
Compressed Compa
t Su�x ArraysVeli Mäkinen1 and Gonzalo Navarro2?1 Department of Computer S
ien
e, P.O. Box 26 (Teollisuuskatu 23)FIN-00014 University of Helsinki, Finland.vmakinen�
s.helsinki.fi2 Department of Computer S
ien
e, University of ChileBlan
o En
alada 2120, Santiago, Chile.gnavarro�d

.u
hile.
lAbstra
t. The
ompa
t su�x array (CSA) is a spa
e-e�
ient full-textindex, whi
h is fast in pra
ti
e to sear
h for patterns in a stati
 text. Com-pared to other
ompressed su�x arrays (Grossi and Vitter, Sadakane,Ferragina and Manzini), the CSA is signi�
antly larger (2.7 times thetext size, as opposed to 0.6�0.8 of
ompressed su�x arrays). The spa
eof the CSA in
ludes that of the text, whi
h the CSA needs separatelyavailable. Compressed su�x arrays, on the other hand, in
lude the text,that is, they are self-indexes. Although
ompressed su�x arrays are veryfast to determine the number of o

urren
es of a pattern, they are inpra
ti
e very slow to report even a few o

urren
e positions or text
on-texts. In this aspe
t the CSA is mu
h faster. In this paper we
ontributeto this spa
e-time trade o� by introdu
ing the Compressed CSA (CCSA),a self-index that improves the spa
e usage of the CSA in ex
hange forsear
h speed. We show that the o

 o

urren
e positions of a patternof length m in a text of length n
an be reported in O((m+ o

) log n)time using the CCSA, whose representation needs O(n(1 + Hk log n))bits for any k, Hk being the k-th order empiri
al entropy of the text. Inpra
ti
e the CCSA takes 1.6 times the text size (and in
ludes the text).This is still larger than
urrent
ompressed su�x arrays, and similar insize to the LZ-index of Navarro. Sear
h times are by far better than forself-indexes that take less spa
e than the text, and
ompetitive againstthe LZ-index and versions of
ompressed su�x arrays tailored to take1.6 times the text size.1 Introdu
tion and Related WorkThe
lassi
al problem in string mat
hing is to determine the o

 o

urren
esof a short pattern P = p1p2 : : : pm in a large text T = t1t2 : : : tn. Text andpattern are sequen
es of
hara
ters over an alphabet � of size �. In pra
ti
e onewants to know the text positions of those o

 o

urren
es, and usually also atext
ontext around them. Usually the same text is queried several times withdi�erent patterns, and therefore it is worthwhile to prepro
ess the text in orderto speed up the sear
hes. Prepro
essing builds an index stru
ture for the text.? Supported in part by Fonde
yt Grant 1-020831.

To allow fast sear
hes for patterns of any size, the index must allow a

ess toall su�xes of the text. These kind of indexes are
alled full-text indexes. Optimalquery time, whi
h is O(m+ o

) as every
hara
ter of P must be examined andthe o

 o

urren
es must be reported,
an be a
hieved by using the su�x tree[19℄ as the index. In a su�x tree every su�x of the text is represented by a pathfrom the root to a leaf. The spa
e requirement of a su�x tree is very high. It
anbe 12n bytes in pra
ti
e, even with a
areful implementation [7℄. In addition, inany pra
ti
al implementation there is always an alphabet dependent fa
tor onsear
h times.The su�x array (SA) [11℄ is a redu
ed form of the su�x tree. It representsonly the leaves of the su�x tree, via pointers to the starting positions of allthe su�xes. The array is lexi
ographi
ally sorted by the pointed su�xes. Asu�x array takes 4n bytes, and sear
hes in O(m logn+o

) time via two binarysear
hes. One �nds the �rst
ell i pointing to a su�x � P (lexi
ographi
ally),and the other �nds the �rst
ell j pointing to a su�x � p1p2 : : : pm�1(pm + 1).Then all the
ell values at su�x array positions i : : : j�1 are the initial positionsof o

urren
es of P in T .There is often a signi�
ant amount of redundan
y in a su�x array, su
hthat some array areas
an be represented by links to other areas. Basi
ally, it israther
ommon that one area
ontains the same pointers of the other area, allshifted by one text position. This observation has been intensively used re
entlyin di�erent ways to obtain su

in
t representations of su�x arrays and stillprovide fast sear
h time [8, 18, 5℄.The
ompa
t su�x array (CSA) [14℄ makes dire
t use of that redundan
y toredu
e the spa
e usage of su�x arrays. Areas similar to others (modulo a shiftin text positions) are found and repla
ed by a dire
t link to the similar areas. Inpra
ti
e the CSA takes less than 2n bytes and
an sear
h inO(m logn+o

) time,whi
h in pra
ti
e turns out to be about twi
e as slow as the plain su�x array.Note that, like su�x trees and arrays, the CSA needs the text itself separatelyavailable.A re
ent trend in
ompressed data stru
tures is that of self-indexes, whi
hin
lude the text. Hen
e the text
an be dis
arded and the index must providefun
tions to obtain any desired text substring in reasonable time. Self-indexesopen the ex
iting possibility of the index taking less spa
e than the text, evenin
luding it. Existing implemented self-indexes are the
ompressed su�x arrayCSArray of Sadakane [18℄ (built on [8℄), the FM-index of Ferragina and Manzini[5, 6℄, and the LZ-index of Navarro [16℄. The �rst two take 0.6�0.8 times the textsize, while the LZ-index takes about 1.5 times the text size on English text.In this paper we introdu
e the
ompressed CSA (CCSA), a self-index basedon the CSA whi
h is more
ompa
t and represents a relevant spa
e-time trade o�in pra
ti
e. We retain the links of the CSA, but en
ode them in a
ompa
t form.We also en
ode the text inside the CCSA by using small additional stru
turesthat permit sear
hing and displaying the text without a

essing T . We showthat the CCSA needs O(n(1 +Hk logn)) bits for any k, and that it
an �nd allthe o

urren
es of P in T in O((m + o

) logn) time. In an 80 Mb English text

example, the CCSA need 1:6n bytes, repla
ing the text. This is mu
h less thanthe 2:7n bytes needed by the CSA, about the same spa
e of the LZ-index, and2�3 times larger than other
ompressed su�x arrays. Sear
hing the CCSA is 50times slower than the CSA, but 50�75 times faster than any other self-index thattakes less spa
e than the text. The CCSA is
ompetitive against the LZ-index,and against
ompressed su�x arrays versions tailored to use the same 1:6n spa
eto boost their sear
h time.Our spa
e analysis represents indeed a
ontribution with independent inter-est, as we relate the spa
e requirement of CCSA and CSA to the number of runsin Burrows-Wheeler transformed text [2℄. We show that this quantity is at mostj�jk + 2Hkn.2 The Compa
t Su�x Array (CSA)Let � be an ordered alphabet of size � = j�j. Then T = t1t2 : : : tn 2 �� is a(text) string of length n = jT j. A su�x of text T is a substring Ti:::n = ti : : : tn.We assume that the last text
hara
ter is tn = $, whi
h does not o

ur elsewherein T and is lexi
ographi
ally smaller than any other
hara
ter in �.De�nition 1 The su�x array of text T of length n = jT j is an array SA[1 : : : n℄that
ontains all starting positions of the su�xes of the text T , su
h thatTSA[1℄:::n < TSA[2℄:::n < : : : < TSA[n℄:::n, that is, array SA gives the lexi
ographi
order of all su�xes of the text T .The idea of
ompa
ting the su�x array is the following: Let ` � 0. Findtwo areas j : : : j + ` and i : : : i + ` of SA that are repetitive in the sense thatthe su�xes represented by j : : : j + ` are obtained, in the same order, from thesu�xes represented by i : : : i + ` by inserting the �rst symbol. In other words,SA[j + k℄ = SA[i + k℄ � 1 for 0 � k � `. Then repla
e the area j : : : j + ` ofSA by a link, stored in SA[j℄, to the area i : : : i+ `. This is
alled a
ompa
tingoperation. The areas may be
ompa
ted re
ursively, meaning that area i : : : i+ `(or some parts of it) may also be repla
ed by a link.Due to the re
ursive de�nition, we need three values to represent a link:� A pointer p to the entry that
ontains the start of the linked area.� A value Æ su
h that entry p+ Æ denotes the a
tual starting point after entryp is un
ompa
ted.� The length of the linked area `.De�nition 2 A
ompa
t su�x array (CSA) of text T of length n = jT j is anarray CSA[1 : : : n0℄ of length n0 � n, su
h that for ea
h entry 1 � i � n0, CSA[i℄is either an expli
it su�x or a triple (p; Æ; `), where p, Æ, and ` denote a link to anarea obtained by a
ompa
ting operation from the su�x array of T . The optimalCSA for T is su
h that its length n0 is the smallest possible.

The original idea of using CSA as an index [14℄ is to guarantee that a CSAis binary sear
hable. That is, not all areas of the su�x array are
ompa
ted; itis required that ea
h other entry of the CSA
ontains a su�x. The sear
h for apattern then
onsists of three phases: (i) A binary sear
h is exe
uted over theentries of the CSA that
ontain su�xes, (ii) the entries in the range found by theinitial binary sear
h are un
ompa
ted, and (iii) the start and end of o

urren
esis found by binary sear
hes over the un
ompa
ted area.3 The Compressed CSAThe Compressed CSA (CCSA) is
on
eptually built on top of the CSA. It in-volves some slight
hanges in the stru
ture itself, and radi
al
hanges in itsrepresentation. A
omplete example is given in Fig. 1
2 3 4 5 6 7 81 9 121110

6 1 8 11 4 2 7 3 9

12 11 5 2 1 10 9 7 4 68 3

11 0 0 1 1 0 1 0

11 1 1 1 0 1 1 1 0 1 0

1 0 1 0 1 00 0 0 0 0 0

i s s i s s im p p i $

Suffix Array

Text

CCSA blocks12 11 5 2 1 10 9 7 4 68 3

CCSA triples

1 2 3 4 5 6 7 8 9

r[]

B[]

S[]$ i m p s

L[]

12,9,6,3 Hp
inHp
Ht

(5,0,1)(1,0,1)(7,0,1)(9,0,2)(4,1,1)(2,0,1)(6,0,1)(3,0,2)(8,0,2)

6,12,11,8,1Fig. 1. Example of our CCSA stru
ture for the text "mississippi$".3.1 Con
eptual Stru
tureThe CCSA data stru
ture is
on
eptually
omposed of an array of entries(pi; Æi; `i), 1 � i � n0, just like the CSA. This array, however, di�ers slightlyfrom that of the CSA. It
orresponds to the optimal CSA de�ned in previousse
tion, without any expli
it su�x. The CCSA represents the original su�x ar-ray SA as follows. Entry i in the CCSA represents a blo
k of `i entries of SA,

namely entries �P1�j<i `j�+ 1 to �P1�j<i `j�+ `i. The a
tual
ontent is ob-tained by
opying `i positions of SA from another area and subtra
ting 1 fromtheir
ell values. The pair (pi; Æi) is a referen
e to the SA position where thearea to
opy begins. The referen
e indi
ates position inside the CCSA array ando�set inside the pi-th blo
k (so it should hold 0 � Æi < `pi). The
orrespondingabsolute SA position is sapos(pi; Æi), where sapos(p; Æ) = 1 + Æ +P1�j<p `j .The only
ase where no proper referen
e exists is for SA entry with value n.In this
ase we state that the entry should referen
e position 1.Furthermore, the CCSA array has to be of minimum size. That is, it
annothappen that sapos(pi; Æi) = sapos(pi�1; Æi�1) + `i�1, as in this
ase the CCSAentry i
ould be merged with entry i � 1. However, we limit areas that
an beextended so that the �rst
hara
ters of all the su�xes pointed by the SA arearepresented by a single CCSA entry are equal.Con
eptually, the CCSA stru
ture needs the text separately available. How-ever, we propose now a representation both to
ompress the CCSA and to getrid of the expli
it representation of T .3.2 A Compa
t RepresentationThe CCSA array will be represented as follows. For ea
h blo
k (pi; Æi; `i) we willstore number ri = sapos(pi; Æi), whi
h gives the absolute SA position where thei-th CCSA blo
k points to. Additionally, an array L of n bits will signal the SApositions that start a blo
k in the CCSA. That is, L[j℄ = 1 i� there is a value1 � i � n0 su
h that sapos(i; 0) = j in the CCSA.We will be interested in performing rank and sele
t queries over array L.These are de�ned as follows: rank(L; j) is the number of 1's in L up to position j,and sele
t(L; i) is the position j of the i-th �1� in L. It is possible to prepro
essL so that, using only o(n) additional spa
e, rank and sele
t queries
an beanswered in
onstant time [13, 3℄.Now, the
omponents of triple (pi; Æi; `i)
an be
omputed as follows. First,pi = rank(L; ri), that is, the number of blo
ks beginnings up to position ri in theSA. Se
ond, Æi = ri � sele
t(L; pi), sin
e sele
t(L; pi) gives the initial positionof the blo
k where ri points inside. Finally, `i = sele
t(L; i+ 1) � sele
t(L; i),whi
h is the distan
e from the
urrent blo
k beginning to the next.In order to dis
ard the text, we need to supply a stru
ture to repla
e it.It turns out that we will never need to a

ess Tj dire
tly but, rather, givensu�x array entry SA[i℄, we will a

ess TSA[i℄. This is mu
h easier, be
ause the
hara
ters of T are sorted by index i, that is, given two text
hara
ters a < b,all the text o

urren
es of a appear before those of b in the SA. Moreover, sin
ethe �rst
hara
ters of ea
h CCSA blo
k are the same, we will only require the
hara
ters of the form TSA[sapos(i;0)℄.We store an array B of n0 bits, so that B[i℄ = 1 i� TSA[sapos(i;0)℄ 6=TSA[sapos(i�1;0)℄ or i = 1, that is, if the �rst
hara
ter of su�xes in CCSA blo
ki di�er from that in the previous blo
k. We also store an array of
hara
ters S,of size at most �, where all the distin
t
hara
ters appearing in T are stored in

lexi
ographi
 order. Hen
e, TSA[sapos(i;0)℄ = S[rank(B; i)℄, sin
e rank(B; i) tellshow many times the �rst su�x
hara
ter has
hanged sin
e the beginning of theCCSA array, and S maps this number to the
orresponding
hara
ter. Therefore,bit array B will be also prepro
essed for rank queries.The above stru
tures require n0 logn + n + n0 + � log� + o(n) bits. 1 Withthem we have enough information to determine the SA range that
ontains theo

urren
es of a pattern P . In the following we will depi
t the sear
h algorithms.Later, we will
onsider the problem of showing the text positions and
ontextsfor the o

urren
es, and introdu
e a few more stru
tures for that.3.3 Sear
h AlgorithmOur aim is to binary sear
h the CCSA just like the SA. Even if the SA is notexpli
itly represented, we
an perform su
h a binary sear
h provided we are ableto extra
t the �rstm
hara
ters of a given entry SA[i℄, so as to
ompare it againstour sear
h pattern P . Therefore, our problem is to extra
t TSA[i℄:::SA[i℄+m�1without having T nor SA.Let us �rst
on
entrate in obtaining
hara
ter TSA[i℄. Let j = rank(L; i) bethe CCSA blo
k that
ontains SA entry i. The o�set
orresponding to entry iinside CCSA blo
k j is Æ = i� sele
t(L; j), so i = sapos(j; Æ). Sin
e all the �rstletters of blo
ks inside CCSA blo
k j are the same, we
an rather fet
h
hara
terTSA[sapos(j;0)℄. As explained above, this is pre
isely S[rank(B; j)℄. Hen
e we
anobtain the �rst
hara
ter TSA[i℄ = S[rank(B; j)℄.We need now to move to the next
hara
ter TSA[i℄+1. But this is easy toto obtain from the CCSA. Sin
e SA[i℄
orresponds to referen
e (j; Æ) in theCCSA, then position SA[i℄ + 1
orresponds to CCSA referen
e (pj ; Æj + Æ). The
orresponding SA entry is thus sapos(pj ; Æj + Æ) = rj + Æ.Hen
e, the algorithm obtains the m
hara
ters by repeatedly
omputing j rank(L; i), getting
hara
ter S[rank(B; j)℄, and then moving to i rj + i �sele
t(L; j). This
learly takes O(m) time, and the whole binary sear
h takesO(m logn).3.4 Reporting O

urren
e PositionsOn
e we determine the SA range where the o

urren
es of P lie, we wish toshow those text positions where P o

urs. With the
urrent stru
tures we donot have enough information to do that.We sample text positions at regular intervals of length I , that is, text posi-tions h + I , h + 2I , : : :, so that text position n is sampled, h = n mod I . Forea
h sampled text position pos, pointed to by SA entry i, we store (i; pos) in anarray Hp, in in
reasing i order. At reporting time, given a position i of SA toreport, we sear
h for i in Hp. If present, we immediately know its text positionpos. Otherwise, we swit
h to i0 rj + i � sele
t(L; j), where j = rank(L; i),whi
h is the SA position pointing to text position pos+ 1 (we do not yet know1 Our logarithms are all in base 2.

pos), and repeat the pro
ess. If we �nd (i0; pos0) in Hp, then the original textposition is pos0� 1. We repeat the pro
ess until we �nd a referen
e in array Hp.Fast sear
hing of array Hp is possible by storing a bit array inHp[1 : : : n℄,su
h that inHp[i℄ = 1 i� entry (i; pos) is present in Hp. If present, it is at Hpentry number rank(inHp; i), sin
e Hp entries are stored in in
reasing order of i.Hen
e inHp is pre
omputed to answer rank queries in
onstant time. We notethat only pos has to be stored in Hp, sin
e i is a
tually the sear
h key.If we sample one text position out of I = logn, then we
an exe
ute at mostlogn steps in our quest for the text position, sin
e some text position must besampled in the range pos : : : pos+ logn� 1. Hen
e the total
ost of the pro
essis O(logn). The extra spa
e needed is 2n+ o(n) bits, sin
e ea
h of the n= logntext positions needs logn bits for pos and inHp needs n+ o(n) bits.3.5 Showing Text ContextsSin
e the CCSA is a self-index, we must be able to show not only the text
ontext around an o

urren
e, but any text substring we are asked to. Say that,in general, we wish to show a text string of length ` starting at text positionpos, that is, retrieve Tpos:::pos+`�1.When we
onsidered the binary sear
h, we saw that we
an retrieve as many
hara
ters as we wish from the su�x pointed to by SA[i℄, given i. This time,however, we are given pos = SA[i℄ instead of i, so the �rst step is to �nd somesuitable i.We store in array Ht the same entries (i; pos) impli
itly stored in Hp, thistime in in
reasing order of pos. A
tually, pos does not need to be stored sin
e atarray position j we have pos = h+ jI . Hen
e, at position Ht[b(pos� h)=I
℄ we�nd entry (i; pos0), where pos0 is the largest sampled text position pos0 � pos.(For this to work properly we must add an entry Ht[0℄
orresponding to textposition 1.) Then, we
an extra
t `+ pos� pos0 text
hara
ters from SA[i℄ withthe same method used in the binary sear
h. This will give us Tpos:::pos+`�1 asdesired. The overall time is O(` + logn) and we need other n bits to store theentries of Ht.3.6 The Whole Pi
tureOur �nal CCSA stru
ture is
omposed of the following elements:� Array r of n0 entries ri.� Array L of n bits with stru
tures for rank and sele
t operations.� Array B of n0 bits with stru
tures for rank operations.� Array S of at most �
hara
ters.� Array Hp storing 1+ bn= logn
 values i, plus bit ve
tor inHp of n bits withstru
tures for rank operation.� Array Ht, storing 1 + bn= logn
 values pos.

Together, these stru
tures add n0 logn + 4n + n0 + � log� + o(n) bits. Weremark that the text needs not be stored separately. It is
lear that the CCSA
an be built in O(n) time from the su�x array, sin
e the most
omplex part issimilar to the CSA
onstru
tion, whi
h
an be done in linear time [14℄.We
an do better in terms of spa
e, at least in theory. A bit array of size nwhere only k bits are set
an be prepro
essed for
onstant-time rank and sele
tqueries and stored in log �nk� + o(n) bits [1℄. In parti
ular, our array B requiresonly O(� logn0) spa
e, while array inHp requires O(n log logn= logn) = o(n)spa
e.The �nal result, taking � as a small
onstant to simplify, is that we needn0 logn + 3n+ o(n) bits. With this CCSA stru
ture, we
an sear
h for the o

o

urren
es of a pattern of length m and show a text
ontext of length ` aroundea
h o

urren
e in worst-
ase time O((m logn+o

(`+logn))). If we only wantto show the text positions, the
omplexity is O((m+ o

) logn). If we only wantto know how many o

urren
es there are, the
omplexity is O(m logn).We
an attain n0 logn+n+ o(n) spa
e by sampling one out of logn log lognentries in arraysHp and Ht. In this
ase the time to report the o

urren
es raisesto O(o

 logn log logn), and a text string
an be displayed in O(`+logn log logn)time.All our spa
e analysis is given in terms of n0. In the next se
tion we showthat n0 = O(Hkn), and therefore the CCSA stru
ture needs O(n(1 +Hk logn))bits of spa
e.4 An Entropy Bound on the Length of CSA and CCSAWe will now prove that the length n0 of the optimal CSA and the CCSA is atmost j�jk + 2Hkn, where Hk is the k-th order empiri
al entropy of T [12℄. Tobe pre
ise, we obtain the bound when the indexes are built on the inverse stringT�1 = t�11 t�12 � � � t�1n = tntn�1 � � � t1 of T .Let us �rst re
all some basi
 fa
ts and de�nitions from [12℄. Let ni denote thenumber of o

urren
es in T of the i-th symbol of �. The zero-order empiri
alentropy of the string T is H0(T) = � �Xi=1 nin log nin ; (1)where 0 log0 = 0. If we use a �xed
odeword for ea
h symbol in the alphabet,then H0n bits is the smallest en
oding one
an a
hieve for T (H0 = H0(T)). Ifthe
odeword is not �xed, but it depends on the k previous symbols that maypre
ede it in T , then Hkn bits is the smallest en
oding one
an a
hieve for T ,where Hk = Hk(T) is the k-th order empiri
al entropy of T . It is de�ned asHk(T) = 1n XW2�k jWT jH0(WT); (2)

where WT is a
on
atenation of all symbols tj (in arbitrary order) su
h thatWtj is a substring of T . String W is the k-
ontext of ea
h su
h tj . Note thatthe order in whi
h the symbols tj are permuted in WT does not a�e
t H0(WT),and hen
e we have not �xed any parti
ular order for WT .The Burrows-Wheeler transform [2℄, denoted by bwt(T), is a permutation ofthe text. Run-length en
oding of bwt(T) is
losely related to the
ompressiona
hieved by the CSA. The runs in bwt(T) (maximal repeats of one symbol)
orrespond to links in the CCSA; if we
onstru
t the optimal CCSA for stringT with the restri
tion that the su�xes inside ea
h linked area must start withthe same symbol, then the length of the CCSA is equal to the number of runsin bwt(T). To state this
onne
tion formally, re
all from [12℄ that bwt(T) =t�1SA[1℄�1t�1SA[2℄�1 � � � t�1SA[n℄�1, where t�10 = t�1n = # and SA is the su�x arrayof T�1. Symbol # =2 � pre
edes all symbols of � in the lexi
ographi
 order. 2Now, if su�xes SA[j℄; SA[j + 1℄; : : : ; SA[j + `℄ are repla
ed by a link to su�xesSA[i℄; SA[i + 1℄; : : : ; SA[i + `℄ in CCSA, then SA[j + r℄ = SA[i + r℄ � 1 andt�1SA[i+r℄�1 = t�1SA[i+r0℄�1 for all 0 � r; r0 � `. Sin
e the linked areas are maximalin CCSA, ea
h run in bwt(T)
orresponds to exa
tly one link in CCSA (omittingthe degenerate
ase of tn). Thus, the length n0 of the optimal CCSA equals thenumber of runs in bwt(T).We will now prove that the number of runs in bwt(T) is at most j�jk+2Hkn.Let rle(S) be the run-length en
oding of string S, that is, a sequen
e of pairs(si; `i) su
h that sisi+1 � � � si+`�1 is a maximal run of symbol si (i.e., si�1 6= siand si+` 6= si), and all su
h maximal runs are listed in rle(S) in the order theyappear in S. The length jrle(S)j of rle(S) is the number of pairs in it. Noti
ethat jrle(S)j � jrle(S1)j + jrle(S2)j + � � � + jrle(Sp)j, where S1S2 � � �Sp = S isany partition of S.Re
all string WT as de�ned in Eq. (2) for a k-
ontext W of a string T .Note that we
an apply any permutation to WT so that (2) still holds. Now,bwt(T)
an be given as a
on
atenation of strings WT for W 2 �k, if we �x thepermutation of ea
h WT and the relative order of all strings WT appropriately[12℄. As a
onsequen
e, we have thatjrle(bwt(T))j � XW2�k jrle(WT)j; (3)where the permutation of ea
h WT is now �xed by bwt(T). In fa
t, Eq. (3)holds also if we �x the permutation of ea
h WT so that jrle(WT)j is maximized.This observation gives a tool to upper bound jrle(bwt(T))j by the sum of
odelengths when zero-order entropy en
oding is applied to ea
h WT separately. Wenext show that jrle(WT)j � 1 + 2jWT jH0(WT).First noti
e that if j�WT j = 1 then jrle(WT)j = 1 and jWT jH0(WT) = 0, soour
laim holds. Let us then assume that j�WT j = 2. Let x and y (x � y) be thenumber of o

urren
es of the two letters, say a and b, in WT , respe
tively. We2 We follow the
onvention of Manzini [12℄; the original transformation [2℄ uses Tinstead of T�1.

have thatH0(WT) = �(x=(x+y)) log(x=(x+y))�(y=(x+y)) log(y=(x+y)) � x=(x+y);(4)sin
e � log(x=(x+y)) � 1 (be
ause x=(x+y) � 1=2) and �(y=(x+y)) log(y=(x+y)) > 0. The permutation of WT that maximizes jrle(WT)j is su
h that there isno run of symbol a longer than 1. This makes the number of runs in rle(WT) tobe 2x+ 1. By using Eq. (4) we have thatjrle(WT)j � 2x+ 1 = 1 + 2jWT jx=(x+ y) � 1 + 2jWT jH0(WT): (5)We are left with the
ase j�WT j > 2. This
ase splits into two sub-
ases: (i) themost frequent symbol o

urs at least jWT j=2 times in WT ; (ii) all symbols o

urless than jWT j=2 times in WT . Case (i) be
omes analogous to
ase j�WT j = 2on
e x is rede�ned as the sum of o

urren
es of symbols other than the mostfrequent. In
ase (ii) jrle(WT)j
an be jWT j. On the other hand, jWT jH0(WT)must also be at least jWT j, sin
e it holds that � log(x=jWT j) � 1 for x � jWT j=2,where x is the number of o

urren
es of any symbol in WT . Therefore we
an
on
lude that Eq. (5) holds for any WT .Combining Eqs. (2) and (5) we get the following result:Theorem 3 The length of the run-length en
oded Burrows-Wheeler transformedtext of length n is at most j�jk + 2Hkn, for any �xed k � 1.As a dire
t
onsequen
e of Theorem 3n0 � jrle(bwt(T))j � j�jk + 2Hkn; (6)where n0 is the length of the optimal CCSA (or CSA) for text T�1.5 Implementation and ExperimentsWe implemented our CCSA stru
ture almost exa
tly as des
ribed. The maindi�eren
e is that we
hanged the
onstant time sele
t implementation de-s
ribed in [13, 3℄, as it has a huge
onstant fa
tor (an asymptoti

onstantthat is usually > 300). Instead, we implemented a tailored algorithm to
om-pute i � sele
t(L; rank(L; i)), whi
h is the way we use sele
t. In this
asewe know position i and simply want the last bit set before position i in ar-ray L. We implemented a word-wise followed bit-wise upward s
an from po-sition i until the �rst bit set appears. Currently we have only implementedthe
ounting of o

urren
es and reporting of text positions, but not yet dis-playing the
ontext around the o

urren
es. The implementation is available athttp://www.
s.helsinki.fi/u/vmakinen/software/.We tried out several alternative implementations for reporting the o

ur-ren
es. The main idea in these alternative implementations is to exploit the
ommon sear
h paths for
onse
utive su�xes. This property is used in the origi-nal re
ursive reporting algorithm for
ompa
t su�x arrays [14℄. We implemented

an analogous re
ursive reporting algorithm for CCSA, but it was only slightlyfaster than the dire
t method des
ribed in Se
t. 3.4. However, an algorithm thatonly exploits the
ommon sear
h paths for minimizing the (
ostly)
omputationof i�sele
t(L; rank(L; i)) turned out to be pra
ti
al; it is about 25% faster thanthe dire
t
omputation.Our experiments were run over 83.37 Mb of text obtained from the �ZIFF-2�disk of the TREC-3
olle
tion [9℄. The tests ran on a Pentium IV pro
essor at 2GHz, 512 Mb of RAM and 512 Kb
a
he, running Linux SuSE 7.3. We
ompiledthe
ode with g

 2.95.3 using optimization option -O3. Times were averagedover 10,000 sear
h patterns. As we work only in main memory, we only
onsiderCPU times. The sear
h patterns were obtained by pruning text lines to their�rst m
hara
ters. We avoided lines
ontaining tags and non-visible
hara
terssu
h as '&'.The CCSA index takes 1.6 times the text size. Some qui
k tests showed thatthe CCSA is about 50 times slower than the CSA (2.7 times the text size) and50 to 75 times faster than the standard implementations of the FM-index [5, 6℄and the CSArray [18℄ using default parameters (around 0.7 times the text size).This shows that the CCSA is a valid trade o� alternative.A mu
h more interesting experiment is to determine how well does the CCSAuse the spa
e it takes. Both the FM-index and the CSArray
an be tuned to usemore spa
e, so the natural question is how would the CCSA
ompare againstthem if we let them use 1:6n bytes. Similarly, the LZ-index takes 1:5n bytes overour text, so a dire
t
omparison is fair.The original FM-index implementation (http://butirro.di.unipi.it/~ferrax/fmindex/) does not permit using as mu
h as 1:6nbytes. Instead, we used the implementation from G. Navarro(http://www.d

.u
hile.
l/~gnavarro/software), whi
h takesmore spa
e than the text and makes good use of it (see detailsin [17℄), and tuned it to use 1:5n bytes. On the other hand, theCSArray original implementation by K. Sadakane (also available athttp://www.d

.u
hile.
l/~gnavarro/software), let us tuning it touse near 1:6n bytes.Figure 2 shows the result for
ounting queries (just telling the number ofo

urren
es) and for reporting queries (telling also all the text positions wherethey appear). For
ounting, the CCSA is mu
h faster than the LZ-index, albeitslower than the FM-index and the CSArray. It is interesting that the sear
h
ostof the CCSA seems to grow slower withm: Form = 5 it is 5�15 times slower, butfor m = 60 it is only 1.5�4 times slower. The reason is evidently in the expe
tedrunning time; for largerm, only small portion of the pattern is
ompared againstea
h su�x in the binary sear
h.For reporting, the CCSA is about 3.5 faster than the FM-index to pro
essea
h o

urren
e. This is
lear for m = 5, where the number of o

urren
es ishigh and reporting them dominates overall time. For m > 20 their numberis low enough to make the
ounting superiority of the FM-index to show upand dominate the CCSA. The situation is reversed with the LZ-index, whi
h is

10 times faster than the CCSA at reporting o

urren
es, but its inferiority to�nd them shows up for m > 10, where it loses against the CCSA. Finally, theCSArray is
onsistently nearly twi
e as fast as the CCSA.

0.001

0.01

0.1

1

10

0 10 20 30 40 50 60

U
se

r
tim

e
(m

se
cs

)

Pattern length (m)

ZIFF: Time to count occurrences

LZ-index
FM-index
CSArray

CCSA

0.1

1

10

100

1000

0 10 20 30 40 50 60

U
se

r
tim

e
(m

se
cs

)

Pattern length (m)

ZIFF: Time to report occurrence positions

LZ-index
FM-index
CSArray

CCSA

Fig. 2. Query times for our CCSA versus alternative su

in
t indexes tuned to useabout the same spa
e.6 Con
lusionsCompa
t su�x array represents an analogous improvement to su�x arrays as
ompa
t DAWG [4℄ for su�x trees; both are examples of
on
rete optimization(using the terminology of Ja
obson [10℄). The resear
h on
ompressed indexstru
tures has re
ently
on
entrated on
ompressing su�x arrays and trees. Su
h
ompression is
alled abstra
t optimization ([10℄), as an analogy to the goal to

represent a data stru
ture in as small spa
e as possible while supporting thefun
tionality of the abstra
t de�nition of the stru
ture.In this paper, we have presented the �rst data stru
ture,
ompressed
ompa
tsu�x array, that simultaneously exploits both
on
rete optimization and abstra
toptimization. The resulting stru
ture is
ompetitive against the
ounterpartsthat only use abstra
t optimization.Our experiments, however, reveal that the stru
ture does not in pra
ti
edominate the best
urrent implementations on any domain. Namely, the
om-pressed su�x array implementation of Sadakane [18℄ is always slightly better.We note that the situation might easily
hange: Our stru
ture uses heavily thesele
t-fun
tion. A more e�
ient implementation of this fun
tion would make ourstru
ture a good alternative. Also, if the link stru
ture
ould be
ompressed toO(Hkn) bits instead of the O(Hkn logn) bits, our stru
ture would be
ome veryappealing.The entropy bound on the size of
ompa
t su�x array is itself interesting. It
ould be possible to obtain similar bound also for the size of
ompa
t DAWGs,to explain the well-known fa
t that
ompa
t DAWGs have usually mu
h lessnodes than su�x trees.In our subsequent work [15℄, we have developed an index that is a
rossbetween CCSA and FM-index [5, 6℄. From the same entropy analysis as usedhere follows that this index o

upies O(n + Hkn log j�j) bits. It supports
ounting queries in time O(m log j�j), and reports o

 o

urren
es in timeO(o

 log j�j logn).Referen
es1. A. Brodnik and I. Munro. Membership in
onstant time and almost-minimumspa
e. SIAM J. on Comp. 5:1627�1640, 1999.2. M. Burrows and D. J. Wheeler. A blo
k-sorting lossless data
ompression algo-rithm. DEC SRC Resear
h Report 124, 1994.3. D. Clark. Compa
t Pat Trees. PhD thesis, University of Waterloo, 1996.4. M. Cro
hemore and Renaud Vérin. Dire
t Constru
tion of Compa
t Dire
tedA
y
li
 Word Graphs. In Pro
. CPM'97, Springer-Verlag LNCS 1264, pp. 116-129,1997.5. P. Ferragina and G. Manzini. Opportunisti
 Data Stru
tures with Appli
ations. InPro
. IEEE Symp. on Foundations of Computer S
ien
e (FOCS'00), pp. 390�398,2000.6. P. Ferragina and G. Manzini. An Experimental Study of an Opportunisti
 Index.In Pro
. 12th Symposium on Dis
rete Algorithms (SODA'01), pp. 269�278, 2001.7. R. Giegeri
h, S. Kurtz, and J. Stoye. E�
ient Implementation of Lazy Su�xTrees. In Pro
. 3rd Workshop on Algorithmi
 Engineering (WAE'99), LNCS 1668,pp. 30�42, 1999.8. R. Grossi and J. Vitter. Compressed su�x arrays and su�x trees with appli
ationsto text indexing and string mat
hing. In Pro
. 32nd Symposium on Theory ofComputing (STOC'00), pp. 397�406, 2000.9. D. Harman. Overview of the Third Text REtrieval Conferen
e. In Pro
. TREC-3,pages 1�19, 1995. NIST Spe
ial Publi
ation 500-207.

10. G. Ja
obson. Su

in
t Stati
 Data Stru
tures. PhD thesis, CMU-CS-89-112,Carnegie Mellon University, 1989.11. U. Manber and G. Myers. Su�x arrays: A new method for on-line string sear
hes.SIAM J. Comput. 22, pp. 935�948, 1993.12. G. Manzini. An Analysis of the Burrows-Wheeler Transform. J. of the ACM48(3):407�430, 2001.13. I. Munro. Tables. In Pro
. FSTTCS'96, pp. 37�42, 1996.14. V. Mäkinen. Compa
t Su�x Array � A Spa
e-e�
ient Full-text Index. Funda-menta Informati
ae 56(1-2), pp. 191�210, 2003.15. V. Mäkinen and G. Navarro. New sear
h algorithms and time/spa
e trade o�sfor su

in
t su�x arrays. Te
hni
al report C-2004-20, Dept. of Computer S
ien
e,Univ. of Helsinki, April 2004.16. G. Navarro. Indexing Text using the Ziv-Lempel Trie. In Pro
. 9th String Pro-
essing and Information Retrieval (SPIRE'02), LNCS 2476, pp. 325�336, 2002.Extended version to appear in J. of Dis
rete Algorithms.17. G. Navarro. The LZ-index: A Text Index Based on the Ziv-Lempel Trie. Te
hni
alReport TR/DCC-2003-1, Dept. of Computer S
ien
e, Univ. of Chile, January 2003.18. K. Sadakane. Compressed text databases with e�
ient query algorithms basedon the
ompressed su�x array. In Pro
. 11th Algorithms and Computation(ISAAC'00), LNCS 1969, pp. 410�421, 2000.19. P. Weiner. Linear pattern mat
hing algorithms. In Pro
. IEEE 14th Annual Sym-posium on Swit
hing and Automata Theory, pp. 1�11, 1973.

