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this end, the user may speify a parameter k, suh that mathes that have atmost k di�erenes with the pattern should be aepted.EÆient two dimensional ombinatorial pattern mathing algorithms thatdo not allow rotations of the pattern an be found, e.g., in [5, 2, 4, 14℄. Rotationinvariant template mathing was �rst onsidered from a ombinatorial point ofview in [10℄. In this paper, we follow this ombinatorial line of work. If we onsiderthe pattern and text as regular grids, then de�ning the notion of mathingbeomes nontrivial when we rotate the pattern: sine every pattern ell intersetsseveral text ells and vie versa, it is not lear what should math what. Amongthe di�erent mathing models onsidered in previous work [10{12℄, we stik tothe simplest one in this paper: (1) the geometri enter of the pattern has to alignwith the enter of a text ell; (2) the text ells involved in the math are thosewhose geometri enters are overed by the pattern; (3) eah text ell involvedin a math should math the value of the pattern ell that overs its enter.Under this exat mathing model, an online algorithm is presented in [10℄ tosearh for a pattern allowing rotations in O(n2) average time.The model (a 3D version) was extended in [12℄ suh that there may be alimited number k of mismathes between the pattern and its ourrene. Underthis mismathes model an O(k4n3) average time algorithm was obtained, as wellas an O(k2n3) average time algorithm for omputing the lower bound of thedistane; here we will develop a 2D version whose running time is O(k3=2n2).This works for any 0 � k < m2. For a small k, an O(k1=2n2) average timealgorithm was given in [9℄.Finally, a more re�ned model [13, 9, 12℄ suitable for gray level images addsup the absolute values of the di�erenes in the gray levels of the pattern andtext ells supposed to math, and puts an upper limit k on this sum. Underthis gray levels model average time O((k=�)3=2n2) is ahieved, assuming thatthe ell values are uniformly distributed among � gray levels. Similar algorithmsfor indexing are presented in [13℄.In this paper we present fast �lters for searhing allowing rotations underthese three models. Table 1 shows our main ahievements (all are on the aver-age). The time we obtain for exat searhing is average-ase optimal. For thek{mismathes model we present two di�erent algorithms, based on searhing forpattern piees, either exatly or allowing less mismathes. For the gray levelsmodel we present a �lter based on oarsening the gray levels of the image, whihmakes the problem independent on the number of gray levels, with a omplexityapproahing that of the k{mismathes model.2 Problem omplexityThere exists a general lower bound for d{dimensional exat pattern mathing.In [17℄ Yao showed that the one{dimensional string mathing problem requiresat least time 
(n logm=m) on average, where n and m are the lengths of thestring and the pattern respetively. In [14℄ this result was generalized for the



Model Previous result Our resultsExat mathing O(n2) O(n2 log�m=m2)O(n2k log�m=m2), k < m2=(3 log�m)2k Mismathes O(n2k3=2) O(n2m3=�m=pk), k < m2=(5 log�m)O(n2k3=2plogm=m), k < m2 (1��(1=�))Gray levels O(n2(k=�)3=2) O(n2(k=�) log�m=m2), k < m2�=(9e ln2m)O(n2(k=�)3=2plogm=m), k < m2�=(5e lnm)Table 1. The (simpli�ed) average ase omplexities ahieved for di�erent models.d{dimensional ase, for whih the lower bound is 
(nd logmd=md) (withoutrotations).The above lower bound also holds for the ase with rotations allowed, asexat pattern mathing redues (as a speial ase) to the mathing with rota-tions. To searh for P exatly, we searh it allowing rotations and one we �ndan ourrene we verify whether or not the rotation angle is zero. Sine in 2Dthere are O(m3) rotations [10℄, on average there are O(n2m3=�m2) ourrenes.Eah rotated ourrene an be veri�ed in O(1) average time (by the resultsof the present paper). Hene the total exat searh time (et) is that of searh-ing with rotations (rt) plus O(n2m3=�m2) = o(n2 log�m=m2) for veri�ations.Beause of Yao's bound, et = 
(n2 log�m=m2) = rt + o(n2 log�m=m2), andso rt = 
(n2 log�m=m2) as well. This argument an be easily generalized to ddimensions beause there are O(mO(d)=dm) mathes to verify at O(1) ost.In Se. 4 we give an algorithm whose expeted running time mathes thislower bound.A lower bound for the k di�erenes problem (approximate string mathingwith � k mismathes, insertions or deletions of haraters) was given in [7℄ forthe one dimensional ase. This bound is 
(n(k + logm)=m), where n is thelength of the text string and m is the length of the pattern. This bound is tight;an algorithm ahieving it was also given in [7℄.This lower bound an be generalized to the d{dimensional ase also. By [14℄,exat d{dimensional searhing needs 
(nd logmd=md) time, and this is a speialase of approximate mathing. Following [7℄, we have that at least k+1 symbolsof a window of the size of P in T have to be examined to guarantee that thewindow annot math P . So a seond lower bound is 
(knd=md). The lowerbound 
(nd(k + logmd)=md) follows.3 De�nitionsLet T = T [1::n; 1::n℄ and P = P [1::m; 1::m℄ be arrays of unit squares, alledells, in the (x; y){plane. Eah ell has a value in ordered �nite alphabet �. Thesize of the alphabet is denoted by � = j�j. The orners of the ell for T [i; j℄ are(i � 1; j � 1); (i; j � 1); (i � 1; j) and (i; j). The enter of the ell for T [i; j℄ is(i� 12 ; j� 12 ). The array of ells for pattern P is de�ned similarly. The enter of the



whole pattern P is the enter of the ell in the middle of P . Preisely, assumingfor simpliity that m is odd, the enter of P is the enter of ell P [m+12 ; m+12 ℄.Assume now that P has been moved on top of T using a rigid motion (trans-lation and rotation), suh that the enter of P oinides exatly with the enterof some ell of T (the enter{to{enter assumption). The loation of P with re-spet to T an be uniquely given as ((i; j); �) where (i; j) is the ell of T thatmathes the enter of P , and � is the angle between the x{axis of T and thex{axis of P . The (approximate) ourrene between T and P at some loationis de�ned by omparing the values of the ells of T and P that overlap. We willuse the enters of the ells of T for seleting the omparison points. That is, forthe pattern at loation ((i; j); �), we look whih ells of the pattern over theenters of the ells of the text, and ompare the orresponding values of thoseells.More preisely, assume that P is at loation ((i; j); �). For eah ell T [r; s℄of T whose enter belongs to the area overed by P , let P [r0; s0℄ be the ell ofP suh that the enter of T [r; s℄ belongs to the area overed by P [r0; s0℄. ThenM(T [r; s℄) = P [r0; s0℄. So our algorithms ompare the ell T [r; s℄ of T against theell M(T [r; s℄) of P .Hene the mathing funtionM is a funtion from the ells of T to the ells ofP . Now onsider what happens to M when angle � grows ontinuously, startingfrom � = 0. Funtion M hanges only at the values of � suh that some ellenter of T hits some ell boundary of P . It was shown in [10℄ that this happensO(m3) times, when P rotates full 360 degrees. This result was shown to be alsoa lower bound in [3℄. Hene there are �(m3) relevant orientations of P to beheked. The set of angles for 0 � � � �=2 isA = f�; �=2� � j � = arsin h+ 12pi2 + j2 � arsin jpi2 + j2 ;i = 1; 2; : : : ; bm=2; j = 0; 1; : : : ; bm=2;h = 0; 1; : : : ; bpi2 + j2g:By symmetry, the set of possible angles �, 0 � � < 2�, isA = A [ A+ �=2 [ A+ � [ A+ 3�=2:
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As shown in [10℄, any math of a pattern P in a text T allowing arbitraryrotations must ontain a so-alled \feature", i.e. a one{dimensional string ob-tained by reading a line of the pattern in some angle and rossing the enter.These features are used to build a �lter for �nding the position and orientationof P in T .We now de�ne a set of linear features (strings) for P (see Figure 1). Thelength of a partiular feature is denoted by u, and the feature for angle � androw q is denoted by F q(�). Assume for simpliity that u is odd. To read a featureF q(�) from P , let P be on top of T , on loation ((i; j); �). Consider the ellT [i� m+12 +q; j� u�12 ℄; : : : ; T [i�m+12 +q; j+ u�12 ℄. Denote them as tq1; tq2; : : : ; tqu.Let qi be the value of the ell of P that overs the enter of tqi . The (horizontal)feature of P with angle � and row q is now the sequene F q(�) = q1q2 � � � qu.Note that this value depends only on q, � and P , not on T .The sets of angles for the features are obtained the same way as the set ofangles for the whole pattern P . Note that the set of angles Bq for the feature setF q is subset of A, that is Bq � A for any q. The size of B varies from O(u2) (thefeatures rossing the enter of P ) to O(um) (the features at distane �(m) fromthe enter of P ). Therefore, if a math of some feature F q(�) is found, there areO(jAj=jBq j) possible orientations to be veri�ed for an ourrene of P . In otherwords, the mathing funtion M an hange as long as F q(�) does not hange.More preisely, assume that Bq = (1; : : : ; K), and that i < i+1. Therefore,feature F q(i) = F q(�) an be read using any � suh that i � � < i+1. Onthe other hand, there are O(jAj=jBq)j angles � 2 A suh that i � � < i+1. Ifthere is an ourrene of F q(�), then P may our with suh angles �.4 Exat Searh Allowing RotationsIn [10℄ only a set of features rossing the enter of P and of length m is extratedfrom P , i.e. q = m+12 and u = m. The text is then sanned row{wise for theourrene of some feature, and upon suh an ourrene the whole pattern isheked at the appropriate angles.The veri�ation takes O(m) time on average and O(m2) in the worst asein [10℄. The reason is that there are O(m2) ells in the pattern, and eah oneintersets O(m) di�erent text enters along a rotation of 360 degrees (or anyother onstant angle), so there are O(m3) di�erent rotations for the pattern.The number of relevant rotations for a feature of O(m) ells is, however, onlyO(m2), and therefore there are O(m) di�erent angles in whih the pattern hasto be tested for eah angle in whih a feature is found.In [11℄ the possibility of using features of length u � m is onsidered, sineit redues the spae and number of rotations. In what follows we assume thatthe features are of length u � m, and �nd later the optimal u.We show now how to improve both searh and veri�ation time.



4.1 Faster SearhIn [5℄ a 2{dimensional searh algorithm (not allowing rotations) is proposed thatworks by searhing for all the pattern rows in the image. Only every mth rowof the image needs to be onsidered beause one of them must ontain somepattern row in any ourrene.We take a similar approah. Instead of taking the O(u2) features that rossthe enter of the pattern, we also take some not rossing the enter. More speif-ially, we take features for q in the range m�r2 + 1 : : : m+r2 , where r is an oddinteger for simpliity. For eah suh q, we read the features at all the relevantrotations. This is illustrated in Fig. 1. This allows us to searh only one out ofr image rows, but there are O(rum) features now. Figure 1 also shows that thefeatures may beome shorter than m when they are far away from the enterand the pattern is rotated. On the other hand, there is no need to take featuresfarther away than m=2 from the enter, sine in the ase of unrotated patternsthis is the limit. Therefore we have the limit r � m. If we take features fromr = m rows then the shortest ones (for the pattern rotated at 45 degrees) areof length (p2� 1)m = �(m). The features do not ross the pattern enter now,but they are still �xed if the pattern enter mathes a text enter.The searh time per harater is independent on the number of features ifan Aho{Corasik mahine (AC) [1℄ is used. Alternatively, we an use a suÆxautomaton (dawg{math algorithm) [8℄ to get an optimal average searh time.The worst ase time for the suÆx automaton is the same as for the AC automa-ton.4.2 Faster Veri�ationWe show how veri�ations an be performed faster, in O(1) time instead ofO(m). Imagine that a feature taken at angle � has been found in the text. Sinethe feature has length u and an be at distane at most m from the enter, thereat most O(um) di�erent angles, whose limits we all 1 to K , and we havei � � < i+1.We �rst try to extend the math of the feature to a math of the ompleterotated row of the pattern. There are O(m2=(um)) possible angles for the om-plete row, whih lie between i and i+1 (as the feature is enlarged, the mathingangles are re�ned). However, we perform the omparison inrementally: �rst tryto extend the feature by 1 ell. There are O(((u+1)m)=(um)) = O((u+1)=u) =O(1) possible angles, and all them are tried. The probability that the (u+1)-thell mathes in some of the O(1) permitted angles is O(1=�). Only if we sueedwe try with the (u+2)-th ell, where there would be O(((u+2)m)=((u+1)m))di�erent angles, and so on.In general, the probability of heking the (u+ i+1)-th ell of the feature isthat of passing the hek for the (u + 1)-th, then that of the (u + 2)-th and soon. The average number of times it ours is at most�u+ 1u � 1� � �u+ 2u+ 1� 1� � ::: � � u+ iu+ i� 1� 1� = �u+ iu � 1�i



and by summing for i = 0 to �(m) � u we obtain O(1). This is done in bothdiretions from the enter, in any order.The same sheme an be applied to extend the math to the rest of thepattern. Eah time we add a new pattern position to the omparison we haveonly O(1) di�erent angles to test, and therefore an O(1=�) probability of suess.The proess is geometri and it �nishes in O(1) time on average.Note that this result holds even if the ell values are not uniformly distributedin the range 1 : : : �. It is enough that there is an independent nonzero probabilityp of mismath between a random pattern ell and a random text ell, in whihase 1=� is replaed by 1� p.4.3 AnalysisUsing the suÆx automaton the average searh time is O(n2 log� ru2m=(r(u �log� ru2m))): there are O(rum) features of length u, meaning that there areO(ru2m) suÆxes to math, so the searh enters to depth O(log� ru2m) on av-erage, we san only every O(r)th row of the text, and the shift the automatonmakes is on average O(u� log� ru2m).The veri�ation time per feature that mathes is O(1) as explained, and thereare O(rum=�u) features mathing eah text position on average. This results ina total searh ostO�n2 1r � log� ru2mu� log� ru2m + rum�u �� = O�n2� log� ru2mr(u� log� ru2m) + um�u ��The optimum is at r = u = �(m), whih leads to total average timeO(n2(log�m=m2 +m2=�m)) = O(n2 log�m=m2):whih is optimal, so the exat mathing problem an be solved in optimal averagetime O(n2 logm=m2). The spae requirement of the suÆx automaton is O(m4).Again, this analysis is valid for non{uniformly distributed ell values, byreplaing 1=� by 1� p, where p is the probability of a mismath.5 Searh Allowing Rotations and MismathesWe �rst present a 2D version of the inremental algorithm of [12℄ that runs inO(k3=2n2) average time, to searh for a pattern in a text allowing rotations andat most k mismathes.Assume that, when omputing the set of angles A = (�1; �2; : : :), we alsosort the angles so that �i < �i+1, and assoiate with eah angle �i the setCi ontaining the orresponding ell enters that must hit a ell boundary at�i. Hene we an evaluate the number of mismathes for suessive rotationsof P inrementally. That is, assume that the number of mismathes has beenevaluated for �i, then to evaluate the number of mismathes for rotation �i+1,it suÆes to re{evaluate the ells restrited to the set Ci. This is repeated for



eah � 2 A. Therefore, the total time for evaluating the number of mismathesfor P entered at some position in T , for all possible angles, is O(Pi jCij). Thisis O(m3) beause eah �xed ell enter of T , overed by P , an belong to someCi at most O(m) times. To see this, note that when P is rotated the whole angle2�, any ell of P traverses through O(m) ells of T .Then onsider the k mismathes problem. The expeted number of mis-mathes in N tests is Np = N ��1� . Requiring that Np > k gives that aboutN > k=p tests should be enough in typial ases to �nd out that the distanemust be > k.This suggests an improved algorithm for the k{mismathes ase. Instead ofusing the whole P , selet the smallest subpattern P 0 of P , with the same enterell, of size m0 �m0 suh that m0 �m0 > k=p. Then searh for P 0 to �nd if itmathes with at most k mismathes. If so, then hek with the gradually growingsubpatterns P 00 whether P 00 mathes, until P 00 = P . If not, ontinue with P 0 atthe next loation of T . The expeted running time of the algorithm is O(m03n2)whih is O(k3=2n2).Note that this algorithm assumes nothing of how we ompare the ell values,any other distane measure than ounting the mismathes an be also used.We show now how to improve this time omplexity.5.1 Reduing to Exat SearhingThe idea is to redue the problem to an exat searh problem. We ut the patterninto j piees along eah dimension, for j = bpk + 1, thus obtaining j2 pieesof size (m=j)� (m=j). Now, in eah math with k di�erenes or less neessarilyone of those piees is preserved without di�erenes, sine otherwise there shouldbe at least one di�erene in eah piee, for a total of j2 = (bpk + 1)2 > kdi�erenes overall. This fat was �rst utilized in [15, 16℄. So we searh for all thej2 piees exatly and hek eah ourrene for a omplete math.Observe that this time the piees annot be searhed for using the enter toenter assumption, beause this holds only for the whole pattern. However, whatis really neessary is not that the piee enter is aligned to a text enter, but justthat there exists a �xed position to where the piee enter is aligned. One we �xa rotation for the whole pattern, the mathing funtion of eah pattern piee gets�xed too. Moreover, from the O(m3) relevant rotations for the whole pattern,only O(mu) are relevant for eah one-dimensional feature of length u. There isat most one mathing funtion for eah relevant rotation (otherwise we wouldhave missed some relevant rotations). Hene we an work exatly as before whenmathing piees, just keeping in mind that the alignment between the patternenter and the text enter has to be shifted aordingly to the angle in whihwe are searhing for the feature. The same onsiderations of the previous setionshow that we an do the veri�ation of eah mathing piee in O(1) time.The searh algorithm an look for all the features of all the j2 patterns to-gether. Sine there are j2 piees of size (m=j)2, there are r = O(m=j) feature sets,whih when onsidering all their rotations make up O(j2(m=j)mu) = O(jm2u)



features of length u that an math. So the suÆx automaton takes timeO0�n2 log� jm2u2mj �mj � log� jm2u2�1A :The veri�ation of the whole piee one eah feature is found takes O(1). Henethe total veri�ation time is O(n2j2(m=j)mu=�u). Note that for eah piee oflength (m=j)2 there will be O(m(m=j)2) relevant rotations, beause the pieemay be far away from the pattern enter.One an exat piee has been found (whih happens with probabilityO(m(m=j)2=�m2=j2 )) we must hek for the presene of the whole pattern withat most k di�erenes. Although after omparing O(k) ells we will obtain a mis-math on average, we have to hek for all the possible rotations. A brute foreheking of all the rotations gives m3=(m(m=j)2) = j2 heks, for a total O(kj2)veri�ation time for eah piee found.We an instead extend the valid rotations inrementally, by heking ellsfarther and farther away from the enter and re�ning the relevant rotations atthe same time. Unlike the ase of exat searhing, we annot disard a rotationuntil k di�erenes are found, but the math will disappear on average after weonsider O(k) extra ells at eah rotation. Hene, we stop the veri�ation longbefore reahing all the O(m3) rotations.
m/j

R

K

j=4

m/j

m/j

Pattern cut in 16 pieces A piece matched is extended
until finding k differencesFig. 2. On the left, the pattern is ut in j2 = 16 piees. On the right, a piee of widthm=j found exatly is extended gradually until �nding k di�erenes.Let K be a random variable ounting the number of ells read until k dif-ferenes are found along a �xed rotation. We know that K = O(k). Sine weenlarge the math of the piee by reading ells at inreasing distanes from theenter, by the point where we �nd k di�erenes we will have overed a squareof side R where R2� (m=j)2 = K (see Figure 2). The total number of rotationsonsidered up to that point is O(mR2=(m(m=j)2)) = O(1 + Kj2=m2). Sinethis is linear on K we an take the funtion on the expetation K, so the av-erage number of rotations onsidered until �nding more than k di�erenes is



O(1 + kj2=m2). We onsider that we hek all these rotations by brute fore,making K = O(k) omparisons for eah suh rotation. Then the veri�ationost per piee found is O(k + k2j2=m2). This veri�ation has to be arried outO(j2m(m=j)2n2=�m2=j2) = O(m3n2=�m2=j2) times on average. Therefore thetotal searh time is of the order ofn2 0� log� jm2u2mj �mj � log� jm2u2� + j2(m=j)mu�u + km3�m2=j2 + k2j2m3m2�m2=j21Awhere all the terms inrease with j. If we selet j = �(pk), and u = �(m=j) =�(m=pk), the ost isn2 0� log�m4=pkmpk � mpk � log�m4=pk� + m3�m=pk + km3�m2=k + k3m�m2=k1AThe �rst term of the expression dominates for k < m2=(3 log2�m), up to wherethe whole sheme is O(n2k log�m=m2) sublinear time. After that point the wholesheme is O(n2m3=�m=pk) time for k < m2=(4 log�m), and O(n2k3m=�m2=k)time for larger k.5.2 Reduing to Approximate SearhingSine the searh time worsens with j we may try to use a smaller j, although thistime the piees must be searhed for allowing some di�erenes. More spei�ally,we must allow bk=j2 di�erenes in the piees, sine if there are more than bk=j2di�erenes per piee then the total exeeds k.The O(k3=2n2) time inremental searh algorithm an be used here. Sine wesearh for j2 piees with k=j2 di�erenes, the total searh ost for the piees isO(n2j2(k=j2)3=2) = O(n2k3=2=j).However, the inremental algorithm assumes that the enter of P oinideswith some enter of the ells of T , and this is not neessarily true when searhingfor piees. We now present a �lter that gives a lower bound for the number ofmismathes.Assume that P is at some loation ((u; v); �) on top of T , suh that (u; v) 2T [i; j℄ is not a enter{to{enter translation, and that the number of mismathesis k for that position of P . Then assume that P is translated to ((i; j); �), thatis, enter{to{enter beomes true while the rotation angle stays the same. Asa onsequene, some ell enters of T may have moved to the ell of P that isone of its eight neighbors. Now ompute the number of mismathes suh thatT [r; s℄ is ompared against M(T [r; s℄) and its eight neighbors as well. If any ofthose nine ells math with T [r; s℄, then we ount a math, otherwise we ounta mismath. Let the number of mismathes obtained this way be k0.This means that k0 � k, beause all mathes that ontribute to m2� k mustbe present in m2�k0 too. The value of k0 an be evaluated with the inremental



tehnique using �s instead of � where s is suh that �s � � < �s+1, beause themathing funtions are the same for � and �s by our onstrution. Hene k0 � k.Hene we use the algorithm with the enter{to{enter assumption, but ounta mismath only when the text ells di�ers from all the 9 pattern ells thatsurround the one it mathes with. The net result in eÆieny is that the alphabetsize beomes � = 1=(1 � 1=�)9, meaning that a ell mathes with probability1=� .For the veri�ation ost of the piees, we need to know the probability of amath with k di�erenes. Sine we an hoose the mismathing positions and therest must be equal to the pattern, the probability of a math is � �m2k �=�m2�k.By using Stirling's approximation to the fatorial and alling � = k=m2, we havethat the probability an be bounded by m2=m2, where  = 1=(��=(1��)(1 ��)�)1�� � (e=((1� �)�))1��. This improves as m grows and � stays onstant.On the other hand, � < 1� e=� is required so that  < 1.If we are searhing for a piee of size (m=j)2, then the mathing probabilityis O((m=j)2)=(m=j)2, whih worsens as j grows. On the other hand, we have tomultiply this probability by j2m(m=j)2 = m3 to aount for all the rotationsof all the piees. One a piee mathes we hek the omplete math, whih asexplained in Setion 5.1 takes O(k + k2j2=m2) time. The total ost isn2�k3=2j + m2=j2mj2�k + k2j2m2 �� = n2k(pk=j+m2=j2j2(m+kj2=m))whose optimum is j = m=q4 log1= m+ 1=2 log1= k(1 + o(1)), whih an beahieved whenever it is smaller than pk, i.e. for k > m2=(5 log�m)(1 + o(1))(for smaller k the sheme redues to exat searhing and the previous tehniqueapplies). For this optimum value the omplexity is O(n2k3=2qlog1=m=m).This ompetes with the redution to exat searhing for high values of k.Reduing to approximate searhing is indeed better for k > m2=(5 log�m), i.e.,wherever it an be applied. Reall that the sheme annot be applied for k >m2(1� e=�) = m2(1��(1=�)).Figure 3 shows the omplexities ahieved. Redution to exat searhingRedution to approximate searhing!!!!������




timen2 kba0 m2 a = m2=(3 log�m)2b = m2=(5 log�m) = m2=(4 log�m)k3=2plogm=mk log�m=m2 k3m=�m2=km3=�m=pk

Fig. 3. The omplexities obtained for the mismathes model depending on k.



6 Searhing under the Gray Levels ModelIn priniple any result for the mismathes model holds for the gray levels modelas well, beause if a pattern mathes with total olor di�erene k then it alsomathes with k mismathes. However, the typial k values are muh larger in thismodel, so using the same algorithms as �lters is not e�etive if a naive approahis taken.In this ase, we an improve the searh by reduing the number of di�erentolors, i.e. mapping s onseutive olors into a single one. The e�et is that �is redued to �=s and k is redued to 1 + bk=s = �(k=s) too. For instane,if we onsider redution to exat searhing, the sheme is O(n2k log�m=m2)time for k < m2=(3 log2�m). This beomes now O(n2k=s log�=sm=m2) time fork=s < m2=(3 log2�=sm). For example binarizing the image means s = �=2 andgives a searh time of O(n2k=� logm=m2) for k < m2=(3�= log22m).This seems to show that the best is to maximize s, but the prie is thatnow we have to hek the mathes found for potential mathes, beause somemay not really satisfy the mathing riterion on the original gray levels. Aftera math with redued alphabet is found we have to hek for a real math,whih osts O(1) and ours O(n2m3Æm2=m2) = O(n2mÆm2) times, where Æ =1=(��=(1��)(1 � �)�=s)1�� � (e=((1 � �)�=s))1�� and � = �=s = (k=s)=m2(similar to  in Setion 5.2).It is lear that this �nal veri�ation is negligible as long as Æ < 1. The maxi-mum s satisfying this is (�+p�2 � 4e��)=(2e) = �=e(1+O(1=p�)). The searhost then beomes O(n2k=� logm=m2) for k < m2�=(9e ln2m). This means thatif we double the number of gray levels and onsequently double k, we an keepthe same performane by doubling s.For higher k values, partitioning into exat searhing worsens if we dividek and � by s, so the sheme is appliable only for k < m2�=(9e ln2m). How-ever, it is possible to resort to redution to approximate mathing, using theO((k=�)3=2n2) average time algorithm for this model. This ost improves aswe inrease s, and hene we an obtain O(n2(k=�)3=2qlog1=Æm=m) time fork < m2�=(5e lnm).7 Worst ase optimal algorithmsIn [3℄ it was shown that for the problem of the two dimensional pattern mathingallowing rotations the worst ase lower bound is 
(n2m3). Our eÆient expetedase algorithms above do not ahieve this bound in the worst ase. However, theyare easily modi�ed to do so. This an be done using the O(m3) time algorithmgiven in Se. 5 for the veri�ations. Eah time the �lter suggests that there mightbe an ourrene in some position, we use the O(m3) time algorithm to verify it,if it is not veri�ed before (whih is possible beause several features may suggestan ourrene at the same position). As eah position is veri�ed at most one,and the veri�ation ost is O(m3), the total time is at most O(n2m3), whih



is optimal. This works for both the Hamming and gray levels ases. Moreover,this veri�ation algorithm is very exible, and an be adapted to many otherdistane funtions.8 Conlusions and Future WorkWe have presented di�erent alternatives to speed up the searh for two dimen-sional patterns in two dimensional texts allowing rotations and di�erenes.The results an be extended to more dimensions. In three dimensions thereare O(m11) di�erent rotations for P [12℄, and O(um2) features of length u. How-ever, the three{dimensional text must be sanned in two diretions, e.g. alongthe x{axis and along the y{axis, to �nd out the andidate rotations for P . Onlyif two features are found (that suggest the same enter position of P in T ), weenter the veri�ation, see Figure 4. For the exat mathing, the method worksin O(n3 logm=m3) average time. The other results an be extended also.
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Fig. 4. Mathing features in 3D.It is also possible to make the veri�ation probability lower by requiring thatseveral piees must math before going to the veri�ation. This means smallerpiees or more di�erenes allowed for the piees. It is also possible to san thetext in two (in 2D) or in three (in 3D) ways instead of only one or two, usingthe same set of features than in the basi algorithm.Note also that, until now, we have assumed that the enter of P must beexatly on top of some enter of the ells of T . It is also possible to remove thisrestrition, but the number of mathing funtions (and therefore the number offeatures) grows aordingly, see [12℄. This, however, does not a�et the �lteringtime, but the veri�ation for the approximate mathing would be slower.Finally, we have onsidered an error model where only \substitutions" arepermitted, i.e. a ell value hanges its value in order to math another ell, sowe substitute up to k values in the text ourrene and obtain the pattern.More sophistiated error models exist whih permit displaements (suh as in-serting/deleting rows/olumns) in the ourrenes, and searh algorithms forthose models (albeit with no rotations) have been developed for two and more
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