Approximate Matching of Run-Length
Compressed Strings

Veli Mékinen'*, Gonzalo Navarro?**, and Esko Ukkonen'*

! Department of Computer Science, P.O Box 26 (Teollisuuskatu 23)
FIN-00014 University of Helsinki, Finland.
{vmakinen,ukkonen}@cs.helsinki.fi
2 Department of Computer Science, University of Chile, Blanco Encalada 2120,
Santiago, Chile. gnavarro@dcc.uchile.cl

Abstract. We focus on the problem of approximate matching of strings
that have been compressed using run-length encoding. Previous studies
have concentrated on the problem of computing the longest common
subsequence (LCS) between two strings of length m and n, compressed
to m’ and n’ runs. We extend an existing algorithm for the LCS to the
Levenshtein distance achieving O(m'n+mn'm) complexity. This approach
gives also an algorithm for approximate searching of a pattern of m letters
(m' runs) in a text of n letters (n' runs) in O(mm’'n’") time, both for LCS
and Levenshtein models. Then we propose improvements for a greedy
algorithm for the LCS, and conjecture that the improved algorithm has
O(m'n’) expected case complexity. Experimental results are provided to
support the conjecture.

1 Introduction

The problem of compressed pattern matching is, given a compressed text T and
a (possibly compressed) pattern P, find all occurrences of P in T without de-
compressing T' (and P). The goal is to search faster than by using the basic
scheme: decompression followed by a search.

In the basic approach, we are interested in reporting only the exact occur-
rences, i.e. the locations of the substrings of T' that match exactly pattern P.
We can loosen the requirement of exact occurrences to approzimate occurrences
by introducing a distance function to measure the similarity between P and a
substring of 7. Now, we want to find all the approximate occurrences of P in
T, where the distance between P and a substring of T is at most a given error
threshold k. Often a suitable distance measure between two strings is the edit
distance, where the minimum amount of character insertions, deletions, and re-
placements, that are needed to make the two strings equal, is calculated. For
this distance we are interested in k < |P| errors.

Many studies have been made around the subject of compressed pattern
matching over different compression formats, starting with the work of Amir and

* Supported by the Academy of Finland under grant 22584.
** Supported in part by Fondecyt grant 1-990627.

Benson [1], e.g. [2,8,10,9]. The only works addressing the approximate variant
of the problem have been [11, 13, 15], on Ziv-Lempel [20].

Our focus is approximate matching over run-length encoded strings. In run-
length encoding a string that consists of repetitions of letters is compressed
by encoding each repetition as a pair ("letter","length of the repetition"). For
example, string aaabbbbecaab is encoded as a sequence (a, 3) (b, 4)(c, 2)(a,2)(b, 1).
This technique is widely used especially in image compression, where repetitions
of pixel values are common. This is particularly interesting for fax transmissions
and bilevel images. Approximate matching on images can be a useful tool to
detect distortions. Even a one-dimensional compressed approximate matching
algorithm would be useful to speed up existing two-dimensional approximate
matching algorithms, e.g. [5].

Exact pattern matching over run-length encoded text can be done optimally
in O(m' +n') time, where m' and n’ are the compressed sizes of the pattern and
the text [1]. Approximate pattern matching over run-length encoded text has
not been considered before this study, but there has been work on the distance
calculation, namely, given two strings of length m and n that are run-length
compressed to lengths m’ and n’', calculate their distance using the compressed
representations of the strings. This problem was first posed by Bunke and Csirik
[6]. They considered the version of edit distance without the replacement oper-
ation, that is related to the problem of calculating the longest common subse-
quence (LCS) of two strings. They gave an O(m'n’) time algorithm for a special
case of the problem, where all run-lengths are of equal size. Later, they gave
an O(m'n + n'm) time algorithm for the general case [7]. A major improve-
ment over the previous results was due to Apostolico, Landau, and Skiena [3];
they first gave a basic O(m'n'(m' + n')) algorithm, and further improved it to
O(m'n'log(m'n')). Mitchell [14] gave an algorithm with the same time com-
lexity in the worst case, but faster with some inputs; its time complexity is
O((p+m' +n')log(p+m'+n')), where p is the amount of pairs of compressed
characters that match (p equals to the amount of equal letter boxes, see the
definition in Sect. 2.2). All these algorithms were limited to the LCS distance,
although, Mitchell’s method [14] could be applied when different costs are as-
signed to the insertion and deletion operations. It still remain an open question
(as posed by Bunke and Csirik) whether similar improvements could be found
for a more general set of edit operations and their costs.

We give an algorithm for matching run-length encoded strings under Leven-
shtein distance [12]. In the Levenshtein distance a unit cost is assigned to each
of the three edit operations. The algorithm is an extension of the O(m'n + n'm)
algorithm of Bunke and Csirik [7]; we keep the same cost but generalize the
algorithm to handle a more complex distance model. Independently from our
work, Arbell, Landau, and Mitchell have found a similar algorithm [4].

We modify our algorithm to work in a context of approximate pattern match-
ing, and achieve O(mm’'n’) time for searching a pattern of length m that is run-
length compressed to length m', in a run-length compressed text of length n'.
This algorithm works for both Levenshtein and LCS distance models.

We also study the LCS calculation. First, we give a greedy algorithm for
the LCS that works in O(m'n'(m' + n')) time. Adapting the well known di-
agonal method [17], we are able to improve the greedy method to work in
O(d?>min(n',m')) time, where d is the edit distance between the two strings
(under insertions and deletions with the unit cost model).

Then we present improvements for the greedy method for the LCS, that do
not however affect the worst case, but, do have effect on the average case. We end
up conjecturing that our improved algorithm is O(m'n') time on average. As we
are unable to prove it, we provide instead experimental evidence to support the
conjecture.

2 Edit Distance on Run-Length Compressed Strings

2.1 Edit Distance

Let X be a finite set of symbols, called an alphabet. A string A of length |A| = m
is a sequence of symbols in X, denoted by A = Ay, ,, = a1as ... a;,, wherea; € X
for every i. If |A| = 0, then A = X is an empty string. A subsequence of A is any
sequence a;, G, - . . G4, , where 1 <4y < ig--- <1 < m.

The edit distance can be used to measure the similarity between two strings
A = ajas...a, and B = bibsy...b, by calculating the minimum cost of edit
operations that are needed to convert A into B [12,19, 16]. The usual edit op-
erations are substitution (convert a; into bj, denoted by a; — b;), insertion
(A — b;), and deletion (a; — A). Different costs for edit operations can be
given. For Levenshtein distance (denoted by Dy (A, B)) [12], we assign costs
w(a—=a)=0,w(a—>b) =1, wla—A) =1 and wA - a) =1,foralla,be X,
a # b. If substitutions are forbidden, i.e. w(a — b) = oo, we get the distance
Dip(A, B).

Distance Dy, (A, B) can be calculated by using dynamic programming [16];
evaluate an (m + 1) x (n + 1) matrix (d;;), 0 < i < m, 0 < j < n, using the
recurrence

dio =1, 0<i<m,
doj = J, 0<j<nm, (1)
d;; = min(if a; = b; thend; 1 ;_; elsed;_1 ;1 + 1,
di—1;+1,dij—1 +1), otherwise.
The matrix (d;;) can be evaluated row-by-row or column-by-column in
O(mn) time, and the value d,,, equals Dy, (A, B).
A similar method can be used to calculate the distance D;p(A, B). Now, the
recurrence is
dio =1, 0<i<m,
doj = J, 0<j<n, (2)
d; ; = min(if a; = b; then d; 1 ;_; else oo,

di*l,j + 1, di,jfl + 1) otherwise.

The problem of calculating the longest common subsequence of strings A and
B (denoted by LCS(A, B)), is related to the distance Dyp(A, B). It is easy to
see that 2% |[LCS(A,B)|=m+n — Dip(A, B).

2.2 Dividing the Edit Distance Matrix into Boxes

A run-length encoding of the string A = aias...q, Iis
Al = (a1, p1)(ap,+1,P2)(@py4po+1:03) - - (@, +1, Pmr) =
(aiy, p1)(@iy, p2) - (@i, p), where (aj,,pr) denotes a sequence
o = i@, .. a; = a; of length |og| = pp. We also call (a;,,pr) a run

of a;, . String A is optimally run-length encoded if a;, # a;, ., forall 1 <k <m'.

In the next sections, we will show how to speed up the evaluation of values
dpmn for both distances Dy, (A, B) and D;p(A, B) when both the strings A and
B are run-length encoded. In both methods, we use the following notation to
divide the matrix (d;;) into submatrices (see Fig. 1).

DP matrix

SOOIV TTTT T

aaaabbbbbbccccchbb

b K gk K
I, ~2n Ry
A+l
mm=m overlapping bordersof boxes [] equal letter box

W corners [l different letter box

*” ", oneparticular "box"

Fig. 1. A dynamic programmig matrix split into run-length blocks.

Let A’ = (aiy,p1)(aiy,p2)...(ai_,,pm') and B’ =
(bj,,71), (bjy,72) ... (b ,,pnr) be the run-length encoded representations of
strings A and B. The rows and columns that correspond to the ends of runs
in A and B separate the edit distance matrix (d;;) into submatrices. To ease
the notation later on, we define the submatrices so that they overlap on the

borders. Formally, each pair of runs (a;, , px), (bj,,r¢) defines a (py +1) x (r;+1)
"Ly such that

submatrix (dg;

.
dgy = dipvs—1.jo+1-1, 0<s<p,0<t<ry. (3)

We will call submatrices (d];f) bozes. If a pair of runs corresponding to a
box contain equal letters (i.e. a;, = bj,), then (d];f) is called an equal letter

box. Otherwise we call (d’;f) a different letter bozx. Adjacent boxes can form runs
of different letter boxes along rows and columns. We assume that both strings
are optimally run-length encoded, and hence runs of equal letter boxes can not
occur.

3 An O(mn' + m'n) Algorithm for the Levenshtein
Distance

Bunke and Csirik [7] gave an O(mn' + m'n) time algorithm for computing the
LCS between two strings of lengths n and m run-length compressed to n' and
m'. They pose as an open problem extending their algorithm to the Levenshtein
distance. This is what we do in this section, without increasing the complexity
to compute the new distance Dy,. Arbell, Landau, and Mitchell [4] have inde-
pendently found a similar algorithm. Their solution is also based on the same
idea of extending the O(mn' +m'n) LCS algorithm to the Levenshtein distance.

Compared to the LCS-related distance Djp, the Levenshtein distance Dy,
permits an additional character substitution operation, at cost 1. We compute
Dy, (A, B) by filling all the borders of all the boxes (dff) (see Fig. 1). We manage
to fill each cell in constant time, which adds up the promised O(mn' + m'n)
complexity. The space complexity can be made O(n + m) by processing the
matrix row-wise or column-wise.

3.1 The Basic Algorithm

We start with two lemmas that characterize the relationships between the border
values in the boxes (dff) First, we consider the equal letter boxes:

Lemma 1 (Bunke and Csirik [7]) The recurrences (1) and (2) can be re-
placed by

df}l =if s <t then d’g:fﬁs else d’:i)o, (4)
where 1 < s < pg and 1 <t < ry, for values dff in an equal letter bozx. O

Note that Lemma 1 holds for both Levenshtein and LCS distance models,
because formulas (1) and (2) are equal when a; = b;. Since we are computing
all the cells in the borders of the boxes, Lemma 1 permits computing new box
borders in constant time using those of previous boxes.

The difficult part lies in the different letter boxes.

Lemma 2 The recurrence (1) can be replaced by

k0 . . k0
ds,t =14 min (t—1+ MM maz(0,5—t)<q<s dq’() ;

. k.6
=14+ MiNpmaa(0,t—s)<q<t d07q)7 (5)
where 1 < s < pg and 1 <t <y, for values df: in a different letter box.

Proof. We use induction on s + t. If s + ¢ = 2 the formula (5) becomes df:f =

1+ min(d’é:é, df:é, d’é:f), which matches recurrence (1). In the inductive case we
have

k. okt k. k€
doy =1+ min(dy"y , ,dg" 4 dgy o)
by recurrence (1), and using the induction hypothesis we get

d];:tl =2+ mm(mm(-2+ m’inmaw(o,sft)gqgsfl ds:(/b
§=2 + MiNmas(0,—s)<g<t—1 do'y);
min(t—14 min,,q.(0,s—1—t)<g<s—1 d’;:g,
8= 2+ Milmap(04—st1)<a<t Doy);
min(t—2 4 miny,a.(0,s—t4+1)<q<s d’;:g,
$— 14 Mitpmaz(04-1-s)<g<t—1 do'y))
= 14+ min(t—14 Miny,a0,5—1)<g<s d’;:é,

. k.l
§ =14 Minmag(0,t—s)<q<t Do)

where we have used the property that consecutive cells in the (d;;) matrix differ
at most by 1 [18]. Note that we have assumed s > 1 and ¢ > 1. The particular
cases s = 1 or t = 1 are easily derived as well, for example for s =1 and ¢t > 1
we have

k0 ke k0 k0
dl,t =1+ mm(do,tﬂa dO,tadl,tfl)
_ kL k¢
=1+ min(dyy,_,,dy},
14+ min(t—2 + mi d"t mi kst

+ mm(-2+ MiNmaz(0,2—t)<q<1 Cg0: M Mmaz(0,t—2)<g<t—1 07q))
. k.0 k.0 C ok gkl ke k.0

=1+ min (d(],tfhd(],t:t_l + mm(dm07 d1,0)7 1+ mm(do’tf27 dO,tfl))

= 1 min (= 1+ min(dss, di6), min(dff_. df))

which is the particularization of formula (5) for s = 1. O

Formula (5) relates the values at the right and bottom borders of a box to
its left and top borders. Yet it is not enough to compute the cells in constant
time. Although we cannot compute one cell in O(1) time, we can compute all
the py (or r¢) cells in overall O(p) (or O(r;)) time.

Fig. 2 shows the algorithm. We use a data structure (which in the pseu-
docode is represented just as a set M,) able to handle a multiset of elements
starting with a single element, adding and deleting elements, and delivering its
minimum value at any time. It will be used to maintain and update the minima
MM a0(0,5—1)<q<s d’;:g and Minyqq(0,1—s)<q<t d’é:s, used in the formula (5). We
see later that in our particular application all those operations can be performed
in constant time.

In the code we use drk-* = d_’j;f;[for the rightmost column and dbf’z = d’;;ﬁt
for the bottom row. Their update formulas are derived from the formula (5):

k.l _ . . k01

drg® =14+min(rg — 14+ minpag(0,5—r,)<q<s dry ,
: k-1,

s — 14+ minyau(0,r—s)<q<r, by "),

k.l . . _
by =1+ min(t—1+ MM maz(0,pk—t)<q<ps dr§7[]

DPr — 1+ minm{m(g’t,pk)sqg db{;i]’[).

The whole algorithm can be made O(n+m) space by noting that in a column-
wise traversal we need, when computing cell (kl), to store only dr*~!* and
db**=1 so the space is that for storing one complete column (m) and a row whose
width is one box (at most n). Our multiset data structure does not increase this
space complexity. Hence we have

Theorem 3 Given strings A and B of lengths m and n that are run-length
encoded to lengths m' and n', there is an algorithm to calculate Dy, (A, B) in
O(m'n + n'm) time and O(m + n) space in the worst case.

O

3.2 The Multiset Data Structure

What is left is to describe our data structure to handle a multiset of nat-
ural numbers. We exploit the fact that consecutive cells in (d;;) differ by
at most 1 [18]. Our data structure represents the multiset S as a triple
(min(S), max(S), Vipin(s)...maz(s) — N). That is, we store the minimum and
maximum value of the multiset and a vector of counters V', which stores at V;
the number of elements equal to i in S. Given the property that consecutive cells
differ by at most 1, we have that no value V; is equal to zero. This is proved in
the following lemma.

Lemma 4 No value V; for min(S) < i < max(S) is equal to zero when S is a
set of consecutive values in (d;;) (i.e., S contains a contiguous part of a row or
a column of the matriz (d;;)).

Proof. The lemma is trivially true for the extremes i = min(S) and i = maz(S).
Let us now suppose that V; = 0 for an intermediate value. Let us assume that
the value min(S) is achieved at cell d; ; and that the value maz(S) is achieved at
cell d;r ;. Since all the intermediate cell values are also in S by hypothesis, and
consecutive cells differ by at most 1, it follows that any value between min(S)
and maz(S) exists in a path that goes from d; ; to dy . O

Levenshtein (A" = (ai,, p1)(aiy; p2) - .- (@i, s), B = (bjy,71)(bjz, 72) - (bj, 5 7r))

@ N oot W

/* We fill the topmost row and leftmost column first */
drd® « 0, db)° « 0
Forkel...m' Do
For s €0...p; Do drf® « drﬁ;};o + s
R
For £€0...n Do
Forte€0...7, Do db?"Z — db?;f:ﬂ +1
drgt — db?!
/* Now we fill the rest of the matrix */
For /€ 1...m' Do /* column-wise traversal */
Forkecl...n' Do
If a;, = by Then /* equal letter box */
For se1...p; Do
If s <r; Then drf’l — dbffﬂs’f Else drf’z — drf’f;1
Fortel...r, Do
If pp <t Then db}" « dbj_)" Else dby' « drl'"}
Else /* different letter box */
M, « {dr§"" "}, My « {abf "
drg’z — dr’;,:iz
For se€1...p; Do
M, « M, U {drk*"}
If s >r;, Then M, < M, — {drf’f;/lq}
If r, > s Then M, + M, U {db} "'}
drft — 14+ min(re — 14 min(M,), s — 1 + min(M,))
M, « {drk="Yy, M, « {dby "'}
dbit — dpEt

For t € 1...£Z1D0
If p, >t Then M, + M, U {dri'"'}
M, «< M, U {dbfil’i}
Ift > p, Then M, « M, — {db;)" |}
db¥ — 1+ min(t — 1 + min(M,), px — 1 + min(My))

Return dr" " /* or db;r:,"l */

D!

Fig. 2. The O(m'n+n'm) time algorithm to compute the Levenshtein distance between

A and B, coded as a run-length sequence of pairs (letter,run_length).

Fig. 3 shows the detailed algorithms. When we initialize the data structure
with the single element S = {#} we represent the situation as (z,z,V, = 1).
When we have to add an element y to S, we check whether y is outside the
range min(S)...mazx(S), and in that case we extend the range. In any case
we increment V. Note that the domain extension is never by more than one
cell, as there cannot appear empty cells in between by Lemma 4. When we have
to remove an element z from S we simply decrement V.. If V, becomes zero,
Lemma 4 implies that this is because z is either the minimum or the maximum
of the set. So we reduce the domain of V' by one. Finally, the operation min(S)
is trivial as we have it already precomputed.

Create (z)
1. Return (z,z,V, = 1)

Add ((minS,mazS,V),y)
If y < minS Then
minS <+ y
add new first cell V, =0
Else If y > maxS Then
mazxS <+ vy
add new last cell V, =0
Vy < V, +1
Return (minS, mazsS,V)

© oo WN

Remove ((minS, maxS,V), z)
10 V. <V, -1
11. If V, = 0 Then

12. If 2 = minS Then

13. remove first cell from V'
14. minS < minS +1
15. Else /* z = maxS */

16. remove last cell from V
17. maxS <+ mazxS —1

18. Return (minS, maxS,V)

Min ((minS, mazS,V))
19. Return minS

Fig. 3. The multiset data structure implementation.

It is easily seen that all the operations take constant time. As a practical
matter, we note that it is a good idea to keep V in a circular array so that it
can grow and shrink by any extreme. Its maximum size corresponds to py (for
M,) or vy (for My), which are known at the time of Create.

4 Approximate Searching

Let us now consider a problem related to computing the LCS or the Levenshtein
distance. Assume that string A is a short pattern and string B is a long text
(so m is much smaller than n), and that we are given a threshold parameter
k. We are interested in reporting all the “approximate occurrences” of A in B,
that is, all the positions of text substrings which are at distance k or less from
the pattern A. In order to ensure a linear size output, we content ourselves with
reporting the ending positions of the occurrences (which we call “matches”).

The classical algorithm to find all the matches [16] computes a matrix exactly
like those of recurrences (2) and (1), with the only difference that dy ; = 0. This
permits the occurrences to start at any text position. The last row of the matrix
dym; is examined and every text position j such that d,, ; < k is reported as a
match.

Our goal now is to devise a more efficient algorithm when pattern and text are
run-length compressed. A trivial O(m?2n' + R) algorithm (where R is the size of
the output) is obtained as follows. We start filling the matrix only at beginnings
of text runs, and complete the first 2m columns only (at O(m?) cost). The rest
of the columns of the run are equal to the 2m-th because no optimal path can
be longer than 2m — 1 under the LCS or Levenshtein models. We later examine
the last row of the matrix and report every text position with value < k. If the
run is longer than 2m, then we have not produced the whole last row but only
the first 2m cells of it. In this case we report the positions 2m + 1...r; of the
/-th run if and only if the position 2m was reported.

We improve now the trivial algorithm. A first attempt is to apply our algo-
rithms directly using the new base value dy ; = 0. This change does not present
complications.

Let us first concentrate on the Levenshtein distance. Our algorithm obtains
O(m'n +n'm) time, which may or may not be better than the trivial approach.
The problem is that O(m'n) may be too much in comparison to O(m?2n'), es-
pecially if n is much larger than m. We seek for an algorithm proportional to
the compressed text size. We divide the text runs in short (of length at most
2m) and long (longer than 2m) runs. We apply our Levenshtein algorithm on
the text runs, filling the matrix column-wise. If we have a short run (a;,,7/),
ry < 2m, we compute all the m’ + 1 horizontal borders plus its final vertical bor-
der (which becomes the initial border of the next column). The time to achieve
this is O(m'r; +m). For an additional O(r;) cost we examine all the cells of the

last row and report all the text positions i, 4+ ¢ such that d;";j/;t <k.

If we have a long run (a;,,r¢), r¢ > 2m, we limit its length to 2m and apply
the same algorithm, at O(m'm + m + m) cost. The columns 2m + 1...ry of
that run are equal to the 2m-th, so we just need to examine the last row of
the 2m-th column, and report all the text positions up to the end of the run,
i+ 2m 1 ifdl <k

This algorithm is O(n'm'm + R) time in the worst case, where R is the
number of occurrences reported. For the LCS model we have the same upper

bound, so we achieve the same complexity. Our O(m'n'(m'+n')) algorithm does
not yield a good complexity here. The space is that to compute one text run
limited to length 2m, i.e. O(m'm).

Note that if we are allowed to represent the occurrences as a sequence of runs
of consecutive text positions (all of which match), then the R extra term of the
search cost disappears.

Theorem 5 Given a pattern A and a text B of lengths m and n that are run-
length encoded to lengths m' and n', there is an algorithm to find all the ending
points of the approzimate occurrences of A in B, either under the LCS or Lev-
enshtein model, in O(m'mn’) time and O(m'm) space in the worst case.

O

5 Improving a Greedy Algorithm for the LCS

The idea in our algorithm for the Levenshtein distance Dy, in Sect. 3 was to fill
all the borders of all the boxes (d’;f) The natural way to reduce the complexity
would be to fill only the corners of the boxes (see Fig. 1). For the Dy, distance
this seems difficult to obtain, but for the D, distance there is an obvious greedy
algorithm that achieves this goal; in different letter boxes, we can calculate the
corner values in constant time, and in equal letter boxes we can trace an optimal
path to a corner in O(m' +n’) time. Thus, we can calculate all the corner values
in O(m/n'(m' +n')) time?.

It turns out that we can improve the greedy algorithm significantly by fairly
simple means. We notice that the diagonal method of [17] can be applied, and
achieve an O(d*min(n'm')) algorithm. We give also other improvements that do
not affect the worst case, but are significant in the average case and in practice.
We end the section conjecturing that our improved algorithm runs in O(m'n')
time in the average. As we are unable to prove this conjecture, we provide ex-
perimental evidence to support it.

5.1 Greedy Algorithm for the LCS

Calculating the corner value d®¢ in a different letter box is easy, because it

PrTe
. ko - ko - .
can be retrieved from the values dy,, = df "% and d") = dbt0l | which

Pr—1,T¢ Pr ;0 PhTe—17
are calculated earlier during the dynamic programming. This follows from the

lemma:

! Apostolico et. al. [3] also gave a basic O(m'n’(m’ 4+ n')) algorithm for the LCS,
which they then improved to O(m'n’ log(m'n’)). Their basic algorithm differs from
our greedy algorithm in that they were using the recurrence for calculating the LCS
directly, and we are calculating the distance Drp. Also, they traced a specific optimal
path (which was the property that they could use to achieve the O(m'n’ log(m'n’))
algorithm).

Lemma 6 (Bunke and Csirik [7]) The recurrence (2) can be replaced by the
recurrence

by = min(dSg +t,dyy + s), (6)

S

where 1 < s < pg and 1 <t <y, for values dk: in a different letter box. O

S

In contrast to the Dy, distance, the difficult part in D;p distance lies in equal
letter boxes. As noted earlier, Lemma 1 applies also for the Djp distance. >From
Lemma 1 we can see that the corner values are retrieved along the diagonal, and
those values may not have been calculated earlier. However, if p;, = r; in all
equal letter boxes, then each corner d’;;f” can be calculated in constant time.
This gives an O(m'n') algorithm for a special case, as previously noted in [6].

What follows is an algorithm to retrieve the value df)';f’ r, in an equal letter box

in O(m' +n') time. The idea is to trace an optimal path to the cell d*:¢ . This

kaTe"
can be done by using lemmas 1 and 6 recursively. Assume that dﬁ;f” P: dg:fwm
by Lemma 1 (case dﬁ;{w = dﬁ;ﬂw,o is symmetric). If & = 1, then the value
dtlljprk corresponds to a value in the first row (0) of the matrix (d;;) which
is known. Otherwise, the box (df;u) is a different letter box, and using the
definition of overlapping boxes and Lemma 6 it holds

kot _ k=1, k=1, B k—1,0
dO,W*pk - dpk—h"'/’.*pk - m’zn(quyﬂ +7e pk’dﬂ,w*pk +pk*1)'
k—1,6 - . . .
Now, the value d, ', is calculated during the dynamic programming, so we

. . k1, . . .
can continue on tracing value dy ..*, ~using lemmas 1 and 6 recursively until

we meet a value that has already been calculated during dynamic programming
(including the first row and the first column of the matrix (d;;). The recursion
never branches, because Lemma 1 defines explicitly the next value to trace, and
one of the two values (from which the minimum is taken over in Lemma 6) is
always known (that is because we enter the different letter boxes at the borders,
and therefore the other value is from a corner that is calculated during the
dynamic programming). We call the path described by the recursion a tracing
path.

Tracing the value dﬁ;ﬁw in an equal letter box may take O(m' + n’) time,
because we are skipping one box at a time, and there are at most m' +n' boxes
in the tracing path. Therefore, we get an O(m'n’'(m'+n')) algorithm to calculate
Dip(A, B). A worst case example that actually achieves the bound is A = a”
and B = (ab)™/?.

The space requirement of the algorithm is O(m'n'), because we need to store
only the corner value in each box, and the O(m' +n') space for the stack is not
needed, because the recursion does not branch.

We also achieve the O(m'n + n'm) bound, because the corner values d’;;f{w
of equal letter boxes define distinct tracing paths, and therefore each cell in the
borders of the boxes can be visited only once. To see this observe that each border
cell reached by a tracing path uniquely determines the border cell it comes from

along the tracing path, and therefore no two different paths can meet in a border
cell. The only exception is a corner cell, but in this case all the tracing paths
end there immediately.

Theorem 7 Given strings A and B of lengths m and n that are run-length
encoded to lengths m' and n', there is an algorithm to calculate D;p(A, B) in
O(min(m'n'(m' +n'),m'n + n'm)) time and O(m'n') space. O

5.2 Diagonal Algorithm

The diagonal method [17] provides an O(dmin(m,n)) algorithm for calculating
the distance d = Dyp(A, B) (or Dy, as well) between strings A and B of length
m and n, respectivily. The idea is the following: The value d,,, = D;p(A, B)
in the (d;;) matrix of (2) defines a diagonal band, where the optimal path must
lie. Thus, if we want to check whether Dyp < k, we can limit the calculation
to the diagonal band defined by value k (consisting of O(k) diagonals). Starting
with & = |n —m| + 1, we can double the value k and run in each step the recur-
rence (2) on the increasing diagonal band. As soon as d,,, < k, we have found
Dip(A, B) = dimn, and we can stop the doubling. The total number of diagonals
evaluated is at most 2 Dy (A, B), and there are at most min(m,n) cells in each
diagonal. Therefore, the total cost of the algorithm is O(dmin(m,n)), where
d= Dip(A, B).

We can use the diagonal method with our greedy algorithm as follows: We
calculate only the corner values that are inside the diagonal band defined by
value k in the above doubling algorithm. The corner values in equal letter boxes
inside the diagonal band can be retrieved in O(k) time. That is because we
can limit the length of the tracing paths with the value 2k + 1 (between two
equal letter boxes there is a different letter box that contributes at least 1 to
the value that we are tracing, and we are not interested in corner values that
are greater than k). Therefore, we get the total cost O(d?min(m',n')), where
d= Dip(A, B).

5.3 Faster on Average

There are some practical refinements for the greedy algorithm that do not im-
prove its worst case behavior, but do have an impact on its average case.

First of all, the runs of different letter boxes can be skipped in the tracing
paths.

Consider two consecutive different letter boxes (dff) and (d’:T”)
6 it holds for the values 1 <t < ry,

. By Lemma

= min 4 Pr+1, der1 0+ f)

k ¥4
t+pk+1,d +1, 0+t)

Pk+1,

Pr+1,0

= min (dm + pr + Dk+1, dpk ot Prs1 +t, dEe t)
(Pr+1,0

min dg/ + pr + Pr+1,d, k+1,L + f)

The above result can be extended to the following lemma by using induction:

Lemma 8 Let ((d*;%), (@), .. (d5))) and ((d51), (&), ..., (d)) be

vertical and horizontal runs of different letter boxes. When 1 < t < ry and
1 < s < py, the recurrence (4) can be replaced by the recurrences

k
i, = min (d,’j;fo +tdy)+ ps> 1<t<r,
s=k'

‘
d’j:fé = min (dng‘e + s,dfjgl + Z rt> 1 <5< py.
t=¢/

a
Now it is obvious how to speed up the retrieval of values d’;;fi” in the equal
letter boxes. During dynamic programming, we can maintain pointers in each
different letter box to the last equal letter box encountered in the direction of the
row and the column. When we enter a different letter box while tracing the value
of d’p“;f” in an equal letter box, we can use Lemma 8 to calculate the minimum
over the run of different letter boxes at once, and continue on tracing from the
equal letter box preceding the run of different letter boxes. (Note that in order
to use the summations of Lemma 8 we should better store the cumulative i, and
Jje values instead of pg, and r,.) Therefore we get the following result:

Theorem 9 Given strings A and B of lengths m and n that are run-length
encoded to lengths m' and n', such that all the runs of different letters over an
alphabet of size |X| are equally likely and in random order, there is an algorithm
to calculate Dip(4, B) in O(m'n'(14 (m' +n')/|X|?)) time in the average.

Proof. (Sketch) The first part of the cost, O(m'n') comes from the constant time
computation of all the different letter boxes. On the other hand, there are on
the average O(m'n'/|X]|) equal letter boxes. Between two runs of a letter o € X,
there are on the average | X| — 1 runs of other letters. This holds both for strings
A and B. In other words, the expected length of a run of different letter boxes
is |X| — 1. Therefore the retrieval of the value di: in an equal letter box takes

time at most O((m' 4+ n')/|X|) in the average. O

The second improvement to the greedy algorithm is to limit the length of
the tracing paths. In the greedy algorithm the tracing is continued until a value
is reached that has been calculated during the dynamic programming. However,
there are more known values than those that have been explicitly calculated.
Consider value dﬁ;ft, 1 <t <7y (or symmetrically d®f |1 < s < p;) in the border

ER IR
i ko o gkt ; ko ke
of a different letter box. If d" . = d, "5+ r¢ then it must hold d,;", = d,"; +1,
otherwise we get a contradiction: df)';f” < dﬁ;f;o + 7y

We call the above situation a horizontal (vertical) bridge. Note that from
Lemma 6 it follows that there is either a vertical or a horizontal bridge in each

different, letter box. When we enter a different letter box in the recursion, we
can check whether the bridge property holds at the border we entered, using the
corner values that are calculated during the dynamic programming. Thus, we can
stop the recursion at the first bridge encountered. To combine this improvement
with the algorithm that skips runs of different letter boxes, we need Lemma 10
below that states that the bridges propagate along runs of different letter boxes.
Therefore we only need to check whether the last different letter box has a bridge
to decide whether we have to skip to the next equal letter box. The resulting
algorithm is given in pseudo-code in Fig. 4.

Lemma 10 Let ((df:gl), (Ij:j]’l), e ,(d’;f)) be a vertical run of different letter

bozes. If there is a horizontal bridge df,;’fw = dﬁ;j{o—l—n then there is a horizontal

bridge df)';l,;/;” = dﬁ:/’lf;o + 1y for all k' < k" < k. The symmetric result holds for
horizontal runs of different letter bozes.

Proof. We use the counter-argument that d’;:,’,’{w = dﬁ:ﬂ{o + ry does not hold for

some k' < k"' < k. Then by Lemma, 8 and by the bridge assumption it holds

k” k”
K0 k"1, gk 1
dy ol =do Y pe=dod ke Y b
s=k'+1 s=k'+1

On the other hand, using the counter-argument and the fact that consecutive
cells in the (d;;) matrix differ at most by 1 [18], we get

kl!
k' L6 k'L K 41,6
it <dy oo <dg LD b | e
s=k'+1
which is a contradiction and so the the original proposition holds. O

Lemma 10 has a corollary: if the last different letter box in a run does not
have a horizontal (vertical) bridge, then none of the boxes in the same run have
a horizontal (vertical) bridge and, on the other hand, all the boxes in the same
run must have a vertical (horizontal) bridge.

Now, if two tracing paths cross inside a box (or run thereof), then one of
them necessarily meets a bridge. In the average case, there are a lot of crossings
of the tracing paths and the total cost for tracing the values in equal letter boxes
decreases.

Another way to consider the average length of a tracing path is to think that
every time a tracing path enters a different letter box, it has some probability
to hit a bridge. If the bridges were placed randomly in the different letter boxes,
then the probability to hit a bridge would be]5 This would give immediately a
constant expected length for a tracing path. However, the placing of the bridges
depends on the computation of recurrence (2), and this makes the reasoning
with probabilities much more complex. We are still confident that the following
conjecture holds, although we are not (yet) able to prove it.

LCS (A/ = (ail 7p1)(ai27p2) s ((lim, apm’)a B = (b.il) Tl)(bJévTZ) v (bj,,,/) Tn’))
/* We use structure d** to denote a box (d';f) as follows: */
d** corner = d';;f,w
dF* jumptop := "location of the next equal letter box above"
dFt jumpleft := "location of the next equal letter box in the left"
dzj.sumtop :=If a;, #b;_,, Then Zg’::dk'l.jumptop+1 Pt
d*" .sumleft := If a;,, # b;j, Then Zt:d’vl.jumpzeft+1 T
/* Initialize first row and column (let a;, = bj, = €,po =10 =1) */
d° corner « 0
For ke 1...n Do d*°.corner «— d*="°.corner + Th_1
10. For f € 1...m' Do d*‘.corner < d%‘ '.corner + pr_1
11. Calculate values dk’z.(jumptop, jumple ft, sumtop, sumle ft)

© 0N oW

12. /* Now we fill the rest of the corner values */
13. Forkel...m Do
14. For /€ 1...n' Do
15. (bridge, k', V', p, r, sum, d** .corner) « (false,k, ¥, pg,r¢,0,00)
16. If a;, # b;, Then /* Different letter box */
17. d™*.corner + min(d* =" .corner + a;,,d"" " .corner +b;,)
18. Else While bridge = false Do
19. /* Equal letter box, trace d**.corner */
20. If p=1r Then /* Straight from the diagonal */
21. d*t corner — min(d**.corner, sum + dkl*l’zlfl.corner)
22. bridge < true
23. Else If p < r Then /* Diagonal up */
24. (r k') « (r—p,k' —1)
25. d*.corner « min(d"*.corner, sum + d*" '~ corner + r)
26. If A corner = d*' '~ corner + ry Then bridge < true
27. Else /* Jump to the next equal letter box */
28. (sum, k') « (sum+dk,’ll.sumtop, ar't .jumptop)
29. p — D
30. If ¥ =0 Then /* First row */
31. d*t corner «— min(d®*.corner,

sum + d* "'~ corner + 1)
32. bridge « true
33. Else /* Diagonal left similarly#*/

34. Return (m+n— dml’”l.corner)/2 /* return the length of the LCS */

Fig. 4. The improved greedy algorithm to compute the LCS between A and B, coded
as a run-length sequence of pairs (letter,run_length).

Conjecture 11 Let A and B be strings that are run-length encoded to lengths
m' and n', such that the runs are equally distributed with the same mean in both

strings. Under these assumptions the expected running time of the algorithm in
Fig. 4 for calculating Dyp(A, B) is O(m'n').

5.4 Experimental Results

To test the Conjecture 11, we ran the algorithm in Fig. 4 with the following
settings:

1. m' =n' = 2000, |X| = 2, runs in [1, 2]

z € {1,10, 100, 1000, 10000, 100000, 1000000}.

2. m' =2000,n' € {1, 50,100,500, 1000, 1500,2000}, | ¥| = 2, runs in [1, 1000].

.m' =n'=2000,|X] € {2,4,8,16, 32, 64,128, 256}, runs in [1, 1000].

4. String A was as in item 1 with runs in [1,1000]. String B was gen-
erated by applying k& random insertions/deletions on A, where k €
{0,1,10, 100, 1000, 10000, 100000} .

5. Real data: three different black /white images (printed lines from a book draft
(187 x 591), technical drawing (160 x 555), and a signature (141 x 362)). We
ran the LCS algorithm on all pairs of lines in each image.

w

Table 1 shows the results. Different parameter choices are listed in the order
they appear in the above listing (e.g. setting 1 in test 1 corresponds to z = 1,
setting 2 corresponds to x = 10, etc.).

Table 1. The average length and the maximum length of a tracing path was measured
in different test settings. The values of tests 1-4 are averages over 10-10000 trials (e.g.
on small values of n’ in test 2, more trials were needed because of high variance, whereas
otherwise the variance was small). Test 5 was deterministic (i.e. the values are from
one trial).

|Average length of a tracing path (maximum length)

test X|setting 1, setting 2, ...

test 1|1 (1), 1.71 (18), 1.96 (28), 1.98 (27), 1.98 (32), 1.99 (29), 1.98 (25)

test 2 11.73 (5), 1.77 (10), 1.74 (13), 1.80 (21), 1.90 (30), 1.97 (35), 1.98 (38)

test 3 1.99 (30), 1.77 (20), 1.60 (14), 1.45 (14), 1.33 (9), 1.24 (7), 1.17 (6), 1.13 (6)
test 4 |1.71 (9), 1.71 (8), 1.71 (7), 1.71 (10), 1.72 (9), 1.72 (10), 1.72 (12)

test 5 (2.00 (35), 2.34 (146), 2.32 (31)

The average length L of a tracing path (i.e. the amount of equal letter boxes
visited by a tracing path) was smaller than 2 in tests 1-4 (slightly greater in test
5). That is, the running time was in practice O(m'n’) with a very small constant
factor. Test 1 showed that when the mean length of the runs increases, then also
L increases, but not exceeding 2 (L € [1,1.99]). In test 2, the worst situation was
with n’ = m' (L = 1.98]). We tested the effect of the alphabet in test 3, and the

worst was | Y| = 2 (L = 1.99) and the best was |X| = 256 (L = 1.13). Test 4 was
used to simulate a typical situation, in which the distance between the strings
is small. The amount of errors did not have much influence (L € [1.71,1.72]). In
real data (test 5), there were also pairs that were close to the worst case (close
to A = a™, B = (ab)™/?), and therefore the results were slightly worse than with
randomly generated data: L € {2.00,2.34,2.31} with the three images.

6 Conclusions

We have presented new algorithms to compute approximate matches between
run-length compressed strings. The previous algorithms [7, 3] permit computing
their LCS. We have extended an LCS algorithm [7] to the Levenshtein distance
without increasing the cost, and presented an algorithm with nontrivial complex-
ity for approximate searching a run-length compressed pattern on a run-length
compressed text under either model.

Future work involves adapting our algorithm to more complex versions of the
Levenshtein distance, including at least different costs for the edit operations.
This would be interesting for applications related to image compression, where
the change from a pixel value to the next is smooth.

With respect to the original models, an interesting question is whether an
algorithm can be obtained whose cost is just the product of the compressed
lengths. Indeed, this seems possible in the average case, as demonstrated by the
experiments with our improved algorithm for the LCS.

Finally, a combination of two-dimensional approximate pattern matching al-
gorithm with two-dimensional run-length compression [5, 1] seems extremely in-
teresting.

References

1. A. Amir and G. Benson. Efficient two-dimensional compressed matching. In Proc.
DC(C’92, pages 279 288, 1992.

2. A. Amir, G. Benson, and M. Farach. Let sleeping files lie: Pattern matching in
Z-compressed files. J. of Comp. and Sys. Sciences, 52(2):299-307, 1996.

3. A. Apostolico, G. Landau, and S. Skiena. Matching for run-length encoded strings.
J. of Complezity, 15:4 16, 1999. (Also at Sequences '97, Positano Italy, June 11-13,
1997).

4. O. Arbell, G. Landau, and J. Mitchell. Edit distance of run-length encoded strings.
Submitted for publication, August 2000.

5. R. Baeza-Yates and G. Navarro. Fast two-dimensional approximate pattern match-
ing. In Proc. LATIN’98, LNCS 1380, pages 341 351, 1998.

6. H. Bunke and J. Csirik. An algorithm for matching run-length coded strings.
Computing, 50:297-314, 1993.

7. H. Bunke and J. Csirik. An improved algorithm for computing the edit distance
of run-length coded strings. Information Processing Letters, 54(2):93 96, 1995.

8. M. Farach and M. Thorup. String matching in Lempel-Ziv compressed texts.
Algorithmica, 20:388-404, 1998.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

T. Kida, Y. Shibata, M. Takeda, A. Shinohara, and S. Arikawa. A unifying frame-
work for compressed pattern matching. In Proc. SPIRE’99, pages 89-96. IEEE CS
Press, 1999.

T. Kida, M. Takeda, A. Shinohara, M. Miyazaki, and S. Arikawa. Multiple pattern
matching in LZW compressed text. In Proc. DCC’98, 1998.

J. Kérkkidinen, G. Navarro, and E. Ukkonen. Approximate string matching over
Ziv-Lempel compressed text. In Proc. CPM’2000, LNCS 1848, pages 195-209, 2000.
V. Levenshtein. Binary codes capable of correcting deletions, insertions and rever-
sals. Soviet Physics Doklady 6:707-710, 1966.

T. Matsumoto, T. Kida, M. Takeda, A. Shinohara, and S. Arikawa. Bit-parallel
approach to approximate string matching. In Proc. SPIRE’2000, IEEE CS Press,
pages 221-228, 2000.

J. Mitchell. A geometric shortest path problem, with application to computing a
longest common subsequence in run-length encoded strings. In Technical Report,
Dept. of Applied Mathematics, SUNY Stony Brook, 1997.

G. Navarro, T. Kida, M. Takeda, A. Shinohara, and S. Arikawa. Faster Approxi-
mate String Matching over Compressed Text. In Proc. 11th IEEE Data Compres-
sion Conference (DCC’01), 2001, To appear.

P. Sellers. The theory and computation of evolutionary distances: Pattern recog-
nition. J. of Algorithms, 1(4):359-373, 1980.

E. Ukkonen. Algorithms for approximate string matching. Information and Control
64(1 3):100 118, 1985.

E. Ukkonen. Finding approximate patterns in strings. J. of Algorithms 6(1-3):132—
137, 1985.

R. Wagner and M. Fisher. The string-to-string correction problem. J. of the ACM
21(1):168-173, 1974.

J. Ziv and A. Lempel. A universal algorithm for sequential data compression.
IEEE Trans. Inf. Theory, 23:337-343, 1977.

