
Approximate Searching on Compressed Text

Carlos Avendaño Pérez, Claudia Feregrino Uribe
Instituto Nacional de Astrofísica Óptica y Electrónica

carlosap@inaoep.mx, cferegrino@inaoep.mx

Gonzalo Navarro1

Universidad de Chile
gnavarro@dcc.uchile.cl

1
Funded in part by Fondecyt Grant 1-020831

Abstract

The approximate searching problem on compressed
text tries to find all the matches of a pattern in a
compressed text, without decompressing it and
considering that the match of the pattern with the text
can have a limited number of differences. This
problem has diverse applications in information
retrieval, computational biology and signal
processing, among others. One of the best solutions to
this problem is to execute a multipattern search of a set
of pieces of the pattern, followed by a local
decompression and a direct verification in the
decompressed areas. In this work an improvement to
this solution concerning verification is presented,
where instead of executing a decompression process
and searching for the pattern, bit-parallel automata
are constructed that recognize the pattern. In this way,
we perform the entire searching process without
decompressing the text and obtain competitive times,
compared to decompressing text and searching it with
the best existing algorithms.

1. Introduction

The considerable increase of available textual
information in line drives to the necessity of
compressing the collections to reduce storage
requirements. The problem is to perform efficient
searches in compressed text, considering that it is
common to find documents that contain words badly

written and that it would be impossible to recover these
documents unless the same error in the consultation is
made.

One of the solutions to this problem is the
approximate search of patterns on compressed text,
which is defined as follow: Given a text T of length u
whose compressed text corresponds to Z of length n, a
P pattern of length m, and a maximum number of
allowed errors k, find all the matches of P in T using
only Z and whose maximum distance of edition to the
pattern is k. The distance between two strings x and y
is the minimum number of edition operations necessary
to transform x into y. The allowed edition operations
are insertion, elimination or replacements of a
character. This solution has diverse applications in
information retrieval, computational biology and signal
processing, among others.

Diverse methods of compression exist, among them
the family Ziv-Lempel stands out for its good
compression ratios combined with suitable times for
compression and decompression, particularly LZ78 [1]
and LZW [2]. One of the best approaches to the
problem of approximate searching on LZW
compressed text was proposed in [3], and consists on
splitting the pattern in k+1 subpatterns and performing
an exact multipattern search, with the set of resulting
subpatterns using Boyer-Moore's algorithm [4],
whenever a subpattern is found, the existence of the
complete subpattern is verified by decompressing the
text around the subpattern and executing an
approximate searching classic algorithm on the
decompressed text.

Proceedings of the 15th International Conference on Electronics, Communications and Computers (CONIELECOMP 2005)
0-7695-2283-1/05 $20.00 © 2005 IEEE

In this work an improvement to the verification is
presented, instead of executing decompression and
searching processes on the pattern, two bit-parallel
automata are constructed that recognize the complete
pattern, one recognizes to the left of the pattern found
and the other one to the right, such that the sum of the
errors found in each of the automata is smaller or equal
to k. In this way, we perform the entire search process
without decompressing the text and obtain competitive
times, compared to decompressing text and searching it
with the best existing algorithms.

2. Related Work
Approximate searching on compressed text was

proposed as an open problem in [5]. In [6] this problem
has been solved for the LZ78/LZW formats in O(mkn +
R) time for the worst case (where R is the number of
matches to find) and in O(k2n+R) time for the average
case using dynamic programming techniques. Bit-
parallelism is other technique used for approximate
searching. With this technique it is possible to pack
many values in the bits of a computer word of w bits
and to update all of them in parallel. In [7] this
technique was used to obtain a time O(nmk3/w) in the
worst case. Nevertheless, the solutions presented as in
[6] as in [7] are very slow.

In [3] the first practical solution to the approximate
searching problem was presented using filtering
algorithms. This solution works fine for text
compressed with LZ78/LZW algorithms and it is based
on splitting the pattern in k+1 subpatterns and
executing a multipattern search of them, followed by a
local decompression and a direct verification in the
candidate text areas. In spite of the good performance
of this approach, the verification can be improved
using techniques of bit-parallelism and filtering. In this
work, we demonstrate it.

3 The LZW Compression Format

The Ziv-Lempel family of algorithms replaces
substrings in the text by a pointer to a previous
occurrence of them. A particularly interesting variant is
LZW, which is used for Unix’s Compress program.
The LZW method starts by initializing the dictionary to
all the symbols in the alphabet. In the common case of
8-bits symbols, the first 256 entries of the dictionary

(entries 0 through 255) are occupied before any data is
input.

The principle of LZW is the following: the encoder
inputs symbols one by one and accumulates them in a
string I. After each symbol is input and is concatenated
to I, the dictionary is searched for string I. As long as I
is found in the dictionary, the process continues. At a
certain moment, adding the next symbol ‘a’ causes the
search to fail; string I is in the dictionary but string Ia is
not. At this moment the encoder outputs the dictionary
pointer that points to string I, saves string Ia in the next
available dictionary entry and initializes string I to
symbol a.

4. Improved approximate searching on
compressed text algorithm.

The algorithm presented in [3] is divided in three
phases: 1) splitting the pattern into k+1 subpatterns, 2)
executing multipattern search, and 3) verifying the
match of complete pattern. In this work, phase 1 and 2
are identical to that ones proposed in [3], however we
present an improvement to phase 3, the verification.
This phase is explained next in detail.

4.1 Verification

We begin supposing that the pattern has been
splitted in k + 1 subpatterns and one of them has been
found by means of an exact multipattern search. If P =
P1 F P2 and F is the subpattern found, a bit mask B for
P1 (inverted) is precalculated and other for P2 for each
of the k + 1 subpatterns. Next, using the bit mask
corresponding to the subpattern found, the bit mask
B[c] has the jth bit active if pj = c (where pj represents
the jth character of P1 or P2).

Fig. 1. No-deterministic automaton for approximate
searching for the string ‘patron’ allowing 2 errors.

Proceedings of the 15th International Conference on Electronics, Communications and Computers (CONIELECOMP 2005)
0-7695-2283-1/05 $20.00 © 2005 IEEE

For the verification of P1 y P2 we simulate a non-
deterministic automaton (NFA) similar to the one in
figure 1. Every row denotes the number of errors seen,
the first row denote zero errors, the second row one,
etc. Each time a character of the text is read the NFA
change its state. The horizontal, vertical, diagonal and
dashed diagonal arrows represent matching, inserting,
replacing or deleting of one character respectively. The
NFA indicates a match when some final state is active,
the row in which is that state will indicate the number
of errors found.

The automaton simulation was made according to
the algorithms proposed in [8], using k+1 bit masks for
representing the NFA rows. The formula for updating
the bit masks according to the character reading is:

R’0 ((R0 << 1) | 0m-1 1) & B[tj] (1)
R’i ((Ri << 1) & B[tj] | Ri-1 | (Ri-1 << 1) | (R’i-1 << 1)

The bit masks Ri are initialized to 0m-i 1i. In (1), R’i

denotes the horizontal, vertical, diagonal and dashed
diagonal arrows of figure 1 respectively.

The figure 2 shows how to obtain the characters
to feed the automaton. We showed hypothetical
windows of a text compressed with LZW. The dark
boxes represent the first character of the next block,
and the lines represent the referenced block. For each
block the final character, length, the block it refers, and
any other data dependent of the algorithm is kept.

Next, the recognition with P1 begins; it is less time
consuming to verify the blocks towards the left because
the characters have been obtained in the adequate order
to feed the automaton.

Fig. 2. Hypothetical windows of a text compressed with
LZW.

All initiates with the block where the subpattern F
starts. In figure 3, the block j represents the block
where the subpattern initiates, which is within block jj.
From the block j, we obtain all explicit characters to
what j refers, until we obtain a block of length minor or

equal to 1. Then, all the referenced characters by the
block jj-1 are obtained, by the block jj-2 and so on,
feeding the automaton with the characters that are
obtained. The process finishes when the automaton
dies, or when the number of errors found is greater that
k.

Fig. 3. Order in which the characters are obtained to feed the
automaton in the verification process.

If the number of errors found in the process k’ is
greater that k, we search for other subpattern, else if k’
= k the automaton of P2 is reconfigured to allow only
k’’ = k – k’ errors.

Now, we begin with the block where F finalizes. In
the figure 3 this block is represented by i, which is
within block ii. To obtain the characters is more
difficult in this moment, because it is necessary to go
backwards in the referenced chain from block ii until
we find block i, storing in the array the explicit
characters of each visited blocks. When finding the
block i, we feed the automaton with the last characters
stored in the array and so on.

If the obtained characters are not enough for
arriving at a final state of the automaton, a new block
ii= ii+1 is read and processed in the same way.
Obtaining so the characters of the blocks to which the
block ii makes reference, storing again the characters in
an array and feeding the automaton as in the previous
case. The process continues until the automaton dies or
a match of the patterns is found.

When the verification is finalized, if the total
number of errors found is smaller or equal to k, a match
of the complete pattern is reported.

5. Experimental Results

The characteristics of the computer used for
carrying out the experiments are: Intel Pentium IV
processor of 1.3 GHz with 256 MB RAM running
Linux Red Hat 8.0.

Proceedings of the 15th International Conference on Electronics, Communications and Computers (CONIELECOMP 2005)
0-7695-2283-1/05 $20.00 © 2005 IEEE

The experiments were carried out over 80 MB of
English text extracted from a set of the titles and
abstract of 270 medical magazines. The text file was
compressed with Unix`s Compress program obtaining a
compression of 58%. The patterns were chosen
randomly with length of 20 to 80 and k = 1.

In order to carry out the experiments, a tool
denominated alzgrep (lzgrep extended with
approximate searching) was implemented and later will
be publicly available. The results were compared with
agrep [8] and nrgrep [9] that are the best approximate
searching classic algorithms available and with the
original algorithm denominated PP-BM.

The figure 4 shows the times achieved for each of
the algorithms. The graphs show how our algorithm
achieves better times for long patterns (greater than 40)
and its efficiency decrements when the pattern is short
(shorter than or equal to 40). This happens because the
subpatterns have a short length and the algorithm finds
matches of them and must verify frequently.

Fig. 4. Searching time in seconds allowing different pattern
lengths and k=1.

6. Conclusions

We have presented an improvement of a solution
for approximate searching on compressed text. From
the obtained results of the experiments carried out, we
conclude that the proposed algorithm has the capability
of performing approximate searching on compressed
text with competitive times compared with the best
approximate searching algorithms available nowadays,
obtaining better results than them for low error rates.

In addition, it is not necessary to decompress the
text to perform the search, which allows searching on
the compressed text without any additional
decompression tool.

References

[1] J. Ziv and A. Lempel. Compression of individual
sequences via variable length coding. IEEE Trans. Inf.
Theory, 24:530-536, 1978.

[2] T. A. Welch. A technique for high performance data
compression. IEEE Computer Magazine, 17(6):8-19, June
1984.

[3] G. Navarro, T. Kida, M. Takeda, A. Shinohara, and S.
Arikawa. Faster approximate string matching over
compressed text. In Proc. 11th IEEE Data Compression
Conference (DCC’01), pages 459-468, 2001.

[4] R. S. Boyer and J. S. Moore. A fast string searching
algorithm. Communications of the ACM, 20(10):772,
1977.

[5] A. Amir and G. Benson. Efficient two-dimensional
compressed matching. In Proc. DCC’92, pages 279-288,
1992.

[6] J. Kärkkäinen, G. Navarro, and E. Ukkonen.
Approximate string matching over Ziv-Lempel
compressed text. In Proc. CPM’2000, LNCS 1848, pages
195-209, 2000.

[7] T. Matsumoto, T. Kida, M. Takeda, A. Shinohara, and S.
Arikawa. Bit-parallel approach to approximate string
matching in compressed texts. In Proc. SPIRE’2000,
pages 221-228. IEEE CS Press, 2000.

 [8] S. Wu and U. Manber. agrep- a fast approximate pattern-
matching tool. In Proc. USENIX Technical Conference,
pages 153-162, 1992.

[9] G. Navarro, NR-grep: a fast and flexible pattern-matching
tool. Software-Practice & Experience, 31(13). p. 1265-1312,
2001.

Proceedings of the 15th International Conference on Electronics, Communications and Computers (CONIELECOMP 2005)
0-7695-2283-1/05 $20.00 © 2005 IEEE

