
Approximate Mat
hing of Run-LengthCompressed StringsVeli Mäkinen1?, Gonzalo Navarro2??, and Esko Ukkonen1?1 Department of Computer S
ien
e, P.O Box 26 (Teollisuuskatu 23)FIN-00014 University of Helsinki, Finland.{vmakinen,ukkonen}�
s.helsinki.fi2 Department of Computer S
ien
e, University of Chile, Blan
o En
alada 2120,Santiago, Chile. gnavarro�d

.u
hile.
lAbstra
t. We fo
us on the problem of approximate mat
hing of stringsthat have been
ompressed using run-length en
oding. Previous studieshave
on
entrated on the problem of
omputing the longest
ommonsubsequen
e (LCS) between two strings of length m and n,
ompressedto m0 and n0 runs. We extend an existing algorithm for the LCS to theLevenshtein distan
e a
hieving O(m0n+n0m)
omplexity. This approa
hgives also an algorithm for approximate sear
hing of a pattern ofm letters(m0 runs) in a text of n letters (n0 runs) in O(mm0n0) time, both for LCSand Levenshtein models. Then we propose improvements for a greedyalgorithm for the LCS, and
onje
ture that the improved algorithm hasO(m0n0) expe
ted
ase
omplexity. Experimental results are provided tosupport the
onje
ture.1 Introdu
tionThe problem of
ompressed pattern mat
hing is, given a
ompressed text T anda (possibly
ompressed) pattern P , �nd all o

urren
es of P in T without de-
ompressing T (and P). The goal is to sear
h faster than by using the basi
s
heme: de
ompression followed by a sear
h.In the basi
 approa
h, we are interested in reporting only the exa
t o

ur-ren
es, i.e. the lo
ations of the substrings of T that mat
h exa
tly pattern P .We
an loosen the requirement of exa
t o

urren
es to approximate o

urren
esby introdu
ing a distan
e fun
tion to measure the similarity between P and asubstring of T . Now, we want to �nd all the approximate o

urren
es of P inT , where the distan
e between P and a substring of T is at most a given errorthreshold k. Often a suitable distan
e measure between two strings is the editdistan
e, where the minimum amount of
hara
ter insertions, deletions, and re-pla
ements, that are needed to make the two strings equal, is
al
ulated. Forthis distan
e we are interested in k < jP j errors.Many studies have been made around the subje
t of
ompressed patternmat
hing over di�erent
ompression formats, starting with the work of Amir and? Supported by the A
ademy of Finland under grant 22584.?? Supported in part by Fonde
yt grant 1-990627.

Benson [1℄, e.g. [2, 8, 10, 9℄. The only works addressing the approximate variantof the problem have been [11, 13, 15℄, on Ziv-Lempel [20℄.Our fo
us is approximate mat
hing over run-length en
oded strings. In run-length en
oding a string that
onsists of repetitions of letters is
ompressedby en
oding ea
h repetition as a pair ("letter","length of the repetition"). Forexample, string aaabbbb

aab is en
oded as a sequen
e (a; 3)(b; 4)(
; 2)(a; 2)(b; 1).This te
hnique is widely used espe
ially in image
ompression, where repetitionsof pixel values are
ommon. This is parti
ularly interesting for fax transmissionsand bilevel images. Approximate mat
hing on images
an be a useful tool todete
t distortions. Even a one-dimensional
ompressed approximate mat
hingalgorithm would be useful to speed up existing two-dimensional approximatemat
hing algorithms, e.g. [5℄.Exa
t pattern mat
hing over run-length en
oded text
an be done optimallyin O(m0+n0) time, where m0 and n0 are the
ompressed sizes of the pattern andthe text [1℄. Approximate pattern mat
hing over run-length en
oded text hasnot been
onsidered before this study, but there has been work on the distan
e
al
ulation, namely, given two strings of length m and n that are run-length
ompressed to lengths m0 and n0,
al
ulate their distan
e using the
ompressedrepresentations of the strings. This problem was �rst posed by Bunke and Csirik[6℄. They
onsidered the version of edit distan
e without the repla
ement oper-ation, that is related to the problem of
al
ulating the longest
ommon subse-quen
e (LCS) of two strings. They gave an O(m0n0) time algorithm for a spe
ial
ase of the problem, where all run-lengths are of equal size. Later, they gavean O(m0n + n0m) time algorithm for the general
ase [7℄. A major improve-ment over the previous results was due to Apostoli
o, Landau, and Skiena [3℄;they �rst gave a basi
 O(m0n0(m0 + n0)) algorithm, and further improved it toO(m0n0 log(m0n0)). Mit
hell [14℄ gave an algorithm with the same time
om-lexity in the worst
ase, but faster with some inputs; its time
omplexity isO((p+m0 + n0) log(p+m0 + n0)), where p is the amount of pairs of
ompressed
hara
ters that mat
h (p equals to the amount of equal letter boxes, see thede�nition in Se
t. 2.2). All these algorithms were limited to the LCS distan
e,although, Mit
hell's method [14℄
ould be applied when di�erent
osts are as-signed to the insertion and deletion operations. It still remain an open question(as posed by Bunke and Csirik) whether similar improvements
ould be foundfor a more general set of edit operations and their
osts.We give an algorithm for mat
hing run-length en
oded strings under Leven-shtein distan
e [12℄. In the Levenshtein distan
e a unit
ost is assigned to ea
hof the three edit operations. The algorithm is an extension of the O(m0n+n0m)algorithm of Bunke and Csirik [7℄; we keep the same
ost but generalize thealgorithm to handle a more
omplex distan
e model. Independently from ourwork, Arbell, Landau, and Mit
hell have found a similar algorithm [4℄.We modify our algorithm to work in a
ontext of approximate pattern mat
h-ing, and a
hieve O(mm0n0) time for sear
hing a pattern of length m that is run-length
ompressed to length m0, in a run-length
ompressed text of length n0.This algorithm works for both Levenshtein and LCS distan
e models.

We also study the LCS
al
ulation. First, we give a greedy algorithm forthe LCS that works in O(m0n0(m0 + n0)) time. Adapting the well known di-agonal method [17℄, we are able to improve the greedy method to work inO(d2min(n0;m0)) time, where d is the edit distan
e between the two strings(under insertions and deletions with the unit
ost model).Then we present improvements for the greedy method for the LCS, that donot however a�e
t the worst
ase, but do have e�e
t on the average
ase. We endup
onje
turing that our improved algorithm is O(m0n0) time on average. As weare unable to prove it, we provide instead experimental eviden
e to support the
onje
ture.2 Edit Distan
e on Run-Length Compressed Strings2.1 Edit Distan
eLet � be a �nite set of symbols,
alled an alphabet. A string A of length jAj = mis a sequen
e of symbols in�, denoted byA = A1:::m = a1a2 : : : am, where ai 2 �for every i. If jAj = 0, then A = � is an empty string. A subsequen
e of A is anysequen
e ai1ai2 : : : aik , where 1 � i1 < i2 � � � < ik � m.The edit distan
e
an be used to measure the similarity between two stringsA = a1a2 : : : am and B = b1b2 : : : bn by
al
ulating the minimum
ost of editoperations that are needed to
onvert A into B [12, 19, 16℄. The usual edit op-erations are substitution (
onvert ai into bj , denoted by ai ! bj), insertion(� ! bj), and deletion (ai ! �). Di�erent
osts for edit operations
an begiven. For Levenshtein distan
e (denoted by DL(A;B)) [12℄, we assign
ostsw(a! a) = 0, w(a! b) = 1, w(a! �) = 1, and w(�! a) = 1, for all a; b 2 �,a 6= b. If substitutions are forbidden, i.e. w(a ! b) = 1, we get the distan
eDID(A;B).Distan
e DL(A;B)
an be
al
ulated by using dynami
 programming [16℄;evaluate an (m + 1) � (n + 1) matrix (dij), 0 � i � m, 0 � j � n, using there
urren
e di;0 = i; 0 � i � m;d0;j = j; 0 � j � n; (1)di;j = min(if ai = bj then di�1;j�1 else di�1;j�1 + 1;di�1;j + 1; di;j�1 + 1); otherwise.The matrix (dij)
an be evaluated row-by-row or
olumn-by-
olumn inO(mn) time, and the value dmn equals DL(A;B).A similar method
an be used to
al
ulate the distan
e DID(A;B). Now, there
urren
e is di;0 = i; 0 � i � m;d0;j = j; 0 � j � n; (2)di;j = min(if ai = bj then di�1;j�1 else1;di�1;j + 1; di;j�1 + 1); otherwise.

The problem of
al
ulating the longest
ommon subsequen
e of strings A andB (denoted by LCS(A;B)), is related to the distan
e DID(A;B). It is easy tosee that 2 � jLCS(A;B)j = m+ n�DID(A;B).2.2 Dividing the Edit Distan
e Matrix into BoxesA run-length en
oding of the string A = a1a2 : : : am isA0 = (a1; p1)(ap1+1; p2)(ap1+p2+1; p3) : : : (am�pm0+1; pm0) =(ai1 ; p1)(ai2 ; p2) : : : (aim0 ; pm0), where (aik ; pk) denotes a sequen
e�k = aikaik : : : aik = apkik of length j�kj = pk. We also
all (aik ; pk) a runof aik . String A is optimally run-length en
oded if aik 6= aik+1 for all 1 � k < m0.In the next se
tions, we will show how to speed up the evaluation of valuesdmn for both distan
es DL(A;B) and DID(A;B) when both the strings A andB are run-length en
oded. In both methods, we use the following notation todivide the matrix (dij) into submatri
es (see Fig. 1).
d

d

d

...

...

...

...21

33

3222

11

12

13 23

31

kld

d

d

d

d

d

d dkldkl

dkl

dkldkldkl

dkl

dkl

rl
pk rl

pk

dkl

dkl

dkl

dkl

dkl

dkl

pk

pk

pk

rl

rl

a b b b b b b caaa b b

a
b
b
b
b
b

a
a
a
a
a
b
b

a

a
a

DP matrix

overlapping borders of boxes

c c c c

equal letter box

different letter boxcorners

one particular "box"

00 10 20

01

1 2

0

03

02

0

1

2

3

p

r

k

l

+1

+1

Fig. 1. A dynami
 programmig matrix split into run-length blo
ks.Let A0 = (ai1 ; p1)(ai2 ; p2) : : : (aim0 ; pm0) and B0 =(bj1 ; r1); (bj2 ; r2) : : : (bjn0 ; pn0) be the run-length en
oded representations ofstrings A and B. The rows and
olumns that
orrespond to the ends of runsin A and B separate the edit distan
e matrix (dij) into submatri
es. To easethe notation later on, we de�ne the submatri
es so that they overlap on the

borders. Formally, ea
h pair of runs (aik ; pk); (bj` ; r`) de�nes a (pk+1)� (r`+1)submatrix (dk;`s;t) su
h thatdk;`s;t = dik+s�1;j`+t�1; 0 � s � pk; 0 � t � r`: (3)We will
all submatri
es (dk;`s;t) boxes. If a pair of runs
orresponding to abox
ontain equal letters (i.e. aik = bj`), then (dk;`s;t) is
alled an equal letterbox. Otherwise we
all (dk;`s;t) a di�erent letter box. Adja
ent boxes
an form runsof di�erent letter boxes along rows and
olumns. We assume that both stringsare optimally run-length en
oded, and hen
e runs of equal letter boxes
an noto

ur.3 An O(mn0 +m0n) Algorithm for the LevenshteinDistan
eBunke and Csirik [7℄ gave an O(mn0 +m0n) time algorithm for
omputing theLCS between two strings of lengths n and m run-length
ompressed to n0 andm0. They pose as an open problem extending their algorithm to the Levenshteindistan
e. This is what we do in this se
tion, without in
reasing the
omplexityto
ompute the new distan
e DL. Arbell, Landau, and Mit
hell [4℄ have inde-pendently found a similar algorithm. Their solution is also based on the sameidea of extending the O(mn0+m0n) LCS algorithm to the Levenshtein distan
e.Compared to the LCS-related distan
e DID, the Levenshtein distan
e DLpermits an additional
hara
ter substitution operation, at
ost 1. We
omputeDL(A;B) by �lling all the borders of all the boxes (dk;`s;t) (see Fig. 1). We manageto �ll ea
h
ell in
onstant time, whi
h adds up the promised O(mn0 + m0n)
omplexity. The spa
e
omplexity
an be made O(n + m) by pro
essing thematrix row-wise or
olumn-wise.3.1 The Basi
 AlgorithmWe start with two lemmas that
hara
terize the relationships between the bordervalues in the boxes (dk;`s;t). First, we
onsider the equal letter boxes:Lemma 1 (Bunke and Csirik [7℄) The re
urren
es (1) and (2)
an be re-pla
ed by dk;`s;t = if s � t then dk;`0;t�s else dk;`s�t;0; (4)where 1 � s � pk and 1 � t � r`, for values dk;`s;t in an equal letter box. utNote that Lemma 1 holds for both Levenshtein and LCS distan
e models,be
ause formulas (1) and (2) are equal when ai = bj . Sin
e we are
omputingall the
ells in the borders of the boxes, Lemma 1 permits
omputing new boxborders in
onstant time using those of previous boxes.The di�
ult part lies in the di�erent letter boxes.

Lemma 2 The re
urren
e (1)
an be repla
ed bydk;`s;t = 1+min (t�1+minmax(0;s�t)�q�s dk;`q;0 ;s�1+minmax(0;t�s)�q�t dk;`0;q); (5)where 1 � s � pk and 1 � t � r`, for values dk;`s;t in a di�erent letter box.Proof. We use indu
tion on s + t. If s + t = 2 the formula (5) be
omes dk;`1;1 =1 +min(dk;`0;0; dk;`1;0; dk;`0;1), whi
h mat
hes re
urren
e (1). In the indu
tive
ase wehave dk;`s;t = 1 +min(dk;`s�1;t�1; dk;`s�1;t; dk;`s;t�1)by re
urren
e (1), and using the indu
tion hypothesis we getdk;`s;t = 2 +min(min(t�2+minmax(0;s�t)�q�s�1 dk;`q;0;s�2+minmax(0;t�s)�q�t�1 dk;`0;q);min(t�1+minmax(0;s�1�t)�q�s�1 dk;`q;0;s�2+minmax(0;t�s+1)�q�t dk;`0;q);min(t�2+minmax(0;s�t+1)�q�s dk;`q;0;s�1+minmax(0;t�1�s)�q�t�1 dk;`0;q))= 1 +min(t�1+ minmax(0;s�t)�q�s dk;`q;0;s�1+minmax(0;t�s)�q�t dk;`0;q);where we have used the property that
onse
utive
ells in the (dij) matrix di�erat most by 1 [18℄. Note that we have assumed s > 1 and t > 1. The parti
ular
ases s = 1 or t = 1 are easily derived as well, for example for s = 1 and t > 1we havedk;`1;t = 1 +min(dk;`0;t�1; dk;`0;t ; dk;`1;t�1)= 1 +min(dk;`0;t�1; dk;`0;t ;1 +min(t�2+minmax(0;2�t)�q�1 dk;`q;0;minmax(0;t�2)�q�t�1 dk;`0;q))= 1 +min�dk;`0;t�1; dk;`0;t ; t�1 +min(dk;`0;0; dk;`1;0); 1 +min(dk;`0;t�2; dk;`0;t�1)�= 1 +min�t�1 +min(dk;`0;0; dk;`1;0);min(dk;`0;t�1; dk;`0;t)� ;whi
h is the parti
ularization of formula (5) for s = 1. utFormula (5) relates the values at the right and bottom borders of a box toits left and top borders. Yet it is not enough to
ompute the
ells in
onstanttime. Although we
annot
ompute one
ell in O(1) time, we
an
ompute allthe pk (or r`)
ells in overall O(pk) (or O(r`)) time.

Fig. 2 shows the algorithm. We use a data stru
ture (whi
h in the pseu-do
ode is represented just as a set M�) able to handle a multiset of elementsstarting with a single element, adding and deleting elements, and delivering itsminimum value at any time. It will be used to maintain and update the minimaminmax(0;s�t)�q�s dk;`q;0 and minmax(0;t�s)�q�t dk;`0;q , used in the formula (5). Wesee later that in our parti
ular appli
ation all those operations
an be performedin
onstant time.In the
ode we use drk;`s = dk;`s;r` for the rightmost
olumn and dbk;`t = dk;`pk ;tfor the bottom row. Their update formulas are derived from the formula (5):drk;`s = 1 +min(r` � 1 +minmax(0;s�r`)�q�s drk;`�1q ;s� 1 +minmax(0;r`�s)�q�r` dbk�1;`q);dbk;`t = 1 +min(t� 1 +minmax(0;pk�t)�q�pk drk;`�1q ;pk � 1 +minmax(0;t�pk)�q�t dbk�1;`q):The whole algorithm
an be made O(n+m) spa
e by noting that in a
olumn-wise traversal we need, when
omputing
ell (kl), to store only drk�1;` anddbk;`�1, so the spa
e is that for storing one
omplete
olumn (m) and a row whosewidth is one box (at most n). Our multiset data stru
ture does not in
rease thisspa
e
omplexity. Hen
e we haveTheorem 3 Given strings A and B of lengths m and n that are run-lengthen
oded to lengths m0 and n0, there is an algorithm to
al
ulate DL(A;B) inO(m0n+ n0m) time and O(m + n) spa
e in the worst
ase. ut3.2 The Multiset Data Stru
tureWhat is left is to des
ribe our data stru
ture to handle a multiset of nat-ural numbers. We exploit the fa
t that
onse
utive
ells in (dij) di�er byat most 1 [18℄. Our data stru
ture represents the multiset S as a triple(min(S);max(S); Vmin(S):::max(S) ! N). That is, we store the minimum andmaximum value of the multiset and a ve
tor of
ounters V , whi
h stores at Vithe number of elements equal to i in S. Given the property that
onse
utive
ellsdi�er by at most 1, we have that no value Vi is equal to zero. This is proved inthe following lemma.Lemma 4 No value Vi for min(S) � i � max(S) is equal to zero when S is aset of
onse
utive values in (dij) (i.e., S
ontains a
ontiguous part of a row ora
olumn of the matrix (dij)).Proof. The lemma is trivially true for the extremes i = min(S) and i = max(S).Let us now suppose that Vi = 0 for an intermediate value. Let us assume thatthe valuemin(S) is a
hieved at
ell di;j and that the valuemax(S) is a
hieved at
ell di0;j0 . Sin
e all the intermediate
ell values are also in S by hypothesis, and
onse
utive
ells di�er by at most 1, it follows that any value between min(S)and max(S) exists in a path that goes from di;j to di0;j0 . ut

Levenshtein (A0 = (ai1 ; p1)(ai2 ; p2) : : : (aim0 ; pm0); B0 = (bj1 ; r1)(bj2 ; r2) : : : (bjn0 ; rn0))1. /* We fill the topmost row and leftmost
olumn first */2. dr0;00 0, db0;00 03. For k 2 1 : : :m0 Do4. For s 2 0 : : : pk Do drk;0s drk�1;0pk�1 + s5. dbk;00 drk;0pk6. For ` 2 0 : : : n0 Do7. For t 2 0 : : : r` Do db0;`t db0;`�1r`�1 + t8. dr0;`0 db0;`r`9. /* Now we fill the rest of the matrix */10. For ` 2 1 : : :m0 Do /*
olumn-wise traversal */11. For k 2 1 : : : n0 Do12. If ak = b` Then /* equal letter box */13. For s 2 1 : : : pk Do14. If s � r` Then drk;`s dbk�1;`r`�s Else drk;`s drk;`�1s�r`15. For t 2 1 : : : r` Do16. If pk � t Then dbk;`t dbk�1;`t�pk Else dbk;`t drk;`�1pk�t17. Else /* different letter box */18. Mr fdrk;`�10 g, Mb fdbk�1;`r` g19. drk;`0 drk�1;`pk�120. For s 2 1 : : : pk Do21. Mr Mr [fdrk;`�1s g22. If s > r` Then Mr Mr � fdrk;`�1s�r`�1g23. If r` � s Then Mb Mb [fdbk�1;`r`�s g24. drk;`s 1 +min(r` � 1 +min(Mr); s� 1 +min(Mb))25. Mr fdrk;`�1pk g, Mb fdbk�1;`0 g26. dbk;`0 dbk;`�1r`�127. For t 2 1 : : : r` Do28. If pk � t Then Mr Mr [fdrk;`�1pk�t g29. Mb Mb [fdbk�1;`t g30. If t > pk Then Mb Mb � fdbk�1;`t�pk�1g31. dbk;`t 1 +min(t� 1 +min(Mr); pk � 1 +min(Mb))32. Return drm0n0pm0 /* or dbm0n0rn0 */Fig. 2. The O(m0n+n0m) time algorithm to
ompute the Levenshtein distan
e betweenA and B,
oded as a run-length sequen
e of pairs (letter; run_length).

Fig. 3 shows the detailed algorithms. When we initialize the data stru
turewith the single element S = fxg we represent the situation as (x; x; Vx = 1).When we have to add an element y to S, we
he
k whether y is outside therange min(S) : : :max(S), and in that
ase we extend the range. In any
asewe in
rement Vy . Note that the domain extension is never by more than one
ell, as there
annot appear empty
ells in between by Lemma 4. When we haveto remove an element z from S we simply de
rement Vz . If Vz be
omes zero,Lemma 4 implies that this is be
ause z is either the minimum or the maximumof the set. So we redu
e the domain of V by one. Finally, the operation min(S)is trivial as we have it already pre
omputed.Create (x)1. Return (x; x; Vx = 1)Add ((minS;maxS; V); y)2. If y < minS Then3. minS y4. add new �rst
ell Vy = 05. Else If y > maxS Then6. maxS y7. add new last
ell Vy = 08. Vy Vy + 19. Return (minS;maxS; V)Remove ((minS;maxS; V); z)10. Vz Vz � 111. If Vz = 0 Then12. If z = minS Then13. remove �rst
ell from V14. minS minS + 115. Else /* z = maxS */16. remove last
ell from V17. maxS maxS � 118. Return (minS;maxS; V)Min ((minS;maxS; V))19. Return minSFig. 3. The multiset data stru
ture implementation.It is easily seen that all the operations take
onstant time. As a pra
ti
almatter, we note that it is a good idea to keep V in a
ir
ular array so that it
an grow and shrink by any extreme. Its maximum size
orresponds to pk (forMr) or r` (for Mb), whi
h are known at the time of Create.

4 Approximate Sear
hingLet us now
onsider a problem related to
omputing the LCS or the Levenshteindistan
e. Assume that string A is a short pattern and string B is a long text(so m is mu
h smaller than n), and that we are given a threshold parameterk. We are interested in reporting all the �approximate o

urren
es� of A in B,that is, all the positions of text substrings whi
h are at distan
e k or less fromthe pattern A. In order to ensure a linear size output, we
ontent ourselves withreporting the ending positions of the o

urren
es (whi
h we
all �mat
hes�).The
lassi
al algorithm to �nd all the mat
hes [16℄
omputes a matrix exa
tlylike those of re
urren
es (2) and (1), with the only di�eren
e that d0;j = 0. Thispermits the o

urren
es to start at any text position. The last row of the matrixdmj is examined and every text position j su
h that dm;j � k is reported as amat
h.Our goal now is to devise a more e�
ient algorithm when pattern and text arerun-length
ompressed. A trivial O(m2n0 +R) algorithm (where R is the size ofthe output) is obtained as follows. We start �lling the matrix only at beginningsof text runs, and
omplete the �rst 2m
olumns only (at O(m2)
ost). The restof the
olumns of the run are equal to the 2m-th be
ause no optimal path
anbe longer than 2m� 1 under the LCS or Levenshtein models. We later examinethe last row of the matrix and report every text position with value � k. If therun is longer than 2m, then we have not produ
ed the whole last row but onlythe �rst 2m
ells of it. In this
ase we report the positions 2m + 1 : : : r` of the`-th run if and only if the position 2m was reported.We improve now the trivial algorithm. A �rst attempt is to apply our algo-rithms dire
tly using the new base value d0;j = 0. This
hange does not present
ompli
ations.Let us �rst
on
entrate on the Levenshtein distan
e. Our algorithm obtainsO(m0n+n0m) time, whi
h may or may not be better than the trivial approa
h.The problem is that O(m0n) may be too mu
h in
omparison to O(m2n0), es-pe
ially if n is mu
h larger than m. We seek for an algorithm proportional tothe
ompressed text size. We divide the text runs in short (of length at most2m) and long (longer than 2m) runs. We apply our Levenshtein algorithm onthe text runs, �lling the matrix
olumn-wise. If we have a short run (ai` ; r`),r` � 2m, we
ompute all the m0+1 horizontal borders plus its �nal verti
al bor-der (whi
h be
omes the initial border of the next
olumn). The time to a
hievethis is O(m0r` +m). For an additional O(r`)
ost we examine all the
ells of thelast row and report all the text positions i` + t su
h that dm0;`pm0 ;t � k.If we have a long run (ai` ; r`), r` > 2m, we limit its length to 2m and applythe same algorithm, at O(m0m + m + m)
ost. The
olumns 2m + 1 : : : r` ofthat run are equal to the 2m-th, so we just need to examine the last row ofthe 2m-th
olumn, and report all the text positions up to the end of the run,i` + 2m+ 1 : : : i` + pk, if dm0;`pm0 ;2m � k.This algorithm is O(n0m0m + R) time in the worst
ase, where R is thenumber of o

urren
es reported. For the LCS model we have the same upper

bound, so we a
hieve the same
omplexity. Our O(m0n0(m0+n0)) algorithm doesnot yield a good
omplexity here. The spa
e is that to
ompute one text runlimited to length 2m, i.e. O(m0m).Note that if we are allowed to represent the o

urren
es as a sequen
e of runsof
onse
utive text positions (all of whi
h mat
h), then the R extra term of thesear
h
ost disappears.Theorem 5 Given a pattern A and a text B of lengths m and n that are run-length en
oded to lengths m0 and n0, there is an algorithm to �nd all the endingpoints of the approximate o

urren
es of A in B, either under the LCS or Lev-enshtein model, in O(m0mn0) time and O(m0m) spa
e in the worst
ase. ut5 Improving a Greedy Algorithm for the LCSThe idea in our algorithm for the Levenshtein distan
e DL in Se
t. 3 was to �llall the borders of all the boxes (dk;`s;t). The natural way to redu
e the
omplexitywould be to �ll only the
orners of the boxes (see Fig. 1). For the DL distan
ethis seems di�
ult to obtain, but for the DID distan
e there is an obvious greedyalgorithm that a
hieves this goal; in di�erent letter boxes, we
an
al
ulate the
orner values in
onstant time, and in equal letter boxes we
an tra
e an optimalpath to a
orner in O(m0+n0) time. Thus, we
an
al
ulate all the
orner valuesin O(m0n0(m0 + n0)) time1.It turns out that we
an improve the greedy algorithm signi�
antly by fairlysimple means. We noti
e that the diagonal method of [17℄
an be applied, anda
hieve an O(d2min(n0m0)) algorithm. We give also other improvements that donot a�e
t the worst
ase, but are signi�
ant in the average
ase and in pra
ti
e.We end the se
tion
onje
turing that our improved algorithm runs in O(m0n0)time in the average. As we are unable to prove this
onje
ture, we provide ex-perimental eviden
e to support it.5.1 Greedy Algorithm for the LCSCal
ulating the
orner value dk;`pk ;r` in a di�erent letter box is easy, be
ause it
an be retrieved from the values dk;`0;r` = dk�1;`pk�1;r` and dk;`pk ;0 = dk;`�1pk;r`�1 , whi
hare
al
ulated earlier during the dynami
 programming. This follows from thelemma:1 Apostoli
o et. al. [3℄ also gave a basi
 O(m0n0(m0 + n0)) algorithm for the LCS,whi
h they then improved to O(m0n0 log(m0n0)). Their basi
 algorithm di�ers fromour greedy algorithm in that they were using the re
urren
e for
al
ulating the LCSdire
tly, and we are
al
ulating the distan
e DID. Also, they tra
ed a spe
i�
 optimalpath (whi
h was the property that they
ould use to a
hieve the O(m0n0 log(m0n0))algorithm).

Lemma 6 (Bunke and Csirik [7℄) The re
urren
e (2)
an be repla
ed by there
urren
e dk;`s;t = min(dk;`s;0 + t; dk;`0;t + s); (6)where 1 � s � pk and 1 � t � r`, for values dk;`s;t in a di�erent letter box. utIn
ontrast to the DL distan
e, the di�
ult part in DID distan
e lies in equalletter boxes. As noted earlier, Lemma 1 applies also for theDID distan
e. >FromLemma 1 we
an see that the
orner values are retrieved along the diagonal, andthose values may not have been
al
ulated earlier. However, if pk = r` in allequal letter boxes, then ea
h
orner dk;`pk;r`
an be
al
ulated in
onstant time.This gives an O(m0n0) algorithm for a spe
ial
ase, as previously noted in [6℄.What follows is an algorithm to retrieve the value dk;`pk;r` in an equal letter boxin O(m0 + n0) time. The idea is to tra
e an optimal path to the
ell dk;`pk;r` . This
an be done by using lemmas 1 and 6 re
ursively. Assume that dk;`pk;r` = dk;`0;r`�pkby Lemma 1 (
ase dk;`pk ;r` = dk;`pk�r`;0 is symmetri
). If k = 1, then the valued1;`0;r`�pk
orresponds to a value in the �rst row (0) of the matrix (dij) whi
his known. Otherwise, the box (dk�1;`s;t) is a di�erent letter box, and using thede�nition of overlapping boxes and Lemma 6 it holdsdk;`0;r`�pk = dk�1;`pk�1;r`�pk = min(dk�1;`pk�1;0 + r` � pk; dk�1;`0;r`�pk + pk�1):Now, the value dk�1;`pk�1;0 is
al
ulated during the dynami
 programming, so we
an
ontinue on tra
ing value dk�1;`0;r`�pk using lemmas 1 and 6 re
ursively untilwe meet a value that has already been
al
ulated during dynami
 programming(in
luding the �rst row and the �rst
olumn of the matrix (dij). The re
ursionnever bran
hes, be
ause Lemma 1 de�nes expli
itly the next value to tra
e, andone of the two values (from whi
h the minimum is taken over in Lemma 6) isalways known (that is be
ause we enter the di�erent letter boxes at the borders,and therefore the other value is from a
orner that is
al
ulated during thedynami
 programming). We
all the path des
ribed by the re
ursion a tra
ingpath.Tra
ing the value dk;`pk ;r` in an equal letter box may take O(m0 + n0) time,be
ause we are skipping one box at a time, and there are at most m0 +n0 boxesin the tra
ing path. Therefore, we get an O(m0n0(m0+n0)) algorithm to
al
ulateDID(A;B). A worst
ase example that a
tually a
hieves the bound is A = anand B = (ab)n=2.The spa
e requirement of the algorithm is O(m0n0), be
ause we need to storeonly the
orner value in ea
h box, and the O(m0 + n0) spa
e for the sta
k is notneeded, be
ause the re
ursion does not bran
h.We also a
hieve the O(m0n + n0m) bound, be
ause the
orner values dk;`pk;r`of equal letter boxes de�ne distin
t tra
ing paths, and therefore ea
h
ell in theborders of the boxes
an be visited only on
e. To see this observe that ea
h border
ell rea
hed by a tra
ing path uniquely determines the border
ell it
omes from

along the tra
ing path, and therefore no two di�erent paths
an meet in a border
ell. The only ex
eption is a
orner
ell, but in this
ase all the tra
ing pathsend there immediately.Theorem 7 Given strings A and B of lengths m and n that are run-lengthen
oded to lengths m0 and n0, there is an algorithm to
al
ulate DID(A;B) inO(min(m0n0(m0 + n0);m0n+ n0m)) time and O(m0n0) spa
e. ut5.2 Diagonal AlgorithmThe diagonal method [17℄ provides an O(dmin(m;n)) algorithm for
al
ulatingthe distan
e d = DID(A;B) (or DL as well) between strings A and B of lengthm and n, respe
tivily. The idea is the following: The value dmn = DID(A;B)in the (dij) matrix of (2) de�nes a diagonal band, where the optimal path mustlie. Thus, if we want to
he
k whether DID < k, we
an limit the
al
ulationto the diagonal band de�ned by value k (
onsisting of O(k) diagonals). Startingwith k = jn�mj+1, we
an double the value k and run in ea
h step the re
ur-ren
e (2) on the in
reasing diagonal band. As soon as dmn < k, we have foundDID(A;B) = dmn, and we
an stop the doubling. The total number of diagonalsevaluated is at most 2DID(A;B), and there are at most min(m;n)
ells in ea
hdiagonal. Therefore, the total
ost of the algorithm is O(dmin(m;n)), whered = DID(A;B).We
an use the diagonal method with our greedy algorithm as follows: We
al
ulate only the
orner values that are inside the diagonal band de�ned byvalue k in the above doubling algorithm. The
orner values in equal letter boxesinside the diagonal band
an be retrieved in O(k) time. That is be
ause we
an limit the length of the tra
ing paths with the value 2k + 1 (between twoequal letter boxes there is a di�erent letter box that
ontributes at least 1 tothe value that we are tra
ing, and we are not interested in
orner values thatare greater than k). Therefore, we get the total
ost O(d2min(m0; n0)), whered = DID(A;B).5.3 Faster on AverageThere are some pra
ti
al re�nements for the greedy algorithm that do not im-prove its worst
ase behavior, but do have an impa
t on its average
ase.First of all, the runs of di�erent letter boxes
an be skipped in the tra
ingpaths.Consider two
onse
utive di�erent letter boxes (dk;`s;t) and (dk+1;`s;t). By Lemma6 it holds for the values 1 � t � r`,dk+1;`pk+1;t = min �dk+1;`0t + pk+1; dk+1;`pk+1;0 + t�= min �dk;`pk ;t + pk+1; dk+1;`pk+1;0 + t�= min �dk;`0t + pk + pk+1; dk;`pk;0 + pk+1 + t; dk+1;`pk+1;0 + t�= min �dk;`0t + pk + pk+1; dk+1;`pk+1;0 + t� :

The above result
an be extended to the following lemma by using indu
tion:Lemma 8 Let ((dk0 ;`s;t); (dk0+1;`s;t); : : : ; (dk;`s;t)) and ((dk;`0s;t); (dk;`0+1s;t); : : : ; (dk;`s;t)) beverti
al and horizontal runs of di�erent letter boxes. When 1 � t � r` and1 � s � pk, the re
urren
e (4)
an be repla
ed by the re
urren
esdk;`pk;t = min dk;`pk;0 + t; dk0;`0;t + kXs=k0 ps! 1 � t � r`;dk;`s;r` = min dk;`0;r` + s; dk;`0s;0 + X̀t=`0 rt! 1 � s � pk: utNow it is obvious how to speed up the retrieval of values dk;`pk;r` in the equalletter boxes. During dynami
 programming, we
an maintain pointers in ea
hdi�erent letter box to the last equal letter box en
ountered in the dire
tion of therow and the
olumn. When we enter a di�erent letter box while tra
ing the valueof dk;`pk ;r` in an equal letter box, we
an use Lemma 8 to
al
ulate the minimumover the run of di�erent letter boxes at on
e, and
ontinue on tra
ing from theequal letter box pre
eding the run of di�erent letter boxes. (Note that in orderto use the summations of Lemma 8 we should better store the
umulative ik andj` values instead of pk and r`.) Therefore we get the following result:Theorem 9 Given strings A and B of lengths m and n that are run-lengthen
oded to lengths m0 and n0, su
h that all the runs of di�erent letters over analphabet of size j�j are equally likely and in random order, there is an algorithmto
al
ulate DID(A;B) in O(m0n0(1 + (m0 + n0)=j�j2)) time in the average.Proof. (Sket
h) The �rst part of the
ost, O(m0n0)
omes from the
onstant time
omputation of all the di�erent letter boxes. On the other hand, there are onthe average O(m0n0=j�j) equal letter boxes. Between two runs of a letter � 2 �,there are on the average j�j�1 runs of other letters. This holds both for stringsA and B. In other words, the expe
ted length of a run of di�erent letter boxesis j�j � 1. Therefore the retrieval of the value dk;`pk ;r` in an equal letter box takestime at most O((m0 + n0)=j�j) in the average. utThe se
ond improvement to the greedy algorithm is to limit the length ofthe tra
ing paths. In the greedy algorithm the tra
ing is
ontinued until a valueis rea
hed that has been
al
ulated during the dynami
 programming. However,there are more known values than those that have been expli
itly
al
ulated.Consider value dk;`pk ;t, 1 � t � r` (or symmetri
ally dk;`s;r` , 1 � s � pk) in the borderof a di�erent letter box. If dk;`pk;r` = dk;`pk ;0+ r` then it must hold dk;`pk;t = dk;`pk ;0+ t,otherwise we get a
ontradi
tion: dk;`pk;r` < dk;`pk;0 + r`.We
all the above situation a horizontal (verti
al) bridge. Note that fromLemma 6 it follows that there is either a verti
al or a horizontal bridge in ea
h

di�erent letter box. When we enter a di�erent letter box in the re
ursion, we
an
he
k whether the bridge property holds at the border we entered, using the
orner values that are
al
ulated during the dynami
 programming. Thus, we
anstop the re
ursion at the �rst bridge en
ountered. To
ombine this improvementwith the algorithm that skips runs of di�erent letter boxes, we need Lemma 10below that states that the bridges propagate along runs of di�erent letter boxes.Therefore we only need to
he
k whether the last di�erent letter box has a bridgeto de
ide whether we have to skip to the next equal letter box. The resultingalgorithm is given in pseudo-
ode in Fig. 4.Lemma 10 Let ((dk0 ;`s;t); (dk0+1;`s;t); : : : ; (dk;`s;t)) be a verti
al run of di�erent letterboxes. If there is a horizontal bridge dk0;`pk0 ;r` = dk0 ;`pk0 ;0+r` then there is a horizontalbridge dk00;`pk00 ;r` = dk00;`pk00 ;0 + r` for all k0 < k00 � k. The symmetri
 result holds forhorizontal runs of di�erent letter boxes.Proof. We use the
ounter-argument that dk00;`pk00 ;r` = dk00;`pk00 ;0+ r` does not hold forsome k0 < k00 � k. Then by Lemma 8 and by the bridge assumption it holdsdk00;`pk00 ;r` = dk0+1;`0;r` + k00Xs=k0+1 ps = dk0+1;l0;0 + r` + k00Xs=k0+1 ps:On the other hand, using the
ounter-argument and the fa
t that
onse
utive
ells in the (dij) matrix di�er at most by 1 [18℄, we getdk00;`pk00 ;r` < dk00;`pk00 ;0 + r` � dk0+1;`0;0 +0� k00Xs=k0+1 ps1A+ r`;whi
h is a
ontradi
tion and so the the original proposition holds. utLemma 10 has a
orollary: if the last di�erent letter box in a run does nothave a horizontal (verti
al) bridge, then none of the boxes in the same run havea horizontal (verti
al) bridge and, on the other hand, all the boxes in the samerun must have a verti
al (horizontal) bridge.Now, if two tra
ing paths
ross inside a box (or run thereof), then one ofthem ne
essarily meets a bridge. In the average
ase, there are a lot of
rossingsof the tra
ing paths and the total
ost for tra
ing the values in equal letter boxesde
reases.Another way to
onsider the average length of a tra
ing path is to think thatevery time a tra
ing path enters a di�erent letter box, it has some probabilityto hit a bridge. If the bridges were pla
ed randomly in the di�erent letter boxes,then the probability to hit a bridge would be 12 . This would give immediately a
onstant expe
ted length for a tra
ing path. However, the pla
ing of the bridgesdepends on the
omputation of re
urren
e (2), and this makes the reasoningwith probabilities mu
h more
omplex. We are still
on�dent that the following
onje
ture holds, although we are not (yet) able to prove it.

LCS (A0 = (ai1 ; p1)(ai2 ; p2) : : : (aim0 ; pm0); B0 = (bj1 ; r1)(bj2 ; r2) : : : (bjn0 ; rn0))1. /* We use stru
ture dk;` to denote a box (dk;`s;t) as follows: */2. dk;`:
orner := dk;`pk;r`3. dk;`:jumptop := "lo
ation of the next equal letter box above"4. dk;`:jumpleft := "lo
ation of the next equal letter box in the left"5. dk;`:sumtop := If aik 6= bjell Then Pkt=dk;`:jumptop+1 pt6. dk;`:sumleft := If aik 6= bj` Then Pt̀=dk;`:jumpleft+1 rt7. /* Initialize �rst row and
olumn (let ai0 = bj0 = �; p0 = r0 = 1) */8. d00:
orner 09. For k 2 1 : : : n0 Do dk;0:
orner dk�1;0:
orner + rk�110. For ` 2 1 : : :m0 Do d0;`:
orner d0;`�1:
orner + p`�111. Cal
ulate values dk;`:(jumptop; jumpleft; sumtop; sumleft)12. /* Now we �ll the rest of the
orner values */13. For k 2 1 : : :m0 Do14. For ` 2 1 : : : n0 Do15. (bridge; k0; `0; p; r; sum; dk;`:
orner) (false; k; `; pk; r`; 0;1)16. If aik 6= bj` Then /* Different letter box */17. dk;`:
orner min(dk�1;`:
orner + aik ; dk;`�1:
orner + bj`)18. Else While bridge = false Do19. /* Equal letter box, tra
e dk;`:
orner */20. If p = r Then /* Straight from the diagonal */21. dk;`:
orner min(dk;`:
orner; sum+ dk0�1;`0�1:
orner)22. bridge true23. Else If p < r Then /* Diagonal up */24. (r; k0) (r � p; k0 � 1)25. dk;`:
orner min(dk;`:
orner; sum+ dk0;`0�1:
orner + r)26. If dk0;`0 :
orner = dk0;`0�1:
orner + r`0 Then bridge true27. Else /* Jump to the next equal letter box */28. (sum; k0) (sum+ dk0;`0 :sumtop; dk0;`0 :jumptop)29. p pk030. If k0 = 0 Then /* First row */31. dk;`:
orner min(dk;`:
orner;sum+ dk0;`0�1:
orner + r)32. bridge true33. Else /* Diagonal left similarly*/34. Return (m+ n� dm0;n0 :
orner)=2 /* return the length of the LCS */Fig. 4. The improved greedy algorithm to
ompute the LCS between A and B,
odedas a run-length sequen
e of pairs (letter; run_length).

Conje
ture 11 Let A and B be strings that are run-length en
oded to lengthsm0 and n0, su
h that the runs are equally distributed with the same mean in bothstrings. Under these assumptions the expe
ted running time of the algorithm inFig. 4 for
al
ulating DID(A;B) is O(m0n0).5.4 Experimental ResultsTo test the Conje
ture 11, we ran the algorithm in Fig. 4 with the followingsettings:1. m0 = n0 = 2000; j�j = 2, runs in [1; x℄x 2 f1; 10; 100; 1000; 10000; 100000; 1000000g.2. m0 = 2000; n0 2 f1; 50; 100; 500; 1000; 1500; 2000g; j�j= 2, runs in [1; 1000℄.3. m0 = n0 = 2000; j�j 2 f2; 4; 8; 16; 32; 64; 128; 256g, runs in [1; 1000℄.4. String A was as in item 1 with runs in [1; 1000℄. String B was gen-erated by applying k random insertions/deletions on A, where k 2f0; 1; 10; 100; 1000; 10000; 100000g.5. Real data: three di�erent bla
k/white images (printed lines from a book draft(187� 591), te
hni
al drawing (160� 555), and a signature (141� 362)). Weran the LCS algorithm on all pairs of lines in ea
h image.Table 1 shows the results. Di�erent parameter
hoi
es are listed in the orderthey appear in the above listing (e.g. setting 1 in test 1
orresponds to x = 1,setting 2
orresponds to x = 10, et
.).Table 1. The average length and the maximum length of a tra
ing path was measuredin di�erent test settings. The values of tests 1-4 are averages over 10-10000 trials (e.g.on small values of n0 in test 2, more trials were needed be
ause of high varian
e, whereasotherwise the varian
e was small). Test 5 was deterministi
 (i.e. the values are fromone trial).Average length of a tra
ing path (maximum length)test X setting 1, setting 2, ...test 1 1 (1), 1.71 (18), 1.96 (28), 1.98 (27), 1.98 (32), 1.99 (29), 1.98 (25)test 2 1.73 (5), 1.77 (10), 1.74 (13), 1.80 (21), 1.90 (30), 1.97 (35), 1.98 (38)test 3 1.99 (30), 1.77 (20), 1.60 (14), 1.45 (14), 1.33 (9), 1.24 (7), 1.17 (6), 1.13 (6)test 4 1.71 (9), 1.71 (8), 1.71 (7), 1.71 (10), 1.72 (9), 1.72 (10), 1.72 (12)test 5 2.00 (35), 2.34 (146), 2.32 (31)The average length L of a tra
ing path (i.e. the amount of equal letter boxesvisited by a tra
ing path) was smaller than 2 in tests 1-4 (slightly greater in test5). That is, the running time was in pra
ti
e O(m0n0) with a very small
onstantfa
tor. Test 1 showed that when the mean length of the runs in
reases, then alsoL in
reases, but not ex
eeding 2 (L 2 [1; 1:99℄). In test 2, the worst situation waswith n0 = m0 (L = 1:98℄). We tested the e�e
t of the alphabet in test 3, and the

worst was j�j = 2 (L = 1:99) and the best was j�j = 256 (L = 1:13). Test 4 wasused to simulate a typi
al situation, in whi
h the distan
e between the stringsis small. The amount of errors did not have mu
h in�uen
e (L 2 [1:71; 1:72℄). Inreal data (test 5), there were also pairs that were
lose to the worst
ase (
loseto A = an; B = (ab)n=2), and therefore the results were slightly worse than withrandomly generated data: L 2 f2:00; 2:34; 2:31g with the three images.6 Con
lusionsWe have presented new algorithms to
ompute approximate mat
hes betweenrun-length
ompressed strings. The previous algorithms [7, 3℄ permit
omputingtheir LCS. We have extended an LCS algorithm [7℄ to the Levenshtein distan
ewithout in
reasing the
ost, and presented an algorithm with nontrivial
omplex-ity for approximate sear
hing a run-length
ompressed pattern on a run-length
ompressed text under either model.Future work involves adapting our algorithm to more
omplex versions of theLevenshtein distan
e, in
luding at least di�erent
osts for the edit operations.This would be interesting for appli
ations related to image
ompression, wherethe
hange from a pixel value to the next is smooth.With respe
t to the original models, an interesting question is whether analgorithm
an be obtained whose
ost is just the produ
t of the
ompressedlengths. Indeed, this seems possible in the average
ase, as demonstrated by theexperiments with our improved algorithm for the LCS.Finally, a
ombination of two-dimensional approximate pattern mat
hing al-gorithm with two-dimensional run-length
ompression [5, 1℄ seems extremely in-teresting.Referen
es1. A. Amir and G. Benson. E�
ient two-dimensional
ompressed mat
hing. In Pro
.DCC'92, pages 279�288, 1992.2. A. Amir, G. Benson, and M. Fara
h. Let sleeping �les lie: Pattern mat
hing inZ-
ompressed �les. J. of Comp. and Sys. S
ien
es, 52(2):299�307, 1996.3. A. Apostoli
o, G. Landau, and S. Skiena. Mat
hing for run-length en
oded strings.J. of Complexity, 15:4�16, 1999. (Also at Sequen
es '97, Positano Italy, June 11-13,1997).4. O. Arbell, G. Landau, and J. Mit
hell. Edit distan
e of run-length en
oded strings.Submitted for publi
ation, August 2000.5. R. Baeza-Yates and G. Navarro. Fast two-dimensional approximate pattern mat
h-ing. In Pro
. LATIN'98, LNCS 1380, pages 341�351, 1998.6. H. Bunke and J. Csirik. An algorithm for mat
hing run-length
oded strings.Computing, 50:297�314, 1993.7. H. Bunke and J. Csirik. An improved algorithm for
omputing the edit distan
eof run-length
oded strings. Information Pro
essing Letters, 54(2):93�96, 1995.8. M. Fara
h and M. Thorup. String mat
hing in Lempel-Ziv
ompressed texts.Algorithmi
a, 20:388-404, 1998.

9. T. Kida, Y. Shibata, M. Takeda, A. Shinohara, and S. Arikawa. A unifying frame-work for
ompressed pattern mat
hing. In Pro
. SPIRE'99, pages 89-96. IEEE CSPress, 1999.10. T. Kida, M. Takeda, A. Shinohara, M. Miyazaki, and S. Arikawa. Multiple patternmat
hing in LZW
ompressed text. In Pro
. DCC'98, 1998.11. J. Kärkkäinen, G. Navarro, and E. Ukkonen. Approximate string mat
hing overZiv-Lempel
ompressed text. In Pro
. CPM'2000, LNCS 1848, pages 195-209, 2000.12. V. Levenshtein. Binary
odes
apable of
orre
ting deletions, insertions and rever-sals. Soviet Physi
s Doklady 6:707�710, 1966.13. T. Matsumoto, T. Kida, M. Takeda, A. Shinohara, and S. Arikawa. Bit-parallelapproa
h to approximate string mat
hing. In Pro
. SPIRE'2000, IEEE CS Press,pages 221�228, 2000.14. J. Mit
hell. A geometri
 shortest path problem, with appli
ation to
omputing alongest
ommon subsequen
e in run-length en
oded strings. In Te
hni
al Report,Dept. of Applied Mathemati
s, SUNY Stony Brook, 1997.15. G. Navarro, T. Kida, M. Takeda, A. Shinohara, and S. Arikawa. Faster Approxi-mate String Mat
hing over Compressed Text. In Pro
. 11th IEEE Data Compres-sion Conferen
e (DCC'01), 2001, To appear.16. P. Sellers. The theory and
omputation of evolutionary distan
es: Pattern re
og-nition. J. of Algorithms, 1(4):359�373, 1980.17. E. Ukkonen. Algorithms for approximate string mat
hing. Information and Control64(1�3):100�118, 1985.18. E. Ukkonen. Finding approximate patterns in strings. J. of Algorithms 6(1�3):132�137, 1985.19. R. Wagner and M. Fisher. The string-to-string
orre
tion problem. J. of the ACM21(1):168�173, 1974.20. J. Ziv and A. Lempel. A universal algorithm for sequential data
ompression.IEEE Trans. Inf. Theory, 23:337-343, 1977.

