Average-Optimal Multiple Approximate String
Matching

Kimmo Fredriksson! * and Gonzalo Navarro? **
! Department of Computer Science, University of Joensuu
kfredrik@cs. joensuu.fi
2 Department of Computer Science, University of Chile
gnavarro@dcc.uchile.cl

Abstract. We present a new algorithm for multiple approximate string
matching, based on an extension of the optimal (on average) single-
pattern approximate string matching algorithm of Chang and Marr. Our
algorithm inherits the optimality and is also competitive in practice.
We present a second algorithm that is linear time and handles higher
difference ratios. We show experimentally that our algorithms are the
fastest for intermediate difference ratios, an area where the only exist-
ing algorithms permitted simultaneous search for just a few patterns.
Our algorithm is also resistant to the number of patterns, being effective
for hundreds of patterns. Hence we fill an important gap in approxi-
mate string matching techniques, since no effective algorithms existed to
search for many patterns with an intermediate difference ratio.

1 Introduction

Approximate string matching is one of the main problems in classical string
algorithms, with applications to text searching, computational biology, pattern
recognition, etc. Given a text Ty ,, a pattern P;_ ,,, and a maximal number of
differences permitted, k, we want to find all the text positions where the pattern
matches the text up to k differences. The differences can be substituting, deleting
or inserting a character. We call & = k/m the difference ratio, and o the size
of the alphabet Y. For the average case analyses it is customary to assume a
random text over a uniformly distributed alphabet.

A natural extension to the basic problem consists of multipattern searching,
that is, searching for r patterns P! ... P" simultaneously in order to report all
their occurrences with at most k differences. This has also several applications
such as virus and intrusion detection, spelling applications, text retrieval under
synonym or thesaurus expansion, several problems in computational biology,
batch processing of single-pattern approximate searching, etc. Moreover, some
single-pattern approximate search algorithms resort to multipattern searching of

* Work developed while the author was working in the Dept. of Computer Science,
University of Helsinki. Supported by the Academy of Finland.
** Partially supported by Fondecyt grant 1-020831.

pattern pieces. Multidimensional search problems can also be reduced to string
matching. Depending on the application, r may vary from a few to thousands of
patterns. The naive approach is to perform r separate searches, so the goal is to
do better.

The single-pattern problem has received a lot of attention since the sixties [8].
After the first dynamic-programming-based O(mn) time solution to the problem
[11], many faster techniques have been proposed, both for the worst and the
average case. In 1994, Chang and Marr [3] showed that the average complexity
of the problem is O((k+1log, m)n/m), and gave an algorithm that achieved that
average-optimal cost for « < 1/3 — O(1/+/0).

The multipattern problem has received much less attention, not because of
lack of interest but because of its difficulty. There exist algorithms that search
permitting only k£ = 1 difference [6], and algorithms that handle either too few
patterns or too low difference ratios [2].

Hence multiple approximate string matching is a rather undeveloped area.
No algorithm exists when one searches for more than a few of patterns with
intermediate difference ratios. Moreover, as the number of patterns grows, the
difference ratios that can be handled get reduced.

The goal of this paper is to present an algorithm that is optimal on the
average and that permits searching even for thousands of patterns with low
and intermediate difference ratios, thus filling an important gap in the area.
We build over an average-optimal algorithm that searches for single patterns
[3] and inherit its optimality, obtaining O(n(k + log, (rm))/m) average search
time. We show that the algorithm is not only theoretically appealing but also
good in practice thanks to several practical improvements we introduce. Since
the algorithm does not work for difference ratios beyond 1/3, we introduce a
second, O(n) average time variant that reaches ratios of 1/2. The algorithms
are shown to be the fastest for a wide range of values of m, r and k, for small
alphabets, see Sec. 6.

2 Related Work

2.1 Multiple Approximate String Matching

The naive approach to multipattern approximate searching is to perform r sepa-
rate searches, one per pattern. If we use the optimal single-pattern algorithm [3],
the average search time becomes O((k + log, m)rn/m) for the naive approach.
On the other hand, if we use the classical O(mn) algorithm [11] the time is
O(rmmn).

Few algorithms exist for multipattern approximate searching under the k
differences model. The first one, based on hashing, was presented by Muth and
Manber [6]. It permits searching with k£ = 1 differences only, but is rather tolerant
to the number of patterns r, which can reach the thousands without affecting
much the cost of the search. The preprocessing time is O(rm) and the average
search time is O(mn(1 + rm?/M)), where M is the size of the hash table. This

adds up O(rm +nm(1 +rm?/M)), which is O(m(r +n)) of M = 2(m?r). This
is basically independent of r if n is large enough.

Baeza-Yates and Navarro [2] have presented several algorithms for this prob-
lem. One of them, partitioning into exact search, uses the fact that, if P is cut into
k+1 pieces, then at least one of the pieces appears inside every occurrence with no
differences. Hence the algorithm splits every pattern into k41 pieces and searches
for the r(k + 1) pieces with an exact multipattern search algorithm. The prepro-
cessing takes O(rm) time. If they used an optimal multipattern exact search al-
gorithm like MultiBDM [4], the search time would have been O(klog, (rm)n/m)
on average. For practical reasons they used another algorithm, more suitable to
searching for short pieces (of length [m/(k + 1)]), albeit with worse theoretical
complexity. This technique can be applied for a < 1/log, (rm), a limit that gets
more and more strict as m or r increase.

They also presented other algorithms that, although can handle higher dif-
ference ratios, are linear on r, which means that they give a speedup only up to
a constant number c¢ of patterns and then just divide the search into r/c groups
that are searched for separately. Superimposition uses a standard search tech-
nique on a set of “superimposed” patterns, which means that the i-th character
of the superimposition matches the i-th character of any of the superimposed
patterns. Implemented over a newer bit-parallel algorithm [7], superimposition
would yield average time O(rn/(c(1 — a)?)) for a < 1 — ey/r/o on patterns
shorter than the number of bits in the computer word, w (typically w = 32 or
64). Different techniques are used to cope with longer patterns, but the times
are worse. Counting extends a single-pattern algorithm that slides a window of
length m over the text checking in linear time whether it shares at least m — k
characters with the pattern (regardless of the order). The multipattern version
keeps several counters in a single computer word, achieving an average search
time of O(rnlog(m)/w) for a < e=™/7.

2.2 The Algorithm of Chang and Marr

Chang and Marr [3] show that no approximate search algorithm for a single
pattern can be faster than O((k + log, m)n/m) on the average. This is not hard
to prove, and we give more details in Section 4.

In the same paper [3], Chang and Marr presented an algorithm achieving that
optimal average time complexity. In the preprocessing phase they build a table
D as follows. They choose a number ¢ in the range 1 < £ < [(m — k)/2], whose
exact value we will consider shorty. For every string S of length £ (¢-gram), they
search for S in P and store in D[S] the smallest number of differences needed to
match S inside P (this is a number between 0 and £). Hence D requires space
for o¢ entries and is computed in ¢*#m time. A numerical representation of X*
permits constant time access to D.

The text scanning phase consists of logically dividing the text in blocks of
length b = [(m — k)/2], which ensures that any approximate occurrence of
P (which has length at least m — k) contains at least one whole block. Each
block Tjp+1.. ip+p is processed as follows. They take the first /-gram of the block,

S' = Tipy1..ibre, and obtain D[S!]. Then they take the next f-gram, S? =
Tibseos1..ibr2¢, and obtain D[S?], and so on. If, before reaching the end of the
block, they have obtained >, ., D[S7] > k, then they can safely skip the block
because no occurrence of P can contain the block, as merely matching those ¢
{-grams anywhere inside P requires more than k differences. If, on the other
hand, they reach the end of the block without surpassing k total differences, the
block must be checked. In order to check for Tjp11.. jp+p they run the classical
dynamic programming algorithm over Tjp41—m—fk+b.. ib+m-+k-

In order to keep the space requirement polynomial in m, it is required that
¢ = O(log, m). On the other hand, in order to achieve the claimed complexity,
it is necessary that ¢ > xlog, m for some conq‘ran‘r x, so the space is O(m™). The
optimal complexity holds as long as a < 1/3 — 1/\/_ .

3 Our Algorithm

The basic idea of our algorithm is as follows. Given r search patterns P! ...P",
we build the table D taking the minimum number of differences to ma‘rch each
{-gram inside any of the patterns. The scanning phase is the same as in Sec-
tion 2.2. If we surpass k differences inside a block we are sure that none of the
patterns match, since there are ¢t {-grams inside the block that need more than
k differences in order to be found inside any pattern. Otherwise, we check the
patterns one by one over the block. Figure 1 gives the code. We present now
several improvements over this basic idea.

Search (Ty...n, Pl ... P ., k)

{ < Preprocess ()

be [(m— k)/2]

Fori€0...|n/b] —1 Do
VerifyBlock (i, b)

W=

Fig. 1. High-level description of the algorithm. The input parameters are taken as
global variables in the rest of the paper, to simplify the descriptions.

3.1 Optimal Choice of /-grams

The basic single-pattern algorithm [3] uses the first consecutive ¢-grams of the
block in order to find more than k differences. This is simple, but not necessarily
the best choice. Note that any set of non-overlapping ¢-grams found inside the
block whose total number of differences inside P exceeds k permits us discarding
the block. Hence the question of using the best possible set is raised.

The optimization problem is as follows. Given the text block Tjp11. ip+p We
have b—(+1 possible (-grams, namely Tip1.iv+e, Tiv+2.ib+e+15 - - Tibrb—e4+1. ib+b-
From this set we want a subset of non-overlapping ¢-grams S'...S? such that
<<t D[S7] > k. Moreover, we want to process the set left to right and detect
a good enough subset as soon as possible.

This is solved by calling M, the maximum sum that can be obtained using
{-grams that start in the positions ¢b+1...¢b+ u. Initially we start with M,, =0
for —¢ < u < 0. Then we traverse the block computing, for increasing u values,

Mu — maX(D[Tib+u...ib+u+£71] + Muf() Mufl) (]-)

where the first term accounts for the fact that we choose to use the f-gram that
starts at v and add to it the best previous solution that does not overlap this
{-gram, and the second term accounts for the fact that we do not use the /-gram
that starts at u.

We compute M, for increasing u until either (i) M, > k, in which case we
abandon the block, or (ii) u > b — £ + 1, in which case we have to verify the
block. Figure 2 gives the code.

CanDiscard (i, b, D, {)

1 Forue —¢...0 Do M, + 0

2 Foruel...b—{¢+1Do

3. M, < max(D[Tiptu. ibtute—1]+ My, My_1)
4 If M, > k Then Return TRUE

b) Return FALSE

Fig. 2. Optimization technique to choose the set of overlapping ¢-grams that maximize
the sum of differences. It returns whether the block can be discarded.

Note that the cost of choosing the best set of /-grams is that, if we abandon
the block after considering position z, then we work O(z/f) with the simple
method and O(z) with the current one. (This assumes we can read an ¢-gram
in constant time, which is true in practice given the ¢ values used.) However, z
itself may be smaller with the optimization method.

3.2 Hierarchical Verification

On the blocks that have to be verified, we could simply run the verification for
every pattern, one by one. A more sophisticated choice is hierarhical verification
(already presented in previous work [2]). We form a tree whose nodes have the
form [i, j] and represent the group of patterns P?... PJ. The root is [1,r]. The
leaves have the form [, i]. Every internal node [i, j] has two children [i, | (i+7)/2]]
and [[(i +j)/2] + 1,j].

The hierarchy is used as follows. For every internal node [i,j] we have a
table D computed using the minimum distances between /-grams and patterns
Pi. .. P This is done by computing first the leaves (that is, each pattern sepa-
rately) and then computing every cell of D in the internal node as the minimum
over the corresponding cell in its two children. In order to scan the text, we
use the D table of the root node, which corresponds to the full set of patterns.
Every time a block has to be verified with respect to a node in the hierarchy
(at first, the root node), we rescan the block considering the two children of the
current node. It is possible that the block can be discarded for both children, for
one, or for none. We recursively repeat the process for every child that does not
permit discarding the block, see Fig. 3. If we process a leaf node and still have
to verify the block, then we run dynamic programming over the corresponding
single pattern.

pO p]_
p2 p3
PO —— p2
pl p3
po p1 p2 p3

Fig. 3. Pattern hierarchy for 4 patterns.

The idea of using the hierarchy instead of plainly checking the r patterns one
by one is that it is possible that the grouping of the pattern matches a block, but
that none of its halves match. In this case we save verification time. The plain
technique needs O(o*) space, while hierarchical verification needs much more,
O(rat).

Note that verification would benefit if the patterns we group together are as
similar as possible, in terms of numbers of differences. A simple heuristic is to
lexicographically sort the patterns before grouping them by ranges.

As a final note, we use Myers’ algorithm [7] for the verification of single
patterns, which makes the cost O(m?/w), where w is the number of bits in the
computer word.

Figures 4 and 5 show the preprocessing and verification using hierarchical
verification.

3.3 Reducing Preprocessing Time

Either if we use plain or hierarchical verification, preprocessing time is an issue.
We have to search every pattern for every /-gram, resulting in O(r¢ma*) prepro-

HierarchyPreprocess (i, j,)

If i = j Then D; ; < PreprocessD (P ()
Else
m (i +5)/2)
HierarchyPreprocess (i, m,{)
HierarchyPreprocess (m + 1, j,{)
For s € X* Do
D j[s] = min(D;,m[s], Dm+1,5[s])

NS oW

Preprocess ()

3log, m+log, r
8. s |—1—c+2510gﬂgc+2(17i)10g”(1fc)-| // see Eq (3)

9. HierarchyPreprocess(1,r,¥)

Fig. 4. Preprocessing to build the hierarchy. It is initially invoked with parameters
(1,r) and produces global tables D;; to be used by HierarchyVerify. The main
search table is D1 .

HierarchyVerify (i, j, b, s)

If NoT CanDiscard (s, b, D;;, {) Then
If i = j Then Search for P* in Tspr1—m—ktb...sbtmik
Else
m e i+ 5)/2]
HierarchyVerify (i, m)
HierarchyVerify (m + 1, j)

O T W N~

Fig. 5. Hierarchical verification. Procedure VerifyBlock(i, b) is then defined as Hier-
archyVerify (1,r,b,1).

cessing time. In the case of hierarchical verification we pay an additional O(ro*)
time to create the D tables of the internal nodes, but this is negligible compared
to the cost to compute the individual patterns.

In order to find the minimum number of differences to match an ¢-gram S
inside a pattern P, we compute the matrix C; ;, for 0 < i </Zand 0 < j < m,
as follows [11]:

Ci,(] =1 y C(]’j = 0
Citrj41 =if Sipa = Pjyr then Cyj else 1+ min(Cyj, Ci i1, Ciga j)
which can be computed, for example, row-wise left to right. We need only the

previous row in order to compute the current row. The minimum distance is
finally ming<;<m C¢ ;.

We present now a method to reduce the preprocessing time to O(rmo*),

which has been used before in the context of indexed approximate string match-
ing [10]. Instead of running the ¢-grams one by one over a pattern P, we form
a trie data structure of all the f-grams. For every trie node whose path from
the root spells out the string S, we compute the last row of the C matrix corre-
sponding to searching for S inside P. For this sake we use the previous matrix
row, which was computed for the parent node. Hence, if we traverse the trie
using a classical depth first search recursion and compute a new matrix row at
each invocation, then the execution stack contains the matrix computed up to
now, so we use the row computed at the invoking process to compute the row of
the invoked process. Since we work O(m) at every trie node and there are O(o*)
nodes, the overall process takes O(ma?) time. It needs just space for the stack,
O(mf). By repeating this over each pattern we obtain O(rmoa?) time.

Note finally that the trie of £-grams does not need to be explicitly built, as we
know that we have every possible /-gram and hence can use an implicit method
to traverse all them without actually storing them. Only the minima over the
final rows are stored into the corresponding D entries. Figure 6 shows the code.

RecPreprocessD (P, i, ¢, S, Cold, D)

If i = ¢ Then D[S] < ming<;<n, Cold,;
Else
For s € ¥ Do
Cnewg < 1
For jel...m Do
If s = P; Then Cnew; < Cold;_:
Else Cnew; < 14 min(Coldj_1, Coldj, Cnew;j_1)
RecProcessD (P,i+ 1,¢,Ss,Cnew, D)

e I ol o

PreprocessD (P, /)

9. For j€0..mDo C; + 0
10. RecPreprocessD (P,0,¢,¢,C, D)
11. Return D

Fig. 6. Preprocessing for a single table.

Again, we use Myers’ algorithm [7] to compute the matrix rows, which makes
the preprocessing time O(rmo’/w). For this sake we need to modify the algo-
rithm so that it takes the ¢-gram as the text and P? as the pattern. This means
that the matrix is transposed, so the current “column” starts with zeros and at
the i-th step its first cell has the value i. The necessary modifications are simple
and are described, for example, in [5].

The only complication is how to obtain the value ming< ;< C¢ ; from Myers’
compressed representation of C' as a bit vector of increments and decrements.
A solution is to use bit magic, so as to store preprocessed answers that give the
total increment and minimum value for every bit mask of a given length. Since
C' is represented using two bit vectors of m bits (one for increments and the
other for decrements), we need O(227) space in order to process the bit vector in
O(m/x) time. A reasonable choice not affecting the time complexity is x = w/4
for 32-bit machines or 2 = w/8 for 64-bit machines (for a table of 2'¢ entries).

3.4 Packing Counters

Our final optimization resorts to bit-parallelism, that is, to storing several val-
ues inside the same computer word (this has been also used, for example, in the
counting algorithm [2]). For this sake we will denote the bitwise and operation
as “&”, the or as “|”, and the bit complementation as “~”. Shifting i positions
to the left (right) is represented as “<< i” (“>> i”), where the bits that fall
are discarded and the new bits that enter are zero. We can also perform arith-
metic operations over the computer words. We use exponentiation to denote bit
repetition, e.g. 0°1 = 0001, and write the most significant bit as the leftmost bit.

In our process of adding up differences, we start with zero differences and
grow at most up to k + ¢ differences before abandoning the block. This means
that it suffices to use B = [log,(k + £ + 1)] bits to store a counter. Instead of
taking minima over several patterns, we could separately store their counters
in a single computer word C' of w bits (w = 32 or 64 in current architectures).
This means that we could store A = [w/B] = O(w/ logk) counters in a single
machine word C.

Consequently, we should keep several difference counts in the same machine
word of a D cell. We can still add up our counter and the corresponding D cell
and all the counters will be added simultaneously, so the cost is exactly the same
as for one single counter or pattern.

Every text block must be traversed until all the counters exceed k, so we
need a mechanism to check for this condition over all the counters in a single
operation. A solution is to initialize the counters not at zero but at 281 -k —1,
which ensures that the highest bit in each counter will be activated as soon as
the counter reaches the value k + 1. However, this means that the values stored
inside the counters may now reach 28~ 4+ ¢ — 1. This will not cause overflow as
long as 2871 47 — 1 < 2B that is, 2¢ < 2B. So in fact B should be chosen such
that 28 > max(k + ¢,2¢ — 1), that is, B = [log, max(k + £ + 1,2()].

With this arrangement, in order to check whether all the counters have ex-
ceeded k, we simply check whether all the highest bits of all the counters are set.
This is achieved using the bitwise and operation: Let H = (105-1)4 be the bit
mask where all the highest bits of the counters are set. Then, all the counters
have exceeded k if and only if H & C = H. In this case we can abandon the
block.

Note that it is still possible that our counters overflow, because we can have
that some of them have exceeded k + ¢ while others have not. We avoid using

more bits for the counters and at the same time ensure that, once a counter has
its highest bit set, it will stay with this bit set. Before adding C' + C + D[S], we
remove all the highest bits from C, that is, we assign O «+ H & C, and replace
the simple sum by the assignment C + ((C & ~ H) + D[S]) | O. Since we have
selected B such that £ < 28-1 adding D[S] to a counter with its highest bit set
cannot cause an overflow. Note also that highest bits that are already set are
always preserved.

This technique permits us searching for A = |w/B] patterns at the same
time. If we have more patterns we resort to grouping. In a plain verification
scenario, we can group r/A patterns in a single counter and search for the A
patterns simultaneously, with the advantage of having to verify only r/A pat-
terns instead of all the r patterns whenever a block requires verification. In a
hierarchical verification scenario, the result is that our hierarchy tree has ar-
ity A instead of two, and has no root. That is, the tree has A roots that are
searched for together, and each root packs r/A patterns. If one such node has
to be verified, then we consider its A children nodes (that pack r/A? patterns
each), all together, and so on. This reduces not only verification costs but also
the preprocessing space, since we need less tables.

We have also to consider how this is combined with the optimization algo-
rithm of Section 3.1, since the best choice to maximize one counter may not be
the best choice to maximize another. The solution is to pack also the different
values of M, in a single computer word. The operation of Eq. (1) can be per-
fectly done in parallel for several counters, as long as we replace the sum by the
above technique to avoid overflows. The only obstacle is the maximum, which as
far as we know has never been used in a bit-parallel scenario. We do that now.

If we have to compute max(X,Y’), where X and Y contain several counters
properly aligned, in order to obtain the counter-wise maxima, we need an extra
highest bit per counter, which is always zero. Say that counters have now B + 1
bits, counting this new highest bit. We precompute the bit mask J = (108)4
(where now A = |w/(B+1)]) and perform the operation F' < ((X | J)-Y) & J.
The result is that, in F', each highest bit is set if and only if the counter of X is
larger than that of Y. We now compute F' <+ F'—(F >> B), so that the counters
where X is larger than Y have all their bits set in F', and the others have all the
bits in zero. Finally, we choose the maxima as max(X,Y) «+ (X & F) | (V & ~
F)

Fig. 7 shows the bit-parallel version of the counter accummulation, and Fig. 8
shows an example of pattern hierarhy.

4 Analysis

We analyze our algorithm by following the analysis of the corresponding single
pattern algorithm [3]. Two useful lemmas shown there follow (we have written
them in a way more convenient for us).

Lemma 1 [3] The probability that two random ¢-grams have a common subse-
quence of length (1—¢)/ is at most ac~% /¢, for constants a = (1+0(1))/(2me(1—

CanDiscard (i, b, D, /)

1. B [log, max(k + £+ 1,2¢)]

2. A+ |w/(B+1)]

3. H+« (010514

4. J« (10%)4

5. For w e —¢...0 Do

6. M, + (287" -k —1) x (0%1)*

7. Foruel...b—¢+1 Do

8. X« M,y

9. O+« X&H

10. X « (X & ~ H) 4+ D[Tip+u...ibtuti-1]) | O
11. Y « M,

12. F—((X]D)-Y)&J

13. F <+ F—(F >>B)

14. M, (X&F)| (Y &~F)

15. If H & M, = H Then Return TRUE
16. Return FALSE

Fig. 7. The bit-parallel version of CanDiscard. It requires that D is preprocessed by
packing the values of A different patterns in the same way. Lines 1-6 can in fact be
done once at preprocessing time.

Fig. 8. Top: basic pattern hierarchy for 27 patterns. Bottom: pattern hierarchy with
bit-parallel counters (27 patterns).

¢)) and d =1 — ¢+ 2clog, ¢ + 2(1 — ¢)log, (1 — ¢). The probability decreases
exponentially for d > 0, which surely holds if ¢ < 1 —¢e/+/0.

Lemma 2 [3] If S is an /-gram that matches inside a given string P (larger than
£) with less than c¢f differences, then S has a common subsequence of length
{ — ¢l with some f-gram of P.

We measure the amount of work in terms of inspected characters. For a
given text block, if there is a single /-gram inside the block that matches inside
any pattern P! with less than c¢f differences, we pessimistically assume that we
verify the whole block. Otherwise, after considering 1+ [k/(cf)] non-overlapping
{-grams, we abandon the block without verifying it. For the latter to be correct,
it must hold k/m = a < ¢/(c+2)(1+O(1/m)), since otherwise we reach the end
of the block (of length (m — k)/2) before considering those 14 [k/(cf)] ¢-grams.

Given Lemmas 1 and 2, the probability that a given ¢-gram matches with
less than c¢f differences inside some P? is at most that of having a common
subsequence of length ¢ — ¢f with some f-gram of some P?. The probability of
this is mrac—% /(. Consequently, the probability that any ¢-gram in the current
text block matches is m2rac— % /(2 since there are m /¢ {-grams. (We assume for
the analysis that we do not use the optimization of Section 3.1; this is pessimistic
for every possible text block.)

Hence, with probability m2rac~% /¢? we verify the block, and otherwise we
do not. Tn the first case we pay O(m?r) time if we use plain verification (Sec-
tion 3.2, we see the case of hierarhical verification later) and dynamic program-
ming. In the second case we pay the number of characters inspected in order to
process 1 + [k/(cl)] ¢-grams, that is, ¢ + k/c. Hence the average cost is upper

bounded by
o= am%ﬁa*d‘ L
m 2 c

The first part is the cost of verifications, and we have to make it negligible
compared to the second part, that is, we have to ensure that verifications are
rare enough. A sufficient condition on / is

dlog, m +2log,r 4log, m + 2log, r
- d 1—c+2clog, c+2(1 —c)log, (1 —c)

(in fact a slightly better, but more complicated, bound can be derived).

Note that we are free to choose any constant 2a/(1 — a) < ¢ < 1 —e/\/o.
If we let ¢ approach 1 — e/+/o, the value of £ goes to infinity and so does our
preprocessing cost. If we let ¢ approach 2a/(1— «), £ gets as small as possible but
our search cost becomes O(n). Having properly chosen ¢ and ¢, our algorithm is

on average
5 ((l« + logg<rm>>)

m

(2)

character inspections. We remark that this is true as long as 2a/(1 — a) <
1—e/+/o, that is, @ < 1/3—0(1/+/0), as otherwise the whole algorithm reduces
to dynamic programming.
Recall that our preprocessing cost is O(mra’ /w). Given the value of £, this is
O(mPr?0P() /w). The space with plain verification is ot = m*r?6°() integers.
As a practical consideration, we have that since of must fit in memory, we
must be able to hold £log, o bits in a single computer word, so we can read

a whole /-gram in a single computer instruction. The number of instructions

executed then becomes O(n(1+k/log M)/m), where M is the amount of memory
we spend on a D table. Note that this is not true if we use the optimization
method of Section 3.1, although we are not able to analyze the benefit that this
method produces, on the other hand.

The fact that we perform the verification using Myers’ algorithm [7] changes
its cost to O(rm?/w), and this permits reducing ¢ a bit in practice, but the
overall complexity does not change.

Let us now analyze the effect of hierarchical verification. This time we start
with r patterns, and if the block requires verification, we run two new scans
for /2 patterns, and continue the process until a single pattern asks for ver-
ification. Only then we perform the dynamic programming verification. Let
p = ac~%*m?2/¢2. Then the probability of verifying the root node is pr. For a
non-root node, the probability that it requires verification given that the parent
requires verification is Pr(child/parent) = Pr(child A parent)/P(parent) =
Pr(child)/Pr(parent) = 1/2, since if the child requires verification then the
parent requires verification. Then the number of times we scan the whole block
is on average

pr(l +2(1/2(14+2(1/2... = prlog,r

Hence the total character inspections for the scans that require verifications is
O(pmrlogr). Finally, each individual pattern is verified provided an ¢-gram of
the text block matches inside it. This accounts for O(prm?) verification cost.
Hence the overall cost under hierarchical verification is

3
o (am r(m+logr)07dl N €+E
2 ¢

m

which is clearly better than the cost with plain verification. The condition on /¢
to obtain the same search time of Eq. (2) is now

log, (m?r(m +logyr)) _ 3log, m +log, r + log, (m + log,)
- d ~ 1—c+2clog, c+2(1—c)log, (1 —c)

(3)

which is smaller and hence requires less preprocessing effort. This time the pre-
processing cost is O(m*r?(m + logr)o®(") /w), smaller than with plain verifi-
cation. The space requirement of hierarchical verification, however, is 2ro¢ =
2m>r?(m + log, r)o®") | which is larger than with plain verification.

Finally, let us consider the use of bit-parallel counters (Section 3.4). This time
the arity of the tree is A = |w/(1 + [log,(k + 1)])] and it has no root. We have
r/A tables in the leaves of the hierarchical tree. The total space requirement
is less than r/(A — 1) tables. The verification effort is now O(pmrlog, r) for
scanning and re-scanning, and O(prm?) for dynamic programming. This puts a
less stringent condition on £:

S log, (m?r(m +logyr)) 3log, m +log, r+log,(m +log,r)
ST d ~ 1—c+2clog, c+2(1—c)log,(1—c)

and reduces the preprocessing effort to O(m*r?(m +log 4 r)o®™) Jw). The space
requirement is [r/(A —1)]o* = m*r?(m +log 4 r)o®M) /(A — 1). With plain ver-
ification the space requirement, is still smaller, but the difference is now smaller.

To summarize, we have shown that we are able to perform, on average,
O(n(k + log,(rm))/m) character inspections whenever & < 1 — e/y/o. This
requires a preprocessing time of roughly O(m*r?(m +10g,, /1o¢ 4 7)oV /w) and
an extra space of O(m?r?(m + 10g,,/10g oM log(k)/w) by using the best
techniques. The number of machine instructions for the search can be made
O(n(1 + k/log M)/m) provided we use M memory for a single D table.

It has been shown that, for a single pattern, O(n(k + log, m)/m) is optimal
[3]. This uses two facts. The first is that it is necessary to inspect at least k + 1
characters in order to skip a given text window of length m, so we need at least
£2(kn/m) character inspections. The second is that the 2(nlog,(m)/m) lower
bound of Yao [14] for exact string mathcing applies to approximate searching
too, as exact searching is included in the approximate search problem. When
searching for r patterns, this lower bound becomes §2(nlog, (rm)/m), as we
show in the Appendix A. Hence our algorithm is optimal.

5 A Slower Algorithm for Higher Difference Ratios

A weakness of the algorithm is that it cannot cope with difference ratios beyond
1/3. This is due in part to the use of text blocks of length (m — k)/2. A different
alternative to fixed-position blocks is the use of a sliding window of ¢ ¢-grams,
where t = [(m—k+1)/¢] — 1. If we consider text blocks for the form Tjp41. ir+te,
we are sure that every occurrence (whose minimum length is m — k) contains
a complete block. Then, if the /-grams inside the window add up more than &
differences, we can move to the next block.

The main difference is that blocks overlap with each other by ¢t — 1 {-grams,
so we should be able to update our difference counter from one text block to the
next in constant time. This is rather easy, although it does not permit anymore
the use of the optimization technique of Section 3.1. The result is an algorithm
that takes O(n) time for a < 1/2 — O(1/+/0). Figure 9 shows this algorithm.

6 Experimental Results

We have implemented the algorithms in ¢, compiled using gcc 3.2.1 with full
optimizations. The experiments were run in 2GHZ Pentium 4, with 512MB RAM,
with Linux 2.4.

We ran experiments for alphabet sizes 0 = 4 (DNA), 0 = 20 (protein) and
o = 256 (ascil text). The test data for DNA and protein alphabets was randomly
generated. The texts were 64MB characters for DNA, and 16MB characters for
protein, and the patterns were 64 characters. The texts were stored used only 2
(DNA) and 5 bits (protein) per character, which allowed O(1) time access to the
{-grams.

Search (Ty..n, Pt ... P ., k)

{ < Preprocess ()
t [(m—k+1)/t] -1
b« tL

M+ 0

Fori€0...t —2Do M < M + D[Tip41..ir+e]
Foriect—1...|n/¢]-1 Do

M < M + D[Tit41...i0+¢]

If M <k Then Verify text block

M < M — D[T(_t41)e41.. (i—t+1)e+4]

© NSO RA W

Fig. 9. High-level description of the slower algorithm. The verification of a text block
can also be done hierarchically.

Table 1. Preprocessing times in seconds for various number of patterns, and for various
{-gram lenghts. The pattern lenghts are m = 64 for DNA and protein, and m = 16 for
ASCIL.

[pNa] 1 | 8] 32 | 64 [[[protein] 1 |64 [256]1024][[Jascu]] 1 | 64 [256]1024]

4 1/0.00/0.00{ 0.00 | 0.00 1 0.000.01{0.01|0.02 1 /0.00]0.01|0.01| 0.06
6 {/0.01|0.01{ 0.04 | 0.08 2 0.00]0.01{0.03|0.07 2 {|0.01{0.59{2.60{10.65
8 1|0.02|0.15] 0.58 | 1.17 3 0.01]0.09{0.40|1.55 3 [|4.26

10 {|0.38(3.02{12.00|24.19 4 0.046.09

Table 1 gives the preprocessing times for various alphabets, number of pat-
terns and /-grams. The preprocessing timings are for the basic algorithms, with-
out the bit-parallel counters technique, which requires slightly more time. The
maximum values in practice are £ < 8 for DNA, £ < 3 for protein, and £ < 2 for
AscIl. The search times were measured for these maximum values.

Figs. 10, 11, and 12 give the search times for the DNA, protein, and ASCII
alphabets. The abreaviations in the figures are as follows. sL: the basic sublinear
time algorithm, SLO: SL with the optimal choice of /-grams, L: the basic linear
time filtering algorithm, SLcC: SL with bit-parallel counters, SLCO: SLC with the
optimal choice of f-grams, L.C: 1. with bit-parallel counters. All filters use the
hierarchical verification. For comparison, Fig. 13 gives timings for the exact pat-
tern partitioning algorithm given in [1]. This algorithm beats the new algorithms
for large rm, o, k. Fig. 14 illustrates.

Optimal choice of /-grams helps only sometimes, but is usually slower due to
its complexity. The linear time filtering algorithms quickly become faster than
the sublinear algorithms for large rm, k. The bit-parallel counters speed-up the
search for large rm. The performance of the algorithms collapse when the error
ratio grows past a certain limit, and this collapse is very sharp. Before that limit,
the new algorithms are very efficient.

running times for varying k running times for varying k

z ,
)
£ i
10
z ,
)
£ i
7

Fig. 10. Search times in seconds. Parameters are: ¢ = 4, m = 64, and ¢ = 8. The
figures are for, from left to right, top to bottom: r = 1, r = 8, r = 32, and r = 64.

running times for varying k running times for varying k

time (s)

time (s)
Il
time (s)

Fig. 11. Search times in seconds. Parameters are: 0 = 20, m = 64, and ¢ = 3. The
figures are for, from left to right, top to bottom: r = 1, r = 64, r = 256, and r = 1024.

running times for varying k running times for varying k

Z Z
i (9] 1
£ £
02} g y
0 Il Il Il Il Il Il Il
0O 05 1 15 2 25 3 35 4 3
k
running times for varying k
4 SL‘ T T LI]
85T slo |1} S .
3F Lo / / E
— 5 |.SLC / . i = .
@ 42 [SLCO - |/ ; D) SLCO ---- v
o 2f LC---- / - o 8 LC---- 1
£ / £ 6 / i
= 15 / 4 = K
1 i 4 g i
05 ! . 2 ! g
0 Il Il Il Il Il 0 Il
0 0.5 1 1.5 2 25 3 15 2
k k

Fig. 12. Search times in seconds. Parameters are: o = 64 (Asci), m = 64, and ¢ = 3.
The figures are for, from left to right, top to bottom: r = 1, r = 64, r = 256, and
r =1024.

running times for varying k running times for varying k running times for varying k
T T 12 T T T T T 6 T T T
b r=1 ——
: | 10 b r=64 —--oe- , 5 ,
- r=256 -
_ R _ 8| r=1024 g _ 4t r=1024 g
< - - @)
o 1 @ 6 g o 3 B
£ ! R E £
= — = 4L o S ,0]
;/\// 2k 2 1r
1 1 = 0
8 10 12 12 1
k k k

Fig. 13. Search times in seconds for exact pattern partitioning algorithm, for o = 4
(DNA), 0 = 20 (protein), and o = 64 (asci) alphabets.

7 Conclusions

Multiple approximate string matching is an important problem that arises in
several applications, and for which the current state of the art is in a very

r=i S !_C] r=1024-— : r=1024-—

1=3; £p r=256-4— L S =256

=1 [T R TR N R =1 I TR T R A S =1 [RN Y RS
k=0 k‘:Z k\:A LJ:E lJ:S lJ:lD Q:lZ k=0 k‘:Z k\:d lJ:G lJ:B lJ:lO Q:lZ k=0 k‘:l lJ:Z 1413 Q:A Q:E

Fig. 14. Areas where each algorithm performs best.

primitive stage. Nontrivial solutions exist only for the case of very low difference
ratios or very few patterns.

We have presented a new algorithm to improve this situation. Our algorithm
is not only optimal on average, but also practical. A second algorithm we present
is slower but handles higher difference ratios. We have shown that they perform
well in handling large numbers of patterns and intermediate difference ratios.
They are indeed the best alternatives for reasonably small alphabets.

The algorithms do not induce any order on the ¢-grams, but they can appear
in any order, as long as their total distance is at most k. The filtering can be
still improved by requiring that the /-grams from the pattern must appear in
approximately same order in the text. This approach was used in [12]. The same
method can be applied for multiple patterns as well.

There are several ways we plan to try in order to reduce preprocessing time
and memory usage. A first one is lazy evaluations of the table cells. Instead of
fully computing the D tables of size o for each pattern, we compute the cells
only for the text /-grams as they appear. If a given table cell is not yet computed,
we compute it on the fly for all the patterns. This gives a preprocessing cost that
is O(rma* (1 — e’"/”f)) on the average (using Myers’ algorithm for the £-grams
inside the patterns, as [¢/w] = 1). This, however, is advantageous only for very
long ¢-grams, namely ¢ + ©(loglog) > log, n.

Another possibility is to compute D only for those ¢-grams that appear in a
pattern with at most ¢ differences, and assume that all the others appear with
¢' + 1 differences. This reduces the effectivity at search time but, by storing the
relevant (-grams in a hash table, requires O(rm(cf)) space and preprocessing
time (either for plain or hierarchical verification), since the number of strings
at distance ¢ to an (-gram is O((c£)") [13]. With respect to plain verification,
the space is reduced for ¢/ < (£ —log,(rm))/(1 + log, ¢), and with respect to
hierarchical verification, for ¢/ < (¢ — log, m)/(1 + log, £). These values are
reasonable.

It is also possible to improve the verification performance. A simple strat-
egy is to sort the patterns before grouping by ranges in order to achieve some
clustering in the groups. This could be handled with an algorithm designed for
hierarchical clustering. This clustering could be done taking a distance defined
as the number of differences necessary to convert one pattern into the other, or
any other reasonable measure of similarity (Hamming distance, longest common
subsequence, etc.).

Indezing consists of preprocessing the text to build a data structure (index)
on it that can be used later for faster querying [9]. In general, we find that
methods designed for indexed approximate string matching can be adapted to
(non-indexed) multiple approximate string matching. The idea is to index the
pattern set and use the text somehow as the pattern, in order to “search for
the text” inside the structure of the patterns. Qur present ideas are close to
approximate g-gram methods, and several other techiques can be adapted too.
We are currently pursuing this line.

References

1. R. Baeza-Yates and G. Navarro. Multiple approximate string matching. In
F. Dehne et al., editor, Proceedings of the 5th Annual Workshop on Algorithms
and Data Structures (WADS’97), pages 174-184, 1997.

2. R. Baeza-Yates and G. Navarro. New and faster filters for multiple approximate
string matching. Random Structures and Algorithms (RSA), 20:23 49, 2002.

3. W. Chang and T. Marr. Approximate string matching and local similarity. In
Proc. 5th Combinatorial Pattern Matching (CPM’94), LNCS 807, pages 259-273,
1994.

4. M. Crochemore and W. Rytter. Text Algorithms. Oxford University Press, 1994.

5. H. Hyyro and G. Navarro. Faster bit-parallel approximate string matching. In
Proceedings of the 13th Annual Symposium on Combinatorial Pattern Matching
(CPM 2002), LNCS 2373, pages 203-224, 2002.

6. R. Muth and U. Manber. Approximate multiple string search. In Proc. 7th Com-
binatorial Pattern Matching (CPM’96), LNCS 1075, pages 75 86, 1996.

7. E. W. Myers. A fast bit-vector algorithm for approximate string matching based
on dynamic programming. Journal of the ACM, 46(3):395—415, 1999.

8. G. Navarro. A guided tour to approximate string matching. ACM Computing
Surveys, 33(1):31 88, 2001.

9. G. Navarro, R. Baeza-Yates, E. Sutinen, and J. Tarhio. Indexing methods for
approximate string matching. IEEE Data Engineering Bulletin, 24(4):19-27, 2001.
Special issue on Managing Text Natively and in DBMSs.

10. G. Navarro, E. Sutinen, J. Tanninen, and J. Tarhio. Indexing text with approxi-
mate g-grams. In Proc. 11th Combinatorial Pattern Matching (CPM 2000), LNCS
1848, pages 350-363, 2000.

11. P. Sellers. The theory and computation of evolutionary distances: pattern recog-
nition. Journal of Algorithms, 1:359 373, 1980.

12. E. Sutinen and J. Tarhio. Filtration with g-samples in approximate string match-
ing. In D. S. Hirschberg and E. W. Myers, editors, Proceedings of the 7th Annual
Symposium on Combinatorial Pattern Matching, number 1075 in Lecture Notes in
Computer Science, pages 50 63, Laguna Beach, CA, 1996. Springer-Verlag, Berlin.

13. E. Ukkonen. Finding approximate patterns in strings. Journal of Algorithms,
6:132-137, 1985.

14. A. C. Yao. The complexity of pattern matching for a random string. STAM Journal
of Computing, 8(3):368-387, 1979.

A Lower Bound for Multipattern Matching

We extend the classical proof of Yao [14] to the case of searching for several
patterns. Let us assume that we search for r random patterns of length m in a
text of length n. Random patterns means that they are independently generated
sequences where each character is chosen from the set X with uniform proba-
bility. To simplify matters, we will not assume that the patterns are necessarily
different from each other, they are simply r randomly generated sequences. We
prove that the lower bound of the problem on the average is 2(nlog, (rm)/m),
where 0 = |X|. The bound refers to the number of character inspections made.

We use the same trick of dividing the text in blocks of length 2m — 1, and
assume that we just have to search for the presence of the patterns inside each

block (which is an optimistic assumption). Since no information gathered inside
one block can be used to search the other, we can regard each block in isolation.
So the cost is at least n/(2m — 1) times the cost to search a single block. Hence
what we have to prove is that we have to work (2(log, (rm)) inside a given block.

Inside a given block By 2,1, each of the r patterns can match in m different
positions (starting at position 1 to m). Each possible match position of each
pattern will be called a candidate and identified by the pair (¢,7), wheret € 1...r
is the pattern number and ¢+ € 1...m is the starting position inside the block.
Hence there are rm candidates.

We have to examine enough characters to ensure that we have found every
match inside the block. We will perform a sequence of accesses (block character
reads) inside the block, at positions 41, i ..., until the information we have
gathered is enough to know that we found every pattern occurrence. Which is
the same, we have to “rule out” all the rm candidates, or report those candidates
that have not been ruled out after considering their m positions.

Note that each candidate has to be ruled out independently of the rest.
Moreover, the only way to rule out a candidate (¢,4) is to perform an access i;
such that B;; # P _,;.

Given an access i; to block B, the probability to rule out a candidate (t,1)
with the access is at most 1 — 1/0: even assuming that the area covered by
the candidate includes i; (that is, i < i; < ¢ + m) and that the candidate
has not been already outruled by a previous access, there is a probability of
1/o that By, = P/ ., and hence we cannot rule out (¢,4). This means that
the probability that a given access does not rule out a given candidate is > 1/0.
Note that the way we have bounded the probability permits us considering every
access independently of the others. Consequently, the probability of not ruling
out a given candidate after k accesses is at least 1/o*.

Since every candidate has to be ruled out independently of the others, a
sequence of k accesses leaves at least rm/o* candidates not ruled out, on aver-
age. Each individual candidate can be directly verified by examining o/(0 — 1)
characters on average. Hence, our average cost is at least

rm
ok=1(g — 1)

The optimum is to keep examining characters until the average cost to di-
rectly verify the candidates equals the cost we would pay if we kept examining
characters, and then switch to direct verification. This corresponds to minimizing
the above formula. The optimum is

Bo= log, <rm0hia>
o —

and hence the lower bound on the average cost per block is

1+1n (Tm(rln(r)

k +

"L = 6(log, (rm))

Ino

which proves our claim.

