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lAbstra
t. We fo
us on the problem of approximate mat
hing of stringsthat have been 
ompressed using run-length en
oding. Previous studieshave 
on
entrated on the problem of 
omputing the longest 
ommonsubsequen
e (LCS) between two strings of length m and n, 
ompressedto m0 and n0 runs. We extend an existing algorithm for the LCS to theLevenshtein distan
e a
hieving O(m0n+n0m) 
omplexity. This approa
hgives also an algorithm for approximate sear
hing of a pattern ofm letters(m0 runs) in a text of n letters (n0 runs) in O(mm0n0) time, both for LCSand Levenshtein models. Then we propose improvements for a greedyalgorithm for the LCS, and 
onje
ture that the improved algorithm hasO(m0n0) expe
ted 
ase 
omplexity. Experimental results are provided tosupport the 
onje
ture.1 Introdu
tionThe problem of 
ompressed pattern mat
hing is, given a 
ompressed text T anda (possibly 
ompressed) pattern P , �nd all o

urren
es of P in T without de-
ompressing T (and P ). The goal is to sear
h faster than by using the basi
s
heme: de
ompression followed by a sear
h.In the basi
 approa
h, we are interested in reporting only the exa
t o

ur-ren
es, i.e. the lo
ations of the substrings of T that mat
h exa
tly pattern P .We 
an loosen the requirement of exa
t o

urren
es to approximate o

urren
esby introdu
ing a distan
e fun
tion to measure the similarity between P and asubstring of T . Now, we want to �nd all the approximate o

urren
es of P inT , where the distan
e between P and a substring of T is at most a given errorthreshold k. Often a suitable distan
e measure between two strings is the editdistan
e, where the minimum amount of 
hara
ter insertions, deletions, and re-pla
ements, that are needed to make the two strings equal, is 
al
ulated. Forthis distan
e we are interested in k < jP j errors.Many studies have been made around the subje
t of 
ompressed patternmat
hing over di�erent 
ompression formats, starting with the work of Amir and? Supported by the A
ademy of Finland under grant 22584.?? Supported in part by Fonde
yt grant 1-990627.



Benson [1℄, e.g. [2, 8, 10, 9℄. The only works addressing the approximate variantof the problem have been [11, 13, 15℄, on Ziv-Lempel [20℄.Our fo
us is approximate mat
hing over run-length en
oded strings. In run-length en
oding a string that 
onsists of repetitions of letters is 
ompressedby en
oding ea
h repetition as a pair ("letter","length of the repetition"). Forexample, string aaabbbb

aab is en
oded as a sequen
e (a; 3)(b; 4)(
; 2)(a; 2)(b; 1).This te
hnique is widely used espe
ially in image 
ompression, where repetitionsof pixel values are 
ommon. This is parti
ularly interesting for fax transmissionsand bilevel images. Approximate mat
hing on images 
an be a useful tool todete
t distortions. Even a one-dimensional 
ompressed approximate mat
hingalgorithm would be useful to speed up existing two-dimensional approximatemat
hing algorithms, e.g. [5℄.Exa
t pattern mat
hing over run-length en
oded text 
an be done optimallyin O(m0+n0) time, where m0 and n0 are the 
ompressed sizes of the pattern andthe text [1℄. Approximate pattern mat
hing over run-length en
oded text hasnot been 
onsidered before this study, but there has been work on the distan
e
al
ulation, namely, given two strings of length m and n that are run-length
ompressed to lengths m0 and n0, 
al
ulate their distan
e using the 
ompressedrepresentations of the strings. This problem was �rst posed by Bunke and Csirik[6℄. They 
onsidered the version of edit distan
e without the repla
ement oper-ation, that is related to the problem of 
al
ulating the longest 
ommon subse-quen
e (LCS) of two strings. They gave an O(m0n0) time algorithm for a spe
ial
ase of the problem, where all run-lengths are of equal size. Later, they gavean O(m0n + n0m) time algorithm for the general 
ase [7℄. A major improve-ment over the previous results was due to Apostoli
o, Landau, and Skiena [3℄;they �rst gave a basi
 O(m0n0(m0 + n0)) algorithm, and further improved it toO(m0n0 log(m0n0)). Mit
hell [14℄ gave an algorithm with the same time 
om-lexity in the worst 
ase, but faster with some inputs; its time 
omplexity isO((p+m0 + n0) log(p+m0 + n0)), where p is the amount of pairs of 
ompressed
hara
ters that mat
h (p equals to the amount of equal letter boxes, see thede�nition in Se
t. 2.2). All these algorithms were limited to the LCS distan
e,although, Mit
hell's method [14℄ 
ould be applied when di�erent 
osts are as-signed to the insertion and deletion operations. It still remain an open question(as posed by Bunke and Csirik) whether similar improvements 
ould be foundfor a more general set of edit operations and their 
osts.We give an algorithm for mat
hing run-length en
oded strings under Leven-shtein distan
e [12℄. In the Levenshtein distan
e a unit 
ost is assigned to ea
hof the three edit operations. The algorithm is an extension of the O(m0n+n0m)algorithm of Bunke and Csirik [7℄; we keep the same 
ost but generalize thealgorithm to handle a more 
omplex distan
e model. Independently from ourwork, Arbell, Landau, and Mit
hell have found a similar algorithm [4℄.We modify our algorithm to work in a 
ontext of approximate pattern mat
h-ing, and a
hieve O(mm0n0) time for sear
hing a pattern of length m that is run-length 
ompressed to length m0, in a run-length 
ompressed text of length n0.This algorithm works for both Levenshtein and LCS distan
e models.



We also study the LCS 
al
ulation. First, we give a greedy algorithm forthe LCS that works in O(m0n0(m0 + n0)) time. Adapting the well known di-agonal method [17℄, we are able to improve the greedy method to work inO(d2min(n0;m0)) time, where d is the edit distan
e between the two strings(under insertions and deletions with the unit 
ost model).Then we present improvements for the greedy method for the LCS, that donot however a�e
t the worst 
ase, but do have e�e
t on the average 
ase. We endup 
onje
turing that our improved algorithm is O(m0n0) time on average. As weare unable to prove it, we provide instead experimental eviden
e to support the
onje
ture.2 Edit Distan
e on Run-Length Compressed Strings2.1 Edit Distan
eLet � be a �nite set of symbols, 
alled an alphabet. A string A of length jAj = mis a sequen
e of symbols in�, denoted byA = A1:::m = a1a2 : : : am, where ai 2 �for every i. If jAj = 0, then A = � is an empty string. A subsequen
e of A is anysequen
e ai1ai2 : : : aik , where 1 � i1 < i2 � � � < ik � m.The edit distan
e 
an be used to measure the similarity between two stringsA = a1a2 : : : am and B = b1b2 : : : bn by 
al
ulating the minimum 
ost of editoperations that are needed to 
onvert A into B [12, 19, 16℄. The usual edit op-erations are substitution (
onvert ai into bj , denoted by ai ! bj), insertion(� ! bj), and deletion (ai ! �). Di�erent 
osts for edit operations 
an begiven. For Levenshtein distan
e (denoted by DL(A;B)) [12℄, we assign 
ostsw(a! a) = 0, w(a! b) = 1, w(a! �) = 1, and w(�! a) = 1, for all a; b 2 �,a 6= b. If substitutions are forbidden, i.e. w(a ! b) = 1, we get the distan
eDID(A;B).Distan
e DL(A;B) 
an be 
al
ulated by using dynami
 programming [16℄;evaluate an (m + 1) � (n + 1) matrix (dij), 0 � i � m, 0 � j � n, using there
urren
e di;0 = i; 0 � i � m;d0;j = j; 0 � j � n; (1)di;j = min(if ai = bj then di�1;j�1 else di�1;j�1 + 1;di�1;j + 1; di;j�1 + 1); otherwise.The matrix (dij) 
an be evaluated row-by-row or 
olumn-by-
olumn inO(mn) time, and the value dmn equals DL(A;B).A similar method 
an be used to 
al
ulate the distan
e DID(A;B). Now, there
urren
e is di;0 = i; 0 � i � m;d0;j = j; 0 � j � n; (2)di;j = min(if ai = bj then di�1;j�1 else1;di�1;j + 1; di;j�1 + 1); otherwise.



The problem of 
al
ulating the longest 
ommon subsequen
e of strings A andB (denoted by LCS(A;B)), is related to the distan
e DID(A;B). It is easy tosee that 2 � jLCS(A;B)j = m+ n�DID(A;B).2.2 Dividing the Edit Distan
e Matrix into BoxesA run-length en
oding of the string A = a1a2 : : : am isA0 = (a1; p1)(ap1+1; p2)(ap1+p2+1; p3) : : : (am�pm0+1; pm0) =(ai1 ; p1)(ai2 ; p2) : : : (aim0 ; pm0), where (aik ; pk) denotes a sequen
e�k = aikaik : : : aik = apkik of length j�kj = pk. We also 
all (aik ; pk) a runof aik . String A is optimally run-length en
oded if aik 6= aik+1 for all 1 � k < m0.In the next se
tions, we will show how to speed up the evaluation of valuesdmn for both distan
es DL(A;B) and DID(A;B) when both the strings A andB are run-length en
oded. In both methods, we use the following notation todivide the matrix (dij) into submatri
es (see Fig. 1).
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Fig. 1. A dynami
 programmig matrix split into run-length blo
ks.Let A0 = (ai1 ; p1)(ai2 ; p2) : : : (aim0 ; pm0) and B0 =(bj1 ; r1); (bj2 ; r2) : : : (bjn0 ; pn0) be the run-length en
oded representations ofstrings A and B. The rows and 
olumns that 
orrespond to the ends of runsin A and B separate the edit distan
e matrix (dij) into submatri
es. To easethe notation later on, we de�ne the submatri
es so that they overlap on the



borders. Formally, ea
h pair of runs (aik ; pk); (bj` ; r`) de�nes a (pk+1)� (r`+1)submatrix (dk;`s;t ) su
h thatdk;`s;t = dik+s�1;j`+t�1; 0 � s � pk; 0 � t � r`: (3)We will 
all submatri
es (dk;`s;t ) boxes. If a pair of runs 
orresponding to abox 
ontain equal letters (i.e. aik = bj`), then (dk;`s;t ) is 
alled an equal letterbox. Otherwise we 
all (dk;`s;t ) a di�erent letter box. Adja
ent boxes 
an form runsof di�erent letter boxes along rows and 
olumns. We assume that both stringsare optimally run-length en
oded, and hen
e runs of equal letter boxes 
an noto

ur.3 An O(mn0 +m0n) Algorithm for the LevenshteinDistan
eBunke and Csirik [7℄ gave an O(mn0 +m0n) time algorithm for 
omputing theLCS between two strings of lengths n and m run-length 
ompressed to n0 andm0. They pose as an open problem extending their algorithm to the Levenshteindistan
e. This is what we do in this se
tion, without in
reasing the 
omplexityto 
ompute the new distan
e DL. Arbell, Landau, and Mit
hell [4℄ have inde-pendently found a similar algorithm. Their solution is also based on the sameidea of extending the O(mn0+m0n) LCS algorithm to the Levenshtein distan
e.Compared to the LCS-related distan
e DID, the Levenshtein distan
e DLpermits an additional 
hara
ter substitution operation, at 
ost 1. We 
omputeDL(A;B) by �lling all the borders of all the boxes (dk;`s;t ) (see Fig. 1). We manageto �ll ea
h 
ell in 
onstant time, whi
h adds up the promised O(mn0 + m0n)
omplexity. The spa
e 
omplexity 
an be made O(n + m) by pro
essing thematrix row-wise or 
olumn-wise.3.1 The Basi
 AlgorithmWe start with two lemmas that 
hara
terize the relationships between the bordervalues in the boxes (dk;`s;t ). First, we 
onsider the equal letter boxes:Lemma 1 (Bunke and Csirik [7℄) The re
urren
es (1) and (2) 
an be re-pla
ed by dk;`s;t = if s � t then dk;`0;t�s else dk;`s�t;0; (4)where 1 � s � pk and 1 � t � r`, for values dk;`s;t in an equal letter box. utNote that Lemma 1 holds for both Levenshtein and LCS distan
e models,be
ause formulas (1) and (2) are equal when ai = bj . Sin
e we are 
omputingall the 
ells in the borders of the boxes, Lemma 1 permits 
omputing new boxborders in 
onstant time using those of previous boxes.The di�
ult part lies in the di�erent letter boxes.



Lemma 2 The re
urren
e (1) 
an be repla
ed bydk;`s;t = 1+min ( t�1+minmax(0;s�t)�q�s dk;`q;0 ;s�1+minmax(0;t�s)�q�t dk;`0;q); (5)where 1 � s � pk and 1 � t � r`, for values dk;`s;t in a di�erent letter box.Proof. We use indu
tion on s + t. If s + t = 2 the formula (5) be
omes dk;`1;1 =1 +min(dk;`0;0; dk;`1;0; dk;`0;1), whi
h mat
hes re
urren
e (1). In the indu
tive 
ase wehave dk;`s;t = 1 +min(dk;`s�1;t�1; dk;`s�1;t; dk;`s;t�1)by re
urren
e (1), and using the indu
tion hypothesis we getdk;`s;t = 2 +min(min( t�2+minmax(0;s�t)�q�s�1 dk;`q;0;s�2+minmax(0;t�s)�q�t�1 dk;`0;q);min( t�1+minmax(0;s�1�t)�q�s�1 dk;`q;0;s�2+minmax(0;t�s+1)�q�t dk;`0;q);min( t�2+minmax(0;s�t+1)�q�s dk;`q;0;s�1+minmax(0;t�1�s)�q�t�1 dk;`0;q))= 1 +min(t�1+ minmax(0;s�t)�q�s dk;`q;0;s�1+minmax(0;t�s)�q�t dk;`0;q);where we have used the property that 
onse
utive 
ells in the (dij) matrix di�erat most by 1 [18℄. Note that we have assumed s > 1 and t > 1. The parti
ular
ases s = 1 or t = 1 are easily derived as well, for example for s = 1 and t > 1we havedk;`1;t = 1 +min(dk;`0;t�1; dk;`0;t ; dk;`1;t�1)= 1 +min(dk;`0;t�1; dk;`0;t ;1 +min(t�2+minmax(0;2�t)�q�1 dk;`q;0;minmax(0;t�2)�q�t�1 dk;`0;q))= 1 +min�dk;`0;t�1; dk;`0;t ; t�1 +min(dk;`0;0; dk;`1;0); 1 +min(dk;`0;t�2; dk;`0;t�1)�= 1 +min�t�1 +min(dk;`0;0; dk;`1;0);min(dk;`0;t�1; dk;`0;t )� ;whi
h is the parti
ularization of formula (5) for s = 1. utFormula (5) relates the values at the right and bottom borders of a box toits left and top borders. Yet it is not enough to 
ompute the 
ells in 
onstanttime. Although we 
annot 
ompute one 
ell in O(1) time, we 
an 
ompute allthe pk (or r`) 
ells in overall O(pk) (or O(r`)) time.



Fig. 2 shows the algorithm. We use a data stru
ture (whi
h in the pseu-do
ode is represented just as a set M�) able to handle a multiset of elementsstarting with a single element, adding and deleting elements, and delivering itsminimum value at any time. It will be used to maintain and update the minimaminmax(0;s�t)�q�s dk;`q;0 and minmax(0;t�s)�q�t dk;`0;q , used in the formula (5). Wesee later that in our parti
ular appli
ation all those operations 
an be performedin 
onstant time.In the 
ode we use drk;`s = dk;`s;r` for the rightmost 
olumn and dbk;`t = dk;`pk ;tfor the bottom row. Their update formulas are derived from the formula (5):drk;`s = 1 +min( r` � 1 +minmax(0;s�r`)�q�s drk;`�1q ;s� 1 +minmax(0;r`�s)�q�r` dbk�1;`q );dbk;`t = 1 +min( t� 1 +minmax(0;pk�t)�q�pk drk;`�1q ;pk � 1 +minmax(0;t�pk)�q�t dbk�1;`q ):The whole algorithm 
an be made O(n+m) spa
e by noting that in a 
olumn-wise traversal we need, when 
omputing 
ell (kl), to store only drk�1;` anddbk;`�1, so the spa
e is that for storing one 
omplete 
olumn (m) and a row whosewidth is one box (at most n). Our multiset data stru
ture does not in
rease thisspa
e 
omplexity. Hen
e we haveTheorem 3 Given strings A and B of lengths m and n that are run-lengthen
oded to lengths m0 and n0, there is an algorithm to 
al
ulate DL(A;B) inO(m0n+ n0m) time and O(m + n) spa
e in the worst 
ase. ut3.2 The Multiset Data Stru
tureWhat is left is to des
ribe our data stru
ture to handle a multiset of nat-ural numbers. We exploit the fa
t that 
onse
utive 
ells in (dij) di�er byat most 1 [18℄. Our data stru
ture represents the multiset S as a triple(min(S);max(S); Vmin(S):::max(S) ! N). That is, we store the minimum andmaximum value of the multiset and a ve
tor of 
ounters V , whi
h stores at Vithe number of elements equal to i in S. Given the property that 
onse
utive 
ellsdi�er by at most 1, we have that no value Vi is equal to zero. This is proved inthe following lemma.Lemma 4 No value Vi for min(S) � i � max(S) is equal to zero when S is aset of 
onse
utive values in (dij) (i.e., S 
ontains a 
ontiguous part of a row ora 
olumn of the matrix (dij)).Proof. The lemma is trivially true for the extremes i = min(S) and i = max(S).Let us now suppose that Vi = 0 for an intermediate value. Let us assume thatthe valuemin(S) is a
hieved at 
ell di;j and that the valuemax(S) is a
hieved at
ell di0;j0 . Sin
e all the intermediate 
ell values are also in S by hypothesis, and
onse
utive 
ells di�er by at most 1, it follows that any value between min(S)and max(S) exists in a path that goes from di;j to di0;j0 . ut



Levenshtein (A0 = (ai1 ; p1)(ai2 ; p2) : : : (aim0 ; pm0); B0 = (bj1 ; r1)(bj2 ; r2) : : : (bjn0 ; rn0))1. /* We fill the topmost row and leftmost 
olumn first */2. dr0;00  0, db0;00  03. For k 2 1 : : :m0 Do4. For s 2 0 : : : pk Do drk;0s  drk�1;0pk�1 + s5. dbk;00  drk;0pk6. For ` 2 0 : : : n0 Do7. For t 2 0 : : : r` Do db0;`t  db0;`�1r`�1 + t8. dr0;`0  db0;`r`9. /* Now we fill the rest of the matrix */10. For ` 2 1 : : :m0 Do /* 
olumn-wise traversal */11. For k 2 1 : : : n0 Do12. If ak = b` Then /* equal letter box */13. For s 2 1 : : : pk Do14. If s � r` Then drk;`s  dbk�1;`r`�s Else drk;`s  drk;`�1s�r`15. For t 2 1 : : : r` Do16. If pk � t Then dbk;`t  dbk�1;`t�pk Else dbk;`t  drk;`�1pk�t17. Else /* different letter box */18. Mr  fdrk;`�10 g, Mb  fdbk�1;`r` g19. drk;`0  drk�1;`pk�120. For s 2 1 : : : pk Do21. Mr  Mr [ fdrk;`�1s g22. If s > r` Then Mr  Mr � fdrk;`�1s�r`�1g23. If r` � s Then Mb  Mb [ fdbk�1;`r`�s g24. drk;`s  1 +min(r` � 1 +min(Mr); s� 1 +min(Mb))25. Mr  fdrk;`�1pk g, Mb  fdbk�1;`0 g26. dbk;`0  dbk;`�1r`�127. For t 2 1 : : : r` Do28. If pk � t Then Mr  Mr [ fdrk;`�1pk�t g29. Mb  Mb [ fdbk�1;`t g30. If t > pk Then Mb  Mb � fdbk�1;`t�pk�1g31. dbk;`t  1 +min(t� 1 +min(Mr); pk � 1 +min(Mb))32. Return drm0n0pm0 /* or dbm0n0rn0 */Fig. 2. The O(m0n+n0m) time algorithm to 
ompute the Levenshtein distan
e betweenA and B, 
oded as a run-length sequen
e of pairs (letter; run_length).



Fig. 3 shows the detailed algorithms. When we initialize the data stru
turewith the single element S = fxg we represent the situation as (x; x; Vx = 1).When we have to add an element y to S, we 
he
k whether y is outside therange min(S) : : :max(S), and in that 
ase we extend the range. In any 
asewe in
rement Vy . Note that the domain extension is never by more than one
ell, as there 
annot appear empty 
ells in between by Lemma 4. When we haveto remove an element z from S we simply de
rement Vz . If Vz be
omes zero,Lemma 4 implies that this is be
ause z is either the minimum or the maximumof the set. So we redu
e the domain of V by one. Finally, the operation min(S)is trivial as we have it already pre
omputed.Create (x)1. Return (x; x; Vx = 1)Add ((minS;maxS; V ); y)2. If y < minS Then3. minS  y4. add new �rst 
ell Vy = 05. Else If y > maxS Then6. maxS  y7. add new last 
ell Vy = 08. Vy  Vy + 19. Return (minS;maxS; V )Remove ((minS;maxS; V ); z)10. Vz  Vz � 111. If Vz = 0 Then12. If z = minS Then13. remove �rst 
ell from V14. minS  minS + 115. Else /* z = maxS */16. remove last 
ell from V17. maxS  maxS � 118. Return (minS;maxS; V )Min ((minS;maxS; V ))19. Return minSFig. 3. The multiset data stru
ture implementation.It is easily seen that all the operations take 
onstant time. As a pra
ti
almatter, we note that it is a good idea to keep V in a 
ir
ular array so that it
an grow and shrink by any extreme. Its maximum size 
orresponds to pk (forMr) or r` (for Mb), whi
h are known at the time of Create.



4 Approximate Sear
hingLet us now 
onsider a problem related to 
omputing the LCS or the Levenshteindistan
e. Assume that string A is a short pattern and string B is a long text(so m is mu
h smaller than n), and that we are given a threshold parameterk. We are interested in reporting all the �approximate o

urren
es� of A in B,that is, all the positions of text substrings whi
h are at distan
e k or less fromthe pattern A. In order to ensure a linear size output, we 
ontent ourselves withreporting the ending positions of the o

urren
es (whi
h we 
all �mat
hes�).The 
lassi
al algorithm to �nd all the mat
hes [16℄ 
omputes a matrix exa
tlylike those of re
urren
es (2) and (1), with the only di�eren
e that d0;j = 0. Thispermits the o

urren
es to start at any text position. The last row of the matrixdmj is examined and every text position j su
h that dm;j � k is reported as amat
h.Our goal now is to devise a more e�
ient algorithm when pattern and text arerun-length 
ompressed. A trivial O(m2n0 +R) algorithm (where R is the size ofthe output) is obtained as follows. We start �lling the matrix only at beginningsof text runs, and 
omplete the �rst 2m 
olumns only (at O(m2) 
ost). The restof the 
olumns of the run are equal to the 2m-th be
ause no optimal path 
anbe longer than 2m� 1 under the LCS or Levenshtein models. We later examinethe last row of the matrix and report every text position with value � k. If therun is longer than 2m, then we have not produ
ed the whole last row but onlythe �rst 2m 
ells of it. In this 
ase we report the positions 2m + 1 : : : r` of the`-th run if and only if the position 2m was reported.We improve now the trivial algorithm. A �rst attempt is to apply our algo-rithms dire
tly using the new base value d0;j = 0. This 
hange does not present
ompli
ations.Let us �rst 
on
entrate on the Levenshtein distan
e. Our algorithm obtainsO(m0n+n0m) time, whi
h may or may not be better than the trivial approa
h.The problem is that O(m0n) may be too mu
h in 
omparison to O(m2n0), es-pe
ially if n is mu
h larger than m. We seek for an algorithm proportional tothe 
ompressed text size. We divide the text runs in short (of length at most2m) and long (longer than 2m) runs. We apply our Levenshtein algorithm onthe text runs, �lling the matrix 
olumn-wise. If we have a short run (ai` ; r`),r` � 2m, we 
ompute all the m0+1 horizontal borders plus its �nal verti
al bor-der (whi
h be
omes the initial border of the next 
olumn). The time to a
hievethis is O(m0r` +m). For an additional O(r`) 
ost we examine all the 
ells of thelast row and report all the text positions i` + t su
h that dm0;`pm0 ;t � k.If we have a long run (ai` ; r`), r` > 2m, we limit its length to 2m and applythe same algorithm, at O(m0m + m + m) 
ost. The 
olumns 2m + 1 : : : r` ofthat run are equal to the 2m-th, so we just need to examine the last row ofthe 2m-th 
olumn, and report all the text positions up to the end of the run,i` + 2m+ 1 : : : i` + pk, if dm0;`pm0 ;2m � k.This algorithm is O(n0m0m + R) time in the worst 
ase, where R is thenumber of o

urren
es reported. For the LCS model we have the same upper



bound, so we a
hieve the same 
omplexity. Our O(m0n0(m0+n0)) algorithm doesnot yield a good 
omplexity here. The spa
e is that to 
ompute one text runlimited to length 2m, i.e. O(m0m).Note that if we are allowed to represent the o

urren
es as a sequen
e of runsof 
onse
utive text positions (all of whi
h mat
h), then the R extra term of thesear
h 
ost disappears.Theorem 5 Given a pattern A and a text B of lengths m and n that are run-length en
oded to lengths m0 and n0, there is an algorithm to �nd all the endingpoints of the approximate o

urren
es of A in B, either under the LCS or Lev-enshtein model, in O(m0mn0) time and O(m0m) spa
e in the worst 
ase. ut5 Improving a Greedy Algorithm for the LCSThe idea in our algorithm for the Levenshtein distan
e DL in Se
t. 3 was to �llall the borders of all the boxes (dk;`s;t ). The natural way to redu
e the 
omplexitywould be to �ll only the 
orners of the boxes (see Fig. 1). For the DL distan
ethis seems di�
ult to obtain, but for the DID distan
e there is an obvious greedyalgorithm that a
hieves this goal; in di�erent letter boxes, we 
an 
al
ulate the
orner values in 
onstant time, and in equal letter boxes we 
an tra
e an optimalpath to a 
orner in O(m0+n0) time. Thus, we 
an 
al
ulate all the 
orner valuesin O(m0n0(m0 + n0)) time1.It turns out that we 
an improve the greedy algorithm signi�
antly by fairlysimple means. We noti
e that the diagonal method of [17℄ 
an be applied, anda
hieve an O(d2min(n0m0)) algorithm. We give also other improvements that donot a�e
t the worst 
ase, but are signi�
ant in the average 
ase and in pra
ti
e.We end the se
tion 
onje
turing that our improved algorithm runs in O(m0n0)time in the average. As we are unable to prove this 
onje
ture, we provide ex-perimental eviden
e to support it.5.1 Greedy Algorithm for the LCSCal
ulating the 
orner value dk;`pk ;r` in a di�erent letter box is easy, be
ause it
an be retrieved from the values dk;`0;r` = dk�1;`pk�1;r` and dk;`pk ;0 = dk;`�1pk;r`�1 , whi
hare 
al
ulated earlier during the dynami
 programming. This follows from thelemma:1 Apostoli
o et. al. [3℄ also gave a basi
 O(m0n0(m0 + n0)) algorithm for the LCS,whi
h they then improved to O(m0n0 log(m0n0)). Their basi
 algorithm di�ers fromour greedy algorithm in that they were using the re
urren
e for 
al
ulating the LCSdire
tly, and we are 
al
ulating the distan
e DID. Also, they tra
ed a spe
i�
 optimalpath (whi
h was the property that they 
ould use to a
hieve the O(m0n0 log(m0n0))algorithm).



Lemma 6 (Bunke and Csirik [7℄) The re
urren
e (2) 
an be repla
ed by there
urren
e dk;`s;t = min(dk;`s;0 + t; dk;`0;t + s); (6)where 1 � s � pk and 1 � t � r`, for values dk;`s;t in a di�erent letter box. utIn 
ontrast to the DL distan
e, the di�
ult part in DID distan
e lies in equalletter boxes. As noted earlier, Lemma 1 applies also for theDID distan
e. >FromLemma 1 we 
an see that the 
orner values are retrieved along the diagonal, andthose values may not have been 
al
ulated earlier. However, if pk = r` in allequal letter boxes, then ea
h 
orner dk;`pk;r` 
an be 
al
ulated in 
onstant time.This gives an O(m0n0) algorithm for a spe
ial 
ase, as previously noted in [6℄.What follows is an algorithm to retrieve the value dk;`pk;r` in an equal letter boxin O(m0 + n0) time. The idea is to tra
e an optimal path to the 
ell dk;`pk;r` . This
an be done by using lemmas 1 and 6 re
ursively. Assume that dk;`pk;r` = dk;`0;r`�pkby Lemma 1 (
ase dk;`pk ;r` = dk;`pk�r`;0 is symmetri
). If k = 1, then the valued1;`0;r`�pk 
orresponds to a value in the �rst row (0) of the matrix (dij) whi
his known. Otherwise, the box (dk�1;`s;t ) is a di�erent letter box, and using thede�nition of overlapping boxes and Lemma 6 it holdsdk;`0;r`�pk = dk�1;`pk�1;r`�pk = min(dk�1;`pk�1;0 + r` � pk; dk�1;`0;r`�pk + pk�1):Now, the value dk�1;`pk�1;0 is 
al
ulated during the dynami
 programming, so we
an 
ontinue on tra
ing value dk�1;`0;r`�pk using lemmas 1 and 6 re
ursively untilwe meet a value that has already been 
al
ulated during dynami
 programming(in
luding the �rst row and the �rst 
olumn of the matrix (dij). The re
ursionnever bran
hes, be
ause Lemma 1 de�nes expli
itly the next value to tra
e, andone of the two values (from whi
h the minimum is taken over in Lemma 6) isalways known (that is be
ause we enter the di�erent letter boxes at the borders,and therefore the other value is from a 
orner that is 
al
ulated during thedynami
 programming). We 
all the path des
ribed by the re
ursion a tra
ingpath.Tra
ing the value dk;`pk ;r` in an equal letter box may take O(m0 + n0) time,be
ause we are skipping one box at a time, and there are at most m0 +n0 boxesin the tra
ing path. Therefore, we get an O(m0n0(m0+n0)) algorithm to 
al
ulateDID(A;B). A worst 
ase example that a
tually a
hieves the bound is A = anand B = (ab)n=2.The spa
e requirement of the algorithm is O(m0n0), be
ause we need to storeonly the 
orner value in ea
h box, and the O(m0 + n0) spa
e for the sta
k is notneeded, be
ause the re
ursion does not bran
h.We also a
hieve the O(m0n + n0m) bound, be
ause the 
orner values dk;`pk;r`of equal letter boxes de�ne distin
t tra
ing paths, and therefore ea
h 
ell in theborders of the boxes 
an be visited only on
e. To see this observe that ea
h border
ell rea
hed by a tra
ing path uniquely determines the border 
ell it 
omes from



along the tra
ing path, and therefore no two di�erent paths 
an meet in a border
ell. The only ex
eption is a 
orner 
ell, but in this 
ase all the tra
ing pathsend there immediately.Theorem 7 Given strings A and B of lengths m and n that are run-lengthen
oded to lengths m0 and n0, there is an algorithm to 
al
ulate DID(A;B) inO(min(m0n0(m0 + n0);m0n+ n0m)) time and O(m0n0) spa
e. ut5.2 Diagonal AlgorithmThe diagonal method [17℄ provides an O(dmin(m;n)) algorithm for 
al
ulatingthe distan
e d = DID(A;B) (or DL as well) between strings A and B of lengthm and n, respe
tivily. The idea is the following: The value dmn = DID(A;B)in the (dij) matrix of (2) de�nes a diagonal band, where the optimal path mustlie. Thus, if we want to 
he
k whether DID < k, we 
an limit the 
al
ulationto the diagonal band de�ned by value k (
onsisting of O(k) diagonals). Startingwith k = jn�mj+1, we 
an double the value k and run in ea
h step the re
ur-ren
e (2) on the in
reasing diagonal band. As soon as dmn < k, we have foundDID(A;B) = dmn, and we 
an stop the doubling. The total number of diagonalsevaluated is at most 2DID(A;B), and there are at most min(m;n) 
ells in ea
hdiagonal. Therefore, the total 
ost of the algorithm is O(dmin(m;n)), whered = DID(A;B).We 
an use the diagonal method with our greedy algorithm as follows: We
al
ulate only the 
orner values that are inside the diagonal band de�ned byvalue k in the above doubling algorithm. The 
orner values in equal letter boxesinside the diagonal band 
an be retrieved in O(k) time. That is be
ause we
an limit the length of the tra
ing paths with the value 2k + 1 (between twoequal letter boxes there is a di�erent letter box that 
ontributes at least 1 tothe value that we are tra
ing, and we are not interested in 
orner values thatare greater than k). Therefore, we get the total 
ost O(d2min(m0; n0)), whered = DID(A;B).5.3 Faster on AverageThere are some pra
ti
al re�nements for the greedy algorithm that do not im-prove its worst 
ase behavior, but do have an impa
t on its average 
ase.First of all, the runs of di�erent letter boxes 
an be skipped in the tra
ingpaths.Consider two 
onse
utive di�erent letter boxes (dk;`s;t ) and (dk+1;`s;t ). By Lemma6 it holds for the values 1 � t � r`,dk+1;`pk+1;t = min �dk+1;`0t + pk+1; dk+1;`pk+1;0 + t�= min �dk;`pk ;t + pk+1; dk+1;`pk+1;0 + t�= min �dk;`0t + pk + pk+1; dk;`pk;0 + pk+1 + t; dk+1;`pk+1;0 + t�= min �dk;`0t + pk + pk+1; dk+1;`pk+1;0 + t� :



The above result 
an be extended to the following lemma by using indu
tion:Lemma 8 Let ((dk0 ;`s;t ); (dk0+1;`s;t ); : : : ; (dk;`s;t )) and ((dk;`0s;t ); (dk;`0+1s;t ); : : : ; (dk;`s;t )) beverti
al and horizontal runs of di�erent letter boxes. When 1 � t � r` and1 � s � pk, the re
urren
e (4) 
an be repla
ed by the re
urren
esdk;`pk;t = min dk;`pk;0 + t; dk0;`0;t + kXs=k0 ps! 1 � t � r`;dk;`s;r` = min dk;`0;r` + s; dk;`0s;0 + X̀t=`0 rt! 1 � s � pk: utNow it is obvious how to speed up the retrieval of values dk;`pk;r` in the equalletter boxes. During dynami
 programming, we 
an maintain pointers in ea
hdi�erent letter box to the last equal letter box en
ountered in the dire
tion of therow and the 
olumn. When we enter a di�erent letter box while tra
ing the valueof dk;`pk ;r` in an equal letter box, we 
an use Lemma 8 to 
al
ulate the minimumover the run of di�erent letter boxes at on
e, and 
ontinue on tra
ing from theequal letter box pre
eding the run of di�erent letter boxes. (Note that in orderto use the summations of Lemma 8 we should better store the 
umulative ik andj` values instead of pk and r`.) Therefore we get the following result:Theorem 9 Given strings A and B of lengths m and n that are run-lengthen
oded to lengths m0 and n0, su
h that all the runs of di�erent letters over analphabet of size j�j are equally likely and in random order, there is an algorithmto 
al
ulate DID(A;B) in O(m0n0(1 + (m0 + n0)=j�j2)) time in the average.Proof. (Sket
h) The �rst part of the 
ost, O(m0n0) 
omes from the 
onstant time
omputation of all the di�erent letter boxes. On the other hand, there are onthe average O(m0n0=j�j) equal letter boxes. Between two runs of a letter � 2 �,there are on the average j�j�1 runs of other letters. This holds both for stringsA and B. In other words, the expe
ted length of a run of di�erent letter boxesis j�j � 1. Therefore the retrieval of the value dk;`pk ;r` in an equal letter box takestime at most O((m0 + n0)=j�j) in the average. utThe se
ond improvement to the greedy algorithm is to limit the length ofthe tra
ing paths. In the greedy algorithm the tra
ing is 
ontinued until a valueis rea
hed that has been 
al
ulated during the dynami
 programming. However,there are more known values than those that have been expli
itly 
al
ulated.Consider value dk;`pk ;t, 1 � t � r` (or symmetri
ally dk;`s;r` , 1 � s � pk) in the borderof a di�erent letter box. If dk;`pk;r` = dk;`pk ;0+ r` then it must hold dk;`pk;t = dk;`pk ;0+ t,otherwise we get a 
ontradi
tion: dk;`pk;r` < dk;`pk;0 + r`.We 
all the above situation a horizontal (verti
al) bridge. Note that fromLemma 6 it follows that there is either a verti
al or a horizontal bridge in ea
h



di�erent letter box. When we enter a di�erent letter box in the re
ursion, we
an 
he
k whether the bridge property holds at the border we entered, using the
orner values that are 
al
ulated during the dynami
 programming. Thus, we 
anstop the re
ursion at the �rst bridge en
ountered. To 
ombine this improvementwith the algorithm that skips runs of di�erent letter boxes, we need Lemma 10below that states that the bridges propagate along runs of di�erent letter boxes.Therefore we only need to 
he
k whether the last di�erent letter box has a bridgeto de
ide whether we have to skip to the next equal letter box. The resultingalgorithm is given in pseudo-
ode in Fig. 4.Lemma 10 Let ((dk0 ;`s;t ); (dk0+1;`s;t ); : : : ; (dk;`s;t )) be a verti
al run of di�erent letterboxes. If there is a horizontal bridge dk0;`pk0 ;r` = dk0 ;`pk0 ;0+r` then there is a horizontalbridge dk00;`pk00 ;r` = dk00;`pk00 ;0 + r` for all k0 < k00 � k. The symmetri
 result holds forhorizontal runs of di�erent letter boxes.Proof. We use the 
ounter-argument that dk00;`pk00 ;r` = dk00;`pk00 ;0+ r` does not hold forsome k0 < k00 � k. Then by Lemma 8 and by the bridge assumption it holdsdk00;`pk00 ;r` = dk0+1;`0;r` + k00Xs=k0+1 ps = dk0+1;l0;0 + r` + k00Xs=k0+1 ps:On the other hand, using the 
ounter-argument and the fa
t that 
onse
utive
ells in the (dij) matrix di�er at most by 1 [18℄, we getdk00;`pk00 ;r` < dk00;`pk00 ;0 + r` � dk0+1;`0;0 +0� k00Xs=k0+1 ps1A+ r`;whi
h is a 
ontradi
tion and so the the original proposition holds. utLemma 10 has a 
orollary: if the last di�erent letter box in a run does nothave a horizontal (verti
al) bridge, then none of the boxes in the same run havea horizontal (verti
al) bridge and, on the other hand, all the boxes in the samerun must have a verti
al (horizontal) bridge.Now, if two tra
ing paths 
ross inside a box (or run thereof), then one ofthem ne
essarily meets a bridge. In the average 
ase, there are a lot of 
rossingsof the tra
ing paths and the total 
ost for tra
ing the values in equal letter boxesde
reases.Another way to 
onsider the average length of a tra
ing path is to think thatevery time a tra
ing path enters a di�erent letter box, it has some probabilityto hit a bridge. If the bridges were pla
ed randomly in the di�erent letter boxes,then the probability to hit a bridge would be 12 . This would give immediately a
onstant expe
ted length for a tra
ing path. However, the pla
ing of the bridgesdepends on the 
omputation of re
urren
e (2), and this makes the reasoningwith probabilities mu
h more 
omplex. We are still 
on�dent that the following
onje
ture holds, although we are not (yet) able to prove it.



LCS (A0 = (ai1 ; p1)(ai2 ; p2) : : : (aim0 ; pm0 ); B0 = (bj1 ; r1)(bj2 ; r2) : : : (bjn0 ; rn0))1. /* We use stru
ture dk;` to denote a box (dk;`s;t ) as follows: */2. dk;`:
orner := dk;`pk;r`3. dk;`:jumptop := "lo
ation of the next equal letter box above"4. dk;`:jumpleft := "lo
ation of the next equal letter box in the left"5. dk;`:sumtop := If aik 6= bjell Then Pkt=dk;`:jumptop+1 pt6. dk;`:sumleft := If aik 6= bj` Then Pt̀=dk;`:jumpleft+1 rt7. /* Initialize �rst row and 
olumn (let ai0 = bj0 = �; p0 = r0 = 1) */8. d00:
orner  09. For k 2 1 : : : n0 Do dk;0:
orner  dk�1;0:
orner + rk�110. For ` 2 1 : : :m0 Do d0;`:
orner  d0;`�1:
orner + p`�111. Cal
ulate values dk;`:(jumptop; jumpleft; sumtop; sumleft)12. /* Now we �ll the rest of the 
orner values */13. For k 2 1 : : :m0 Do14. For ` 2 1 : : : n0 Do15. (bridge; k0; `0; p; r; sum; dk;`:
orner)  (false; k; `; pk; r`; 0;1)16. If aik 6= bj` Then /* Different letter box */17. dk;`:
orner  min(dk�1;`:
orner + aik ; dk;`�1:
orner + bj` )18. Else While bridge = false Do19. /* Equal letter box, tra
e dk;`:
orner */20. If p = r Then /* Straight from the diagonal */21. dk;`:
orner  min(dk;`:
orner; sum+ dk0�1;`0�1:
orner)22. bridge true23. Else If p < r Then /* Diagonal up */24. (r; k0)  (r � p; k0 � 1)25. dk;`:
orner  min(dk;`:
orner; sum+ dk0;`0�1:
orner + r)26. If dk0;`0 :
orner = dk0;`0�1:
orner + r`0 Then bridge true27. Else /* Jump to the next equal letter box */28. (sum; k0)  (sum+ dk0;`0 :sumtop; dk0;`0 :jumptop)29. p  pk030. If k0 = 0 Then /* First row */31. dk;`:
orner  min(dk;`:
orner;sum+ dk0;`0�1:
orner + r)32. bridge true33. Else /* Diagonal left similarly*/34. Return (m+ n� dm0;n0 :
orner)=2 /* return the length of the LCS */Fig. 4. The improved greedy algorithm to 
ompute the LCS between A and B, 
odedas a run-length sequen
e of pairs (letter; run_length).



Conje
ture 11 Let A and B be strings that are run-length en
oded to lengthsm0 and n0, su
h that the runs are equally distributed with the same mean in bothstrings. Under these assumptions the expe
ted running time of the algorithm inFig. 4 for 
al
ulating DID(A;B) is O(m0n0).5.4 Experimental ResultsTo test the Conje
ture 11, we ran the algorithm in Fig. 4 with the followingsettings:1. m0 = n0 = 2000; j�j = 2, runs in [1; x℄x 2 f1; 10; 100; 1000; 10000; 100000; 1000000g.2. m0 = 2000; n0 2 f1; 50; 100; 500; 1000; 1500; 2000g; j�j= 2, runs in [1; 1000℄.3. m0 = n0 = 2000; j�j 2 f2; 4; 8; 16; 32; 64; 128; 256g, runs in [1; 1000℄.4. String A was as in item 1 with runs in [1; 1000℄. String B was gen-erated by applying k random insertions/deletions on A, where k 2f0; 1; 10; 100; 1000; 10000; 100000g.5. Real data: three di�erent bla
k/white images (printed lines from a book draft(187� 591), te
hni
al drawing (160� 555), and a signature (141� 362)). Weran the LCS algorithm on all pairs of lines in ea
h image.Table 1 shows the results. Di�erent parameter 
hoi
es are listed in the orderthey appear in the above listing (e.g. setting 1 in test 1 
orresponds to x = 1,setting 2 
orresponds to x = 10, et
.).Table 1. The average length and the maximum length of a tra
ing path was measuredin di�erent test settings. The values of tests 1-4 are averages over 10-10000 trials (e.g.on small values of n0 in test 2, more trials were needed be
ause of high varian
e, whereasotherwise the varian
e was small). Test 5 was deterministi
 (i.e. the values are fromone trial).Average length of a tra
ing path (maximum length)test X setting 1, setting 2, ...test 1 1 (1), 1.71 (18), 1.96 (28), 1.98 (27), 1.98 (32), 1.99 (29), 1.98 (25)test 2 1.73 (5), 1.77 (10), 1.74 (13), 1.80 (21), 1.90 (30), 1.97 (35), 1.98 (38)test 3 1.99 (30), 1.77 (20), 1.60 (14), 1.45 (14), 1.33 (9), 1.24 (7), 1.17 (6), 1.13 (6)test 4 1.71 (9), 1.71 (8), 1.71 (7), 1.71 (10), 1.72 (9), 1.72 (10), 1.72 (12)test 5 2.00 (35), 2.34 (146), 2.32 (31)The average length L of a tra
ing path (i.e. the amount of equal letter boxesvisited by a tra
ing path) was smaller than 2 in tests 1-4 (slightly greater in test5). That is, the running time was in pra
ti
e O(m0n0) with a very small 
onstantfa
tor. Test 1 showed that when the mean length of the runs in
reases, then alsoL in
reases, but not ex
eeding 2 (L 2 [1; 1:99℄). In test 2, the worst situation waswith n0 = m0 (L = 1:98℄). We tested the e�e
t of the alphabet in test 3, and the



worst was j�j = 2 (L = 1:99) and the best was j�j = 256 (L = 1:13). Test 4 wasused to simulate a typi
al situation, in whi
h the distan
e between the stringsis small. The amount of errors did not have mu
h in�uen
e (L 2 [1:71; 1:72℄). Inreal data (test 5), there were also pairs that were 
lose to the worst 
ase (
loseto A = an; B = (ab)n=2), and therefore the results were slightly worse than withrandomly generated data: L 2 f2:00; 2:34; 2:31g with the three images.6 Con
lusionsWe have presented new algorithms to 
ompute approximate mat
hes betweenrun-length 
ompressed strings. The previous algorithms [7, 3℄ permit 
omputingtheir LCS. We have extended an LCS algorithm [7℄ to the Levenshtein distan
ewithout in
reasing the 
ost, and presented an algorithm with nontrivial 
omplex-ity for approximate sear
hing a run-length 
ompressed pattern on a run-length
ompressed text under either model.Future work involves adapting our algorithm to more 
omplex versions of theLevenshtein distan
e, in
luding at least di�erent 
osts for the edit operations.This would be interesting for appli
ations related to image 
ompression, wherethe 
hange from a pixel value to the next is smooth.With respe
t to the original models, an interesting question is whether analgorithm 
an be obtained whose 
ost is just the produ
t of the 
ompressedlengths. Indeed, this seems possible in the average 
ase, as demonstrated by theexperiments with our improved algorithm for the LCS.Finally, a 
ombination of two-dimensional approximate pattern mat
hing al-gorithm with two-dimensional run-length 
ompression [5, 1℄ seems extremely in-teresting.Referen
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