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Abstract. The compact suffiz array (CSA) is a space-efficient full-text
index, which is fast in practice to search for patterns in a static text. Com-
pared to other compressed suffiz arrays (Grossi and Vitter, Sadakane,
Ferragina and Manzini), the CSA is significantly larger (2.7 times the
text size, as opposed to 0.6-0.8 of compressed suffix arrays). The space
of the CSA includes that of the text, which the CSA needs separately
available. Compressed suffix arrays, on the other hand, include the text,
that is, they are self-indezes. Although compressed suffix arrays are very
fast to determine the number of occurrences of a pattern, they are in
practice very slow to report even a few occurrence positions or text con-
texts. In this aspect the CSA is much faster. In this paper we contribute
to this space-time trade off by introducing the Compressed CSA (CCSA),
a self-index that improves the space usage of the CSA in exchange for
search speed. We show that the occ occurrence positions of a pattern
of length m in a text of length n can be reported in O((m + occ) log n)
time using the CCSA, whose representation needs O(n(1l + Hj logn))
bits for any k, Hy being the k-th order empirical entropy of the text. In
practice the CCSA takes 1.6 times the text size (and includes the text).
This is still larger than current compressed suffix arrays, and similar in
size to the LZ-index of Navarro. Search times are by far better than for
self-indexes that take less space than the text, and competitive against
the LZ-index and versions of compressed suffix arrays tailored to take
1.6 times the text size.

1 Introduction and Related Work

The classical problem in string matching is to determine the occ occurrences
of a short pattern P = pips...pn, in a large text T = t1t5...¢,. Text and
pattern are sequences of characters over an alphabet Y of size o. In practice one
wants to know the text positions of those occ occurrences, and usually also a
text context around them. Usually the same text is queried several times with
different patterns, and therefore it is worthwhile to preprocess the text in order
to speed up the searches. Preprocessing builds an index structure for the text.
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To allow fast searches for patterns of any size, the index must allow access to
all suffixes of the text. These kind of indexes are called full-text indezes. Optimal
query time, which is O(m + occ) as every character of P must be examined and
the occ occurrences must be reported, can be achieved by using the suffix tree
[19] as the index. In a suffix tree every suffix of the text is represented by a path
from the root to a leaf. The space requirement of a suffix tree is very high. It can
be 12n bytes in practice, even with a careful implementation [7]. In addition, in
any practical implementation there is always an alphabet dependent factor on
search times.

The suffiz array (SA) [11] is a reduced form of the suffix tree. It represents
only the leaves of the suffix tree, via pointers to the starting positions of all
the suffixes. The array is lexicographically sorted by the pointed suffixes. A
suffix array takes 4n bytes, and searches in O(m logn + occ) time via two binary
searches. One finds the first cell 7 pointing to a suffix > P (lexicographically),
and the other finds the first cell j pointing to a suffix > pips ... pm—1(pm + 1).
Then all the cell values at suffix array positionsi...j— 1 are the initial positions
of occurrences of P in T'.

There is often a significant amount of redundancy in a suffix array, such
that some array areas can be represented by links to other areas. Basically, it is
rather common that one area contains the same pointers of the other area, all
shifted by one text position. This observation has been intensively used recently
in different ways to obtain succinct representations of suffix arrays and still
provide fast search time [8,18, 5].

The compact suffix array (CSA) [14] makes direct use of that redundancy to
reduce the space usage of suffix arrays. Areas similar to others (modulo a shift
in text positions) are found and replaced by a direct link to the similar areas. In
practice the CSA takes less than 2n bytes and can search in O(m log n+occ) time,
which in practice turns out to be about twice as slow as the plain suffix array.
Note that, like suffix trees and arrays, the CSA needs the text itself separately
available.

A recent trend in compressed data structures is that of self-indezres, which
include the text. Hence the text can be discarded and the index must provide
functions to obtain any desired text substring in reasonable time. Self-indexes
open the exciting possibility of the index taking less space than the text, even
including it. Existing implemented self-indexes are the compressed suffix array
CSArray of Sadakane [18] (built on [8]), the FM-index of Ferragina and Manzini
[5,6], and the LZ-index of Navarro [16]. The first two take 0.6-0.8 times the text
size, while the LZ-index takes about 1.5 times the text size on English text.

In this paper we introduce the compressed CSA (CCSA), a self-index based
on the CSA which is more compact and represents a relevant space-time trade off
in practice. We retain the links of the CSA, but encode them in a compact form.
We also encode the text inside the CCSA by using small additional structures
that permit searching and displaying the text without accessing T'. We show
that the CCSA needs O(n(1 + Hylogn)) bits for any k, and that it can find all
the occurrences of P in T in O((m + occ) logn) time. In an 80 Mb English text



example, the CCSA need 1.6n bytes, replacing the text. This is much less than
the 2.7n bytes needed by the CSA, about the same space of the LZ-index, and
2-3 times larger than other compressed suffix arrays. Searching the CCSA is 50
times slower than the CSA, but 5075 times faster than any other self-index that
takes less space than the text. The CCSA is competitive against the LZ-index,
and against compressed suffix arrays versions tailored to use the same 1.6n space
to boost their search time.

Our space analysis represents indeed a contribution with independent inter-
est, as we relate the space requirement of CCSA and CSA to the number of runs
in Burrows-Wheeler transformed text [2]. We show that this quantity is at most
|E‘k + 2Hkn

2 The Compact Suffix Array (CSA)

Let X' be an ordered alphabet of size ¢ = |¥|. Then T = t1t5...t, € ¥* is a
(text) string of length n = |T'|. A suffix of text T is a substring T}, = t;...tp.
We assume that the last text character is ¢,, = $, which does not occur elsewhere
in T and is lexicographically smaller than any other character in Y.

Definition 1 The suffix array of text T of length n = |T'| is an array SA[1...n]
that contains all starting positions of the suffizes of the text T, such that
Tsap).m < Tsapp).m <--- <Tsapn]..n, that is, array SA gives the lexicographic
order of all suffizes of the text T.

The idea of compacting the suffix array is the following: Let ¢ > 0. Find
two areas j...j + £ and i...i + £ of SA that are repetitive in the sense that
the suffixes represented by j...j + £ are obtained, in the same order, from the
suffixes represented by i...7 + £ by inserting the first symbol. In other words,
SA[j+ k] = SAli + k] — 1 for 0 < k < £. Then replace the area j...j + £ of
SA by a link, stored in SA[j], to the area i...7 + £. This is called a compacting
operation. The areas may be compacted recursively, meaning that area i...i+ /¢
(or some parts of it) may also be replaced by a link.

Due to the recursive definition, we need three values to represent a link:

e A pointer p to the entry that contains the start of the linked area.

e A value § such that entry p+ § denotes the actual starting point after entry
p is uncompacted.

e The length of the linked area £.

Definition 2 A compact suffix array (CSA) of text T of length n = |T| is an
array CSA[l...n'] of length n' < n, such that for each entry 1 < i <n', CSAJi]
is either an explicit suffix or a triple (p,d,£), where p, §, and £ denote a link to an
area obtained by a compacting operation from the suffix array of T. The optimal
CSA for T is such that its length n' is the smallest possible.



The original idea of using CSA as an index [14] is to guarantee that a CSA
is binary searchable. That is, not all areas of the suffix array are compacted; it
is required that each other entry of the CSA contains a suffix. The search for a
pattern then consists of three phases: (i) A binary search is executed over the
entries of the CSA that contain suffixes, (ii) the entries in the range found by the
initial binary search are uncompacted, and (iii) the start and end of occurrences
is found by binary searches over the uncompacted area.

3 The Compressed CSA

The Compressed CSA (CCSA) is conceptually built on top of the CSA. It in-
volves some slight changes in the structure itself, and radical changes in its
representation. A complete example is given in Fig. 1
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Fig. 1. Example of our CCSA structure for the text "mississippi$".

3.1 Conceptual Structure

The CCSA data structure is conceptually composed of an array of entries
(piy0i,4;), 1 < i < n', just like the CSA. This array, however, differs slightly
from that of the CSA. It corresponds to the optimal CSA defined in previous
section, without any explicit suffix. The CCSA represents the original suffix ar-
ray SA as follows. Entry i in the CCSA represents a block of ¢; entries of SA,



namely entries (Zl§j<i Ej) +1to (Zl§j<i Zj) + ¢;. The actual content is ob-
tained by copying /¢; positions of SA from another area and subtracting 1 from
their cell values. The pair (p;,d;) is a reference to the SA position where the
area to copy begins. The reference indicates position inside the CCSA array and
offset inside the p;-th block (so it should hold 0 < §; < ¢,,). The corresponding
absolute S A position is sapos(p;, d;), where sapos(p,d) =146 + Zl§j<p l;.

The only case where no proper reference exists is for SA entry with value n.
In this case we state that the entry should reference position 1.

Furthermore, the CCSA array has to be of minimum size. That is, it cannot
happen that sapos(p;, ;) = sapos(pi—1,9i—1) + £i_1, as in this case the CCSA
entry ¢ could be merged with entry : — 1. However, we limit areas that can be
extended so that the first characters of all the suffixes pointed by the SA area
represented by a single CCSA entry are equal.

Conceptually, the CCSA structure needs the text separately available. How-
ever, we propose now a representation both to compress the CCSA and to get
rid of the explicit representation of 7.

3.2 A Compact Representation

The CCSA array will be represented as follows. For each block (p;, d;, ¢;) we will
store number r; = sapos(p;, §;), which gives the absolute SA position where the
i-th CCSA block points to. Additionally, an array L of n bits will signal the SA
positions that start a block in the CCSA. That is, L[j] = 1 iff there is a value
1 <i < n' such that sapos(i,0) = j in the CCSA.

We will be interested in performing rank and select queries over array L.
These are defined as follows: rank(L, 7) is the number of 1’s in L up to position j,
and select(L,1) is the position j of the ¢-th “1” in L. Tt is possible to preprocess
L so that, using only o(n) additional space, rank and select queries can be
answered in constant time [13, 3].

Now, the components of triple (p;, §;,¢;) can be computed as follows. First,
p; = rank(L,r;), that is, the number of blocks beginnings up to position r; in the
SA. Second, 6; = r; — select(L, p;), since select(L, p;) gives the initial position
of the block where r; points inside. Finally, ¢; = select(L,i + 1) — select(L, ),
which is the distance from the current block beginning to the next.

In order to discard the text, we need to supply a structure to replace it.
It turns out that we will never need to access T; directly but, rather, given
suffix array entry SA[i], we will access Ts4[;). This is much easier, because the
characters of T' are sorted by index i, that is, given two text characters a < b,
all the text occurrences of a appear before those of b in the SA. Moreover, since
the first characters of each CCSA block are the same, we will only require the
characters of the form T's a{5ap0s(i,0)]-

We store an array B of n' bits, so that B[i] = 1 iff Tsafsapos(io)] 7
T's A[sapos(i—1,0)] OF © = 1, that is, if the first character of suffixes in CCSA block
i differ from that in the previous block. We also store an array of characters .S,
of size at most o, where all the distinct characters appearing in 7" are stored in



lexicographic order. Hence, T's afsqpos(i,0) = Slrank(B,i)], since rank(B, 1) tells
how many times the first suffix character has changed since the beginning of the
CCSA array, and S maps this number to the corresponding character. Therefore,
bit array B will be also preprocessed for rank queries.

The above structures require n’'logn + n + n’ + ologo + o(n) bits. ' With
them we have enough information to determine the SA range that contains the
occurrences of a pattern P. In the following we will depict the search algorithms.
Later, we will consider the problem of showing the text positions and contexts
for the occurrences, and introduce a few more structures for that.

3.3 Search Algorithm

Our aim is to binary search the CCSA just like the SA. Even if the SA is not
explicitly represented, we can perform such a binary search provided we are able
to extract the first m characters of a given entry S A[i], so as to compare it against
our search pattern P. Therefore, our problem is to extract Ts4[...sA[i]+m—1
without having T nor SA.

Let us first concentrate in obtaining character Ts4[;). Let j = rank(L,i) be
the CCSA block that contains SA entry i. The offset corresponding to entry i
inside CCSA block j is 6 =i — select(L, j), so i = sapos(j, ). Since all the first
letters of blocks inside CCSA block j are the same, we can rather fetch character
T's A[sapos(j,0)]- As explained above, this is precisely S[rank(B, j)|. Hence we can
obtain the first character T's4[;) = S[rank(B, j)].

We need now to move to the next character T's4(;41. But this is easy to
to obtain from the CCSA. Since SA[i] corresponds to reference (j,d) in the
CCSA, then position SA[i] + 1 corresponds to CCSA reference (p;,d; + J). The
corresponding SA entry is thus sapos(p;,; +6) =r; + 0.

Hence, the algorithm obtains the m characters by repeatedly computing j +
rank(L,1), getting character S[rank(B,j)], and then moving to i < r; + ¢ —
select(L, 7). This clearly takes O(m) time, and the whole binary search takes
O(mlogn).

3.4 Reporting Occurrence Positions

Once we determine the SA range where the occurrences of P lie, we wish to
show those text positions where P occurs. With the current structures we do
not have enough information to do that.

We sample text positions at regular intervals of length I, that is, text posi-
tions h + I, h + 21, ..., so that text position n is sampled, h = n mod I. For
each sampled text position pos, pointed to by SA entry i, we store (i, pos) in an
array H,, in increasing ¢ order. At reporting time, given a position ¢ of SA to
report, we search for ¢ in H),. If present, we immediately know its text position
pos. Otherwise, we switch to i’ < r; + i — select(L, j), where j = rank(L,1),
which is the SA position pointing to text position pos + 1 (we do not yet know

! Our logarithms are all in base 2.



pos), and repeat the process. If we find (i, pos’) in H,, then the original text
position is pos’ — 1. We repeat the process until we find a reference in array H,,.

Fast searching of array H, is possible by storing a bit array inH,[1...n],
such that inH,[i] = 1 iff entry (¢, pos) is present in H,. If present, it is at H,
entry number rank(inH,, ), since H), entries are stored in increasing order of 3.
Hence inH, is precomputed to answer rank queries in constant time. We note
that only pos has to be stored in Hy, since ¢ is actually the search key.

If we sample one text position out of I = logn, then we can execute at most
logn steps in our quest for the text position, since some text position must be
sampled in the range pos...pos + logn — 1. Hence the total cost of the process
is O(logn). The extra space needed is 2n + o(n) bits, since each of the n/logn
text positions needs logn bits for pos and inH, needs n + o(n) bits.

3.5 Showing Text Contexts

Since the CCSA is a self-index, we must be able to show not only the text
context around an occurrence, but any text substring we are asked to. Say that,
in general, we wish to show a text string of length ¢ starting at text position
pos, that is, retrieve Tpos. . poste—1-

When we considered the binary search, we saw that we can retrieve as many
characters as we wish from the suffix pointed to by SA[i], given . This time,
however, we are given pos = SA[i] instead of ¢, so the first step is to find some
suitable 3.

We store in array H; the same entries (¢, pos) implicitly stored in H,, this
time in increasing order of pos. Actually, pos does not need to be stored since at
array position j we have pos = h + jI. Hence, at position H;[|(pos — h)/I]] we
find entry (i,pos’), where pos’ is the largest sampled text position pos’ < pos.
(For this to work properly we must add an entry H,[0] corresponding to text
position 1.) Then, we can extract £ + pos — pos’ text characters from SA[i] with
the same method used in the binary search. This will give us Tps.. pos+s—1 as
desired. The overall time is O(£ + logn) and we need other n bits to store the
entries of H;.

3.6 The Whole Picture

Our final CCSA structure is composed of the following elements:

Array r of n/ entries r;.

Array L of n bits with structures for rank and select operations.

— Array B of n' bits with structures for rank operations.

Array S of at most o characters.

— Array H, storing 1+ |n/logn] values 4, plus bit vector inH, of n bits with
structures for rank operation.

— Array H;, storing 1 + [n/logn]| values pos.



Together, these structures add n'logn + 4n + n' + ologo + o(n) bits. We
remark that the text needs not be stored separately. It is clear that the CCSA
can be built in O(n) time from the suffix array, since the most complex part is
similar to the CSA construction, which can be done in linear time [14].

We can do better in terms of space, at least in theory. A bit array of size n
where only k bits are set can be preprocessed for constant-time rank and select
queries and stored in log (Z) + o(n) bits [1]. In particular, our array B requires
only O(ologn') space, while array inH, requires O(nloglogn/logn) = o(n)
space.

The final result, taking o as a small constant to simplify, is that we need
n'logn + 3n + o(n) bits. With this CCSA structure, we can search for the occ
occurrences of a pattern of length m and show a text context of length ¢ around
each occurrence in worst-case time O((m logn + occ(¢+1logn))). If we only want
to show the text positions, the complexity is O((m + occ) logn). If we only want
to know how many occurrences there are, the complexity is O(mlogn).

We can attain n'logn + n + o(n) space by sampling one out of logn loglogn
entries in arrays H, and H;. In this case the time to report the occurrences raises
to O(occlognloglogn), and a text string can be displayed in O(¢+logn loglogn)
time.

All our space analysis is given in terms of n’. In the next section we show
that n’ = O(Hyn), and therefore the CCSA structure needs O(n(1 + Hy, logn))
bits of space.

4 An Entropy Bound on the Length of CSA and CCSA

We will now prove that the length n' of the optimal CSA and the CCSA is at
most |X|* + 2Hn, where Hj, is the k-th order empirical entropy of T [12]. To
be precise, we obtain the bound when the indexes are built on the inverse string
T t=t Myt =tpty -ty Of T

Let us first recall some basic facts and definitions from [12]. Let n; denote the
number of occurrences in T' of the i-th symbol of X. The zero-order empirical
entropy of the string 7' is

7 n; n;
Hy(T) == —log—, (M

i=1

where 0log0 = 0. If we use a fixed codeword for each symbol in the alphabet,
then Hon bits is the smallest encoding one can achieve for T' (Ho = Ho(T')). If
the codeword is not fixed, but it depends on the k previous symbols that may
precede it in T, then Hyn bits is the smallest encoding one can achieve for T,
where Hy = Hy(T) is the k-th order empirical entropy of T'. It is defined as

H(T) = 3 (WalHo(Wr), e

Wexk



where Wr is a concatenation of all symbols ¢; (in arbitrary order) such that
Wt; is a substring of T'. String W is the k-context of each such ¢;. Note that
the order in which the symbols t; are permuted in W does not affect Ho (Wr),
and hence we have not fixed any particular order for Wr.

The Burrows- Wheeler transform [2], denoted by bwt(T'), is a permutation of
the text. Run-length encoding of bwt(T') is closely related to the compression
achieved by the CSA. The runs in bwt(T) (maximal repeats of one symbol)
correspond to links in the CCSA; if we construct the optimal CCSA for string
T with the restriction that the suffixes inside each linked area must start with
the same symbol, then the length of the CCSA is equal to the number of runs
in bwt(T). To state this connection formally, recall from [12] that bwt(T) =
tgan) 1lsap 17 tsam 1> Where tg1 = t,1 = # and SA is the suffix array
of T71. Symbol # ¢ ¥ precedes all symbols of ¥ in the lexicographic order. 2
Now, if suffixes SA[j], SA[j + 1],..., SA[j + £] are replaced by a link to suffixes
SA[i], SA[i + 1],...,SA[i + £] in CCSA, then SA[j +r] = SA[i + r] — 1 and
t;i;[zurr]q = t;il[iw,]il for all 0 < r,r" < £. Since the linked areas are maximal
in CCSA, each run in bwt(T') corresponds to exactly one link in CCSA (omitting
the degenerate case of ¢,). Thus, the length n' of the optimal CCSA equals the
number of runs in bwt(T).

We will now prove that the number of runs in bwt(T) is at most | X|* +2Hn.

Let rle(S) be the run-length encoding of string S, that is, a sequence of pairs
(si,4;) such that s;8;11 - 8;4¢_1 is a mazimal run of symbol s; (i.e., s;_1 # 8;
and s;4¢ # s;), and all such maximal runs are listed in rle(S) in the order they
appear in S. The length |rle(S)| of rle(S) is the number of pairs in it. Notice
that |rle(S)| < |rle(S1)| + |rle(S2)| + - -+ + |rle(Sp)|, where S1S3---S, = S is
any partition of S.

Recall string Wr as defined in Eq. (2) for a k-context W of a string 7.
Note that we can apply any permutation to Wr so that (2) still holds. Now,
bwt(T) can be given as a concatenation of strings Wz for W € X* if we fix the
permutation of each W and the relative order of all strings W appropriately
[12]. As a consequence, we have that

rle(bwt(T))| < Y |rle(Wr)], (3)
WeXxk

where the permutation of each Wy is now fixed by bwt(T). In fact, Eq. (3)
holds also if we fix the permutation of each Wy so that |rle(Wr)| is maximized.
This observation gives a tool to upper bound |rle(bwt(T))| by the sum of code
lengths when zero-order entropy encoding is applied to each W separately. We
next show that |rle(Wr)| <1+ 2|Wr|Ho(Wr).

First notice that if | Xy, | = 1 then |rle(Wr)| = 1 and |Wr|Ho(Wr) = 0, so
our claim holds. Let us then assume that | Yy, | = 2. Let z and y (z < y) be the
number of occurrences of the two letters, say a and b, in Wy, respectively. We

> We follow the convention of Manzini [12]; the original transformation [2] uses T
instead of T7'.



have that

Ho(Wr) = —(z/(z+y))log(z/(z+y)) — (v/(z+y)) log(y/(z+y)) > z/(z+y),

(4)
since —log(z/(z+y)) > 1 (because z/(z+y) < 1/2) and —(y/(z+y))log(y/(z+
y)) > 0. The permutation of Wy that maximizes |rle(Wr)| is such that there is
no run of symbol a longer than 1. This makes the number of runs in rie(Wr) to
be 2z + 1. By using Eq. (4) we have that

rle(Wr)| < 22+ 1 =1+ 2|[Wrlz/(z +y) < 1+ 2|Wr|Ho(Wr).  (5)

We are left with the case | X'y, | > 2. This case splits into two sub-cases: (i) the
most frequent symbol occurs at least [Wr|/2 times in Wr; (ii) all symbols occur
less than |Wr|/2 times in Wr. Case (i) becomes analogous to case |Xw,| = 2
once z is redefined as the sum of occurrences of symbols other than the most
frequent. In case (ii) |rle(Wr)| can be |Wr|. On the other hand, |Wy|Hq(Wr)
must also be at least |Wr|, since it holds that —log(z/|Wr|) > 1 for z < |Wr|/2,
where z is the number of occurrences of any symbol in Wr. Therefore we can
conclude that Eq. (5) holds for any Wr.

Combining Egs. (2) and (5) we get the following result:

Theorem 3 The length of the run-length encoded Burrows- Wheeler transformed
text of length n is at most |X|* + 2Hyn, for any fived k > 1.

As a direct consequence of Theorem 3
n' < |rle(bwt(T))| < |Z|* + 2Hyn, (6)

where n' is the length of the optimal CCSA (or CSA) for text 7.

5 Implementation and Experiments

We implemented our CCSA structure almost exactly as described. The main
difference is that we changed the constant time select implementation de-
scribed in [13,3], as it has a huge constant factor (an asymptotic constant
that is usually > 300). Instead, we implemented a tailored algorithm to com-
pute i — select(L,rank(L,7)), which is the way we use select. In this case
we know position ¢ and simply want the last bit set before position 7 in ar-
ray L. We implemented a word-wise followed bit-wise upward scan from po-
sition 7 until the first bit set appears. Currently we have only implemented
the counting of occurrences and reporting of text positions, but not yet dis-
playing the context around the occurrences. The implementation is available at
http://www.cs.helsinki.fi/u/vmakinen/software/.

We tried out several alternative implementations for reporting the occur-
rences. The main idea in these alternative implementations is to exploit the
common search paths for consecutive suffixes. This property is used in the origi-
nal recursive reporting algorithm for compact suffix arrays [14]. We implemented



an analogous recursive reporting algorithm for CCSA, but it was only slightly
faster than the direct method described in Sect. 3.4. However, an algorithm that
only exploits the common search paths for minimizing the (costly) computation
of i — select(L, rank(L,1)) turned out to be practical; it is about 25% faster than
the direct computation.

Our experiments were run over 83.37 Mb of text obtained from the “ZIFF-2”
disk of the TREC-3 collection [9]. The tests ran on a Pentium IV processor at 2
GHz, 512 Mb of RAM and 512 Kb cache, running Linux SuSE 7.3. We compiled
the code with gcc 2.95.3 using optimization option -03. Times were averaged
over 10,000 search patterns. As we work only in main memory, we only consider
CPU times. The search patterns were obtained by pruning text lines to their
first m characters. We avoided lines containing tags and non-visible characters
such as ’&’.

The CCSA index takes 1.6 times the text size. Some quick tests showed that
the CCSA is about 50 times slower than the CSA (2.7 times the text size) and
50 to 75 times faster than the standard implementations of the FM-index [5, 6]
and the CSArray [18] using default parameters (around 0.7 times the text size).
This shows that the CCSA is a valid trade off alternative.

A much more interesting experiment is to determine how well does the CCSA
use the space it takes. Both the FM-index and the CSArray can be tuned to use
more space, so the natural question is how would the CCSA compare against
them if we let them use 1.6n bytes. Similarly, the LZ-index takes 1.5n bytes over
our text, so a direct comparison is fair.

The original FM-index implementation (http://butirro.di.unipi.it/
~“ferrax/fmindex/) does not permit using as much as 1.6n
bytes. Instead, we used the implementation from G. Navarro
(http://www.dcc.uchile.cl/~gnavarro/software), which takes
more space than the text and makes good wuse of it (see details
in [17]), and tuned it to use 1.5n bytes. On the other hand, the
CSArray original implementation by K. Sadakane (also available at
http://www.dcc.uchile.cl/ gnavarro/software), let us tuning it to
use near 1.6m bytes.

Figure 2 shows the result for counting queries (just telling the number of
occurrences) and for reporting queries (telling also all the text positions where
they appear). For counting, the CCSA is much faster than the LZ-index, albeit
slower than the FM-index and the CSArray. It is interesting that the search cost
of the CCSA seems to grow slower with m: For m = 5 it is 5-15 times slower, but
for m = 60 it is only 1.5-4 times slower. The reason is evidently in the expected
running time; for larger m, only small portion of the pattern is compared against
each suffix in the binary search.

For reporting, the CCSA is about 3.5 faster than the FM-index to process
each occurrence. This is clear for m = 5, where the number of occurrences is
high and reporting them dominates overall time. For m > 20 their number
is low enough to make the counting superiority of the FM-index to show up
and dominate the CCSA. The situation is reversed with the LZ-index, which is



10 times faster than the CCSA at reporting occurrences, but its inferiority to
find them shows up for m > 10, where it loses against the CCSA. Finally, the
CSArray is consistently nearly twice as fast as the CCSA.

ZIFF: Time to count occurrences
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o
i
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FM-index ——
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0001 1 1 1 1 1
0 10 20 30 40 50 60
Pattern length (m)
ZIFF: Time to report occurrence positions
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Fig. 2. Query times for our CCSA versus alternative succinct indexes tuned to use
about the same space.

6 Conclusions

Compact suffix array represents an analogous improvement to suffix arrays as
compact DAWG [4] for suffix trees; both are examples of concrete optimization
(using the terminology of Jacobson [10]). The research on compressed index
structures has recently concentrated on compressing suffix arrays and trees. Such
compression is called abstract optimization ([10]), as an analogy to the goal to



represent a data structure in as small space as possible while supporting the
functionality of the abstract definition of the structure.

In this paper, we have presented the first data structure, compressed compact
suffix array, that simultaneously exploits both concrete optimization and abstract
optimization. The resulting structure is competitive against the counterparts
that only use abstract optimization.

Our experiments, however, reveal that the structure does not in practice
dominate the best current implementations on any domain. Namely, the com-
pressed suffix array implementation of Sadakane [18] is always slightly better.
We note that the situation might easily change: Our structure uses heavily the
select-function. A more efficient implementation of this function would make our
structure a good alternative. Also, if the link structure could be compressed to
O(Hyn) bits instead of the O(Hyn logn) bits, our structure would become very
appealing.

The entropy bound on the size of compact suffix array is itself interesting. It
could be possible to obtain similar bound also for the size of compact DAWGs,
to explain the well-known fact that compact DAWGs have usually much less
nodes than suffix trees.

In our subsequent work [15], we have developed an index that is a cross
between CCSA and FM-index [5,6]. From the same entropy analysis as used
here follows that this index occupies O(n + Hpnlog|X|) bits. It supports
counting queries in time O(mlog|X]), and reports occ occurrences in time
O(occlog | X|logn).
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