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lAbstra
t. We give fast �ltering algorithms to sear
h for a 2{dimensional pattern in a 2{dimensional text allowing any rotation ofthe pattern. We 
onsider the 
ases of exa
t and approximate mat
hingunder several mat
hing models, improving the previous results. For atext of size n� n 
hara
ters and a pattern of size m�m 
hara
ters, theexa
t mat
hing takes average time O(n2 logm=m2), whi
h is optimal. Ifwe allow k mismat
hes of 
hara
ters, then our best algorithm a
hievesO(n2k logm=m2) average time, for reasonable k values. For large k, weobtain an O(n2k3=2plogm=m) average time algorithm. We generalizethe algorithms for the mat
hing model where the sum of absolute dif-feren
es between 
hara
ters is at most k. Finally, we show how to makethe algorithms optimal in the worst 
ase, a
hieving the lower bound
(n2m3).1 Introdu
tionWe 
onsider the problem of �nding the exa
t and approximate o

urren
es of atwo{dimensional pattern of size m�m 
ells from a two{dimensional text of sizen�n 
ells, when all possible rotations of the pattern are allowed. This problemis often 
alled rotation invariant template mat
hing in the signal pro
essing lit-erature. Template mat
hing has numerous important appli
ations in image andvolume pro
essing. The traditional approa
h [6℄ to the problem is to 
omputethe 
ross 
orrelation between ea
h text lo
ation and ea
h rotation of the patterntemplate. This 
an be done reasonably eÆ
iently using the Fast Fourier Trans-form (FFT), requiring time O(Kn2 logn) where K is the number of rotationssampled. Typi
ally K is O(m) in the 2{dimensional (2D) 
ase, and O(m3) inthe 3D 
ase, whi
h makes the FFT approa
h very slow in pra
ti
e. However, inmany appli
ations, \
lose enough" mat
hes of the pattern are also a
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this end, the user may spe
ify a parameter k, su
h that mat
hes that have atmost k di�eren
es with the pattern should be a

epted.EÆ
ient two dimensional 
ombinatorial pattern mat
hing algorithms thatdo not allow rotations of the pattern 
an be found, e.g., in [5, 2, 4, 14℄. Rotationinvariant template mat
hing was �rst 
onsidered from a 
ombinatorial point ofview in [10℄. In this paper, we follow this 
ombinatorial line of work. If we 
onsiderthe pattern and text as regular grids, then de�ning the notion of mat
hingbe
omes nontrivial when we rotate the pattern: sin
e every pattern 
ell interse
tsseveral text 
ells and vi
e versa, it is not 
lear what should mat
h what. Amongthe di�erent mat
hing models 
onsidered in previous work [10{12℄, we sti
k tothe simplest one in this paper: (1) the geometri
 
enter of the pattern has to alignwith the 
enter of a text 
ell; (2) the text 
ells involved in the mat
h are thosewhose geometri
 
enters are 
overed by the pattern; (3) ea
h text 
ell involvedin a mat
h should mat
h the value of the pattern 
ell that 
overs its 
enter.Under this exa
t mat
hing model, an online algorithm is presented in [10℄ tosear
h for a pattern allowing rotations in O(n2) average time.The model (a 3D version) was extended in [12℄ su
h that there may be alimited number k of mismat
hes between the pattern and its o

urren
e. Underthis mismat
hes model an O(k4n3) average time algorithm was obtained, as wellas an O(k2n3) average time algorithm for 
omputing the lower bound of thedistan
e; here we will develop a 2D version whose running time is O(k3=2n2).This works for any 0 � k < m2. For a small k, an O(k1=2n2) average timealgorithm was given in [9℄.Finally, a more re�ned model [13, 9, 12℄ suitable for gray level images addsup the absolute values of the di�eren
es in the gray levels of the pattern andtext 
ells supposed to mat
h, and puts an upper limit k on this sum. Underthis gray levels model average time O((k=�)3=2n2) is a
hieved, assuming thatthe 
ell values are uniformly distributed among � gray levels. Similar algorithmsfor indexing are presented in [13℄.In this paper we present fast �lters for sear
hing allowing rotations underthese three models. Table 1 shows our main a
hievements (all are on the aver-age). The time we obtain for exa
t sear
hing is average-
ase optimal. For thek{mismat
hes model we present two di�erent algorithms, based on sear
hing forpattern pie
es, either exa
tly or allowing less mismat
hes. For the gray levelsmodel we present a �lter based on 
oarsening the gray levels of the image, whi
hmakes the problem independent on the number of gray levels, with a 
omplexityapproa
hing that of the k{mismat
hes model.2 Problem 
omplexityThere exists a general lower bound for d{dimensional exa
t pattern mat
hing.In [17℄ Yao showed that the one{dimensional string mat
hing problem requiresat least time 
(n logm=m) on average, where n and m are the lengths of thestring and the pattern respe
tively. In [14℄ this result was generalized for the



Model Previous result Our resultsExa
t mat
hing O(n2) O(n2 log�m=m2)O(n2k log�m=m2), k < m2=(3 log�m)2k Mismat
hes O(n2k3=2) O(n2m3=�m=pk), k < m2=(5 log�m)O(n2k3=2plogm=m), k < m2 (1��(1=�))Gray levels O(n2(k=�)3=2) O(n2(k=�) log�m=m2), k < m2�=(9e ln2m)O(n2(k=�)3=2plogm=m), k < m2�=(5e lnm)Table 1. The (simpli�ed) average 
ase 
omplexities a
hieved for di�erent models.d{dimensional 
ase, for whi
h the lower bound is 
(nd logmd=md) (withoutrotations).The above lower bound also holds for the 
ase with rotations allowed, asexa
t pattern mat
hing redu
es (as a spe
ial 
ase) to the mat
hing with rota-tions. To sear
h for P exa
tly, we sear
h it allowing rotations and on
e we �ndan o

urren
e we verify whether or not the rotation angle is zero. Sin
e in 2Dthere are O(m3) rotations [10℄, on average there are O(n2m3=�m2) o

urren
es.Ea
h rotated o

urren
e 
an be veri�ed in O(1) average time (by the resultsof the present paper). Hen
e the total exa
t sear
h time (et) is that of sear
h-ing with rotations (rt) plus O(n2m3=�m2) = o(n2 log�m=m2) for veri�
ations.Be
ause of Yao's bound, et = 
(n2 log�m=m2) = rt + o(n2 log�m=m2), andso rt = 
(n2 log�m=m2) as well. This argument 
an be easily generalized to ddimensions be
ause there are O(mO(d)=dm) mat
hes to verify at O(1) 
ost.In Se
. 4 we give an algorithm whose expe
ted running time mat
hes thislower bound.A lower bound for the k di�eren
es problem (approximate string mat
hingwith � k mismat
hes, insertions or deletions of 
hara
ters) was given in [7℄ forthe one dimensional 
ase. This bound is 
(n(k + logm)=m), where n is thelength of the text string and m is the length of the pattern. This bound is tight;an algorithm a
hieving it was also given in [7℄.This lower bound 
an be generalized to the d{dimensional 
ase also. By [14℄,exa
t d{dimensional sear
hing needs 
(nd logmd=md) time, and this is a spe
ial
ase of approximate mat
hing. Following [7℄, we have that at least k+1 symbolsof a window of the size of P in T have to be examined to guarantee that thewindow 
annot mat
h P . So a se
ond lower bound is 
(knd=md). The lowerbound 
(nd(k + logmd)=md) follows.3 De�nitionsLet T = T [1::n; 1::n℄ and P = P [1::m; 1::m℄ be arrays of unit squares, 
alled
ells, in the (x; y){plane. Ea
h 
ell has a value in ordered �nite alphabet �. Thesize of the alphabet is denoted by � = j�j. The 
orners of the 
ell for T [i; j℄ are(i � 1; j � 1); (i; j � 1); (i � 1; j) and (i; j). The 
enter of the 
ell for T [i; j℄ is(i� 12 ; j� 12 ). The array of 
ells for pattern P is de�ned similarly. The 
enter of the



whole pattern P is the 
enter of the 
ell in the middle of P . Pre
isely, assumingfor simpli
ity that m is odd, the 
enter of P is the 
enter of 
ell P [m+12 ; m+12 ℄.Assume now that P has been moved on top of T using a rigid motion (trans-lation and rotation), su
h that the 
enter of P 
oin
ides exa
tly with the 
enterof some 
ell of T (the 
enter{to{
enter assumption). The lo
ation of P with re-spe
t to T 
an be uniquely given as ((i; j); �) where (i; j) is the 
ell of T thatmat
hes the 
enter of P , and � is the angle between the x{axis of T and thex{axis of P . The (approximate) o

urren
e between T and P at some lo
ationis de�ned by 
omparing the values of the 
ells of T and P that overlap. We willuse the 
enters of the 
ells of T for sele
ting the 
omparison points. That is, forthe pattern at lo
ation ((i; j); �), we look whi
h 
ells of the pattern 
over the
enters of the 
ells of the text, and 
ompare the 
orresponding values of those
ells.More pre
isely, assume that P is at lo
ation ((i; j); �). For ea
h 
ell T [r; s℄of T whose 
enter belongs to the area 
overed by P , let P [r0; s0℄ be the 
ell ofP su
h that the 
enter of T [r; s℄ belongs to the area 
overed by P [r0; s0℄. ThenM(T [r; s℄) = P [r0; s0℄. So our algorithms 
ompare the 
ell T [r; s℄ of T against the
ell M(T [r; s℄) of P .Hen
e the mat
hing fun
tionM is a fun
tion from the 
ells of T to the 
ells ofP . Now 
onsider what happens to M when angle � grows 
ontinuously, startingfrom � = 0. Fun
tion M 
hanges only at the values of � su
h that some 
ell
enter of T hits some 
ell boundary of P . It was shown in [10℄ that this happensO(m3) times, when P rotates full 360 degrees. This result was shown to be alsoa lower bound in [3℄. Hen
e there are �(m3) relevant orientations of P to be
he
ked. The set of angles for 0 � � � �=2 isA = f�; �=2� � j � = ar
sin h+ 12pi2 + j2 � ar
sin jpi2 + j2 ;i = 1; 2; : : : ; bm=2
; j = 0; 1; : : : ; bm=2
;h = 0; 1; : : : ; bpi2 + j2
g:By symmetry, the set of possible angles �, 0 � � < 2�, isA = A [ A+ �=2 [ A+ � [ A+ 3�=2:
x

y’

x’

j

α

y

(0,0)

i

α α αFig. 1. Ea
h text 
ell is mat
hed against the pattern 
ell that 
overs the 
enter of thetext 
ell. For ea
h angle �, a set of features is read from P .



As shown in [10℄, any mat
h of a pattern P in a text T allowing arbitraryrotations must 
ontain a so-
alled \feature", i.e. a one{dimensional string ob-tained by reading a line of the pattern in some angle and 
rossing the 
enter.These features are used to build a �lter for �nding the position and orientationof P in T .We now de�ne a set of linear features (strings) for P (see Figure 1). Thelength of a parti
ular feature is denoted by u, and the feature for angle � androw q is denoted by F q(�). Assume for simpli
ity that u is odd. To read a featureF q(�) from P , let P be on top of T , on lo
ation ((i; j); �). Consider the 
ellT [i� m+12 +q; j� u�12 ℄; : : : ; T [i�m+12 +q; j+ u�12 ℄. Denote them as tq1; tq2; : : : ; tqu.Let 
qi be the value of the 
ell of P that 
overs the 
enter of tqi . The (horizontal)feature of P with angle � and row q is now the sequen
e F q(�) = 
q1
q2 � � � 
qu.Note that this value depends only on q, � and P , not on T .The sets of angles for the features are obtained the same way as the set ofangles for the whole pattern P . Note that the set of angles Bq for the feature setF q is subset of A, that is Bq � A for any q. The size of B varies from O(u2) (thefeatures 
rossing the 
enter of P ) to O(um) (the features at distan
e �(m) fromthe 
enter of P ). Therefore, if a mat
h of some feature F q(�) is found, there areO(jAj=jBq j) possible orientations to be veri�ed for an o

urren
e of P . In otherwords, the mat
hing fun
tion M 
an 
hange as long as F q(�) does not 
hange.More pre
isely, assume that Bq = (
1; : : : ; 
K), and that 
i < 
i+1. Therefore,feature F q(
i) = F q(�) 
an be read using any � su
h that 
i � � < 
i+1. Onthe other hand, there are O(jAj=jBq)j angles � 2 A su
h that 
i � � < 
i+1. Ifthere is an o

urren
e of F q(�), then P may o

ur with su
h angles �.4 Exa
t Sear
h Allowing RotationsIn [10℄ only a set of features 
rossing the 
enter of P and of length m is extra
tedfrom P , i.e. q = m+12 and u = m. The text is then s
anned row{wise for theo

urren
e of some feature, and upon su
h an o

urren
e the whole pattern is
he
ked at the appropriate angles.The veri�
ation takes O(m) time on average and O(m2) in the worst 
asein [10℄. The reason is that there are O(m2) 
ells in the pattern, and ea
h oneinterse
ts O(m) di�erent text 
enters along a rotation of 360 degrees (or anyother 
onstant angle), so there are O(m3) di�erent rotations for the pattern.The number of relevant rotations for a feature of O(m) 
ells is, however, onlyO(m2), and therefore there are O(m) di�erent angles in whi
h the pattern hasto be tested for ea
h angle in whi
h a feature is found.In [11℄ the possibility of using features of length u � m is 
onsidered, sin
eit redu
es the spa
e and number of rotations. In what follows we assume thatthe features are of length u � m, and �nd later the optimal u.We show now how to improve both sear
h and veri�
ation time.



4.1 Faster Sear
hIn [5℄ a 2{dimensional sear
h algorithm (not allowing rotations) is proposed thatworks by sear
hing for all the pattern rows in the image. Only every mth rowof the image needs to be 
onsidered be
ause one of them must 
ontain somepattern row in any o

urren
e.We take a similar approa
h. Instead of taking the O(u2) features that 
rossthe 
enter of the pattern, we also take some not 
rossing the 
enter. More spe
if-i
ally, we take features for q in the range m�r2 + 1 : : : m+r2 , where r is an oddinteger for simpli
ity. For ea
h su
h q, we read the features at all the relevantrotations. This is illustrated in Fig. 1. This allows us to sear
h only one out ofr image rows, but there are O(rum) features now. Figure 1 also shows that thefeatures may be
ome shorter than m when they are far away from the 
enterand the pattern is rotated. On the other hand, there is no need to take featuresfarther away than m=2 from the 
enter, sin
e in the 
ase of unrotated patternsthis is the limit. Therefore we have the limit r � m. If we take features fromr = m rows then the shortest ones (for the pattern rotated at 45 degrees) areof length (p2� 1)m = �(m). The features do not 
ross the pattern 
enter now,but they are still �xed if the pattern 
enter mat
hes a text 
enter.The sear
h time per 
hara
ter is independent on the number of features ifan Aho{Corasi
k ma
hine (AC) [1℄ is used. Alternatively, we 
an use a suÆxautomaton (dawg{mat
h algorithm) [8℄ to get an optimal average sear
h time.The worst 
ase time for the suÆx automaton is the same as for the AC automa-ton.4.2 Faster Veri�
ationWe show how veri�
ations 
an be performed faster, in O(1) time instead ofO(m). Imagine that a feature taken at angle � has been found in the text. Sin
ethe feature has length u and 
an be at distan
e at most m from the 
enter, thereat most O(um) di�erent angles, whose limits we 
all 
1 to 
K , and we have
i � � < 
i+1.We �rst try to extend the mat
h of the feature to a mat
h of the 
ompleterotated row of the pattern. There are O(m2=(um)) possible angles for the 
om-plete row, whi
h lie between 
i and 
i+1 (as the feature is enlarged, the mat
hingangles are re�ned). However, we perform the 
omparison in
rementally: �rst tryto extend the feature by 1 
ell. There are O(((u+1)m)=(um)) = O((u+1)=u) =O(1) possible angles, and all them are tried. The probability that the (u+1)-th
ell mat
hes in some of the O(1) permitted angles is O(1=�). Only if we su

eedwe try with the (u+2)-th 
ell, where there would be O(((u+2)m)=((u+1)m))di�erent angles, and so on.In general, the probability of 
he
king the (u+ i+1)-th 
ell of the feature isthat of passing the 
he
k for the (u + 1)-th, then that of the (u + 2)-th and soon. The average number of times it o

urs is at most�u+ 1u � 1� � �u+ 2u+ 1� 1� � ::: � � u+ iu+ i� 1� 1� = �u+ iu � 1�i



and by summing for i = 0 to �(m) � u we obtain O(1). This is done in bothdire
tions from the 
enter, in any order.The same s
heme 
an be applied to extend the mat
h to the rest of thepattern. Ea
h time we add a new pattern position to the 
omparison we haveonly O(1) di�erent angles to test, and therefore an O(1=�) probability of su

ess.The pro
ess is geometri
 and it �nishes in O(1) time on average.Note that this result holds even if the 
ell values are not uniformly distributedin the range 1 : : : �. It is enough that there is an independent nonzero probabilityp of mismat
h between a random pattern 
ell and a random text 
ell, in whi
h
ase 1=� is repla
ed by 1� p.4.3 AnalysisUsing the suÆx automaton the average sear
h time is O(n2 log� ru2m=(r(u �log� ru2m))): there are O(rum) features of length u, meaning that there areO(ru2m) suÆxes to mat
h, so the sear
h enters to depth O(log� ru2m) on av-erage, we s
an only every O(r)th row of the text, and the shift the automatonmakes is on average O(u� log� ru2m).The veri�
ation time per feature that mat
hes is O(1) as explained, and thereare O(rum=�u) features mat
hing ea
h text position on average. This results ina total sear
h 
ostO�n2 1r � log� ru2mu� log� ru2m + rum�u �� = O�n2� log� ru2mr(u� log� ru2m) + um�u ��The optimum is at r = u = �(m), whi
h leads to total average timeO(n2(log�m=m2 +m2=�m)) = O(n2 log�m=m2):whi
h is optimal, so the exa
t mat
hing problem 
an be solved in optimal averagetime O(n2 logm=m2). The spa
e requirement of the suÆx automaton is O(m4).Again, this analysis is valid for non{uniformly distributed 
ell values, byrepla
ing 1=� by 1� p, where p is the probability of a mismat
h.5 Sear
h Allowing Rotations and Mismat
hesWe �rst present a 2D version of the in
remental algorithm of [12℄ that runs inO(k3=2n2) average time, to sear
h for a pattern in a text allowing rotations andat most k mismat
hes.Assume that, when 
omputing the set of angles A = (�1; �2; : : :), we alsosort the angles so that �i < �i+1, and asso
iate with ea
h angle �i the setCi 
ontaining the 
orresponding 
ell 
enters that must hit a 
ell boundary at�i. Hen
e we 
an evaluate the number of mismat
hes for su

essive rotationsof P in
rementally. That is, assume that the number of mismat
hes has beenevaluated for �i, then to evaluate the number of mismat
hes for rotation �i+1,it suÆ
es to re{evaluate the 
ells restri
ted to the set Ci. This is repeated for



ea
h � 2 A. Therefore, the total time for evaluating the number of mismat
hesfor P 
entered at some position in T , for all possible angles, is O(Pi jCij). Thisis O(m3) be
ause ea
h �xed 
ell 
enter of T , 
overed by P , 
an belong to someCi at most O(m) times. To see this, note that when P is rotated the whole angle2�, any 
ell of P traverses through O(m) 
ells of T .Then 
onsider the k mismat
hes problem. The expe
ted number of mis-mat
hes in N tests is Np = N ��1� . Requiring that Np > k gives that aboutN > k=p tests should be enough in typi
al 
ases to �nd out that the distan
emust be > k.This suggests an improved algorithm for the k{mismat
hes 
ase. Instead ofusing the whole P , sele
t the smallest subpattern P 0 of P , with the same 
enter
ell, of size m0 �m0 su
h that m0 �m0 > k=p. Then sear
h for P 0 to �nd if itmat
hes with at most k mismat
hes. If so, then 
he
k with the gradually growingsubpatterns P 00 whether P 00 mat
hes, until P 00 = P . If not, 
ontinue with P 0 atthe next lo
ation of T . The expe
ted running time of the algorithm is O(m03n2)whi
h is O(k3=2n2).Note that this algorithm assumes nothing of how we 
ompare the 
ell values,any other distan
e measure than 
ounting the mismat
hes 
an be also used.We show now how to improve this time 
omplexity.5.1 Redu
ing to Exa
t Sear
hingThe idea is to redu
e the problem to an exa
t sear
h problem. We 
ut the patterninto j pie
es along ea
h dimension, for j = bpk
 + 1, thus obtaining j2 pie
esof size (m=j)� (m=j). Now, in ea
h mat
h with k di�eren
es or less ne
essarilyone of those pie
es is preserved without di�eren
es, sin
e otherwise there shouldbe at least one di�eren
e in ea
h pie
e, for a total of j2 = (bpk
 + 1)2 > kdi�eren
es overall. This fa
t was �rst utilized in [15, 16℄. So we sear
h for all thej2 pie
es exa
tly and 
he
k ea
h o

urren
e for a 
omplete mat
h.Observe that this time the pie
es 
annot be sear
hed for using the 
enter to
enter assumption, be
ause this holds only for the whole pattern. However, whatis really ne
essary is not that the pie
e 
enter is aligned to a text 
enter, but justthat there exists a �xed position to where the pie
e 
enter is aligned. On
e we �xa rotation for the whole pattern, the mat
hing fun
tion of ea
h pattern pie
e gets�xed too. Moreover, from the O(m3) relevant rotations for the whole pattern,only O(mu) are relevant for ea
h one-dimensional feature of length u. There isat most one mat
hing fun
tion for ea
h relevant rotation (otherwise we wouldhave missed some relevant rotations). Hen
e we 
an work exa
tly as before whenmat
hing pie
es, just keeping in mind that the alignment between the pattern
enter and the text 
enter has to be shifted a

ordingly to the angle in whi
hwe are sear
hing for the feature. The same 
onsiderations of the previous se
tionshow that we 
an do the veri�
ation of ea
h mat
hing pie
e in O(1) time.The sear
h algorithm 
an look for all the features of all the j2 patterns to-gether. Sin
e there are j2 pie
es of size (m=j)2, there are r = O(m=j) feature sets,whi
h when 
onsidering all their rotations make up O(j2(m=j)mu) = O(jm2u)



features of length u that 
an mat
h. So the suÆx automaton takes timeO0�n2 log� jm2u2mj �mj � log� jm2u2�1A :The veri�
ation of the whole pie
e on
e ea
h feature is found takes O(1). Hen
ethe total veri�
ation time is O(n2j2(m=j)mu=�u). Note that for ea
h pie
e oflength (m=j)2 there will be O(m(m=j)2) relevant rotations, be
ause the pie
emay be far away from the pattern 
enter.On
e an exa
t pie
e has been found (whi
h happens with probabilityO(m(m=j)2=�m2=j2 )) we must 
he
k for the presen
e of the whole pattern withat most k di�eren
es. Although after 
omparing O(k) 
ells we will obtain a mis-mat
h on average, we have to 
he
k for all the possible rotations. A brute for
e
he
king of all the rotations gives m3=(m(m=j)2) = j2 
he
ks, for a total O(kj2)veri�
ation time for ea
h pie
e found.We 
an instead extend the valid rotations in
rementally, by 
he
king 
ellsfarther and farther away from the 
enter and re�ning the relevant rotations atthe same time. Unlike the 
ase of exa
t sear
hing, we 
annot dis
ard a rotationuntil k di�eren
es are found, but the mat
h will disappear on average after we
onsider O(k) extra 
ells at ea
h rotation. Hen
e, we stop the veri�
ation longbefore rea
hing all the O(m3) rotations.
m/j

R

K

j=4

m/j

m/j

Pattern cut in 16 pieces A piece matched is extended
until finding k differencesFig. 2. On the left, the pattern is 
ut in j2 = 16 pie
es. On the right, a pie
e of widthm=j found exa
tly is extended gradually until �nding k di�eren
es.Let K be a random variable 
ounting the number of 
ells read until k dif-feren
es are found along a �xed rotation. We know that K = O(k). Sin
e weenlarge the mat
h of the pie
e by reading 
ells at in
reasing distan
es from the
enter, by the point where we �nd k di�eren
es we will have 
overed a squareof side R where R2� (m=j)2 = K (see Figure 2). The total number of rotations
onsidered up to that point is O(mR2=(m(m=j)2)) = O(1 + Kj2=m2). Sin
ethis is linear on K we 
an take the fun
tion on the expe
tation K, so the av-erage number of rotations 
onsidered until �nding more than k di�eren
es is



O(1 + kj2=m2). We 
onsider that we 
he
k all these rotations by brute for
e,making K = O(k) 
omparisons for ea
h su
h rotation. Then the veri�
ation
ost per pie
e found is O(k + k2j2=m2). This veri�
ation has to be 
arried outO(j2m(m=j)2n2=�m2=j2) = O(m3n2=�m2=j2) times on average. Therefore thetotal sear
h time is of the order ofn2 0� log� jm2u2mj �mj � log� jm2u2� + j2(m=j)mu�u + km3�m2=j2 + k2j2m3m2�m2=j21Awhere all the terms in
rease with j. If we sele
t j = �(pk), and u = �(m=j) =�(m=pk), the 
ost isn2 0� log�m4=pkmpk � mpk � log�m4=pk� + m3�m=pk + km3�m2=k + k3m�m2=k1AThe �rst term of the expression dominates for k < m2=(3 log2�m), up to wherethe whole s
heme is O(n2k log�m=m2) sublinear time. After that point the wholes
heme is O(n2m3=�m=pk) time for k < m2=(4 log�m), and O(n2k3m=�m2=k)time for larger k.5.2 Redu
ing to Approximate Sear
hingSin
e the sear
h time worsens with j we may try to use a smaller j, although thistime the pie
es must be sear
hed for allowing some di�eren
es. More spe
i�
ally,we must allow bk=j2
 di�eren
es in the pie
es, sin
e if there are more than bk=j2
di�eren
es per pie
e then the total ex
eeds k.The O(k3=2n2) time in
remental sear
h algorithm 
an be used here. Sin
e wesear
h for j2 pie
es with k=j2 di�eren
es, the total sear
h 
ost for the pie
es isO(n2j2(k=j2)3=2) = O(n2k3=2=j).However, the in
remental algorithm assumes that the 
enter of P 
oin
ideswith some 
enter of the 
ells of T , and this is not ne
essarily true when sear
hingfor pie
es. We now present a �lter that gives a lower bound for the number ofmismat
hes.Assume that P is at some lo
ation ((u; v); �) on top of T , su
h that (u; v) 2T [i; j℄ is not a 
enter{to{
enter translation, and that the number of mismat
hesis k for that position of P . Then assume that P is translated to ((i; j); �), thatis, 
enter{to{
enter be
omes true while the rotation angle stays the same. Asa 
onsequen
e, some 
ell 
enters of T may have moved to the 
ell of P that isone of its eight neighbors. Now 
ompute the number of mismat
hes su
h thatT [r; s℄ is 
ompared against M(T [r; s℄) and its eight neighbors as well. If any ofthose nine 
ells mat
h with T [r; s℄, then we 
ount a mat
h, otherwise we 
ounta mismat
h. Let the number of mismat
hes obtained this way be k0.This means that k0 � k, be
ause all mat
hes that 
ontribute to m2� k mustbe present in m2�k0 too. The value of k0 
an be evaluated with the in
remental



te
hnique using �s instead of � where s is su
h that �s � � < �s+1, be
ause themat
hing fun
tions are the same for � and �s by our 
onstru
tion. Hen
e k0 � k.Hen
e we use the algorithm with the 
enter{to{
enter assumption, but 
ounta mismat
h only when the text 
ells di�ers from all the 9 pattern 
ells thatsurround the one it mat
hes with. The net result in eÆ
ien
y is that the alphabetsize be
omes � = 1=(1 � 1=�)9, meaning that a 
ell mat
hes with probability1=� .For the veri�
ation 
ost of the pie
es, we need to know the probability of amat
h with k di�eren
es. Sin
e we 
an 
hoose the mismat
hing positions and therest must be equal to the pattern, the probability of a mat
h is � �m2k �=�m2�k.By using Stirling's approximation to the fa
torial and 
alling � = k=m2, we havethat the probability 
an be bounded by 
m2=m2, where 
 = 1=(��=(1��)(1 ��)�)1�� � (e=((1� �)�))1��. This improves as m grows and � stays 
onstant.On the other hand, � < 1� e=� is required so that 
 < 1.If we are sear
hing for a pie
e of size (m=j)2, then the mat
hing probabilityis O(
(m=j)2)=(m=j)2, whi
h worsens as j grows. On the other hand, we have tomultiply this probability by j2m(m=j)2 = m3 to a

ount for all the rotationsof all the pie
es. On
e a pie
e mat
hes we 
he
k the 
omplete mat
h, whi
h asexplained in Se
tion 5.1 takes O(k + k2j2=m2) time. The total 
ost isn2�k3=2j + 
m2=j2mj2�k + k2j2m2 �� = n2k(pk=j+
m2=j2j2(m+kj2=m))whose optimum is j = m=q4 log1=
 m+ 1=2 log1=
 k(1 + o(1)), whi
h 
an bea
hieved whenever it is smaller than pk, i.e. for k > m2=(5 log�m)(1 + o(1))(for smaller k the s
heme redu
es to exa
t sear
hing and the previous te
hniqueapplies). For this optimum value the 
omplexity is O(n2k3=2qlog1=
m=m).This 
ompetes with the redu
tion to exa
t sear
hing for high values of k.Redu
ing to approximate sear
hing is indeed better for k > m2=(5 log�m), i.e.,wherever it 
an be applied. Re
all that the s
heme 
annot be applied for k >m2(1� e=�) = m2(1��(1=�)).Figure 3 shows the 
omplexities a
hieved. Redu
tion to exa
t sear
hingRedu
tion to approximate sear
hing!!!!������




timen2 kba0 m2
 a = m2=(3 log�m)2b = m2=(5 log�m)
 = m2=(4 log�m)k3=2plogm=mk log�m=m2 k3m=�m2=km3=�m=pk

Fig. 3. The 
omplexities obtained for the mismat
hes model depending on k.



6 Sear
hing under the Gray Levels ModelIn prin
iple any result for the mismat
hes model holds for the gray levels modelas well, be
ause if a pattern mat
hes with total 
olor di�eren
e k then it alsomat
hes with k mismat
hes. However, the typi
al k values are mu
h larger in thismodel, so using the same algorithms as �lters is not e�e
tive if a naive approa
his taken.In this 
ase, we 
an improve the sear
h by redu
ing the number of di�erent
olors, i.e. mapping s 
onse
utive 
olors into a single one. The e�e
t is that �is redu
ed to �=s and k is redu
ed to 1 + bk=s
 = �(k=s) too. For instan
e,if we 
onsider redu
tion to exa
t sear
hing, the s
heme is O(n2k log�m=m2)time for k < m2=(3 log2�m). This be
omes now O(n2k=s log�=sm=m2) time fork=s < m2=(3 log2�=sm). For example binarizing the image means s = �=2 andgives a sear
h time of O(n2k=� logm=m2) for k < m2=(3�= log22m).This seems to show that the best is to maximize s, but the pri
e is thatnow we have to 
he
k the mat
hes found for potential mat
hes, be
ause somemay not really satisfy the mat
hing 
riterion on the original gray levels. Aftera mat
h with redu
ed alphabet is found we have to 
he
k for a real mat
h,whi
h 
osts O(1) and o

urs O(n2m3Æm2=m2) = O(n2mÆm2) times, where Æ =1=(��=(1��)(1 � �)�=s)1�� � (e=((1 � �)�=s))1�� and � = �=s = (k=s)=m2(similar to 
 in Se
tion 5.2).It is 
lear that this �nal veri�
ation is negligible as long as Æ < 1. The maxi-mum s satisfying this is (�+p�2 � 4e��)=(2e) = �=e(1+O(1=p�)). The sear
h
ost then be
omes O(n2k=� logm=m2) for k < m2�=(9e ln2m). This means thatif we double the number of gray levels and 
onsequently double k, we 
an keepthe same performan
e by doubling s.For higher k values, partitioning into exa
t sear
hing worsens if we dividek and � by s, so the s
heme is appli
able only for k < m2�=(9e ln2m). How-ever, it is possible to resort to redu
tion to approximate mat
hing, using theO((k=�)3=2n2) average time algorithm for this model. This 
ost improves aswe in
rease s, and hen
e we 
an obtain O(n2(k=�)3=2qlog1=Æm=m) time fork < m2�=(5e lnm).7 Worst 
ase optimal algorithmsIn [3℄ it was shown that for the problem of the two dimensional pattern mat
hingallowing rotations the worst 
ase lower bound is 
(n2m3). Our eÆ
ient expe
ted
ase algorithms above do not a
hieve this bound in the worst 
ase. However, theyare easily modi�ed to do so. This 
an be done using the O(m3) time algorithmgiven in Se
. 5 for the veri�
ations. Ea
h time the �lter suggests that there mightbe an o

urren
e in some position, we use the O(m3) time algorithm to verify it,if it is not veri�ed before (whi
h is possible be
ause several features may suggestan o

urren
e at the same position). As ea
h position is veri�ed at most on
e,and the veri�
ation 
ost is O(m3), the total time is at most O(n2m3), whi
h



is optimal. This works for both the Hamming and gray levels 
ases. Moreover,this veri�
ation algorithm is very 
exible, and 
an be adapted to many otherdistan
e fun
tions.8 Con
lusions and Future WorkWe have presented di�erent alternatives to speed up the sear
h for two dimen-sional patterns in two dimensional texts allowing rotations and di�eren
es.The results 
an be extended to more dimensions. In three dimensions thereare O(m11) di�erent rotations for P [12℄, and O(um2) features of length u. How-ever, the three{dimensional text must be s
anned in two dire
tions, e.g. alongthe x{axis and along the y{axis, to �nd out the 
andidate rotations for P . Onlyif two features are found (that suggest the same 
enter position of P in T ), weenter the veri�
ation, see Figure 4. For the exa
t mat
hing, the method worksin O(n3 logm=m3) average time. The other results 
an be extended also.
z

x

y

T:

P:

P:

Fig. 4. Mat
hing features in 3D.It is also possible to make the veri�
ation probability lower by requiring thatseveral pie
es must mat
h before going to the veri�
ation. This means smallerpie
es or more di�eren
es allowed for the pie
es. It is also possible to s
an thetext in two (in 2D) or in three (in 3D) ways instead of only one or two, usingthe same set of features than in the basi
 algorithm.Note also that, until now, we have assumed that the 
enter of P must beexa
tly on top of some 
enter of the 
ells of T . It is also possible to remove thisrestri
tion, but the number of mat
hing fun
tions (and therefore the number offeatures) grows a

ordingly, see [12℄. This, however, does not a�e
t the �lteringtime, but the veri�
ation for the approximate mat
hing would be slower.Finally, we have 
onsidered an error model where only \substitutions" arepermitted, i.e. a 
ell value 
hanges its value in order to mat
h another 
ell, sowe substitute up to k values in the text o

urren
e and obtain the pattern.More sophisti
ated error models exist whi
h permit displa
ements (su
h as in-serting/deleting rows/
olumns) in the o

urren
es, and sear
h algorithms forthose models (albeit with no rotations) have been developed for two and more



dimensions [4℄. It would be interesting to 
ombine the ability to manage thosetypes of errors and rotations at the same time.Referen
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