), and RndA′(n, P, k) = N ·
RndA(n, P, k).

3 Algorithms for Approximate Searching with Errors

In this section we derive two probabilistic filters inspired on existing (errorless)
filtration algorithms. Note that, according to the previous section, we focus on
the design of the window filters, and the rest follows from the general framework.

3.1 Algorithm based on q-gram sampling

A q-gram is a substring of length q. Thus, a pattern of length m has (m− q +1)
overlapping q-grams. Each error can alter at most q of the q-grams of the pattern,
and therefore (m− q +1− kq) pattern q-grams must appear in any approximate
occurrence of the pattern in the text. Ukkonen’s idea [9] is to sequentially scan
the text while keeping count of the last q-grams seen. The counting is done
using a suffix tree of P and keeping the relevant information attached to the
m−q+1 important nodes at depth q in the suffix tree. The key intuition behind
the algorithms design is that in random text it is difficult to find substrings of
the pattern of length q > logσ m. The opposite is true in zones of the text where
the pattern approximately occurs. Hence, by keeping count of the last q-grams
seen one may quickly filter out many bad pattern alignments.

We now show how to adapt the ideas mentioned so far in order to design
a probabilistic filter. The filtering procedure randomly chooses several indices
i ∈ {1, . . . , |W | − q + 1} and checks whether the q-gram Wi..i+q−1 is a pattern
substring. Depending on the number of q-grams that are present in the pattern
the filter decides whether or not to discard the window. See Algorithm 2 for a
formal description of the derived probabilistic filter Q-PE-Fc,ρ,q, where c and ρ
are parameters to be tuned later. Using the filter as a subroutine for the generic
algorithm with errors described in Algorithm 1 gives rise to a procedure to which
we will henceforth refer to as Q-PE.

Let W be the collection of all windows in Σw for which at least β of its
q-grams are substrings of the pattern. Let w′ = w − q + 1 be the number of
q-grams (counting repetitions) in a window of length w. Finally, let p denote the
probability that a randomly chosen q-gram is a substring of the pattern P , i.e.

p =
1

σq
· |{Pi..i+q−1 : i = 1, . . . , m− q + 1}| .
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Algorithm 2 Probabilistic filter based on q-grams

1: procedure Q-PE-F c,ρ,q(W,P, k) ⊲ W ∈ Σw, P ∈ Σm, k ∈ N

2: ctr ← 0
3: for i ∈ {1, . . . , c} do

4: Choose ji uniformly at random in {1, . . . , |W | − q + 1}
5: if Wji..ji+q−1 is a substring of P then ctr ← ctr + 1
6: if ctr > ρ · c then return Check else return Discard

The following result shows that a window chosen randomly in Σw is unlikely
to be in W .

Lemma 1. Let β ≥ pw′. Then, PrW←Σw [W ∈ W ] ≤ exp

(

−
24(β − pw′)2

25q(β + 2pw′)

)

.

Proof. For i = 1, . . . , w′ let Yi be the indicator variable of the event “Wi..i+q−1

is a substring of P” when W is randomly chosen in Σw. Clearly, Ex [Yi] =

p. Moreover, W ∈ W if and only if
∑w′

i=1 Yi ≥ β. Unfortunately, a standard
Chernoff type bound cannot be directly applied given that the Yi’s are not
independent. Nevertheless, the collection {Y1, . . . , Yw′} can be partitioned into q
families according to i mod q, each one an independent family of variables. The
desired result follows applying a Chernoff type bound for so called q-independent
families [4, Corollary 2.4]. ⊓⊔

Lemma 2. If W 6∈ W, then

Pr [Q-PE-Fρ,c,q(W, P, k) = Check] ≤ exp

(

ρc−
cβ

w′

) (

β

ρw′

)ρc

.

Proof. Let Xji
denote the indicator of whether Wji..ji+1−1 turns out to be a

substring of the pattern P in line 5 of the description of Q-PE-Fρ,c,q. Note that
the Xji

’s are independent, each with expectation at most β/w′ when W 6∈ W .
The claim follows by a standard Chernoff type bound from the fact that:

PrW←Σw [Q-PE-Fρ,c,q(W, P, k) = Check] = Pr

[

c
∑

i=1

Xji
≥ ρ · c

]

,

where the probabilities are taken exclusively over the sequence of random bits
of the probabilistic filter. ⊓⊔

Lemma 3. If kq ≤ w′(1− ρ), then Q-PE-Fρ,c,q is an α-filter for

α ≤ exp

(

(1−ρ)c−
ckq

w′

) (

kq

w′(1−ρ)

)c(1−ρ)

.

Proof. Let W ∈ Σw. Assume d(Pi..j , W ) ≤ k for some pattern substring Pi..j .
Then, at least w′ − kq of W ’s q-grams are substrings of P . Defining Xji

as in
Lemma 2 we still have that the Xji

’s are independent but now their expectation
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is at least 1− kq/w′. The claim follows by a standard Chernoff type bound from
the fact that:

Pr [Q-PE-Fρ,c,q(W, P, k) = Discard] = Pr

[

c
∑

i=1

Xji
≤ ρ · c

]

,

where the probabilities are taken exclusively over the sequence of random bits
of the probabilistic filter. ⊓⊔

Theorem 2. If k < (m − 2 logσ m)/(1 + 4 logσ m), then Q-PE is a d-ASM

algorithm with one-sided error ǫ = O((k logσ m/m)t) for any constant t > 0,
running in average time AvgQ-PE(n, P, k) = O(tn logσ m/m).

Proof. The result follows from Theorem 1 and Corollary 1.
Choose q = 2⌈logσ m⌉, so p ≤ m/σq ≤ 1/m. Taking β = Θ(log2 m) where the

hidden constant is sufficiently large, we have by Lemma 1 that PrW←W [W ∈ W ]
= O(1/m2). By Lemma 2 and taking ρ = 1/2 and c a sufficiently large constant,
we get that Pr [Q-PE-Fρ,c,q(W, P, k) = Check] = O(1/m2) when W 6∈ W .

Now, let k∗ = w′(1−ρ)/q and observe that k < k∗ satisfies the hypothesis of
Lemma 3. Choose c(1−ρ) ≥ t and note that kq/((1−ρ)w′) = 4k logσ m/(m−k−
2 logσ m). Lemma 3 thus implies that Q-PE-Fρ,c,q has O((k logσ m/m)t)-error.

Clearly AvgQ-PE-Fρ,c,q
(w, P, k) = TimeQ-PE-Fρ,c,q

(W, P, k) = O(cq) =

O(t logσ m). ⊓⊔

3.2 Algorithm based on covering by pattern substrings

In 1994 Chang and Marr [2] proposed a variant of SET [1] with running time
O(n(k + logσ m)/m) for k/m ≤ 1/3 − O(σ−1/2). As in SET, Chang and Marr
consider blocks of text of size (m−k)/2, and pinpoint occurrences of the pattern
by identifying blocks that approximately match a substring of the pattern. This
identification is based on splitting the text into contiguous substrings of length
ℓ = t logσ m and sequentially searching the text substrings of length ℓ in the
pattern allowing errors. The sequential search continues until the total number
of errors accumulated exceeds k. If k errors occur before (m−k)/2 text characters
are covered, then the rest of the window can be safely skipped.

The adaptation of Chang and Marr’s approach to the design of probabilistic
filters is quite natural. Indeed, instead of looking at ℓ-grams sequentially we just
randomly choose sufficiently many non-overlapping ℓ-substrings in each block.
We then determine the fraction of them that approximately appear in the pat-
tern. If this fraction is small enough, then the block is discarded. See Algorithm 3
for a formal description of the derived probabilistic filter CM-PE-Fc,ρ,ℓ,g. Us-
ing the filter as a subroutine for the generic algorithm with errors described in
Algorithm 1 gives rise to a procedure to which we will henceforth refer to as
CM-PE.

Remark 1. Note that asm(S, P ) of Algorithm 3 can be precomputed for all val-
ues of S ∈ Σℓ.
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Algorithm 3 Probabilistic filter based on covering by pattern substrings

1: procedure CM-PE-Fc,ρ,ℓ,g(W,P, k) ⊲ W ∈ Σw, P ∈ Σm, k ∈ N

2: ctr ← 0
3: for i ∈ {1, . . . , c} do

4: Choose ji uniformly at random in {1, . . . , ⌊w/ℓ⌋}
5: if asm(W(ji−1)ℓ+1..jiℓ, P ) ≤ g ⊲ asm(S,P ) = mina≤b d(S, Pa..b)
6: then ctr ← ctr + 1
7: if ctr > ρ · c then return Check else return Discard

The analysis of Algorithm 3 establishes results such as Lemmas 1-3, but
concerning CM-PE-Fρ,c,ℓ,g. We can derive the following (proof omitted due to
lack of space):

Theorem 3. If k < m/5, then CM-PE is a d-ASM algorithm with one sided
error ǫ = (4k/(m − k))t, for any constant t > 0. Its average running time is
AvgQ-PE(n, P, k) = O(tn logσ m/m).

4 Experimental Results

We implemented the algorithms of Sections 3.1 and 3.2. We extracted three real-
life texts of 50MB from Pizza&Chili (http://pizzachili.dcc.uchile.cl): English
text, DNA, and MIDI pitches. We used patterns of length 50 and 100, randomly
extracted from the text, and some meaningful k values. Each data point is the
average over 50 such search patterns, repeating each search 15 times in the case
of the probabilistic algorithms. We measured the average number of character
inspections and the average percentage of missed occurrences.

We used the following setup for the algorithms. For q-gram algorithms (Sec-
tion 3.1), we used q = 4. Our preliminary results show that ρ = 0.7 is a good
choice. For covering by pattern substrings (Section 3.2), we used ǫ = 0.2 and
ρ = 0.3. In our algorithms, we only moved parameter c in order to change the
accuracy/time trade-off. We compared our algorithms with the corresponding
errorless filtering algorithms.

Figure 2 shows the experimental results for the q-gram based procedure, and
Fig. 3 for the covering by pattern substrings process. The errorless version of
the q-grams algorithm inspects all text characters. In contrast, our q-gram based
procedure achieves less than 1% error rate and looks at up to 6 times less char-
acters on English and MIDI corpora. For our second algorithmic proposal, the
result of the comparison against the errorless version is not as good. Neverthe-
less, we emphasize that it beats the average-optimal (errorless) algorithm by a
wide margin, specifically it inspects about half the characters with 15% errors
on the English corpus.

5 Final Comments

In this paper we have advocated considering a new dimension of the approximate
string matching problem, namely the probability of missing an approximate oc-
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Fig. 2. Experimental results for Q-PE. Straight horizontal lines correspond to the
errorless version. The y axis represents the number of character inspections times 1024.

currence. This relaxation is particularly natural for a problem that usually arises
when modeling processes where errors have to be tolerated, and it opens the door
to novel approaches to approximate string matching which break the average-
case lower bound of the original problem. In particular, we have shown that
much faster text scanning is possible if one allows a small probability of missing
occurrences. We achieved O(n logσ m/m) time (which is the complexity of exact
string matching, k = 0) with error probability bounded by any polynomial in
k/m. Empirically, we have shown that our algorithms inspect a fraction of the
text with virtually no mistakes.

We have just scratched the surface of this new area. In particular, we have not
considered filtration algorithms that use sliding instead of fixed windows. Sliding-
window algorithms have the potential of being more efficient (cf. Fredriksson
and Navarro’s variant [3] with the original Chang and Marr’s average-optimal
algorithms [2]). It is not hard to design those variants, yet analyzing them is more
challenging. On the other hand, it is rather simple to extend our techniques to
multiple ASM. We also applied the techniques to indexed algorithms, where
the text can be preprocessed [6]. Several indexes build on sequential filtration
algorithms, and thus adapting them is rather natural.

Finally, it is interesting to determine the average complexity of this relaxed
problem, considering the error probability ǫ in the formula. This would give
an idea of how much can one gain by allowing errors in the outcome of the
search. For example, our algorithms break the Ω(nk/m) term in the problem
complexity, yet a term poly(k/m) appears in the error probability. Which are
the best tradeoffs one can achieve?
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Fig. 3. Experimental results for CM-PE. Straight horizontal lines correspond to the
errorless version. The y axis represents the number of character inspections times 1024.
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