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Abstract. We present a solution to the problem of regular expression
searching on compressed text. The format we choose is the Ziv-Lempel
family, specifically the LZ78 and LZW variants. Given a text of length u
compressed into length n, and a pattern of length m, we report all the R
occurrences of the pattern in the text in O(Zm + mn + Rmlog m) worst
case time. On average this drops to O(m2 + (n+ R)log m) or O(m2 +
n-+ Ru/n) for most regular expressions. This is the first nontrivial result
for this problem. The experimental results show that our compressed
search algorithm needs half the time necessary for decompression plus
searching, which is currently the only alternative.

1 Introduction

The need to search for regular expressions arises in many text-based applications,
such as text retrieval, text editing and computational biology, to name a few.
A regular expression is a generalized pattern composed of (i) basic strings, (ii)
union, concatenation and Kleene closure of other regular expressions [1]. The
problem of regular expression searching is quite old and has received continuous
attention since the sixties until our days (see Section 2.1).

A particularly interesting case of text searching arises when the text is com-
pressed. Text compression [6] exploits the redundancies of the text to repre-
sent it using less space. There are many different compression schemes, among
which the Ziv-Lempel family [32,33] is one of the best in practice because of
its good compression ratios combined with efficient compression and decompres-
sion times. The compressed matching problem consists of searching a pattern
on a compressed text without uncompressing it. Its main goal is to search the
compressed text faster than the trivial approach of decompressing it and then
searching. This problem is important in practice. Today’s textual databases are
an excellent example of applications where both problems are crucial: the texts
should be kept compressed to save space and I/O time, and they should be effi-
ciently searched. Surprisingly, these two combined requirements are not easy to
achieve together, as the only solution before the 90’s was to process queries by
uncompressing the texts and then searching into them.
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Since then, a lot of research has been conducted on the problem. A wealth of
solutions have been proposed (see Section 2.2) to deal with simple, multiple and,
very recently, approximate compressed pattern matching. Regular expression
searching on compressed text seems to be the last goal which still defies the
existence of any nontrivial solution.

This is the problem we solve in this paper: we present the first solution
for compressed regular expression searching. The format we choose is the Ziv-
Lempel family, focusing in the LZ78 and LZW variants [33,29]. Given a text
of length v compressed into length n, we are able to find the R occurrences of
a regular expression of length m in O(2™ + mn + Rmlogm) worst case time,
needing O(2™ 4 mn) space. We also propose two modifications which achieve
O(m?+(n+ R)log m) or O(m?+n+ Ru/n) average case time and, respectively,
O(m—+nlogm) or O(m+n) space, for “admissible” regular expressions, i.e. those
whose automaton runs out of active states after reading O(1) text characters.
These results are achieved using bit-parallelism and are valid for short enough
patterns, otherwise the search times have to be multiplied by [m/w], where w
is the number of bits in the computer word.

We have implemented our algorithm on LZW and compared it against the
best existing algorithms on uncompressed text, showing that we can search the
compressed text twice as fast as the naive approach of uncompressing and then
searching.

2 Related Work

2.1 Regular Expression Searching

The traditional technique [26] to search a regular expression of length m (which
means m letters, not counting the special operators such as "*", "[|" etc.) in
a text of length u is to convert the expression into a nondeterministic finite
automaton (NFA) with O(m) nodes. Then, it is possible to search the text using
the automaton at O(mu) worst case time. The cost comes from the fact that
more than one state of the NFA may be active at each step, and therefore all
may need to be updated.

On top of the basic algorithm for converting a regular expression into an
NFA, we have to add a self-loop at the initial state which guarantees that it
keeps always active, so it is able to detect a match starting anywhere in the
text. At each text position where a final state gets active we signal the end point
of an occurrence.

A more efficient choice [1] is to convert the NFA into a deterministic finite
automaton (DFA), which has only one active state at a time and therefore allows
searching the text at O(u) cost, which is worst-case optimal. The cost of this
approach is that the DFA may have O(2™) states, which implies a preprocessing
cost and extra space exponential in m.

An easy way to obtain a DFA from an NFA is via bit-parallelism, which is
a technique to code many elements in the bits of a single computer word and



manage to update all them in a single operation. In this case, the vector of
active and inactive states is stored as the bits of a computer word. Instead of
(ala Thompson [26]) examining the active states one by one, the whole computer
word is used to index a table which, given the current text character, provides
the new set of active states (another computer word). This can be considered
either as a bit-parallel simulation of an NFA, or as an implementation of a DFA
(where the identifier of each deterministic state is the bit mask as a whole). This
idea was first proposed by Wu and Manber [31, 30].

Later, Navarro and Raffinot [23] used a similar procedure, this time using
Glushkov’s [7] construction of the NFA. This construction has the advantage of
producing an automaton of exactly m + 1 states, while Thompson’s may reach
2m states. A drawback is that the structure is not so regular and therefore a
table D : 2™t1 x (04+1) — 2™*t!is required, where o is the size of the pattern
alphabet ¥. Thompson’s construction, on the other hand, is more regular and
only needs a table D : 2?™ — 2™ for the e-transitions. It has been shown [23]
that Glushkov’s construction normally yields faster search time. In any case, if
the table is too big it can be split horizontally in two or more tables [31]. For
example, a table of size 2™ can be split into 2 subtables of size 2/2. We need
to access two tables for a transition but need only the square root of the space.

Some techniques have been proposed to obtain a tradeoff between NFAs and
DFAs. In 1992, Myers [19] presented a four-russians approach which obtains
O(mu/log u) worst-case time and extra space. The idea is to divide the syntax
tree of the regular expression into “modules”, which are subtrees of a reasonable
size. These subtrees are implemented as DFAs and are thereafter considered as
leaf nodes in the syntax tree. The process continues with this reduced tree until
a single final module is obtained.

The ideas presented up to now aim at a good implementation of the automa-
ton, but they must inspect all the text characters. Other proposals try to skip
some text characters, as it is usual for simple pattern matching. For example,
Watson [28, chapter 5] presented an algorithm that determines the minimum
length of a string matching the regular expression and forms a trie with all the
prefixes of that length of strings matching the regular expression. A multipat-
tern search algorithm like Commentz-Walter [8] is run over those prefixes as a
filter to detect text areas where a complete occurrence may start. Another tech-
nique of this kind is used in Gnu Grep 2.0, which extracts a set of strings which
must appear in any match. This string is searched for and the neighborhoods
of its occurrences are checked for complete matches using a lazy deterministic
automaton.

The most recent development, also in this line, is from Navarro and Raffinot
[23]. They invert the arrows of the DFA and make all states initial and the initial
state final. The result is an automaton that recognizes all the reverse prefixes of
strings matching the regular expression. The idea is in this sense similar to that
of Watson, but takes less space. The search method is also different: instead of
a Boyer-Moore like algorithm, it is based on BNDM [23].



2.2 Compressed Pattern Matching

The compressed matching problem was first defined in the work of Amir and
Benson [2] as the task of performing string matching in a compressed text
without decompressing it. Given a text 7', a corresponding compressed string
Z = z1...2n, and a pattern P, the compressed matching problem consists in
finding all occurrences of P in T, using only P and Z. A naive algorithm, which
first decompresses the string Z and then performs standard string matching,
takes time O(m+u). An optimal algorithm takes worst-case time O(m+n+ R),
where R is the number of matches (note that it could be that R = u > n).

Two different approaches exist to search compressed text. The first one is
rather practical. Efficient solutions based on Huffman coding [10] on words have
been presented by Moura et al. [18], but they need that the text contains natural
language and is large (say, 10 Mb or more). Moreover, they allow only searching
for whole words and phrases. There are also other practical ad-hoc methods [15],
but the compression they obtain is poor. Moreover, in these compression formats
n = O(u), so the speedups can only be measured in practical terms.

The second line of research considers Ziv-Lempel compression, which is based
on finding repetitions in the text and replacing them with references to similar
strings previously appeared. LZ77 [32] is able to reference any substring of the
text already processed, while LZ78 [33] and LZW [29] reference only a single
previous reference plus a new letter that is added.

String matching in Ziv-Lempel compressed texts is much more complex, since
the pattern can appear in different forms across the compressed text. The first
algorithm for exact searching is from 1994, by Amir, Benson and Farach [3], who
search in LZ78 needing time and space O(m? + n).

The only search technique for LZ77 is by Farach and Thorup [9], a random-
ized algorithm to determine in time O(m + nlog®(u/n)) whether a pattern is
present or not in the text.

An extension of the first work [3] to multipattern searching was presented by
Kida et al. [13], together with the first experimental results in this area. They
achieve O(m? + n) time and space, although this time m is the total length of
all the patterns.

New practical results were presented by Navarro and Raffinot [24], who pro-
posed a general scheme to search on Ziv-Lempel compressed texts (simple and
extended patterns) and specialized it for the particular cases of LZ77, LZ78 and a
new variant proposed which was competitive and convenient for search purposes.
A similar result, restricted to the LZW format, was independently found and pre-
sented by Kida et al. [14]. The same group generalized the existing algorithms
and nicely unified the concepts in a general framework [12]. Recently, Navarro
and Tarhio [25] presented a new, faster, algorithm based on Boyer-Moore.

Approximate string matching on compressed text aims at finding the pattern
where a limited number of differences between the pattern and its occurrences
are permitted. The problem, advocated in 1992 [2], had been solved for Huffman
coding of words [18], but the solution is limited to search a whole word and
retrieve whole words that are similar. The first true solutions appeared very



recently, by Karkkdinen et al. [11], Matsumoto et al. [16] and Navarro et al.
[22].

3 The Ziv-Lempel Compression Formats LZ78 and LZW

The general idea of Ziv-Lempel compression is to replace substrings in the text
by a pointer to a previous occurrence of them. If the pointer takes less space
than the string it is replacing, compression is obtained. Different variants over
this type of compression exist, see for example [6]. We are particularly interested
in the LZ78/LZW format, which we describe in depth.

The Ziv-Lempel compression algorithm of 1978 (usually named LZ78 [33])
is based on a dictionary of blocks, in which we add every new block computed.
At the beginning of the compression, the dictionary contains a single block bg
of length 0. The current step of the compression is as follows: if we assume
that a prefix T;.; of T has been already compressed in a sequence of blocks
Z = by...by, all them in the dictionary, then we look for the longest prefix of
the rest of the text T;,, . which is a block of the dictionary. Once we found this
block, say b, of length £,, we construct a new block b,11 = (s, Tjy¢,41), we write
the pair at the end of the compressed file Z, i.e Z = by...b,b,41, and we add
the block to the dictionary. It is easy to see that this dictionary is prefix-closed
(i.e. any prefix of an element is also an element of the dictionary) and a natural
way to represent it is a trie.

We give as an example the compression of the word ananas in Figure 1. The
first block is (0, a), and next (0,n). When we read the next a, g is already the
block 1 in the dictionary, but an is not in the dictionary. So we create a third
block (1,n). We then read the next a, a is already the block 1 in the dictionary,
but as do not appear. So we create a new block (1, s).

Prefix encoded a an anan ananas
0 0 0
a / a n a / \n a / \n
Dictionary 1 1/ \ 2 1 2 1 2
N 7\
3 4 3
Compressed file  (0,a) (0,8(0,n) (0,8)(0,n)(1,n) (0,8)(0,n)(1,n)(1,9)

Fig. 1. Compression of the word ananas with the algorithm LZ78.

The compression algorithm is O(u) time in the worst case and efficient in
practice if the dictionary is stored as a trie, which allows rapid searching of
the new text prefix (for each character of T we move once in the trie). The



decompression needs to build the same dictionary (the pair that defines the
block r is read at the r-th step of the algorithm), although this time it is not
convenient to have a trie, and an array implementation is preferable. Compared
to LZ77, the compression is rather fast but decompression is slow.

Many variations on LZ78 exist, which deal basically with the best way to
code the pairs in the compressed file, or with the best way to cope with limited
memory for compression. A particularly interesting variant is from Welch, called
LZW [29]. In this case, the extra letter (second element of the pair) is not coded,
but it is taken as the first letter of the next block (the dictionary is started with
one block per letter). LZW is used by Unix’s Compress program.

In this paper we do not consider LZW separately but just as a coding variant
of LZ78. This is because the final letter of LZ78 can be readily obtained by
keeping count of the first letter of each block (this is copied directly from the
referenced block) and then looking at the first letter of the next block.

4 A Search Algorithm

We present now our approach for regular expression searching over a text 7 =
by ...b,, that is expressed as a sequence of n blocks. Each block b, represents a
substring B, of T, such that By ... B, = T. Moreover, each block B, is formed by
a concatenation of a previously seen block and an explicit letter. This comprises
the LZ78 and LZW formats. Our goal is to find the positions in 7" where the
pattern occurrences end, using Z.

Our approach is to modify the DFA algorithm based on bit-parallelism, which
is designed to process T character by character, so that it processes T' block by
block using the fact that blocks are built from previous blocks and explicit letters.
We assume that Glushkov’s construction [7] is used, so the NFA has m-+1 states.
So we start by building the DFA in O(2™) time and space.

Our bit masks will denote sets of NFA states, so they will be of width m + 1.
For clarity we will write the sets of states, keeping in mind that we can compute
AUB, ANB, A°, A = B, A + B, a € Ain constant time (or, for long patterns, in
O([m/w]) time, where w is the number of bits in the computer word). Another
operation we will need to perform in constant time is to select any element of
a set. This can be achieved with “bit magic”, which means precomputing the
table storing the position of, say, the highest bit for each possible bit mask of
length m + 1, which is not much given that we already store o such tables.

About our automaton, we assume that the states are numbered 0...m, being
0 the initial state. We call F' the bit mask of final states and the transition
function is D : bitmasks x X — bitmasks.

The general mechanism of the search is as follows: we read the blocks b,
one by one. For each new block b read, representing a string B, and where we
have already processed Ti. ;, we update the state of the search so that after
working on the block we have processed Ty, ;g = T1..;B. To process each
block, three steps are carried out: (1) its description is computed and stored, (2)



the occurrences ending inside the block B are reported, and (3) the state of the
search is updated.

Say that block b represents the text substring B. Then the description of b
is formed by

— a number len(b) = |B)|, its length;

— a block number ref(b), the referenced block;

— a vector trg. ., of bit masks, where ¢r; gives the states of the NFA that
remain active after reading B if only the i-th state of the NFA is active at
the beginning;

a bit mask act = U {i, ¢tr; # 0}, which indicates which states of the NFA

may yleld any surviving state after processing B;

a bit mask fin, which indicates which states, if active before processing B,

produce an occurrence inside B (after processing at least one character of

B); and

— a vector matg.. n, of block numbers, where mat; gives the most recent (i.e.
longest) block 4’ in the referencing chain b, ref(b), ref(ref(b)), ... such that
i € fin(b'), or a null value if there is no such block.

The state of the search consists of two elements

— the last text position considered, j (initially 0);
— a bit mask S of m + 1 bits, which indicates which states are active after
processing T ;. Initially, S has active only its initial state, S = {0}.

As we show next, the total cost to search for all the occurrences with this
scheme is O(2™ +mn+ Rmlog m) in the worst case. The first term corresponds to
building the DFA from the NFA, the second to computing block descriptions and
updating the search state, and the last to report the occurrences. The existence
problem is solved in time O(2™ + mn). The space requirement is O(2™ + mn).
We recall that patterns longer than the computer word w get their search cost
multiplied by [m/w].

4.1 Computing Block Descriptions

We show how to compute the description of a new block & that represents
B’ = Ba, where B is the string represented by a previous block b and a is an
explicit letter. An initial block by represents the string ¢, and its description is:
len(bo) = 0; tri(bo) = {i}; act(bo) = {0...m}; fin(by) = 0; mat;(by) = a null

value. We give now the update formulas for B’ = Ba.

len(b') « len(b)+ 1.

ref(b') < b.

— tr;(b') « D(¢ri(b),a) (we only need to do this for 7 € act(b)).
act(b') + {i € act(b), tri(b') # 0}.

— fin(¥') « fin(db)U {i € act(t'), tr;(b')NF # 0}.

mat;(b') — mat;(b) if tri(b') N F = 0, and &' otherwise.

In the worst case we have to update all the cells of ¢r and mat, so we pay
O(mn) time (recall that bit parallelism permits performing set operations in
constant time). The space required for the block descriptions is O(mn) as well.



4.2 Reporting Matches and Updating the Search State

The fin(b') mask tells us whether there are any occurrences to report depending
on the active states at the beginning of the block. Therefore, our first action is
to compute S N fin(d'), which tells us which of the currently active states will
produce occurrences inside B’. If this mask turns out to be null, we can skip the
process of reporting matches.

If there are states in the intersection then we will have matches to report
inside B’. Now, each state ¢ in the intersection produces a list of positions which
can be retrieved in decreasing order using mat;(b'), mat;(ref(mat; (b)), .. ..
If B’ starts at text position j, then we have to report the text positions j +
len(mat;(b')) — 1, j + len(mat;(ref(mat;(b')))) — 1, .... These positions appear
in decreasing order, but we have to merge the decreasing lists of all the states
in SN fin(d'). A priority queue can be used to obtain each position in O(log m)
time. If there are R occurrences overall, then in the worst case each occurrence
can be reported m times (reached from each state), which gives a total cost of
O(Rmlogm).

Finally, we update S in O(m) time per block with S <« U;csnact(pr)trs(b').

5 A Faster Algorithm on Average

An average case analysis of our algorithm reveals that, except for mat, all the
other operations can be carried out in linear time. This leads to a variation of
the algorithm that is linear time on average.

The main point is that, on average, |act(b)| = [tri(b)] = O(1), that is, the
number of states of the automaton which can survive after processing a block is
constant. We prove in the Appendix that this holds under very general assump-
tions and for “admissible” regular expressions (i.e. those whose automata run
out of active states after processing O(1) text characters). Note that, thanks to
the self loop in the initial state 0, this state is always in act(b) and in tro(b).

Constant time operations. Except for mat, all the computation of the block
description is proportional to the size of act and hence it takes O(n) time (see
Section 4.1): tr;(b') needs to be computed only for those 7 € act(b); and act(b’)
and fin(b') can also be computed in time proportional to |act(b)| or |act(?')|.
The update to S (see Section 4.2) needs only to consider the states in act(d’).
Each active bit in act is obtained in constant time by bit magic.

Updating the mat vector. What we need is a mechanism to update mat fast.
Note that, despite that mat;(b') is null if ¢ ¢ fin(b'), it may not be true that
|fin(b')] = O(1) on average, because as soon as a state belongs to fin(b), it
belongs to all its descendants in the LZ78 trie.

However, it is still true that just O(1) values of mat(b) change in mat(d'),
where ref(b') = b, since mat changes only on those {7, tr;(b')NF # 0} C act(d’),
and |act(d')| = O(1).



Hence, we do not represent a new mat vector for each block, but only its
differences with respect to the referenced block. This must be done such that (7)
the mat vector of the referenced block is not altered, as it may have to be used
for other descendants; and (#¢) we are able to quickly find mat; for any %.

A solution is to represent mat as a complete tree (i.e. perfectly balanced),
which will always have m + 1 nodes and associates the keys {0...m} to their
value mat;. This permits obtaining in O(logm) time the value mat;. We start
with a complete tree, and later need only to modify the values associated to
tree keys, but never add or remove keys (otherwise an AVL would have been a
good choice). When a new value has to be associated to a key in the tree of the
referenced block in order to obtain the tree of the referencing block, we find the
key in the old tree and create of copy of the path from the root to the key. Then
we change the value associated to the new node holding the key. Except when
the new nodes are involved, the created path points to the same nodes where the
old paths points, hence sharing part of the tree. The new root corresponds to the
modified tree of the new block. The cost of each such modification is O(log m).
We have to perform this operation O(1) times on average per block, yielding
O(nlogm) time.

Figure 2 illustrates the idea. This kind of technique is usual when implement-
ing the logical structure of WORM (write once read many) devices, in order to
reflect the modifications of the user on a medium that does not permit alter-
ations.

Fig. 2. Changing node 5 to 5’ in a read-only tree.

Reporting matches. We have to add now the cost to report the R matches.
Since |tr;(b)| = O(1) on average, there are only O(1) states able to trigger an
occurrence at the end of a block, and hence each occurrence is triggered by O(1)



states on average. The priority queue gives us those positions in O(log m) time
per position, so the total cost to trigger occurrences is on average O(Rlogm).

Lowering space and preprocessing costs. The fact that [tr;(b)| = O(1) on average
shows another possible improvement. We have chosen a DFA representation of
our automaton which needs O(2™) space and preprocessing time. Instead, an
NFA representation would require O(m?). The problem with the NFA is that,
in order to build ¢r;(%’) for &' = (b,a), we need to make the union of the NFA
states reachable via the letter a from each state in ¢r(5). This has a worst case
of O(m), yielding O(m?) worst case search time to update a block. However,
on average this drops to O(1) since only O(1) states ¢ have tr;(b) # 0 (because
|act(b)| = O(1)) and each such ¢r;(b) has constant size.

Therefore, we have obtained average complexity O(m? + (n + R)logm). The
space requirements are lowered as well. The NFA requires only O(m) space.
The block descriptions take O(n) space because there are only O(1) nonempty
tr; masks. With respect to the mat trees, we have that there are on average
O(1) modifications per block and each creates O(log m) new nodes, so the space
required for mat is on average O(nlogm). Hence the total space is O(m +
nlogm).

If R is really small we may prefer an alternative implementation. Instead of
representing mat, we store for each block a bit mask ffin, which tells whether
there is a match exactly at the end of the block. While fin is active we go
backward in the referencing chain of the block reporting all those blocks whose
ffin mask is active in a state of S. This yields O(m?+n+ Ru/n) time on average
instead of O(m? + (n + R)logm). The space becomes O(m + n).

6 Experimental Results

We have implemented our algorithm in order to determine its practical value.
We chose to use the LZW format by modifying the code of Unix’s uncompress,
so our code is able to search files compressed with compress (.Z). This implies
some small changes in the design, but the algorithm is essentially the same.
We have used bit parallelism, with a single table (no horizontal partitioning)
and map (at search time) the character set to an integer range representing the
different pattern characters, to reduce space. Finally, we have chosen to use the
ffin masks instead of representing mat.

We ran our experiments on an Intel Pentium ITI machine of 550 MHz and 64
Mb of RAM. We have compressed 10 Mb of Wall Street Journal articles, which
gets compressed to 42% of its original size with compress. We measure user time,
as system times are negligible. Each data point has been obtained by repeating
the experiment 10 times.

In the absence of other algorithms for compressed regular expression search-
ing, we have compared our algorithm against the naive approach of decompress-
ing and searching. The WSJ file needed 3.58 seconds to be decompressed with
uncompress. After decompression, we run two different search algorithms. A first



one, DFA, uses a bit-parallel DFA to process the text. This is interesting because
it is the algorithm we are modifying to work on compressed text. A second one,
the software nrgrep [20], uses a character skipping technique for searching [23],
which is much faster. In any case, the time to uncompress is an order of magni-
tude higher than that to search the uncompressed text, so the search algorithm
used does not significantly affect the results.

A major problem when presenting experiments on regular expressions is that
there is not a concept of “random” regular expression, so it is not possible to
search, say, 1,000 random patterns. Lacking such good choice, we fixed a set
of 7 patterns which were selected to illustrate different interesting cases. The
patterns are given in Table 1, together with some parameters and the obtained
search times. We use the normal operators to denote regular expressions plus
some extensions, such as "[a-z]" = (a|b|c|...|]z) and "." = all the characters.
Note that the 7th pattern is not “admissible” and the search time gets affected.

No.|Pattern m| R |Ours|Uncompress|Uncompress
+ Nrgrep + DFA
1 |American|Canadian 17| 1801 | 1.81 3.75 3.85
2 |Amer[a-z]*can 9 (1500 |1.79 3.67 3.74
3 |Amer[a-z]*can|Can[a-z] *ia.n|16 1801 |2.23 3.73 3.87
4 |Ame(i|(rli)*)can 10| 1500 | 1.62 3.70 3.72
5 |Am[a-z]*ri[a-z]*an 9 (1504 |1.88 3.68 3.72
6 (Am|Ca) (er|na) (ic|di)an 15| 1801 |1.70 3.70 3.75
7 |Am.*er.*ic.*an 12]92945| 2.74 3.68 3.74

Table 1. The patterns used on Wall Street Journal articles and the search times in
seconds.

As the table shows, we can actually improve over the decompression of the
text followed by the application of any search algorithm (indeed, just the decom-
pression takes much more time). In practical terms, we can search the original
file at about 4-5 Mb/sec. This is about half the time necessary for decompression
plus searching with the best algorithm.

We have used compress because it is the format we are dealing with. In some
scenarios, LZW is the preferred format because it maximizes compression (e.g. it
compressed DNA better than LZ77). However, we may prefer a decompress plus
search approach under the LZ77 format, which decompresses faster. For example,
Gnu gztp needs 2.07 seconds for decompression in our machine. If we compare
our search algorithm on LZW against decompressing on LZ77 plus searching, we
are still 20% faster.



7 Conclusions

We have presented the first solution to the open problem of regular expression
searching over Ziv-Lempel compressed text. Our algorithm can find the R oc-
currences of a regular expression of length m over a text of size u compressed by
LZ78 or LZW into size n in O(2™ + mn + Rmlogm) worst-case time and, for
most regular expressions, O(m? + (n + R)logm) or O(m? + n+ Ru/n) average
case time. We have shown that this is also of practical interest, as we are able
to search on compressed text twice as fast as decompressing plus searching.

An interesting question is whether we can improve the search time using
character skipping techniques [28,23]. The first would have to be combined with
multipattern search techniques on LZ78/LZW [13]. For the second type of search
(BNDM [23]), there is no existing algorithm on compressed text yet. We are also
pursuing on extending these ideas to other compression formats, e.g. a Ziv-
Lempel variant where the new block is the concatenation of the previous and
the current one [17]. The existence problem seems to require O(m?n) time for
this format.
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Appendix: Average Number of Active Bits

The goal of this Appendix is to show that, on average, |act(b)| = |[tr:(b)| = O(1).
In this section o denotes the size of the text alphabet.

Let us consider the process of generating the LZ78/LZW trie. A string from
the text is read and the current trie is followed, until the new string read “falls
out” of the trie. At that point we add a new node to the trie and restart reading
the text. It is clear that, at least for Bernoulli sources, the resulting trie is the
same as the result of inserting n random strings of infinite length.

Let us now consider initializing our NFA with just state ¢ active. Now, we
backtrack on the LZ78 trie, entering into all possible branches and feeding the
automaton with the corresponding letter. We stop when the automaton runs out
of active states.

The total amount of trie nodes touched in this process is exactly the amount
of text blocks b whose i-th bit in act(b) is active, i.e. the blocks such that if we
start with state 7 active, we finish the block with some active state. Hence the
total amount of states in act over all the blocks of the text corresponds to the
sum of trie nodes touched when starting the NFA initialized with each possible
state 1.

As shown by Baeza-Yates and Gonnet [4, 5], the cost of backtracking on a
trie of n nodes with a regular expression is O(polylog(n)n*), where 0 < X\ < 1
depends on the structure of the regular expression. This result applies only to
random tries over a uniformly distributed alphabet and for an arbitrary regular
expression which has no outgoing edges from final states. We remark that the
letter probabilities on the LZ78 trie are more uniform than on the text, so even
on biased text the uniform model is not so bad approximation. In any case the
result can probably be extended to biased cases.

Despite being suggestive, the previous result cannot be immediately applied
to our case. First, it is not meaningful to consider such a random text in a
compression scenario, since in this case compression would be impossible. Even
a scenario where the text follows a biased Bernoulli or Markov model can be
restrictive. Second, our DFAs can perfectly have outgoing transitions from the
final states (the previous result is relevant because as soon as a final state is
reached they report the whole subtrie). On the other hand, we cannot afford
an arbitrary text and pattern simultaneously because it will always be possible
to design a text tailored to the pattern that yields a low efficiency. Hence, we
consider the most general scenario which is reasonable to face:

Definition 1. Our arbitrariness assumption states that text and pattern are
arbitrary but independent, in the sense that there is zero correlation between text
substrings and strings generated by the regular expression.

The arbitrariness assumption permits us extending our analysis to any text
and pattern, under the condition that the text cannot be especially designed for
the pattern. Our second step is to set a reasonable condition over the pattern.



The number of strings of length £ that are accepted by an automaton is [27]
N() = ) mwi = 0(c)
J

where the sum is finitary and 7n; and w; are constants. The result is simple
to obtain with generating functions: for each state ¢ the function f;(z) counts
the number of strings of each length that can be generated from state i of the
DFA, so if edges labeled a;...ay reach states 45 ...4; from ¢ we have fi(z) =
z2(fi, (2)+ ...+ fi,,(2) + 1- [ final]), which leads to a system of equations formed
by polynomials and possibly fractions of the form 1/(1 — z). The solution to the
system is a rational function, i.e. a quotient between polynomials P(z)/Q(z),
which corresponds to a sequence of the form Zj 7rjw§. We are ready now to
establish our condition over the admissible regular expressions.

Definition 2. A regular expression is admissible if the number of strings of
length £ that it generates is at most ct, where ¢ < o, for any £ = w(1).

Unadmissible regular expressions are those which basically match all the
strings of every length, e.g. a(alb)*a over the alphabet {a, b}, which matches
2t/4 = ©(2%) strings of length £. However, there are other cases. For example,
pattern matching allowing k& errors can be modeled as a regular expression which
matches every string for £ = O(k) [21]. As we see shortly, we can handle some
unadmissible regular expressions anyway.

If a regular expression is admissible and the arbitrariness assumption holds,
then if we feed it with characters from a random text position the automaton
runs out of active states after O(1) iterations. The reason is that the automaton
recognizes c® strings of length £, out of the o possibilities. Since text and pattern
are uncorrelated, the probability that the automaton recognizes the selected
text substring after £ iterations is O((c/c)%) = O(at), where we have defined
a = ¢/o < 1. Hence the expected amount of steps until the automaton runs out
of active states is >_,, _,af = 1/(1 —a) = O(1).

Let us consider a perfectly balanced trie of n nodes obtained from the text,
of height h = log, n. If we start an automaton at the root of the trie, it will
touch O(c*) nodes at the trie level £. This means that the total number of nodes
traversed is

O(ch) = O(cl°gf’n) = O(nbgvc) = O(n}‘)

for A < 1. So in this particular case we repeat the result that exists for random
tries, which is not surprising. Let us now consdier the LZ78 trie of an arbitrary
text, which has f(£) nodes at depth £, where

h

Y f@=n and f0)=1, f(¢-1)< f() <o

£=0

By the arbitrariness assumption, those f(£) strings cannot have correlation with
the pattern, so the traversal of the trie touches aff(£) of those nodes at level £.



Therefore the total number of nodes traversed is

Let us now start with an arbitrary trie and try to modify it in order to increase
the number of traversed nodes while keeping the same total number of nodes n.
Let us move a node from level i to level j. The new cost is ¢! = C — o* + of.
Clearly we increase the cost by moving nodes upward. This means that the worst
possible trie is the perfectly balanced one, where all nodes are as close to the root
as possible. On the other hand, LZ78 tries obtained from texts tend to be quite
balanced, so the worst and average case are quite close anyway. As an example
of the other extreme, consider a LZ78 trie with maximum unbalancing (e.g. for
the text a*). In this case the total number of nodes traversed is O(1).

So we have that, under the arbitrariness assumption, the total number of trie
nodes traversed by an admissible regular expression is O(n*) for some A < 1.
We use now this result for our analysis.

It is clear that if we take our NFA and make state ¢ the initial state, the
result corresponds to a regular expression because any NFA can be converted
into a regular expression. So the total amount of states in act is

O(n}‘“ + Mo+ L+ n}‘m)

where \; corresponds to taking ¢ as the initial state. We say that a state is admis-
sible if, when that state is considered as the initial state, the regular expression
becomes admissible.

Note that, given the self-loop we added at state 0, we have ag = 1, i.e. state
0 is unadmissible. However, all the other states must be admissible because
otherwise the original regular expression would not be admissible. That is, there
is a fixed probability p of reaching the unadmissible state and from there the
automaton recognizes all the o* strings, which gives at least po? = @(c*) strings
recognized.

Hence, calling

A = max(ag,...,am) < 1

we have that the total number of active states in all the act bit masks is
(0] (n + mnA) = 0O(n)

where we made the last simplification considering that m = O(polylog(n)),
which is weaker than usual assumptions and true in practice. Therefore, we
have proved that, under mild restrictions (much more general than the usual
randomness assumption), the amortized number of active states in the act masks
is O(1).

Note that we can afford even that the unadmissible states are reachable only
from O(1) other states, and the result still holds. For example, if our regular
expression is a(a|b)*a™ we have only O(1) initial states that yield unadmissible



expressions, and our result holds. On the other hand, if we have a™(a|b)*a then
the unadmissible state can be reached from @(m) other states and our result
does not hold.

We focus now on the size of the tr;(b) sets for admissible regular expressions.
Let us consider the text substring B corresponding to a block b&.

We first consider the initial state, which is always active. How many states
can get activated from the initial state? At each step, the initial state may ac-
tivate O(o) admissible states, but given the arbitrariness assumption, the prob-
ability of each such state being active £ steps later is O(a*). While processing
Bj ., the initial state is always active, so at the end of the processing we have
Zf:o oat = O(1) active states (the term af corresponds to the point where we
were processing By _g).

We consider now the other m admissible states, whose activation vanishes
after examining O(1) text positions. In their case the probability of yielding
an active state after processing B is O(a*). Hence they totalize O(ma*) active
states. As before, the worst trie is the most balanced one, in which case there are
o* blocks of lengths 0 to h = log, n. The total number of active states totalizes

R
Zalmal = O(mch) = O(mn}‘)
£=0

Hence, we have in total O(n+mn*) = O(n) active bits in the tr; sets, where
the n comes from the O(1) states activated from the initial state and the mn?
from the other states.



