
An(other) Entropy-Bounded
Compressed Suffix Tree

Johannes Fischer1, Veli Mäkinen2 ⋆, and Gonzalo Navarro1 ⋆⋆

1 Dept. of Computer Science, Univ. of Chile. {jfischer|gnavarro}@dcc.uchile.cl
2 Dept. of Computer Science, Univ. of Helsinki, Finland. vmakinen@cs.helsinki.fi

Abstract. Suffix trees are among the most important data structures
in stringology, with myriads of applications. Their main problem is space
usage, which has triggered much research striving for compressed repre-
sentations that are still functional. We present a novel compressed suffix
tree. Compared to the existing ones, ours is the first achieving at the
same time sublogarithmic complexity for the operations, and space us-
age which goes to zero as the entropy of the text does. Our development
contains several novel ideas, such as compressing the longest common
prefix information, and totally getting rid of the suffix tree topology, ex-
pressing all the suffix tree operations using range minimum queries and
a new primitive called next/previous smaller value in a sequence.

1 Introduction

Suffix trees are probably the most important structure ever invented in stringol-
ogy. They have been said to have “myriads of virtues” [2], and also have myriads
of applications in many areas, most prominently bioinformatics [13]. One of the
main drawbacks of suffix trees is their considerable space requirement, which is
usually close to 20n bytes for a sequence of n symbols, and at the very least 10n
bytes [17]. For example, the Human genome, containing approximately 3 bil-
lion bases, could easily fit in the main memory of a desktop computer (as each
DNA symbol needs just 2 bits). However, its suffix tree would require 30GB to
60GB, too large to fit in normal main memories. Although there has been some
progress in managing suffix trees in secondary storage [15] and it is an active
area of research [16], it will always be faster to operate in main memory.

This situation has stimulated research on compressed representations of suffix
trees, which operate in compressed form. Even if many more operations are
needed to carry out the operations on the compressed representation, this is
clearly advantageous compared to having to manage it on secondary memory.
A large body of research focuses on compressed suffix arrays [22], which offer a
reduced suffix tree functionality. Especially, they miss the important suffix-link
operation. The same restrictions apply to early compressed suffix trees [21, 12].

⋆ Funded by the Academy of Finland under grant 119815.
⋆⋆ Partially funded by Millennium Institute for Cell Dynamics and Biotechnology,

Grant ICM P05-001-F, Mideplan, Chile.

The first fully-functional compressed suffix tree is due to Sadakane [26]. It
builds on top of a compressed suffix array [25] that uses 1

ǫ
nH0 + O(n log log σ)

bits of space, where H0 is the zero-order entropy of the text T1,n, σ is the size of
the alphabet of T , and 0 < ǫ < 1 is any constant. In addition, the compressed
suffix tree needs 6n+o(n) bits of space. Most of the suffix tree operations can be
carried out in constant time, except for knowing the string-depth of a node and
the string content of an edge, which take O(logǫ n) time, and moving to a child,
which costs O(logǫ n log σ). One could replace the compressed suffix array they
use by Grossi et al.’s [11], which requires less space: 1

ǫ
nHk+o(n log σ) bits for any

k ≤ α logσ n, where Hk is the k-th empirical entropy of T [19] and 0 < α < 1 is

any constant. However, the O(logǫ n) time complexities become O(log
ǫ

1−ǫ

σ n log σ)
[11, Thm. 4.1]. In addition, the extra 6n bits in the space complexity remain,
despite any reduction in the compressed suffix array. This term can be split into
2n bits to represent (with a bitmap called Hgt) the longest common prefix (LCP)
information, plus 4n bits to represent the suffix tree topology with parentheses.
Many operations are solved via constant-time range minimum queries (RMQs)
over the depths in the parentheses sequence. An RMQ from i to j over a sequence
S[1, n] of numbers asks for rmqS(i, j) := argmini≤ℓ≤jS[ℓ].

Russo et al. [24] recently achieved fully-compressed suffix trees, that is, re-
quiring nHk + o(n log σ) bits of space (with the same limits on k as before),
which is essentially the space required by the smallest compressed suffix array,
and asymptotically optimal under the k-th entropy model. The main idea is to
sample some suffix tree nodes and use the compressed suffix array as a tool to find
nearby sampled nodes. The most adequate compressed suffix array for this task
is the alphabet-friendly FM-index [6]. The time complexities for most operations
are logarithmic at best, more precisely, between O(log n) and O(log n log logn).
Others are slightly costlier, e.g. moving to a child costs an additional O(log logn)
factor, and some less common operations are as costly as O((log n log logn)2).

We present a new fully-compressed suffix tree, by removing the 6n term
in Sadakane’s space complexity. The space we achieve is not as good as that
of Russo et al., but most of our time complexities are sublogarithmic. More
precisely, our index needs nHk(2 log 1

Hk

+ 1
ǫ

+ O(1)) + o(n log σ) bits of space.
Note that, although this is not the ideal nHk, it still goes to zero as Hk → 0,
unlike the incompressible 6n bits in Sadakane’s structure. Our solution builds
on two novel algorithmic ideas to improve Sadakane’s compressed suffix tree.

1. We show that array Hgt, which encodes LCP information in 2n bits [26],
actually contains 2R runs, where R is the number of runs in ψ [22]. We show
how to run-length compress Hgt into 2R log n

R
+O(R)+o(n) bits while retaining

constant-time access. In order to relate R with nHk, we use the result R ≤
nHk + σk for any k [18], although sometimes it is extremely pessimistic (in
particular it is useful only for Hk < 1, as obviously R ≤ n). This gives the
nHk(2 log 1

Hk
+ O(1)) upper bound to store Hgt (and the real space is always

≤ 2n bits).
2. We get rid of the suffix tree topology and identify suffix tree nodes with

suffix array intervals. All the tree traversal operations are simulated with RMQs

on LCP (represented with Hgt), plus a new type of queries called “Next/Previous
Smaller Value”, that is, given a sequence of numbers S[1, n], find the first cell
in S following/preceding i whose value is smaller than S[i].3 We show how to
solve these queries in sublogarithmic time while spending only o(n) extra bits of
space on top of S. We believe this operation might have independent interest,
and the challenge of achieving constant time with sublinear space remains open.

2 Basic Concepts

The suffix tree S of a text T1,n over an alphabet Σ of size σ is a compact trie
storing all the suffixes Ti,n where the leaves point to the corresponding i values
[2, 13]. For convenience we assume that T is terminated with a special symbol,
so that all lexicographical comparisons are well defined. For a node v in S, π(v)
denotes the string obtained by reading the edge-labels when walking from the
root to v (the path-label of v [24]). The string-depth of v is the length of π(v).

Definition 1. A suffix tree representation supports the following operations:

– Root(): the root of the suffix tree.
– Locate(v): the suffix position i if v is the leaf of suffix Ti,n, otherwise null.
– Ancestor(v, w): true if v is an ancestor of w.
– SDepth(v)/TDepth(v): the string-depth/tree-depth of v.
– Count(v): the number of leaves in the subtree rooted at v.
– Parent(v): the parent node of v.
– FChild(v)/NSibling(v): the alphabetically first child/next sibling of v.
– SLink(v): the suffix-link of v; i.e., the node w s.th. π(w) = β if π(v) = aβ

for a ∈ Σ.
– SLinki(v): the iterated suffix-link of v; (node w s.th. π(w) = β if π(v) = αβ

for α ∈ Σi).
– LCA(v, w): the lowest common ancestor of v and w.
– Child(v, a): the node w s.th. the first letter on edge (v, w) is a ∈ Σ.
– Letter(v, i): the ith letter of v’s path-label, π(v)[i].
– LAQs(v, d)/LAQt(v, d): the highest ancestor of v with string-depth/tree-

depth ≥ d.

Existing compressed suffix tree representations include a compressed full-text
index [22, 25, 11, 6], which encodes in some form the suffix array SA[1, n] of T ,
with access time tSA. Array SA is a permutation of [1, n] storing the pointers
to the suffixes of T (i.e., the Locate values of the leaves of S) in lexicographic
order. Most full-text indexes also support access to permutation SA

−1 in time
O(tSA), as well as the efficient computation of permutation ψ[1, n], where ψ(i) =
SA

−1[SA[i] + 1] for 1 ≤ i ≤ n if SA[i] 6= n and SA
−1[1] otherwise. ψ(i) is

computed in time tψ , which is at most O(tSA), but usually less. Compressed
suffix tree representations also include array LCP[1, n], which stores the length

3 Computing NSVs/PSVs on the fly has been considered in parallel computing [3], yet
not in the static scenario.

of the longest common prefix (lcp) between consecutive suffixes in lexicographic
order, LCP[i] = |lcp(TSA[i−1],n, TSA[i],n)| for i > 1 and LCP[1] = 0. The access
time for LCP is tLCP.

We make heavy use of the following complementary operations on bit arrays:
rank(B, i) is the number of bits set in B[1, i], and select(B, j) is the position of
the j-th 1 in B. Bit vector B[1, n] can be preprocessed to answer both queries in
constant time using o(n) extra bits of space [20]. If B contains only m bits set,
then the representation of Raman et al. [23] compresses B to m log n

m
+O(m+

n log logn
logn) bits of space and retains constant-time rank and select queries.

3 Compressing LCP Information

Sadakane [26] describes an encoding of the LCP array that uses 2n+o(n) bits. The
encoding is based on the fact that values i+LCP[i] are nondecreasing when listed
in text position order: Sequence S = s1, . . . , sn−1, where sj = j + LCP[SA

−1[j]],
is nondecreasing.

To represent S, Sadakane encodes each diff(j) = sj−sj−1 in unary: 1 0diff(j),
where s0 = 0 and 0d denotes repetition of 0-bit d times. This encoding, call it U
(similar to Hgt [26]), takes at most 2n bits. Thus LCP[i] = select(U, j+1)−j−1,
where j = SA[i], is computed in time O(tSA).

Let us now consider how to represent U in a yet more space-efficient form,
i.e., in nHk(2 log 1

Hk
+ O(1)) + o(n) bits, for small enough k. The result follows

from the observation (to be shown below) that the number of 1-bit runs in U is
bounded by the number of runs in ψ. We call a run in ψ a maximal sequence of
consecutive i values where ψ(i) − ψ(i − 1) = 1 and TSA[i−1] = TSA[i], including
one preceding i where this does not hold [18]. Note that an area in ψ where the
differences are not 1 corresponds to several length-1 runs. Let us call R ≤ n the
overall number of runs.

We will represent U in run-length encoded form, coding each maximal run of
both 0 and 1 bits. We show soon that there are at most R 1-runs, and hence at
mostR 0-runs (as U starts with a 1). If we encode the 1-run lengths o1, o2, . . . and
the 0-run lengths z1, z2, . . . separately (cf. Sect. 3.2 in [5]), it is easy to compute
select(U, j) by finding the largest r such that

∑r
i=1 oi < j and then answering

select(U, j) = j +
∑r

i=1 zi. This so-called searchable partial sums problem is
easy to solve. Store bitmap O[1, n] setting the bits at positions

∑r
i=1 oi, hence

max{r,
∑r

i=1 oi < j} = rank(O, j − 1). Likewise, bitmap Z[1, n] representing
the zi’s solves

∑r
i=1 zi = select(Z, r). Since both O and Z have at most R 1’s,

O plus Z can be represented using 2R log n
R

+O(R + n log logn
logn) bits [23].

We now show the connection between runs in U and runs in ψ. Let us call
position i a stopper if i = 1 or ψ(i) − ψ(i− 1) 6= 1 or TSA[i−1] 6= TSA[i]. Hence ψ
has exactly R stoppers by the definition of runs in ψ. Say now that a chain in ψ
is a maximal sequence i, ψ(i), ψ(ψ(i)), . . . such that each ψj(i) is not a stopper
except the last one. As ψ is a permutation with just one cycle, it follows that in
the path of ψj [SA

−1[1]], 0 ≤ j < n, we will find the R stoppers, and hence there
are also R chains in ψ [10].

We now show that each chain in ψ induces a run of 1’s of the same length in
U . Let i, ψ(i), . . ., ψℓ(i) be a chain. Hence ψj(i)−ψj(i−1) = 1 for 0 ≤ j < ℓ. Let
x = SA[i− 1] and y = SA[i]. Then SA[ψj(i− 1)] = x+ j and SA[ψj(i)] = y + j.
Then LCP[i] = |lcp(TSA[i−1],n, TSA[i],n)| = |lcp(Tx,n, Ty,n)|. Note that Tx+LCP[i] 6=

Ty+LCP[i], and hence SA
−1[y + LCP[i]] = ψLCPi is a stopper, thus ℓ ≤ LCP[i].

Moreover, LCP[ψj(i)] = |lcp(Tx+j,n, Ty+j,n)| = LCP[i]−j ≥ 0 for 0 ≤ j < ℓ. Now
consider sy+j = y+j+LCP[SA

−1[y+j]] = y+j+LCP[ψj(i)] = y+j+LCP[i]−j =
y + LCP[i], all equal for 0 ≤ j < ℓ. This produces ℓ− 1 diff values equal to 0,
that is, a run of ℓ 1-bits in U . By traversing all the chains in the cycle of ψ we
sweep S left to right, producing at most R runs of 1’s and hence at most R runs
of 0’s. (Note that even an isolated 1 is a run with ℓ = 1.) Since R ≤ nHk + σk

for any k [22], we obtain the bound nHk(2 log 1
Hk

+O(1))+O(n log logn
log n) for any

k ≤ α logσ n and any constant 0 < α < 1. Although our somewhat crude upper
bounds do not show it, our representation is asymptotically never larger than
the original Hgt.

4 Next-Smaller and Prev-Smaller Queries

In this section we consider queries next smaller value (NSV) and previous smaller
value (PSV), and show that they can be solved in sublogarithmic time using only
a sublinear number of extra bits on top of the raw data. We make heavy use of
these queries in the design of our new compressed suffix tree, and also believe
that they can be of independent interest.

Definition 2. Let S[1, n] be a sequence of elements drawn from a set with a
total order � (where one can also define a ≺ b ⇔ a � b ∧ b 6� a). We define
the query next smaller value and previous smaller value as follows: NSV(S, i) =
min{j, (i < j ≤ n ∧ S[j] ≺ S[i]) ∨ j = n+ 1} and PSV(S, i) = max{j, (1 ≤ j <
i ∧ S[j] ≺ S[i]) ∨ j = 0}, respectively.

The key idea to solve these queries reminds that for findopen and findclose
operations in balanced parentheses, in particular the recursive version [9]. How-
ever, there are several differences because we have to deal with a sequence of
generic values, not parentheses.

We will describe the solution for NSV, as that for PSV is symmetric. For
shortness we will write NSV(i) for NSV(S, i). We split S[1, n] into consecutive
blocks of b values. A position i will be called near if NSV(i) is within the same
block of i. The first step when solving a NSV query will be to scan the values
S[i + 1 . . . b · ⌈i/b⌉], that is from i + 1 to the end of the block, looking for an
S[j] ≺ S[i]. This takes O(b) time and solves the query for near positions.

Positions that are not near are called far. We note that the far positions
within a block, i1 < i2 . . . < is form a nondecreasing sequence of values S[i1] �
S[i2] . . . � S[is]. Moreover, their NSV values form a nonincreasing sequence
NSV(i1) ≥ NSV(i2) . . . ≥ NSV(is).

A far position i will be called a pioneer if NSV(i) is not in the same block of
NSV(j), being j the largest far position preceding i (the first far position is also

a pioneer). It follows that, if j is the last pioneer preceding i, then NSV(i) is in
the same block of NSV(j) ≥ NSV(i). Hence, to solve NSV(i), we find j and then
scan (left to right) the block S[⌈NSV(j)/b⌉− b+ 1 . . .NSV(j)], in time O(b), for
the first value S[j′] ≺ S[i].

So the problem boils down to efficiently finding the pioneer preceding each
position i, and to storing the answers for pioneers. We mark pioneers in a
bitmap P [1, n]. We note that, since there are O(n/b) pioneers overall [14], P
can be represented using O(n log b

b
) + O(n log logn

logn) bits of space [23]. With this
representation, we can easily find the last pioneer preceding a far position i,
as j = select(P, rank(P, i)). We could now store the NSV answers for the pio-
neers in an answer array A[1, n′] (n′ = O(n/b)), so that if j is a pioneer then
NSV(j) = A[rank(P, j)]. This already gives us a solution requiring O(n log b

b
) +

O(n log logn
logn) +O(n logn

b
) bits of space and O(b) time. For example, we can have

O(n
log logn) bits of space and O(log n log logn) time.

We can do better by recursing on the idea. Instead of storing the answers ex-
plicitly in array A, we will form a (virtual) reduced sequence S′[1, 2n′] containing
all the pioneer values i and their answers NSV(i). Sequence S′ is not explicitly
stored. Rather, we set up a bitmap R[1, n] where the selected values in S are
marked. Hence we can retrieve any value S′[i] = S[select(R, i)]. Again, this can
be computed in constant time using O(n log b

b
+ n log logn

log n) bits to represent R [23].

Because S′ is a subsequence of S, it holds that the answers to NSV in S′

are the same answers mapped from S. That is, if i is a pioneer in S, mapped
to i′ = rank(R, i) in S′, and NSV(i) is mapped to j′ = rank(R,NSV(i)), then
j′ = NSV(S′, i′), because any value in S′[i′ + 1 . . . j′ − 1] correspond to values
within S[i+1 . . .NSV(i)−1], which by definition of NSV are not smaller than S[i].
Hence, we can find NSV(i) for pioneers i by the corresponding recursive query
on S′, NSV(i) = select(R,NSV(S′, rank(R, i))). We are left with the problem
of solving queries NSV(S′, i).

We proceed again by splitting S′ into blocks of b values. Near positions in S′

are solved in O(b) time by scanning the block. Recall that S′ is not explicitly
stored, but rather we have to use select on R to get its values from S. For far
positions we define again pioneers, and solve NSV on far positions in time O(b)
using the answer for the preceding pioneer. Queries for pioneers are solved in a
third level by forming the virtual sequence S′′[1, 2n′′], n′′ = O(n′/b) = O(n/b2).

We continue the process recursively for r levels before storing the explicit
answers in array A[1, n(r)], n(r) = O(n/br). We remark that the P ℓ and Rℓ

bitmaps at each level ℓ map positions directly to S, not to the reduced sequence
of the previous level. This permits accessing the Sℓ[i] values at any level ℓ in
constant time, Sℓ[i] = S[select(Rℓ, i)]. The pioneer preceding i in Sℓ is found
by first mapping to S with i′ = select(Rℓ, i), then finding the preceding pioneer
directly in the domain of S, j′ = select(P ℓ, rank(P ℓ, i′)), and finally mapping
the pioneer back to Sℓ by j = rank(Rℓ, j′).

Let us now analyze the time and space of this solution. Because we pay
O(b) time at each level and might have to resort to the next level in case our
position is far, the total time is O(rb) because the last level is solved in con-

stant time. As for the space, all we store are the P ℓ and Rℓ bitmaps, and the
final array A. Array A takes O(n logn

br) bits. As there are O(n/bℓ) elements in

Sℓ, both P ℓ and Rℓ require O(n
bℓ log(bℓ) + n log log n

logn) bits of space (actually P ℓ

is about half the size of Rℓ). The sum of all the P ℓ and Rℓ takes order of
∑

1≤ℓ≤r

(

n
bℓ log(bℓ) + n log logn

logn

)

= O
(

n log b
b

+ r n log logn
log n

)

.

We now state the main result of this section.

Theorem 1. Let S[1, n] be a sequence of elements drawn from a set with a
total order, such that access to any S[i] and any comparison S[i] ≺ S[j] can
be computed in constant time. Then, for any 1 ≤ r, b ≤ n, it is possible to
build a data structure on S taking O(n log b

b
+ rn log log n

logn + n logn
br) bits, so that

queries NSV and PSV can be solved in worst-case time time O(rb). In particular,
for any f(n) = O(logn

log log n), one can achieve O(n
f(n)) bits of extra space and

O(f(n) log logn) time.

Proof. The general formula for any r, b has been obtained thruoghout this section.
As for the formulas in terms of f(n), let us set the space limit to O(n

f(n)
). Then

n log b
b

= O(n
f(n)

) implies b = Ω(f(n) log f(n)). Also, n log n
br

= O(n
f(n)

) implies r ≥
log log n+log f(n)−O(1)

log b
. Hence rb ≥ b

log b
(log log n + log f(n) − O(1)). Thus it is best to

minimize b. By setting b = f(n) log f(n), we get rb = f(n) log f(n)
log f(n)+log log f(n)

(log log n +

log f(n) − O(1)) = Θ(f(n)(log log n + log f(n))). The final constraint is r n log log n
log n

=

O(n
f(n)

), which, by substituting r = log log n+log f(n)
log b

and since b = Ω(f(n) log f(n)),

yields the condition f(n) = O(log n
log log n

). Thus log log n+ log f(n) = O(log log n). ⊓⊔

Note that, if one is willing to spend 4n+ o(n) bits of extra space, the opera-
tions can be solved in constant time. The idea is to reduce PSV and NSV queries
to O(1) findopen and findclose operations in balanced parentheses [9]. For NSV,
for 1 ≤ i ≤ n + 1 in this order, write a ’(’ and then x ’)’s if there are x cells
S[j] for which NSV(j) = i. The resulting sequence B is balanced if a final ’)’ is
appended, and NSV(i) can be obtained by rank(B, findclose(B, select(B, i))),
where a 1 in B represents ’(’. PSV is symmetric, needing other 2n+ o(n) bits.

5 An Entropy-Bounded Compressed Suffix Tree

Let v be a node in the (virtual) suffix tree S for text T1,n. As in previous works
[1, 4, 24], we represent v by an interval [vl, vr] in SA such that SA[vl, vr] are
exactly the leaves in S that are in the subtree rooted at v. Let us first consider
internal nodes, so vl < vr. Because S does not contain unary nodes, it follows
from the definition of LCP that at least one entry in LCP[vl + 1, vr] is equal to
the string-depth h of v; such a position is called h-index of [vl, vr]. We further
have LCP[vl] < h, LCP[i] ≥ h for all vl < i ≤ vr, and LCP[vr + 1] < h. Fig. 1
(left) illustrates. We state the easy yet fundamental

Lemma 1. Let [vl, vr] be an interval in SA that corresponds to an internal node
v in S. Then the string-depth of v is h = LCP(k), where k = rmqLCP(vl +1, vr).

For leaves v = [vl, vl], the string-depth of v is simply given by n− SA[vl] + 1.

vl vr x y

NSV
PSV

h h−1

RMQ

k

(x+1,y)

ψ ψ

Fig. 1. Left: Illustration to the representation of suffix tree nodes. The lengths of the
bars indicate the LCP values. All leaves in the subtree rooted at v = [vl, vr] share
a longest common prefix of length at least h. Right: Schematic view of the SLink

operation. From v, first follow ψ, then perform an RMQ to find an (h−1)-index k, and
finally locate the defining points of the desired interval by a PSV/NSV query from k.

5.1 Range Minimum Queries in Sublinear Space

As Lemma 1 suggests, we wish to preprocess LCP such that rmqLCP can be
answered in sublogarithmic time, using o(n) bits of additional space. A well-
known strategy [7, 26] divides LCP iteratively into blocks of decreasing size n >
b1 > b2 > · · · > br. On level i, 1 ≤ i ≤ r, compute all answers to rmqLCP that
exactly span over blocks of size bi, but not over blocks of size bi−1 (set b0 = n

for handling the border case). This takes O(n
bi

log(bi−1

bi
) log(bi−1)) bits of space

if the answers are stored relative to the beginning of the blocks on level i − 1,
and if we only precompute queries that span 2j blocks for all j ≤ ⌊log(bi−1

bi
)⌋

(this is sufficient because each query can be decomposed into at most 2 possibly
overlapping sub-queries whose lengths are a power of 2).

A general range minimum query is then decomposed into at most 2r + 1
non-overlapping sub-queries q1, . . . , q2r+1 such that q1 and q2r+1 lie completely
inside of blocks of size br, q2 and q2r exactly span over blocks of size br, and so
on. q1 and q2r+1 are solved by scanning in time O(br),

4 and all other queries can
be answered by table-lookups in total time O(r). The final answer is obtained
by comparing at most 2r + 1 minima.

The next lemma gives a general result for RMQs using o(n) extra space.

Lemma 2. Having constant-time access to elements in an array A[1, n], it is
possible to answer range minimum queries on A in time O(f(n)(log f(n))2) using

O(n
f(n)) bits of space, for any f(n) = Ω(log[r] n) and any constant r, where

log[r] n denotes r applications of log to n.

Proof. We use r+1 = O(1) levels 1 . . . r+1, so it is sufficient that n
bi

log2 bi−1 = O(n
f(n)

)

for all 1 ≤ i ≤ r + 1, where b0 = n. From the condition n
b1

log2 b0 = O(n
f(n)

) we get

4 The constant-time solutions [26, 7] also solve q1 and q2r+1 by accessing tables that
require Θ(n) bits.

b1 = Θ(f(n) log2 n) (the smallest possible bi values are best). From n
b2

log2 b1 = O(n
f(n)

)

we get b2 = Θ(f(n) log2 b1) = Θ(f(n)(log f(n)+ log log n)2). In turn, from n
b3

log2 b2 =

O(n
f(n)

) we get b3 = Θ(f(n) log2 b2) = Θ(f(n)(log f(n)+log log log n)2). This continues

until br+1 = Θ(f(n) log2 br) = Θ(f(n)(log f(n) + log[r+1] n))2 = Θ(f(n) log2 f(n)). ⊓⊔

5.2 Suffix-Tree Operations

Now we have all the ingredients for navigating in the suffix tree. The operations
are described in the following; the intuitive reason why an RMQ is often followed
by a PSV/NSV-query is that the RMQ gives us an h-index of the (yet unknown)
interval, and the PSV/NSV takes us to the delimiting points of this interval.
Apart from tSA, tLCP, and tψ, we denote by trmq and tpnsv the time to solve,
respectively, RMQs or NSV/PSV queries (both on LCP from now on, hence they
will be multiplied by tLCP).

Root/Count/Ancestor: Root() returns interval [1, n], Count(v) is simply
vr−vl+1, Ancestor(w, v) is true iff wl ≤ vl ≤ vr ≤ wr. These take O(1) time.

SDepth(v)/Locate(v): According to Lemma 1, SDepth(v) can be computed
in time O(trmq · tLCP) for internal nodes, and both operations need time O(tSA)
for leaves. One knows in constant time that v = [vl, vr] is a leaf iff vl = vr.

Parent(v): If v is the root, return null. Else, since the suffix tree is compact,
the string-depth of Parent(v) must be either LCP[vl] or LCP[vr +1], whichever
is greater [24]. So, by setting k = if LCP[vl] > LCP[vr + 1] then vl else vr + 1,
the parent interval of v is [PSV(k),NSV(k) − 1]. Time is O(tpnsv · tLCP).

FChild(v): If v is a leaf, return null. Otherwise, because the minima in [vl, vr]
are v’s h-indices [7], the first child of v is given by [vl,rmq(vl + 1, vr) − 1],
assuming that RMQs always return the leftmost minimum in the case of ties
(which is easy to arrange). Time is O(trmq · tLCP).

NSibling(v): First move to the parent of v by w = Parent(v). If vr = wr,
return null, since v does not have a next sibling. If vr+1 = wr, v’s next sibling
is a leaf, so return [wr, wr]. Otherwise, return [vr + 1,rmq(vr + 2, wr)− 1]. The
overall time is O((trmq + tpnsv) · tLCP).

SLink(v): If v is the root, return null. Otherwise, first follow the suffix links
of the leaves vl and vr, x = ψ(vl) and y = ψ(vr). Then locate an h-index of the
target interval by k = rmq(x + 1, y); see Lemma 7.5 in [1] (the first character
of all strings in {TSA[i],n : vl ≤ i ≤ vr} is the same, so the h-indices in [vl, vr]
appear also as (h− 1)-indices in [ψ(vl), ψ(vr)]). The final result is then given by
[PSV(k),NSV(k) − 1]. Time is O(tψ + (tpnsv + trmq) · tLCP)). See Fig. 1 (right).

SLinki(v): Same as above with x = ψi(vl) and y = ψi(vr). If the first Letter

of x and y are different, then the answer is Root. Otherwise we go on with k as
before. Computing ψi can be done in O(tSA) time using ψi(v) = SA

−1[SA[v] + i]
[24]. Time is thus O(tSA + (tpnsv + trmq) · tLCP).

LCA(v, w): If one of v or w is an ancestor of the other, return this ancestor
node. Otherwise, w.l.o.g., assume vr < wl. The h-index of the target interval is
given by an RMQ between v and w [26]: k = rmq(vr + 1, wl). The final answer
is again [PSV(k),NSV(k) − 1]. Time is O((trmq + tpnsv) · tLCP).

Child(v, a): If v is a leaf, return null. Otherwise, the minima in LCP[vl +1, vr]
define v’s child-intervals, so we need to find the position p ∈ [vl + 1, vr] where
LCP[p] = mini∈[vl+1,vr] LCP[i], and TSA[p]+LCP[p] = Letter([p, p], LCP[p] + 1) =
a. Then the final result is given by [p,rmq(p + 1, vr) − 1], or null if there is
no such position p. To find this p, split [vl, vr] into three sub-intervals [vl, x −
1], [x, y − 1], [y, vr], where x (y) is the first (last) position in [vl, vr] where a
block of size br starts (br is the smallest block size for precomputed RMQs,
recall Sect. 5.1). Intervals [vl, x − 1] and [y, vr] can be scanned for p in time
O(trmq · (tLCP + tSA)). The big interval [x, y − 1] can be binary-searched in time
O(log σ·tSA), provided that we also store exact median positions of the minima in
the precomputed RMQs [26] (within the same space bounds). The only problem
is how these precomputations are carried out in O(n) time, as it is not obvious
how to compute the exact median of an interval from the medians in its left and
right half, respectively. However, a solution to this problem exists [8, Sect. 3.2].
Overall time is O((tLCP + tSA) · trmq + log σ · tSA).

Letter(v, i): If i = 1 we can easily solve the query in constant time with very lit-
tle extra space. Mark in a bitmap C[1, n] the first suffix in SA starting with each
different letter, and store in a string L[1, σ] the different letters that appear in
T1,n in alphabetical order. Hence, if v = [vl, vr], Letter(v, 1) = L[rank(C, vl)].
L requires O(σ log σ) bits and C, represented as a compressed bitmap [23], re-
quires O(σ log n

σ
+ n log logn

log n) bits of space. Hence both add up to O(σ logn +
n log logn

logn) bits. Now, for i > 1, we just use Letter(v, i) = Letter(ψi−1(vl), 1),

in time O(min(tSA, i · tψ)). We remark that L and C are already present, in some
form, in all compressed text indexes implementing SA [11, 25, 6].

TDepth(v): Tree-depth can be maintained while performing some traversal op-
erations such as FChild, Child, Parent, LAQt, but not others.

However, there is also a direct way to support TDepth, using nHk(2 log 1
Hk

+

O(1))+o(n) further bits of space. The idea is similar to Sadakane’s representation
of LCP [26]: the key insight is that the tree depth can decrease by at most 1 if we
move from suffix Ti,n to Ti+1,n (i.e., when following ψ). Define TDE[1, n] such
that TDE[i] holds the tree-depth of the LCA of leaves SA[i] and SA[i−1] (similar
to the definition of LCP). Then the sequence (TDE[ψk(SA

−1[1])]+ k)k=0,1,...,n−1

is nondecreasing and in the range [1, n], and can hence be stored using 2n+o(n)
bits. Further, the repetitions appear in the same way as in Hgt (Sect. 3), so the
resulting sequence can be compressed to nHk(2 log 1

Hk
+O(1)) + o(n) bits using

the same mechanism as for LCP. The time is thus O(trmq · tLCP). For leaves we
can do in O(tSA) time by TDepth(v) = 1 + max(TDE[SA[v]],TDE[SA[v + 1]]).

LAQs(v, d): Let u = [ul, ur] = LAQs(v, d) denote the (yet unknown) result.
Because u is an ancestor of v, we must have ul ≤ vl and vr ≤ ur. We further

know that LCP[i] ≥ d for all ul < i ≤ ur. Thus, ul is the largest position in [1, vl]
with LCP[ul] < d. So the search for ul can be conducted in a binary manner
by means of RMQs: Letting k = rmq(⌊vl/2⌋, vl), we check if LCP[k] ≥ d. If so,
ul cannot be in [⌊vl/2⌋, vl], so we continue searching in [1, ⌊vl/2⌋ − 1]. If not,
we know that ul must be in [⌊vl/2⌋, vl], so we continue searching in there. The
search for ur is handled symmetrically. Total time is O(log n · trmq · tLCP).

LAQt(v, d): The same idea as for LAQs can be applied here, using the array
TDE instead of LCP, and RMQs on TDE. Time is also O(log n · trmq · tLCP).

6 Discussion

The final performance of our compressed suffix tree (CST) depends on the com-
pressed full-text index used to implement SA. Among the best choices we have
Sadakane’s compressed suffix array (SCSA) [25], which is not so attractive for
its O(n log log σ) extra bits of space in a context where we are focusing on using
o(n) extra space. The alphabet-friendly FM-index (AFFM) [6] gives the best
space, but our CST over AFFM is worse than Russo et al.’s CST (RCST) [24]
both in time and space. Instead, we focus on using Grossi et al.’s compressed
suffix array (GCSA) [11], which is larger than AFFM but lets our CST achieve
better times than RCST. (Interestingly, RCST does not benefit from using the
larger GCSA.) Our resulting CST is a space/time tradeoff between Sadakane’s
CST (SCST) [26] and RCST. Within this context, it makes sense to consider
SCST on top of GCSA, to remove the huge O(n log log σ) extra space of SCSA.

GCSA uses |GCSA| = (1 + 1
ǫ
)nHk + O(n log logn

logσ n
) bits of space for any

k ≤ α logσ n and constant 0 < α < 1, and offers times tψ = O(1) and tSA =
O(logǫ n log1−ǫ σ). On top of |GCSA|, SCST needs 6n + o(n) bits, whereas
our CST needs nHk(2 log 1

Hk

+ O(1)) + o(n) extra bits. Our CST times are

tLCP = tSA, whereas trmq and tpnsv depend on how large is o(n). Instead, RCST
needs |AFFM | + o(n) bits, where |AFFM | = nHk + O(n log logn

log
σ
n

) + O(n log n
γ

)

bits, for some γ = ω(logσ n), to maintain the extra space o(n log σ). AFFM offers
times tψ = O(1 + log σ

log logn) and tSA = O(γ(1 + log σ
log logn)). In addition, RCST uses

o(n) = O(n logn
δ

) bits for a parameter δ = ω(logσ n).
An exhaustive comparison is complicated, as it depends on ǫ, γ, δ, σ, the

nature of the o(n) extra bits in our CST, etc. In general, our CST loses to RCST
if they use the same amount of space, yet our CST can achieve sublogarithmic
times by using some extra space, whereas RCST cannot. We opt for focusing on
a particular setting that exhibits this space/time tradeoff. The reader can easily
derive other settings. We focus on the case σ = O(1) and all extra spaces not
related to entropy limited to O(n

logǫ′ n
) bits, for constant 0 < ǫ′ < 1 (so f(n) =

logǫ
′

n in Thm. 1 and Lemma 2). Thus, our times are trmq = logǫ
′

n(log log n)2

and tpnsv = logǫ
′

n log logn. RCST’s γ and δ are O(log1+ǫ′ n). Table 1 shows
a comparison under this setting. The first column also summarizes the general
complexities of our operations, with no assumptions on σ nor extra space except
tψ ≤ tSA = tLCP, as these are intrinsic of our structure.

Operation Our suffix tree Other suffix trees
General over GCSA [11] SCST [26] RCST [24]

Root,Count, 1 1 1 1
Ancestor

Locate tSA logǫ n logǫ n log1+ǫ′ n

SDepth tSA · trmq logǫ+ǫ
′

n(log log n)2 logǫ n log1+ǫ′ n

Parent tSA · tpnsv logǫ+ǫ
′

n log log n 1 log1+ǫ′ n

FChild tSA · trmq logǫ+ǫ
′

n(log log n)2 1 log1+ǫ′ n

NSibling tSA(trmq + tpnsv) logǫ+ǫ
′

n(log log n)2 1 log1+ǫ′ n

SLink,LCA tSA(trmq + tpnsv) logǫ+ǫ
′

n(log log n)2 1 log1+ǫ′ n

SLinki tSA(trmq + tpnsv) logǫ+ǫ
′

n(log log n)2 logǫ n log1+ǫ′ n

Child tSA(trmq + log σ) logǫ+ǫ
′

n(log log n)2 logǫ n log1+ǫ′ n log log n

Letter tSA logǫ n logǫ n log1+ǫ′ n

TDepth tSA · trmq
(∗) logǫ+ǫ

′

n(log log n)2 1 log2+2ǫ′ n

LAQs tSA · trmq · log n log1+ǫ+ǫ′ n(log log n)2 Not supp. log1+ǫ′ n

LAQt tSA · trmq · log n (∗) log1+ǫ+ǫ′ n(log log n)2 1 log2+2ǫ′ n
(∗) Our CST needs other nHk(2 log 1

Hk
+ O(1)) + o(n) extra bits to implement TDepth and LAQt.

Table 1. Comparison between ours and alternative compressed suffix trees. The column
labeled ‘General’ assumes tψ ≤ tSA = tLCP. All other columns further assume σ = O(1),
and that the extra spaces is O(n

logǫ′ n
).

Clearly SCST is generally faster than the others, but it requires 6n + o(n)
non-compressible extra bits on top of |CSA|. RCST is smaller than the others,

but its time is typically O(log1+ǫ′ n) for some constant 0 < ǫ′ < 1. The space of
our CST is in between, with typical time O(logλ n) for any constant λ > ǫ+ ǫ′.
This can be sublogarithmic when ǫ+ǫ′ < 1. To achieve this, the space used in the
entropy-related part will be larger than 2(1 + log 1

Hk

)nHk. With less than that
space our CST is slower than the smaller RCST, but using more than that space
our CST can achieve sublogarithmic times (except for level ancestor queries),
being the only compressed suffix tree achieving it within o(n) extra space.

Still, we remark that our scheme is not so attractive on large alphabets. If
σ = Θ(nβ) for constant β, then our extra space includes a term Θ(n log logn),
just as in the CST, while the latter is clearly faster.

Acknowledgments. JF wishes to thank Volker Heun and Enno Ohlebusch for inter-

esting discussions on this subject.

References

1. M. Abouelhoda, S. Kurtz, and E. Ohlebusch. Replacing suffix trees with enhanced
suffix arrays. J. Discrete Algorithms, 2(1):53–86, 2004.

2. A. Apostolico. The myriad virtues of subword trees, pages 85–96. Combinatorial
Algorithms on Words. NATO ISI Series. Springer-Verlag, 1985.

3. O. Berkman, B. Schieber, and U. Vishkin. Optimal doubly logarithmic parallel
algorithms based on finding all nearest smaller values. J. Algorithms, 14(3):344–
370, 1993.

4. R. Cole, T. Kopelowitz, and M. Lewenstein. Suffix trays and suffix trists: structures
for faster text indexing. In Proc. 33rd ICALP, LNCS 4051, pages 358–369, 2006.

5. O. Delpratt, N. Rahman, and R. Raman. Engineering the louds succinct tree
representation. In Proc. 5th WEA, LNCS 4007, pages 134–145, 2006.

6. P. Ferragina, G. Manzini, V. Mäkinen, and G. Navarro. Compressed representa-
tions of sequences and full-text indexes. ACM TALG, 3(2):article 20, 2007.

7. J. Fischer and V. Heun. A new succinct representation of RMQ-information and
improvements in the enhanced suffix array. In Proc. ESCAPE, LNCS 4614, pages
459–470, 2007.

8. J. Fischer and V. Heun. Range median of minima queries, su-
per cartesian trees, and text indexing. Manuscript. Available at
www.bio.ifi.lmu.de/∼fischer/fischer10range.pdf, 2007.

9. R. Geary, N. Rahman, R. Raman, and V. Raman. A simple optimal representation
for balanced parentheses. Theoretical Computer Science, 368:231–246, 2006.

10. R. González and G. Navarro. Compressed text indexes with fast locate. In Proc.

18th CPM, LNCS 4580, pages 216–227, 2007.
11. R. Grossi, A. Gupta, and J. Vitter. High-order entropy-compressed text indexes.

In Proc. 14th SODA, pages 841–850, 2003.
12. R. Grossi and J. Vitter. Compressed suffix arrays and suffix trees with applications

to text indexing and string matching. SIAM J. on Computing, 35(2):378–407, 2006.
13. D. Gusfield. Algorithms on Strings, Trees and Sequences: Computer Science and

Computational Biology. Cambridge University Press, 1997.
14. G. Jacobson. Space-efficient static trees and graphs. In Proc. 30th FOCS, pages

549–554, 1989.
15. J. Kärkkäinen and S. Rao. Algorithms for Memory Hierarchies, chapter 7: Full-text

indexes in external memory, pages 149–170. LNCS 2625. Springer, 2003.
16. P. Ko and S. Aluru. Optimal self-adjusting trees for dynamic string data in sec-

ondary storage. In Proc. 14th SPIRE, LNCS 4726, pages 184–194, 2007.
17. S. Kurtz. Reducing the space requirements of suffix trees. Software: Practice and

Experience, 29(13):1149–1171, 1999.
18. V. Mäkinen and G. Navarro. Succinct suffix arrays based on run-length encoding.

Nordic J. of Computing, 12(1):40–66, 2005.
19. G. Manzini. An analysis of the Burrows-Wheeler transform. J. of the ACM,

48(3):407–430, 2001.
20. I. Munro. Tables. In Proc. 16th FSTTCS, LNCS 1180, pages 37–42, 1996.
21. I. Munro, V. Raman, and S. Rao. Space efficient suffix trees. J. of Algorithms,

39(2):205–222, 2001.
22. G. Navarro and V. Mäkinen. Compressed full-text indexes. ACM Computing

Surveys, 39(1):article 2, 2007.
23. R. Raman, V. Raman, and S. Rao. Succinct indexable dictionaries with applica-

tions to encoding k-ary trees and multisets. In Proc. 13th SODA, pages 233–242,
2002.

24. L. Russo, G. Navarro, and A. Oliveira. Fully-compressed suffix trees. In Proc. 8th

LATIN, LNCS, 2008. To appear.
25. K. Sadakane. New text indexing functionalities of the compressed suffix arrays. J.

of Algorithms, 48(2):294–313, 2003.
26. K. Sadakane. Compressed suffix trees with full functionality. Theory of Computing

Systems, 2007. To appear. DOI 10.1007/s00224-006-1198-x.

