
Average-Optimal Multiple Approximate StringMat
hingKimmo Fredriksson1 ? and Gonzalo Navarro2 ??1 Department of Computer S
ien
e, University of Joensuukfredrik�
s.joensuu.fi2 Department of Computer S
ien
e, University of Chilegnavarro�d

.u
hile.
lAbstra
t. We present a new algorithm for multiple approximate stringmat
hing, based on an extension of the optimal (on average) single-pattern approximate string mat
hing algorithm of Chang and Marr. Ouralgorithm inherits the optimality and is also
ompetitive in pra
ti
e.We present a se
ond algorithm that is linear time and handles higherdi�eren
e ratios. We show experimentally that our algorithms are thefastest for intermediate di�eren
e ratios, an area where the only exist-ing algorithms permitted simultaneous sear
h for just a few patterns.Our algorithm is also resistant to the number of patterns, being e�e
tivefor hundreds of patterns. Hen
e we �ll an important gap in approxi-mate string mat
hing te
hniques, sin
e no e�e
tive algorithms existed tosear
h for many patterns with an intermediate di�eren
e ratio.1 Introdu
tionApproximate string mat
hing is one of the main problems in
lassi
al stringalgorithms, with appli
ations to text sear
hing,
omputational biology, patternre
ognition, et
. Given a text T1:::n, a pattern P1:::m, and a maximal number ofdi�eren
es permitted, k, we want to �nd all the text positions where the patternmat
hes the text up to k di�eren
es. The di�eren
es
an be substituting, deletingor inserting a
hara
ter. We
all � = k=m the di�eren
e ratio, and � the sizeof the alphabet �. For the average
ase analyses it is
ustomary to assume arandom text over a uniformly distributed alphabet.A natural extension to the basi
 problem
onsists of multipattern sear
hing,that is, sear
hing for r patterns P 1 : : : P r simultaneously in order to report alltheir o

urren
es with at most k di�eren
es. This has also several appli
ationssu
h as virus and intrusion dete
tion, spelling appli
ations, text retrieval undersynonym or thesaurus expansion, several problems in
omputational biology,bat
h pro
essing of single-pattern approximate sear
hing, et
. Moreover, somesingle-pattern approximate sear
h algorithms resort to multipattern sear
hing of? Work developed while the author was working in the Dept. of Computer S
ien
e,University of Helsinki. Supported by the A
ademy of Finland.?? Partially supported by Fonde
yt grant 1-020831.

pattern pie
es. Multidimensional sear
h problems
an also be redu
ed to stringmat
hing. Depending on the appli
ation, r may vary from a few to thousands ofpatterns. The naive approa
h is to perform r separate sear
hes, so the goal is todo better.The single-pattern problem has re
eived a lot of attention sin
e the sixties [8℄.After the �rst dynami
-programming-based O(mn) time solution to the problem[11℄, many faster te
hniques have been proposed, both for the worst and theaverage
ase. In 1994, Chang and Marr [3℄ showed that the average
omplexityof the problem is O((k+log�m)n=m), and gave an algorithm that a
hieved thataverage-optimal
ost for � < 1=3�O(1=p�).The multipattern problem has re
eived mu
h less attention, not be
ause ofla
k of interest but be
ause of its diÆ
ulty. There exist algorithms that sear
hpermitting only k = 1 di�eren
e [6℄, and algorithms that handle either too fewpatterns or too low di�eren
e ratios [2℄.Hen
e multiple approximate string mat
hing is a rather undeveloped area.No algorithm exists when one sear
hes for more than a few of patterns withintermediate di�eren
e ratios. Moreover, as the number of patterns grows, thedi�eren
e ratios that
an be handled get redu
ed.The goal of this paper is to present an algorithm that is optimal on theaverage and that permits sear
hing even for thousands of patterns with lowand intermediate di�eren
e ratios, thus �lling an important gap in the area.We build over an average-optimal algorithm that sear
hes for single patterns[3℄ and inherit its optimality, obtaining O(n(k + log�(rm))=m) average sear
htime. We show that the algorithm is not only theoreti
ally appealing but alsogood in pra
ti
e thanks to several pra
ti
al improvements we introdu
e. Sin
ethe algorithm does not work for di�eren
e ratios beyond 1=3, we introdu
e ase
ond, O(n) average time variant that rea
hes ratios of 1=2. The algorithmsare shown to be the fastest for a wide range of values of m, r and k, for smallalphabets, see Se
. 6.2 Related Work2.1 Multiple Approximate String Mat
hingThe naive approa
h to multipattern approximate sear
hing is to perform r sepa-rate sear
hes, one per pattern. If we use the optimal single-pattern algorithm [3℄,the average sear
h time be
omes O((k + log�m)rn=m) for the naive approa
h.On the other hand, if we use the
lassi
al O(mn) algorithm [11℄ the time isO(rmn).Few algorithms exist for multipattern approximate sear
hing under the kdi�eren
es model. The �rst one, based on hashing, was presented by Muth andManber [6℄. It permits sear
hing with k = 1 di�eren
es only, but is rather tolerantto the number of patterns r, whi
h
an rea
h the thousands without a�e
tingmu
h the
ost of the sear
h. The prepro
essing time is O(rm) and the averagesear
h time is O(mn(1 + rm2=M)), where M is the size of the hash table. This

adds up O(rm+nm(1+ rm2=M)), whi
h is O(m(r+n)) of M =
(m2r). Thisis basi
ally independent of r if n is large enough.Baeza-Yates and Navarro [2℄ have presented several algorithms for this prob-lem. One of them, partitioning into exa
t sear
h, uses the fa
t that, if P is
ut intok+1 pie
es, then at least one of the pie
es appears inside every o

urren
e with nodi�eren
es. Hen
e the algorithm splits every pattern into k+1 pie
es and sear
hesfor the r(k+1) pie
es with an exa
t multipattern sear
h algorithm. The prepro-
essing takes O(rm) time. If they used an optimal multipattern exa
t sear
h al-gorithm like MultiBDM [4℄, the sear
h time would have been O(k log�(rm)n=m)on average. For pra
ti
al reasons they used another algorithm, more suitable tosear
hing for short pie
es (of length bm=(k + 1)
), albeit with worse theoreti
al
omplexity. This te
hnique
an be applied for � < 1= log�(rm), a limit that getsmore and more stri
t as m or r in
rease.They also presented other algorithms that, although
an handle higher dif-feren
e ratios, are linear on r, whi
h means that they give a speedup only up toa
onstant number
 of patterns and then just divide the sear
h into r=
 groupsthat are sear
hed for separately. Superimposition uses a standard sear
h te
h-nique on a set of \superimposed" patterns, whi
h means that the i-th
hara
terof the superimposition mat
hes the i-th
hara
ter of any of the superimposedpatterns. Implemented over a newer bit-parallel algorithm [7℄, superimpositionwould yield average time O(rn=(�(1 � �)2)) for � < 1 � epr=� on patternsshorter than the number of bits in the
omputer word, w (typi
ally w = 32 or64). Di�erent te
hniques are used to
ope with longer patterns, but the timesare worse. Counting extends a single-pattern algorithm that slides a window oflength m over the text
he
king in linear time whether it shares at least m� k
hara
ters with the pattern (regardless of the order). The multipattern versionkeeps several
ounters in a single
omputer word, a
hieving an average sear
htime of O(rn log(m)=w) for � < e�m=�.2.2 The Algorithm of Chang and MarrChang and Marr [3℄ show that no approximate sear
h algorithm for a singlepattern
an be faster than O((k+log�m)n=m) on the average. This is not hardto prove, and we give more details in Se
tion 4.In the same paper [3℄, Chang and Marr presented an algorithm a
hieving thatoptimal average time
omplexity. In the prepro
essing phase they build a tableD as follows. They
hoose a number ` in the range 1 � ` � d(m� k)=2e, whoseexa
t value we will
onsider shorty. For every string S of length ` (`-gram), theysear
h for S in P and store in D[S℄ the smallest number of di�eren
es needed tomat
h S inside P (this is a number between 0 and `). Hen
e D requires spa
efor �` entries and is
omputed in �``m time. A numeri
al representation of �`permits
onstant time a

ess to D.The text s
anning phase
onsists of logi
ally dividing the text in blo
ks oflength b = d(m � k)=2e, whi
h ensures that any approximate o

urren
e ofP (whi
h has length at least m � k)
ontains at least one whole blo
k. Ea
hblo
k Tib+1:::ib+b is pro
essed as follows. They take the �rst `-gram of the blo
k,

S1 = Tib+1:::ib+`, and obtain D[S1℄. Then they take the next `-gram, S2 =Tib+`+1:::ib+2`, and obtain D[S2℄, and so on. If, before rea
hing the end of theblo
k, they have obtainedP1�j�tD[Sj ℄ > k, then they
an safely skip the blo
kbe
ause no o

urren
e of P
an
ontain the blo
k, as merely mat
hing those t`-grams anywhere inside P requires more than k di�eren
es. If, on the otherhand, they rea
h the end of the blo
k without surpassing k total di�eren
es, theblo
k must be
he
ked. In order to
he
k for Tib+1:::ib+b they run the
lassi
aldynami
 programming algorithm over Tib+1�m�k+b:::ib+m+k.In order to keep the spa
e requirement polynomial in m, it is required that` = O(log�m). On the other hand, in order to a
hieve the
laimed
omplexity,it is ne
essary that ` � x log�m for some
onstant x, so the spa
e is O(mx). Theoptimal
omplexity holds as long as � < 1=3�O(1=p�).3 Our AlgorithmThe basi
 idea of our algorithm is as follows. Given r sear
h patterns P 1 : : : P r,we build the table D taking the minimum number of di�eren
es to mat
h ea
h`-gram inside any of the patterns. The s
anning phase is the same as in Se
-tion 2.2. If we surpass k di�eren
es inside a blo
k we are sure that none of thepatterns mat
h, sin
e there are t `-grams inside the blo
k that need more thank di�eren
es in order to be found inside any pattern. Otherwise, we
he
k thepatterns one by one over the blo
k. Figure 1 gives the
ode. We present nowseveral improvements over this basi
 idea.Sear
h (T1:::n; P 11:::m : : : P r1:::m; k)1. ` Prepro
ess ()2. b d(m� k)=2e3. For i 2 0 : : : bn=b
 � 1 Do4. VerifyBlo
k (i; b)Fig. 1. High-level des
ription of the algorithm. The input parameters are taken asglobal variables in the rest of the paper, to simplify the des
riptions.3.1 Optimal Choi
e of `-gramsThe basi
 single-pattern algorithm [3℄ uses the �rst
onse
utive `-grams of theblo
k in order to �nd more than k di�eren
es. This is simple, but not ne
essarilythe best
hoi
e. Note that any set of non-overlapping `-grams found inside theblo
k whose total number of di�eren
es inside P ex
eeds k permits us dis
ardingthe blo
k. Hen
e the question of using the best possible set is raised.

The optimization problem is as follows. Given the text blo
k Tib+1:::ib+b wehave b�`+1 possible `-grams, namely Tib+1:::ib+`, Tib+2:::ib+`+1, : : :, Tib+b�`+1:::ib+b.From this set we want a subset of non-overlapping `-grams S1 : : : St su
h thatP1�j�tD[Sj ℄ > k. Moreover, we want to pro
ess the set left to right and dete
ta good enough subset as soon as possible.This is solved by
alling Mu the maximum sum that
an be obtained using`-grams that start in the positions ib+1 : : : ib+u. Initially we start with Mu = 0for �` < u � 0. Then we traverse the blo
k
omputing, for in
reasing u values,Mu max(D[Tib+u:::ib+u+`�1℄ +Mu�` ; Mu�1) (1)where the �rst term a

ounts for the fa
t that we
hoose to use the `-gram thatstarts at u and add to it the best previous solution that does not overlap this`-gram, and the se
ond term a

ounts for the fa
t that we do not use the `-gramthat starts at u.We
ompute Mu for in
reasing u until either (i) Mu > k, in whi
h
ase weabandon the blo
k, or (ii) u > b � ` + 1, in whi
h
ase we have to verify theblo
k. Figure 2 gives the
ode.CanDis
ard (i; b; D; `)1. For u 2 �` : : : 0 Do Mu 02. For u 2 1 : : : b� `+ 1 Do3. Mu max(D[Tib+u:::ib+u+`�1℄ +Mu�` ; Mu�1)4. If Mu > k Then Return true5. Return falseFig. 2. Optimization te
hnique to
hoose the set of overlapping `-grams that maximizethe sum of di�eren
es. It returns whether the blo
k
an be dis
arded.Note that the
ost of
hoosing the best set of `-grams is that, if we abandonthe blo
k after
onsidering position x, then we work O(x=`) with the simplemethod and O(x) with the
urrent one. (This assumes we
an read an `-gramin
onstant time, whi
h is true in pra
ti
e given the ` values used.) However, xitself may be smaller with the optimization method.3.2 Hierar
hi
al Veri�
ationOn the blo
ks that have to be veri�ed, we
ould simply run the veri�
ation forevery pattern, one by one. A more sophisti
ated
hoi
e is hierarhi
al veri�
ation(already presented in previous work [2℄). We form a tree whose nodes have theform [i; j℄ and represent the group of patterns P i : : : P j . The root is [1; r℄. Theleaves have the form [i; i℄. Every internal node [i; j℄ has two
hildren [i; b(i+j)=2
℄and [b(i+ j)=2
+ 1; j℄.

The hierar
hy is used as follows. For every internal node [i; j℄ we have atable D
omputed using the minimum distan
es between `-grams and patternsP i : : : P j . This is done by
omputing �rst the leaves (that is, ea
h pattern sepa-rately) and then
omputing every
ell of D in the internal node as the minimumover the
orresponding
ell in its two
hildren. In order to s
an the text, weuse the D table of the root node, whi
h
orresponds to the full set of patterns.Every time a blo
k has to be veri�ed with respe
t to a node in the hierar
hy(at �rst, the root node), we res
an the blo
k
onsidering the two
hildren of the
urrent node. It is possible that the blo
k
an be dis
arded for both
hildren, forone, or for none. We re
ursively repeat the pro
ess for every
hild that does notpermit dis
arding the blo
k, see Fig. 3. If we pro
ess a leaf node and still haveto verify the blo
k, then we run dynami
 programming over the
orrespondingsingle pattern.
p0 p1 p2 p3

p0
p1

p2
p3

p0 p1
p2

p3

Fig. 3. Pattern hierar
hy for 4 patterns.The idea of using the hierar
hy instead of plainly
he
king the r patterns oneby one is that it is possible that the grouping of the pattern mat
hes a blo
k, butthat none of its halves mat
h. In this
ase we save veri�
ation time. The plainte
hnique needs O(�`) spa
e, while hierar
hi
al veri�
ation needs mu
h more,O(r�`).Note that veri�
ation would bene�t if the patterns we group together are assimilar as possible, in terms of numbers of di�eren
es. A simple heuristi
 is tolexi
ographi
ally sort the patterns before grouping them by ranges.As a �nal note, we use Myers' algorithm [7℄ for the veri�
ation of singlepatterns, whi
h makes the
ost O(m2=w), where w is the number of bits in the
omputer word.Figures 4 and 5 show the prepro
essing and veri�
ation using hierar
hi
alveri�
ation.3.3 Redu
ing Prepro
essing TimeEither if we use plain or hierar
hi
al veri�
ation, prepro
essing time is an issue.We have to sear
h every pattern for every `-gram, resulting in O(r`m�`) prepro-

Hierar
hyPrepro
ess (i; j; `)1. If i = j Then Di;j Prepro
essD(P i; `)2. Else3. m b(i+ j)=2
4. Hierar
hyPrepro
ess (i; m; `)5. Hierar
hyPrepro
ess (m+ 1; j; `)6. For s 2 �` Do7. Di;j [s℄ min(Di;m[s℄; Dm+1;j [s℄)Prepro
ess ()8. ` d 3 log� m+log� r1�
+2
 log�
+2(1�
) log�(1�
)e // see Eq. (3)9. Hierar
hyPrepro
ess(1; r; `)Fig. 4. Prepro
essing to build the hierar
hy. It is initially invoked with parameters(1; r) and produ
es global tables Di;j to be used by Hierar
hyVerify. The mainsear
h table is D1;r .Hierar
hyVerify (i; j; b; s)1. If not CanDis
ard (s; b; Di;j ; `) Then2. If i = j Then Sear
h for P i in Tsb+1�m�k+b:::sb+m+k3. Else4. m b(i+ j)=2
5. Hierar
hyVerify (i; m)6. Hierar
hyVerify (m+ 1; j)Fig. 5. Hierar
hi
al veri�
ation. Pro
edure VerifyBlo
k(i; b) is then de�ned as Hier-ar
hyVerify (1; r; b; i).
essing time. In the
ase of hierar
hi
al veri�
ation we pay an additional O(r�`)time to
reate the D tables of the internal nodes, but this is negligible
omparedto the
ost to
ompute the individual patterns.In order to �nd the minimum number of di�eren
es to mat
h an `-gram Sinside a pattern P , we
ompute the matrix Ci;j , for 0 � i � ` and 0 � j � m,as follows [11℄:Ci;0 = i ; C0;j = 0Ci+1;j+1 = if Si+1 = Pj+1 then Ci;j else 1 +min(Ci;j ; Ci;j+1; Ci+1;j)whi
h
an be
omputed, for example, row-wise left to right. We need only theprevious row in order to
ompute the
urrent row. The minimum distan
e is�nally min0�j�m C`;j .

We present now a method to redu
e the prepro
essing time to O(rm�`),whi
h has been used before in the
ontext of indexed approximate string mat
h-ing [10℄. Instead of running the `-grams one by one over a pattern P , we forma trie data stru
ture of all the `-grams. For every trie node whose path fromthe root spells out the string S, we
ompute the last row of the C matrix
orre-sponding to sear
hing for S inside P . For this sake we use the previous matrixrow, whi
h was
omputed for the parent node. Hen
e, if we traverse the trieusing a
lassi
al depth �rst sear
h re
ursion and
ompute a new matrix row atea
h invo
ation, then the exe
ution sta
k
ontains the matrix
omputed up tonow, so we use the row
omputed at the invoking pro
ess to
ompute the row ofthe invoked pro
ess. Sin
e we work O(m) at every trie node and there are O(�`)nodes, the overall pro
ess takes O(m�`) time. It needs just spa
e for the sta
k,O(m`). By repeating this over ea
h pattern we obtain O(rm�`) time.Note �nally that the trie of `-grams does not need to be expli
itly built, as weknow that we have every possible `-gram and hen
e
an use an impli
it methodto traverse all them without a
tually storing them. Only the minima over the�nal rows are stored into the
orresponding D entries. Figure 6 shows the
ode.Re
Prepro
essD (P; i; `; S; Cold; D)1. If i = ` Then D[S℄ min0�j�m Coldj2. Else3. For s 2 � Do4. Cnew0 i5. For j 2 1 : : :m Do6. If s = Pj Then Cnewj Coldj�17. Else Cnewj 1 +min(Coldj�1; Coldj ; Cnewj�1)8. Re
Pro
essD (P; i+ 1; `; Ss; Cnew;D)Prepro
essD (P; `)9. For j 2 0 : : :m Do Cj 010. Re
Prepro
essD (P; 0; `; "; C;D)11. Return DFig. 6. Prepro
essing for a single table.Again, we use Myers' algorithm [7℄ to
ompute the matrix rows, whi
h makesthe prepro
essing time O(rm�`=w). For this sake we need to modify the algo-rithm so that it takes the `-gram as the text and P i as the pattern. This meansthat the matrix is transposed, so the
urrent \
olumn" starts with zeros and atthe i-th step its �rst
ell has the value i. The ne
essary modi�
ations are simpleand are des
ribed, for example, in [5℄.

The only
ompli
ation is how to obtain the value min0�j�m C`;j from Myers'
ompressed representation of C as a bit ve
tor of in
rements and de
rements.A solution is to use bit magi
, so as to store prepro
essed answers that give thetotal in
rement and minimum value for every bit mask of a given length. Sin
eC is represented using two bit ve
tors of m bits (one for in
rements and theother for de
rements), we need O(22x) spa
e in order to pro
ess the bit ve
tor inO(m=x) time. A reasonable
hoi
e not a�e
ting the time
omplexity is x = w=4for 32-bit ma
hines or x = w=8 for 64-bit ma
hines (for a table of 216 entries).3.4 Pa
king CountersOur �nal optimization resorts to bit-parallelism, that is, to storing several val-ues inside the same
omputer word (this has been also used, for example, in the
ounting algorithm [2℄). For this sake we will denote the bitwise and operationas \&", the or as \j", and the bit
omplementation as \�". Shifting i positionsto the left (right) is represented as \<< i" (\>> i"), where the bits that fallare dis
arded and the new bits that enter are zero. We
an also perform arith-meti
 operations over the
omputer words. We use exponentiation to denote bitrepetition, e.g. 031 = 0001, and write the most signi�
ant bit as the leftmost bit.In our pro
ess of adding up di�eren
es, we start with zero di�eren
es andgrow at most up to k + ` di�eren
es before abandoning the blo
k. This meansthat it suÆ
es to use B = dlog2(k + ` + 1)e bits to store a
ounter. Instead oftaking minima over several patterns, we
ould separately store their
ountersin a single
omputer word C of w bits (w = 32 or 64 in
urrent ar
hite
tures).This means that we
ould store A = bw=B
 = O(w= log k)
ounters in a singlema
hine word C.Consequently, we should keep several di�eren
e
ounts in the same ma
hineword of a D
ell. We
an still add up our
ounter and the
orresponding D
elland all the
ounters will be added simultaneously, so the
ost is exa
tly the sameas for one single
ounter or pattern.Every text blo
k must be traversed until all the
ounters ex
eed k, so weneed a me
hanism to
he
k for this
ondition over all the
ounters in a singleoperation. A solution is to initialize the
ounters not at zero but at 2B�1�k�1,whi
h ensures that the highest bit in ea
h
ounter will be a
tivated as soon asthe
ounter rea
hes the value k +1. However, this means that the values storedinside the
ounters may now rea
h 2B�1+ `� 1. This will not
ause over
ow aslong as 2B�1 + `� 1 < 2B, that is, 2` � 2B . So in fa
t B should be
hosen su
hthat 2B > max(k + `; 2`� 1), that is, B = dlog2max(k + `+ 1; 2`)e.With this arrangement, in order to
he
k whether all the
ounters have ex-
eeded k, we simply
he
k whether all the highest bits of all the
ounters are set.This is a
hieved using the bitwise and operation: Let H = (10B�1)A be the bitmask where all the highest bits of the
ounters are set. Then, all the
ountershave ex
eeded k if and only if H & C = H . In this
ase we
an abandon theblo
k.Note that it is still possible that our
ounters over
ow, be
ause we
an havethat some of them have ex
eeded k + ` while others have not. We avoid using

more bits for the
ounters and at the same time ensure that, on
e a
ounter hasits highest bit set, it will stay with this bit set. Before adding C C+D[S℄, weremove all the highest bits from C, that is, we assign O H & C, and repla
ethe simple sum by the assignment C ((C & � H) +D[S℄) j O. Sin
e we havesele
ted B su
h that ` � 2B�1, adding D[S℄ to a
ounter with its highest bit set
annot
ause an over
ow. Note also that highest bits that are already set arealways preserved.This te
hnique permits us sear
hing for A = bw=B
 patterns at the sametime. If we have more patterns we resort to grouping. In a plain veri�
ations
enario, we
an group r=A patterns in a single
ounter and sear
h for the Apatterns simultaneously, with the advantage of having to verify only r=A pat-terns instead of all the r patterns whenever a blo
k requires veri�
ation. In ahierar
hi
al veri�
ation s
enario, the result is that our hierar
hy tree has ar-ity A instead of two, and has no root. That is, the tree has A roots that aresear
hed for together, and ea
h root pa
ks r=A patterns. If one su
h node hasto be veri�ed, then we
onsider its A
hildren nodes (that pa
k r=A2 patternsea
h), all together, and so on. This redu
es not only veri�
ation
osts but alsothe prepro
essing spa
e, sin
e we need less tables.We have also to
onsider how this is
ombined with the optimization algo-rithm of Se
tion 3.1, sin
e the best
hoi
e to maximize one
ounter may not bethe best
hoi
e to maximize another. The solution is to pa
k also the di�erentvalues of Mu in a single
omputer word. The operation of Eq. (1)
an be per-fe
tly done in parallel for several
ounters, as long as we repla
e the sum by theabove te
hnique to avoid over
ows. The only obsta
le is the maximum, whi
h asfar as we know has never been used in a bit-parallel s
enario. We do that now.If we have to
ompute max(X;Y), where X and Y
ontain several
ountersproperly aligned, in order to obtain the
ounter-wise maxima, we need an extrahighest bit per
ounter, whi
h is always zero. Say that
ounters have now B +1bits,
ounting this new highest bit. We pre
ompute the bit mask J = (10B)A(where now A = bw=(B+1)
) and perform the operation F ((X j J)�Y) & J .The result is that, in F , ea
h highest bit is set if and only if the
ounter of X islarger than that of Y . We now
ompute F F�(F >> B), so that the
ounterswhere X is larger than Y have all their bits set in F , and the others have all thebits in zero. Finally, we
hoose the maxima as max(X;Y) (X & F) j (Y & �F).Fig. 7 shows the bit-parallel version of the
ounter a

ummulation, and Fig. 8shows an example of pattern hierarhy.4 AnalysisWe analyze our algorithm by following the analysis of the
orresponding singlepattern algorithm [3℄. Two useful lemmas shown there follow (we have writtenthem in a way more
onvenient for us).Lemma 1 [3℄ The probability that two random `-grams have a
ommon subse-quen
e of length (1�
)` is at most a��d`=`, for
onstants a = (1+o(1))=(2�
(1�

CanDis
ard (i; b; D; `)1. B dlog2max(k + `+ 1; 2`)e2. A bw=(B + 1)
3. H (010B�1)A4. J (10B)A5. For u 2 �` : : : 0 Do6. Mu (2B�1 � k � 1)� (0B1)A7. For u 2 1 : : : b� `+ 1 Do8. X Mu�`9. O X & H10. X ((X & � H) +D[Tib+u:::ib+u+`�1℄) j O11. Y Mu�112. F ((X j J)� Y) & J13. F F � (F >> B)14. Mu (X & F) j (Y & � F)15. If H & Mu = H Then Return true16. Return falseFig. 7. The bit-parallel version of CanDis
ard. It requires that D is prepro
essed bypa
king the values of A di�erent patterns in the same way. Lines 1{6
an in fa
t bedone on
e at prepro
essing time.

Fig. 8. Top: basi
 pattern hierar
hy for 27 patterns. Bottom: pattern hierar
hy withbit-parallel
ounters (27 patterns).
)) and d = 1 �
 + 2
 log�
 + 2(1 �
) log�(1 �
). The probability de
reasesexponentially for d > 0, whi
h surely holds if
 < 1� e=p�.Lemma 2 [3℄ If S is an `-gram that mat
hes inside a given string P (larger than`) with less than
` di�eren
es, then S has a
ommon subsequen
e of length`�
` with some `-gram of P .

We measure the amount of work in terms of inspe
ted
hara
ters. For agiven text blo
k, if there is a single `-gram inside the blo
k that mat
hes insideany pattern P i with less than
` di�eren
es, we pessimisti
ally assume that weverify the whole blo
k. Otherwise, after
onsidering 1+dk=(
`)e non-overlapping`-grams, we abandon the blo
k without verifying it. For the latter to be
orre
t,it must hold k=m = � <
=(
+2)(1+O(1=m)), sin
e otherwise we rea
h the endof the blo
k (of length (m� k)=2) before
onsidering those 1+ dk=(
`)e `-grams.Given Lemmas 1 and 2, the probability that a given `-gram mat
hes withless than
` di�eren
es inside some P i is at most that of having a
ommonsubsequen
e of length ` �
` with some `-gram of some P i. The probability ofthis is mra��d`=`. Consequently, the probability that any `-gram in the
urrenttext blo
k mat
hes is m2ra��d`=`2, sin
e there are m=` `-grams. (We assume forthe analysis that we do not use the optimization of Se
tion 3.1; this is pessimisti
for every possible text blo
k.)Hen
e, with probability m2ra��d`=`2 we verify the blo
k, and otherwise wedo not. In the �rst
ase we pay O(m2r) time if we use plain veri�
ation (Se
-tion 3.2, we see the
ase of hierarhi
al veri�
ation later) and dynami
 program-ming. In the se
ond
ase we pay the number of
hara
ters inspe
ted in order topro
ess 1 + dk=(
`)e `-grams, that is, ` + k=
. Hen
e the average
ost is upperbounded by O� nm �am4r2`2 ��d` + `+ k
��The �rst part is the
ost of veri�
ations, and we have to make it negligible
ompared to the se
ond part, that is, we have to ensure that veri�
ations arerare enough. A suÆ
ient
ondition on ` is` � 4 log�m+ 2 log� rd = 4 log�m+ 2 log� r1�
+ 2
 log�
+ 2(1�
) log�(1�
)(in fa
t a slightly better, but more
ompli
ated, bound
an be derived).Note that we are free to
hoose any
onstant 2�=(1 � �) <
 < 1 � e=p�.If we let
 approa
h 1 � e=p�, the value of ` goes to in�nity and so does ourprepro
essing
ost. If we let
 approa
h 2�=(1��), ` gets as small as possible butour sear
h
ost be
omes O(n). Having properly
hosen
 and `, our algorithm ison average O�n(k + log�(rm))m � (2)
hara
ter inspe
tions. We remark that this is true as long as 2�=(1 � �) <1�e=p�, that is, � < 1=3�O(1=p�), as otherwise the whole algorithm redu
esto dynami
 programming.Re
all that our prepro
essing
ost is O(mr�`=w). Given the value of `, this isO(m5r3�O(1)=w). The spa
e with plain veri�
ation is �` = m4r2�O(1) integers.As a pra
ti
al
onsideration, we have that sin
e �` must �t in memory, wemust be able to hold ` log2 � bits in a single
omputer word, so we
an reada whole `-gram in a single
omputer instru
tion. The number of instru
tions

exe
uted then be
omesO(n(1+k= logM)=m), whereM is the amount of memorywe spend on a D table. Note that this is not true if we use the optimizationmethod of Se
tion 3.1, although we are not able to analyze the bene�t that thismethod produ
es, on the other hand.The fa
t that we perform the veri�
ation using Myers' algorithm [7℄
hangesits
ost to O(rm2=w), and this permits redu
ing ` a bit in pra
ti
e, but theoverall
omplexity does not
hange.Let us now analyze the e�e
t of hierar
hi
al veri�
ation. This time we startwith r patterns, and if the blo
k requires veri�
ation, we run two new s
ansfor r=2 patterns, and
ontinue the pro
ess until a single pattern asks for ver-i�
ation. Only then we perform the dynami
 programming veri�
ation. Letp = a��d`m2=`2. Then the probability of verifying the root node is pr. For anon-root node, the probability that it requires veri�
ation given that the parentrequires veri�
ation is Pr(
hild=parent) = Pr(
hild ^ parent)=P (parent) =Pr(
hild)=Pr(parent) = 1=2, sin
e if the
hild requires veri�
ation then theparent requires veri�
ation. Then the number of times we s
an the whole blo
kis on average pr(1 + 2(1=2(1 + 2(1=2 : : : = pr log2 rHen
e the total
hara
ter inspe
tions for the s
ans that require veri�
ations isO(pmr log r). Finally, ea
h individual pattern is veri�ed provided an `-gram ofthe text blo
k mat
hes inside it. This a

ounts for O(prm2) veri�
ation
ost.Hen
e the overall
ost under hierar
hi
al veri�
ation isO� nm �am3r(m + log r)`2 ��d` + `+ k
��whi
h is
learly better than the
ost with plain veri�
ation. The
ondition on `to obtain the same sear
h time of Eq. (2) is now` � log�(m3r(m + log2 r))d = 3 log�m+ log� r + log�(m+ log2 r)1�
+ 2
 log�
+ 2(1�
) log�(1�
) (3)whi
h is smaller and hen
e requires less prepro
essing e�ort. This time the pre-pro
essing
ost is O(m4r2(m + log r)�O(1)=w), smaller than with plain veri�-
ation. The spa
e requirement of hierar
hi
al veri�
ation, however, is 2r�` =2m3r2(m+ log2 r)�O(1), whi
h is larger than with plain veri�
ation.Finally, let us
onsider the use of bit-parallel
ounters (Se
tion 3.4). This timethe arity of the tree is A = bw=(1 + dlog2(k +1)e)
 and it has no root. We haver=A tables in the leaves of the hierar
hi
al tree. The total spa
e requirementis less than r=(A � 1) tables. The veri�
ation e�ort is now O(pmr logA r) fors
anning and re-s
anning, and O(prm2) for dynami
 programming. This puts aless stringent
ondition on `:` � log�(m3r(m+ logA r))d = 3 log�m+ log� r + log�(m+ logA r)1�
+ 2
 log�
+ 2(1�
) log�(1�
)

and redu
es the prepro
essing e�ort to O(m4r2(m+logA r)�O(1)=w). The spa
erequirement is dr=(A� 1)e�` = m3r2(m+logA r)�O(1)=(A� 1). With plain ver-i�
ation the spa
e requirement is still smaller, but the di�eren
e is now smaller.To summarize, we have shown that we are able to perform, on average,O(n(k + log�(rm))=m)
hara
ter inspe
tions whenever � < 1 � e=p�. Thisrequires a prepro
essing time of roughly O(m4r2(m+ logw= log k r)�O(1)=w) andan extra spa
e of O(m3r2(m + logw= log k r)�O(1) log(k)=w) by using the bestte
hniques. The number of ma
hine instru
tions for the sear
h
an be madeO(n(1 + k= logM)=m) provided we use M memory for a single D table.It has been shown that, for a single pattern, O(n(k + log�m)=m) is optimal[3℄. This uses two fa
ts. The �rst is that it is ne
essary to inspe
t at least k + 1
hara
ters in order to skip a given text window of length m, so we need at least
(kn=m)
hara
ter inspe
tions. The se
ond is that the
(n log�(m)=m) lowerbound of Yao [14℄ for exa
t string math
ing applies to approximate sear
hingtoo, as exa
t sear
hing is in
luded in the approximate sear
h problem. Whensear
hing for r patterns, this lower bound be
omes
(n log�(rm)=m), as weshow in the Appendix A. Hen
e our algorithm is optimal.5 A Slower Algorithm for Higher Di�eren
e RatiosA weakness of the algorithm is that it
annot
ope with di�eren
e ratios beyond1=3. This is due in part to the use of text blo
ks of length (m�k)=2. A di�erentalternative to �xed-position blo
ks is the use of a sliding window of t `-grams,where t = b(m�k+1)=`
�1. If we
onsider text blo
ks for the form Ti`+1:::i`+t`,we are sure that every o

urren
e (whose minimum length is m � k)
ontainsa
omplete blo
k. Then, if the `-grams inside the window add up more than kdi�eren
es, we
an move to the next blo
k.The main di�eren
e is that blo
ks overlap with ea
h other by t� 1 `-grams,so we should be able to update our di�eren
e
ounter from one text blo
k to thenext in
onstant time. This is rather easy, although it does not permit anymorethe use of the optimization te
hnique of Se
tion 3.1. The result is an algorithmthat takes O(n) time for � < 1=2�O(1=p�). Figure 9 shows this algorithm.6 Experimental ResultsWe have implemented the algorithms in
,
ompiled using g

 3.2.1 with fulloptimizations. The experiments were run in 2GHz Pentium 4, with 512mb ram,with Linux 2.4.We ran experiments for alphabet sizes � = 4 (dna), � = 20 (protein) and� = 256 (as
ii text). The test data for dna and protein alphabets was randomlygenerated. The texts were 64mb
hara
ters for dna, and 16mb
hara
ters forprotein, and the patterns were 64
hara
ters. The texts were stored used only 2(dna) and 5 bits (protein) per
hara
ter, whi
h allowed O(1) time a

ess to the`-grams.

Sear
h (T1:::n; P 11:::m : : : P r1:::m; k)1. ` Prepro
ess ()2. t b(m� k + 1)=`
 � 13. b t`4. M 05. For i 2 0 : : : t� 2 Do M M +D[Ti`+1:::i`+`℄6. For i 2 t� 1 : : : bn=`
-1 Do7. M M +D[Ti`+1:::i`+`℄8. If M � k Then Verify text blo
k9. M M �D[T(i�t+1)`+1:::(i�t+1)`+`℄Fig. 9. High-level des
ription of the slower algorithm. The veri�
ation of a text blo
k
an also be done hierar
hi
ally.Table 1. Prepro
essing times in se
onds for various number of patterns, and for various`-gram lenghts. The pattern lenghts are m = 64 for dna and protein, and m = 16 foras
ii.dna 1 8 32 64 protein 1 64 256 1024 as
ii 1 64 256 10244 0.00 0.00 0.00 0.00 1 0.00 0.01 0.01 0.02 1 0.00 0.01 0.01 0.066 0.01 0.01 0.04 0.08 2 0.00 0.01 0.03 0.07 2 0.01 0.59 2.60 10.658 0.02 0.15 0.58 1.17 3 0.01 0.09 0.40 1.55 3 4.2610 0.38 3.02 12.00 24.19 4 0.04 6.09Table 1 gives the prepro
essing times for various alphabets, number of pat-terns and `-grams. The prepro
essing timings are for the basi
 algorithms, with-out the bit-parallel
ounters te
hnique, whi
h requires slightly more time. Themaximum values in pra
ti
e are ` � 8 for dna, ` � 3 for protein, and ` � 2 foras
ii. The sear
h times were measured for these maximum values.Figs. 10, 11, and 12 give the sear
h times for the dna, protein, and as
iialphabets. The abreaviations in the �gures are as follows. sl: the basi
 sublineartime algorithm, slo: sl with the optimal
hoi
e of `-grams, l: the basi
 lineartime �ltering algorithm, sl
: sl with bit-parallel
ounters, sl
o: sl
 with theoptimal
hoi
e of `-grams, l
: l with bit-parallel
ounters. All �lters use thehierar
hi
al veri�
ation. For
omparison, Fig. 13 gives timings for the exa
t pat-tern partitioning algorithm given in [1℄. This algorithm beats the new algorithmsfor large rm, �, k. Fig. 14 illustrates.Optimal
hoi
e of `-grams helps only sometimes, but is usually slower due toits
omplexity. The linear time �ltering algorithms qui
kly be
ome faster thanthe sublinear algorithms for large rm, k. The bit-parallel
ounters speed-up thesear
h for large rm. The performan
e of the algorithms
ollapse when the errorratio grows past a
ertain limit, and this
ollapse is very sharp. Before that limit,the new algorithms are very eÆ
ient.

0

0.5

1

1.5

2

2.5

3

0 2 4 6 8 10 12

tim
e

(s
)

k

running times for varying k

SL
SLO

L
SLC

SLCO
LC

0

1

2

3

4

5

0 2 4 6 8 10

tim
e

(s
)

k

running times for varying k

SL
SLO

L
SLC

SLCO
LC

0

1

2

3

4

5

0 1 2 3 4 5 6 7

tim
e

(s
)

k

running times for varying k

SL
SLO

L
SLC

SLCO
LC

0

1

2

3

4

5

0 1 2 3 4 5 6 7

tim
e

(s
)

k

running times for varying k

SL
SLO

L
SLC

SLCO
LC

Fig. 10. Sear
h times in se
onds. Parameters are: � = 4, m = 64, and ` = 8. The�gures are for, from left to right, top to bottom: r = 1, r = 8, r = 32, and r = 64.
0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12

tim
e

(s
)

k

running times for varying k

SL
SLO

L
SLC

SLCO
LC

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12

tim
e

(s
)

k

running times for varying k

SL
SLO

L
SLC

SLCO
LC

0

0.5

1

1.5

2

0 1 2 3 4 5 6 7 8 9

tim
e

(s
)

k

running times for varying k

SL
SLO

L
SLC

SLCO
LC

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.5 1 1.5 2 2.5 3 3.5 4

tim
e

(s
)

k

running times for varying k

SL
SLO

L
SLC

SLCO
LC

Fig. 11. Sear
h times in se
onds. Parameters are: � = 20, m = 64, and ` = 3. The�gures are for, from left to right, top to bottom: r = 1, r = 64, r = 256, and r = 1024.

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3 3.5 4

tim
e

(s
)

k

running times for varying k

SL
SLO

L
SLC

SLCO
LC

0

0.5

1

1.5

2

0 0.5 1 1.5 2 2.5 3

tim
e

(s
)

k

running times for varying k

SL
SLO

L
SLC

SLCO
LC

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.5 1 1.5 2 2.5 3

tim
e

(s
)

k

running times for varying k

SL
SLO

L
SLC

SLCO
LC

0

2

4

6

8

10

12

14

0 0.5 1 1.5 2

tim
e

(s
)

k

running times for varying k

SL
SLO

L
SLC

SLCO
LC

Fig. 12. Sear
h times in se
onds. Parameters are: � = 64 (as
ii), m = 64, and ` = 3.The �gures are for, from left to right, top to bottom: r = 1, r = 64, r = 256, andr = 1024.
0

2

4

6

8

10

12

14

2 4 6 8 10 12

tim
e

(s
)

k

running times for varying k

r=1
r=8

r=32
r=64

0

2

4

6

8

10

12

2 4 6 8 10 12

tim
e

(s
)

k

running times for varying k

r=1
r=64

r=256
r=1024

0

1

2

3

4

5

6

1 1.5 2 2.5 3 3.5 4

tim
e

(s
)

k

running times for varying k

r=1
r=64

r=256
r=1024

Fig. 13. Sear
h times in se
onds for exa
t pattern partitioning algorithm, for � = 4(dna), � = 20 (protein), and � = 64 (as
ii) alphabets.7 Con
lusionsMultiple approximate string mat
hing is an important problem that arises inseveral appli
ations, and for whi
h the
urrent state of the art is in a very
r=1

r=64

k=0 k=2 k=4 k=6 k=8 k=10 k=12

r=1024

r=256

SL

SLC EP

LC

r=1

r=64

k=0 k=1 k=2 k=3 k=4 k=5

r=1024

r=256

SL

SLC

L

LC EP

r=1

r=8

r=32

r=64

k=0 k=2 k=4 k=6 k=8 k=10 k=12

SL
L

EP

LC

Fig. 14. Areas where ea
h algorithm performs best.

primitive stage. Nontrivial solutions exist only for the
ase of very low di�eren
eratios or very few patterns.We have presented a new algorithm to improve this situation. Our algorithmis not only optimal on average, but also pra
ti
al. A se
ond algorithm we presentis slower but handles higher di�eren
e ratios. We have shown that they performwell in handling large numbers of patterns and intermediate di�eren
e ratios.They are indeed the best alternatives for reasonably small alphabets.The algorithms do not indu
e any order on the `-grams, but they
an appearin any order, as long as their total distan
e is at most k. The �ltering
an bestill improved by requiring that the `-grams from the pattern must appear inapproximately same order in the text. This approa
h was used in [12℄. The samemethod
an be applied for multiple patterns as well.There are several ways we plan to try in order to redu
e prepro
essing timeand memory usage. A �rst one is lazy evaluations of the table
ells. Instead offully
omputing the D tables of size �` for ea
h pattern, we
ompute the
ellsonly for the text `-grams as they appear. If a given table
ell is not yet
omputed,we
ompute it on the
y for all the patterns. This gives a prepro
essing
ost thatis O(rm�`(1� e�n=�`)) on the average (using Myers' algorithm for the `-gramsinside the patterns, as d`=we = 1). This, however, is advantageous only for verylong `-grams, namely `+�(log log `) > log� n.Another possibility is to
ompute D only for those `-grams that appear in apattern with at most `0 di�eren
es, and assume that all the others appear with`0 + 1 di�eren
es. This redu
es the e�e
tivity at sear
h time but, by storing therelevant `-grams in a hash table, requires O(rm(�`)`0) spa
e and prepro
essingtime (either for plain or hierar
hi
al veri�
ation), sin
e the number of stringsat distan
e `0 to an `-gram is O((�`)`0) [13℄. With respe
t to plain veri�
ation,the spa
e is redu
ed for `0 < (` � log�(rm))=(1 + log� `), and with respe
t tohierar
hi
al veri�
ation, for `0 < (` � log�m)=(1 + log� `). These values arereasonable.It is also possible to improve the veri�
ation performan
e. A simple strat-egy is to sort the patterns before grouping by ranges in order to a
hieve some
lustering in the groups. This
ould be handled with an algorithm designed forhierar
hi
al
lustering. This
lustering
ould be done taking a distan
e de�nedas the number of di�eren
es ne
essary to
onvert one pattern into the other, orany other reasonable measure of similarity (Hamming distan
e, longest
ommonsubsequen
e, et
.).Indexing
onsists of prepro
essing the text to build a data stru
ture (index)on it that
an be used later for faster querying [9℄. In general, we �nd thatmethods designed for indexed approximate string mat
hing
an be adapted to(non-indexed) multiple approximate string mat
hing. The idea is to index thepattern set and use the text somehow as the pattern, in order to \sear
h forthe text" inside the stru
ture of the patterns. Our present ideas are
lose toapproximate q-gram methods, and several other te
hiques
an be adapted too.We are
urrently pursuing this line.

Referen
es1. R. Baeza-Yates and G. Navarro. Multiple approximate string mat
hing. InF. Dehne et al., editor, Pro
eedings of the 5th Annual Workshop on Algorithmsand Data Stru
tures (WADS'97), pages 174{184, 1997.2. R. Baeza-Yates and G. Navarro. New and faster �lters for multiple approximatestring mat
hing. Random Stru
tures and Algorithms (RSA), 20:23{49, 2002.3. W. Chang and T. Marr. Approximate string mat
hing and lo
al similarity. InPro
. 5th Combinatorial Pattern Mat
hing (CPM'94), LNCS 807, pages 259{273,1994.4. M. Cro
hemore and W. Rytter. Text Algorithms. Oxford University Press, 1994.5. H. Hyyr�o and G. Navarro. Faster bit-parallel approximate string mat
hing. InPro
eedings of the 13th Annual Symposium on Combinatorial Pattern Mat
hing(CPM 2002), LNCS 2373, pages 203{224, 2002.6. R. Muth and U. Manber. Approximate multiple string sear
h. In Pro
. 7th Com-binatorial Pattern Mat
hing (CPM'96), LNCS 1075, pages 75{86, 1996.7. E. W. Myers. A fast bit-ve
tor algorithm for approximate string mat
hing basedon dynami
 programming. Journal of the ACM, 46(3):395{415, 1999.8. G. Navarro. A guided tour to approximate string mat
hing. ACM ComputingSurveys, 33(1):31{88, 2001.9. G. Navarro, R. Baeza-Yates, E. Sutinen, and J. Tarhio. Indexing methods forapproximate string mat
hing. IEEE Data Engineering Bulletin, 24(4):19{27, 2001.Spe
ial issue on Managing Text Natively and in DBMSs.10. G. Navarro, E. Sutinen, J. Tanninen, and J. Tarhio. Indexing text with approxi-mate q-grams. In Pro
. 11th Combinatorial Pattern Mat
hing (CPM 2000), LNCS1848, pages 350{363, 2000.11. P. Sellers. The theory and
omputation of evolutionary distan
es: pattern re
og-nition. Journal of Algorithms, 1:359{373, 1980.12. E. Sutinen and J. Tarhio. Filtration with q-samples in approximate string mat
h-ing. In D. S. Hirs
hberg and E. W. Myers, editors, Pro
eedings of the 7th AnnualSymposium on Combinatorial Pattern Mat
hing, number 1075 in Le
ture Notes inComputer S
ien
e, pages 50{63, Laguna Bea
h, CA, 1996. Springer-Verlag, Berlin.13. E. Ukkonen. Finding approximate patterns in strings. Journal of Algorithms,6:132{137, 1985.14. A. C. Yao. The
omplexity of pattern mat
hing for a random string. SIAM Journalof Computing, 8(3):368{387, 1979.A Lower Bound for Multipattern Mat
hingWe extend the
lassi
al proof of Yao [14℄ to the
ase of sear
hing for severalpatterns. Let us assume that we sear
h for r random patterns of length m in atext of length n. Random patterns means that they are independently generatedsequen
es where ea
h
hara
ter is
hosen from the set � with uniform proba-bility. To simplify matters, we will not assume that the patterns are ne
essarilydi�erent from ea
h other, they are simply r randomly generated sequen
es. Weprove that the lower bound of the problem on the average is
(n log�(rm)=m),where � = j�j. The bound refers to the number of
hara
ter inspe
tions made.We use the same tri
k of dividing the text in blo
ks of length 2m � 1, andassume that we just have to sear
h for the presen
e of the patterns inside ea
h

blo
k (whi
h is an optimisti
 assumption). Sin
e no information gathered insideone blo
k
an be used to sear
h the other, we
an regard ea
h blo
k in isolation.So the
ost is at least n=(2m� 1) times the
ost to sear
h a single blo
k. Hen
ewhat we have to prove is that we have to work
(log�(rm)) inside a given blo
k.Inside a given blo
k B1:::2m�1, ea
h of the r patterns
an mat
h inm di�erentpositions (starting at position 1 to m). Ea
h possible mat
h position of ea
hpattern will be
alled a
andidate and identi�ed by the pair (t; i), where t 2 1 : : : ris the pattern number and i 2 1 : : :m is the starting position inside the blo
k.Hen
e there are rm
andidates.We have to examine enough
hara
ters to ensure that we have found everymat
h inside the blo
k. We will perform a sequen
e of a

esses (blo
k
hara
terreads) inside the blo
k, at positions i1; i2 : : : ik until the information we havegathered is enough to know that we found every pattern o

urren
e. Whi
h isthe same, we have to \rule out" all the rm
andidates, or report those
andidatesthat have not been ruled out after
onsidering their m positions.Note that ea
h
andidate has to be ruled out independently of the rest.Moreover, the only way to rule out a
andidate (t; i) is to perform an a

ess ijsu
h that Bij 6= P tij�i+1.Given an a

ess ij to blo
k B, the probability to rule out a
andidate (t; i)with the a

ess is at most 1 � 1=�: even assuming that the area
overed bythe
andidate in
ludes ij (that is, i � ij < i + m) and that the
andidatehas not been already outruled by a previous a

ess, there is a probability of1=� that Bij = P tij�i+1 and hen
e we
annot rule out (t; i). This means thatthe probability that a given a

ess does not rule out a given
andidate is � 1=�.Note that the way we have bounded the probability permits us
onsidering everya

ess independently of the others. Consequently, the probability of not rulingout a given
andidate after k a

esses is at least 1=�k.Sin
e every
andidate has to be ruled out independently of the others, asequen
e of k a

esses leaves at least rm=�k
andidates not ruled out, on aver-age. Ea
h individual
andidate
an be dire
tly veri�ed by examining �=(� � 1)
hara
ters on average. Hen
e, our average
ost is at leastk + rm�k�1(� � 1)The optimum is to keep examining
hara
ters until the average
ost to di-re
tly verify the
andidates equals the
ost we would pay if we kept examining
hara
ters, and then swit
h to dire
t veri�
ation. This
orresponds to minimizingthe above formula. The optimum isk� = log� �rm� ln�� � 1 �and hen
e the lower bound on the average
ost per blo
k is1 + ln�rm� ln���1 �ln� = �(log�(rm))whi
h proves our
laim.

