
A Practical Index for Text Retrieval Allowing Errors �Ricardo Baeza-Yates Gonzalo NavarroDepartment of Computer Science, University of ChileBlanco Encalada 2120 - Santiago - Chilefrbaeza,gnavarrog@dcc.uchile.clAbstractWe propose a text indexing technique for approximate pattern matching, which is practicaland especially aimed at Information Retrieval (IR). Unlike other indices of this kind, it is ableto retrieve any string that approximately matches a given search pattern. Every sequence ofa �xed length appearing in the text is stored in the index, together with pointers to all thepositions where it appears. The search pattern is cut into pieces so that at least one mustmatch exactly. All the pieces are searched in the index and the union of candidate positionsis veri�ed. To reduce space requirements, pointers to blocks instead of exact positions can beused, which increases querying costs. We design an algorithm to optimize the pattern partitioninto pieces so that the total number of veri�cations is minimized. This also allows to know inadvance the expected cost of the search and the expected relevance of the query to the user.We show experimentally the build time, space requirements and query times of our index,�nding that it is a practical alternative for IR.Keywords: Approximate String Matching, Information Retrieval, Text Indexing.1 IntroductionThe problem of approximate string matching has a number of applications in computer science,such as text retrieval, computational biology, signal processing, pattern recognition, etc. It isde�ned as follows: given a long text of length n, and a (comparatively short) pattern of lengthm, retrieve all the segments (or \occurrences") of the text whose edit distance to the pattern isat most k. The edit distance between two strings is de�ned as the minimum number of characterinsertions, deletions and replacements needed to make them equal. It is common to report onlythe endpoints of occurrences. We call � = k=m the \error ratio".In the on-line version of the problem, it is possible to preprocess the pattern but not the text.The classical solution involves dynamic programming and is O(mn) time [20]. Recently, a numberof algorithms improved the classical one, for instance [24, 9, 22, 8, 27, 28, 4]. Some of them are\sublinear" in the sense that they do not inspect all the characters of the text, but of course theon-line problem is
(n) if m is taken as constant. In [4, 3], it is shown that [8] is the fastestalgorithm for moderately low error ratios and pattern length. Our present work can be seen asan o�-line version of that algorithm.We are particularly interested in information retrieval (IR), where the text is normally so largethat the on-line algorithms are not practical. Moreover, queries are more frequent than changesand therefore the text can be preprocessed, the query patterns are not too large (i.e. less than 25letters), the alphabet size (�) is not very small (36 at least) and expected error ratios are � 1=3(since otherwise the query returns too many matches and is useless to the user).�This work has been supported in part by Fondecyt grants 1950622 and 1960881.

Classical indices for text databases allow fast search of exact patterns. These indices, however,are unable to retrieve a word which has been mistyped. This is very common in texts obtainedby optical character recognition (OCR), or when there is no quality assurance for the content ofthe database (e.g. when indexing the World Wide Web). Moreover, the query may be misspelledor we may not remember the exact spelling of a foreign name. The edit distance de�ned abovecaptures very well such errors.The �rst indexing schemes for approximate text retrieval have appeared only a few years ago.There are two types of indexing mechanisms: word-oriented and sequence-oriented. In the �rstone, the index is capable of retrieving every word whose edit distance to the pattern is at mostk. In the second one, useful also when the text is not natural language, the index is capable ofretrieving every sequence, without notion of word separation.Indices of the �rst kind store the set of all di�erent words of the text (the vocabulary) and use anon-line algorithm on the vocabulary, thus obtaining the set of words to retrieve. From that pointon, the problem does not need to involve approximate matching anymore. Since the vocabularyis sublinear in size with respect to the text, they achieve acceptable performance. These indicesare not capable, however, of retrieving an occurrence that is not a complete word. For instance,if an OCR system has erroneously inserted a space in the middle of a word in the text, it willbe not possible to search that word with one error and retrieve it using a word-retrieving index.Examples of these indices are Glimpse [18], Igrep [1] and [5].In the indices of the second kind, the words are disregarded. They also apply if words do notexist in the text, such as in DNA or protein databases.One class of indices for this case is based on building the su�x tree of the text and traversing itinstead of the text, to avoid its redundancies [25, 10, 11, 7]. The main problem with this approachis that su�x trees pose heavy space requirements: the index, unless compressed, is twelve timesthe size of the text. Approaches to compress the su�x tree are still in their beginnings and havenot been implemented yet [14]. If the index does not �t in main memory (which is usually thecase), the construction process is very costly, even if the su�x tree is converted to a su�x array[17], to which [11, 7] can be adapted.A second class reduces the problem to exact matching of substrings of the pattern, and usesan index that searches the substrings with no errors [12, 23, 19]. Later, the occurrences of thosematching substrings have to be veri�ed to search the complete pattern. These indices can bee�ciently built and take less space than the others. However, they are less tolerant to errors.In this work we propose a sequence retrieving index especially aimed at IR scenarios, in thesame lines of reducing the problem to exact matching. We show also an algorithm to optimizethe partition of the pattern in order to minimize the number of text positions to verify. Thisalso allows to predict the cost of the search and to give early feedback to the user about theapproximate size of the result set. In case of too many veri�cations (which involves probably toomany results), the user may preempt the search, given the poor precision to be obtained.2 Previous WorkThe idea of reduction to exact partitioning has been used many times for on-line searching [27,8, 22, 4]. The basic idea is as follows: if a pattern occurs in the text with k errors, and if wecut the pattern in k + 1 pieces arbitrarily, then at least one of the pieces must be present in theoccurrence with no errors. This is easily seen by considering that each error modi�es at most onepiece of the pattern, and therefore at least one piece survives unchanged. To �nd all approximateoccurrences it su�ces to search all pieces and check their neighborhood.

Many generalizations of the idea have been studied. It has been shown that if the pattern iscut in less pieces (say j) then the subpatterns are to be searched with bk=jc errors [4, 7].Overlapping pieces have been considered in [22]. If all the pieces of length q (called q-grams) inthe pattern are searched, then the search needs not to inspect every text position, but \samples"separated by h characters that are not inspected at all. Moreover, they may also force that atleast s pieces are present in the candidate text area, by modifying h (s and h are related).Recently, a particular case of matching more than one piece has been proposed [21]: if thepattern is cut in k+s pieces, then at least s pieces must be present in every occurrence (moreover,they observe some positional constraints). This increases the tolerance to errors in long patterns.However, if the pattern is not long this partitioning gives very short pieces, which tend to triggermuch more veri�cations.Despite all generalizations, the original partitioning idea leads to the fastest on-line algorithmfor moderate pattern length and error ratios, as shown in [4]. This is the typical case in IR.The �rst idea to apply reduction to exact partitioning to indexing is [12], where the q-gramsapproach is used. The positions of all q-grams are stored. To search a pattern of length m, thetext is divided into blocks of size 2(m � 1). The number of all q-grams of the pattern that fallinto each block is computed. Each text block with at least m + 1� (k + 1)q q-grams falling in isveri�ed with dynamic programming.Independently, in [2] an alternative to Glimpse is proposed to allow more general searches.Instead of indexing every word as Glimpse does, they index every substring of a �xed length q.Although originally conceived for exact search, it is mentioned the possibility of combining theindex with exact partitioning to answer approximate search queries.The idea of q-grams is used again in [23] with a di�erent approach, more oriented to samplingthe text as in [22]. Every text sample is stored in the index (hence, the space requirements arereduced). Given a search pattern, its q-grams are searched in the index, and the rest proceedsas in the on-line version. The dependence between s and h allows to use a single index (withsamples separated by h characters) for di�erent m and k values (i.e. s is adjusted accordingly).Compression schemes are considered in [13], although the time complexity increases signi�cantly.Although the q-grams schemes have small space overhead, their tolerance to errors is very lowfor IR purposes, as shown in [4, 3] for its on-line version. In particular, it is lower than that ofthe on-line algorithm we are adapting [8].A somewhat di�erent idea is proposed in [19]. It uses an index where every sequence of thetext up to a given length q is stored, together with the list of its positions in the text. Hence, thestructure of the index is similar to the one we propose. However, the reduction to exact search iscompletely di�erent. To search for a pattern shorter than q�k, all the maximal strings whose editdistance to the pattern is less than k are generated, and each one is searched in the index. Later,the lists are merged. To handle longer patterns, they are split in as many pieces as necessary tomake them of the required length.The length of the strings stored in the index is made small enough to be able to represent themas computer integers. This allows to build the index in O(n) time, and very quickly in practice.The strings must be short also to avoid an explosive numbers of strings generated at search time.Query complexity is sublinear for su�ciently low error ratios. This maximum allowed errorratio increases with the alphabet size. For example, the formula shows that it is 0:33 for � = 4and 0:56 for � = 20. However, the scheme gets worse (because of the number of strings generated)as � grows, which is the typical case in IR.A useful concept to reduce the space requirements of these indices is block addressing. Themain idea is to cut the text in a number of blocks. Instead of storing all the exact positions where

each word or q-gram occurs, only the blocks where it appears are stored. At search time, thecandidate blocks must be completely veri�ed, which increases search times.This concept has been used in word-retrieving indices [18, 5] with good results. It is also usedin Grampse [16], which is based on [23] (although approximate search is not implemented yet).As opposed to block addressing, we denote character addressing the case when all the positionsare recorded.3 A New Indexing SchemeOur proposal aims speci�cally at building a practical index for IR purposes. It indexes all q-gramsand uses the simplest partitioning (i.e. in k + 1 disjoint pieces). This can be seen as an o�-lineversion of [8] (studied more in detail in [4, 3]). This is combined with a new pattern splittingoptimization technique to minimize the number of veri�cations to perform, which is especiallyuseful on natural language texts. Pointers to exact occurrences or to blocks can be used, althoughwe show later that only character addressing gives a useful index.At indexing time, we select a �xed length q. Every q-gram of the text is stored in the index(in lexical order). To resemble traditional inverted lists, we call vocabulary the set of all di�erentq-grams. The number of di�erent q-grams is denoted V , which is � n (in a text of n charactersthere are n q-grams, but only V di�erent q-grams). For the correctness of the algorithms, it isnecessary that the last q � 1 su�xes of the text are entered as q-grams too, even when they areof length < q. Together with each q-gram, we store the list of the text positions where it appears,in ascending positional order. Figure 1 shows a small example.
21 43extetextxtext e tx 4 ...e x tIndexText 321

Figure 1: The indexing scheme for q = 4.If block addressing is used, the text is divided in blocks of a �xed length b, and all the q-gramsthat start in the block are considered to lie inside the block. Only the ascending list of the blockswhere each q-gram appears is stored in this case. This makes the index smaller (since there isonly one reference for all the occurrences of a q-gram in a single block).To search a pattern of length m with k errors, we split the pattern in k+1 pieces, search eachpiece in the index of q-grams of the text, and merge all the occurrences of all the pieces, sinceeach one is a candidate position for a match. The neighborhood of each candidate position is thenveri�ed with a sequential algorithm. If blocks are used, each candidate block must be completelytraversed with an on-line algorithm.

Of course the pieces may not have the same length q. If a piece is shorter than q, all the q-grams with the piece as pre�x are to be considered as occurrences of the piece (they are contiguousin the index of q-grams). If the piece is longer, it is simply truncated to its �rst q letters (it ispossible to verify later, in the text, whether the q-gram starts in fact an occurrence of the piecebefore verifying the whole area).We describe now a splitting optimization technique to be used at query time.When the pattern is split in k + 1 pieces, we are free to select those pieces as we like. Thisidea is mentioned in [6] for an on-line algorithm as follows: knowing or assuming a given letterdistribution for the text to search, the pieces are selected so that the probabilities of all pieces aresimilar. This minimizes the total number of veri�cations to perform, on average.We can do much better here. They key point is that it is very cheap to compute in advancethe exact number of veri�cations to perform for a given piece. We just locate the piece in theq-gram index with binary search. In the general case we obtain a contiguous region, for piecesshorter than q. By storing, for each q-gram, the accumulated length of the lists of occurrences,we can subtract the lengths at the endpoints of the region to obtain immediately the number ofveri�cations to perform. The complete process takes O(logV) = O(logn).We describe a dynamic programming algorithm to compute the partition that minimizes thetotal number of veri�cations to perform. As a side result, we know in advance the total cost topay to retrieve the results, which as explained is useful as early feedback to the user.Let pat[0::m� 1] be the search pattern. Let R[i; j] be the number of veri�cations to performfor the piece pat[i::j � 1] (computed as explained above), for every 0 � i � j � m. Using R webuild two matrices, namely� P [i; k] = sum of the veri�cations of the pieces in the best partition for pat[i::m�1] with k errors,� C[i; k] = where must the next piece start in order to obtain P [i; k].Hence, we need O(m2) space. Computing R as described takes O(m2 logn), and the followingalgorithm computes the optimal partition in O(m2k) time.for (i = 0;i < m;i++)f P [i; 0] = R[i;m]; C[i; 0] = m; gfor (r = 1;r � k;r ++)for (i = 0;i < m� r;i++)f P [i; r] = minj 2 i+1::m�r(R[i; j]+ P [j; r� 1]);C[i; r] = j that minimizes the expression above; gThe �nal number of veri�cations is P [0; k]. The beginnings of the pieces are `0 = 0, `1 = C[`0; k],`2 = C[`1; k� 1], ..., `k = C[`k�1; 1].4 AnalysisWe analyze the time and space requirements of our index.To build the index we scan the text in a single pass, using hashing to store all the q-gramsthat appear in the text. This q must be selected as large as possible, but small enough for thetotal number of such q-grams to be small (practical values for natural language text are q = 3::5).Although we scan every q-gram and any good hash function of a q-gram takes O(q) time, thetotal expected time is kept O(n) instead of O(nq) by using a technique similar to Karp-Rabin[15] (i.e. the hash value of the next q-gram can be obtained in O(1) from the current one). Theoccurrences are found in ascending order, hence each insertion takes O(1) time.

Therefore, this index is built in O(n) expected time and a single pass over the text. The worstcase can be made O(n) by modifying Ukkonen's technique to build a su�x tree in linear time [26].We analyze space now. To determine the number of di�erent q-grams in random text, considerthat there are �q di�erent \urns" (q-grams) and n \balls" (q-grams in the text). The probabilityof a q-gram to be selected in a trial is 1=�q. Therefore, the probability of a q-gram not beinghit in n trials is (1 � 1=�q)n. Hence, the average number of q-grams hit in the n trials is V =�q(1�(1�1=�q)n) = �(�q(1�e�n=�q)) = �(min(n; �q)). This shows that q must be kept o(log� n)for the vocabulary space to be sublinear. We show practical sizes in the experiments.We consider the lists of occurrences now. Since we index all positions of all q-grams, the spacerequirements are O(n), being e�ectively 4n on a 32-bit architecture1. If block addressing is used(with blocks of size b), the same urn argument used above shows that the space requirements areO(nV=b(1� e�b=V)), which is o(n) if and only if V = o(b).We now turn our attention to the time to answer a query. The �rst splitting optimizationphase is O(m2(k + logn)) as explained. Once we have all the positions to verify, we check eachzone using a classical algorithm [24], at a cost of O(m2) each. This cost is exactly the same as inthe on-line version [8], since it is related to the number of occurrences of the pieces in the text.We analyze only the case of random text (natural language is shown in the experiments).Under this assumption, we discard the e�ect of the optimization and assume that the pattern issplit in pieces of lengths as similar as possible. In fact, the optimization technique makes moredi�erence in natural language texts, making the approach in that case more similar in performanceto the case of random text.Therefore, we split the pattern in pieces of length bm=(k + 1)c and dm=(k + 1)e. In terms ofprobability of occurrence, the shorter pieces are � times more probable than the others (where �is the size of the alphabet). The total cost of veri�cations is no more than(k+ 1)m2�b mk+1c nwhich is sublinear approximately for � < 1=(3 log� m).On the other hand, if we use block addressing, we must �nd the exact candidate positionsbefore verifying them with the above technique. To do this, we use the on-line version of ouralgorithm (i.e. [8]), which in turn �nds the candidate areas and veri�es using [24]. Excludingthe above considered veri�cations, the on-line algorithm runs in O(n) time . Therefore, we showunder which restrictions a sublinear part of the text is sequentially traversed. This new conditiongoes together with � < 1=(3 log� m) in the case of block addressing.The probability of a text position matching one piece is, as explained, (k + 1)=�bm=(k+1)c.Therefore, the probability of a block (of size b) being sequentially traversed is1� �1� k + 1�b mk+1 c�band since there are n=b blocks and traversing each one costs O(b), we have that the expectedamount of work to traverse blocks is n times the above expression, which isn�1� e� b(k+1)�bm=(k+1)c ��1 + O �k=�b mk+1 c��The above expression is sublinear approximately for � < 1= log�(bm).1We store just one pointer for each q-gram position. This allows to index up to 4 Gb of text. Therefore we woulduse more than four bytes to index longer texts. On the other hand, we are not considering here the possibility ofusing a compressed list of positions, which can considerably reduce the space requirements.

5 ExperimentsWe show experimentally the index building times and sizes for di�erent values of q, with characterand block addressing. We also show the querying e�ectiveness of the indices, by comparing thepercentage of the query time using the index against that of using the on-line algorithm. Theexperimental values agree well with our analysis in terms of the error ratios and block sizes up towhere the indices are useful. All the tests were run on a Sun SparcClassic with 16 Mb of RAM,running SunOS 4.1.3.For the tests we use a collection of 8.84 Mb of English literary text, �ltered to lower-case andwith all separators converted to a single space. We test the cases q = 3::5, as well as characteraddressing and block addressing with blocks of size 2 Kb to 64 K. Blocks smaller than 2 Kb wereof no interest because the index size was the same as with character addressing, and larger than64 Kb were of no interest because query times were too close to the on-line algorithm.Figure 2 shows index build time and space overhead for di�erent q values and block sizes. Thesize of the vocabulary �le was 61 Kb for q = 3, 384 Kb for q = 4 and 1.55 Mb for q = 5, whichshows a sharp increase.
1 2K 4K 8K 16K 32K 64K0

20
0481216
20

b
t q = 3q = 4q = 5

1 2K 4K 8K 16K 32K 64K0.0
4.0
0.00.51.01.52.02.53.0
3.54.0 bq = 3q = 4q = 5Figure 2: On the left, index construction times (minutes of user time). On the right, their spaceoverhead (i.e. index space divided by text space).We show now query times. We tested queries of length m = 8, 16 and 24. The queries arerandomly chosen from the text at the beginning of non-stopwords (stopwords are words whichcarry no meaning and are normally not allowed in queries, such as "a", "the", etc.). This setupmimics common IR scenarios. For m = 8 we show tests with k = 1 and 2; for m = 16 withk = 1::4 and for m = 24 with k = 1::6. Every data point was obtained by averaging Unix's usertime over 100 random trials.Figure 3 shows query times as a percentage of the on-line algorithm. For lack of space wedo not include the percentage of traversed text, which in principle is proportional to the data weshow. However, the overhead of manipulating the index is high and we prefer to give the morerealistic �gures. The overhead of managing the index makes it better to use the on-line algorithmwhen the �ltration e�ciency of the index is not good (moreover, the indices with larger b becomebetter because the overhead is less and the veri�cations are the same). In the character addressingindex, this happens for � > 1=4. Up to that point, the search times are under 10 seconds. Theblock addressing indices, on the other hand, cease to be useful too soon, namely for � > 1=8.

6 Conclusions and Future WorkWe have described a practical indexing scheme especially suited for IR and capable of retrievingany sequence matching a pattern with a given maximum number of errors. It is based on storing alltext q-grams in the index together with their occurrences. Querying is performed by searching inthe index pieces of the pattern and verifying the candidate positions. A variant pointing to blocksinstead of exact positions is described too. We analyze and experimentally test our approach.The experiments show that the scheme is practical when the pointers point to exact occur-rences. The value q may be between 3 and 5, giving a tradeo� between index space and queryperformance. Depending on q and for a reasonable error level (� � 1=4 in English text), queryingthe index takes 20% to 60% of the time of the on-line algorithm. The space overhead depends onq and is between two and four times the text size.Pattern pieces longer than q are truncated. This loses part of the information on the pattern.This case could justify the approach of [21] of splitting the pattern in more pieces and forcingmore than one piece to match before verifying. Extending the scheme to matching more than onepiece reduces the number of veri�cations but leads to a more complex algorithm, whose costs mayoutweight the gains of less veri�cations. We are currently studying this issue, as well as improvedpattern splitting heuristics.AcknowledgementsWe thank the useful comments and careful reading of an anonymous referee.References[1] M. Ara�ujo, G. Navarro, and N. Ziviani. Large text searching allowing errors. In Proc. 4thSouth American Workshop on String Processing, WSP'97, 1997. Valpara��so, Chile. To appear.[2] R. Baeza-Yates. Space-time trade-o�s in text retrieval. In Proc. WSP'93, pages 15{21, 1993.[3] R. Baeza-Yates and G. Navarro. A fast heuristic for approximate string matching. In Proc.WSP'96, pages 47{63. Carleton University Press, 1996.[4] R. Baeza-Yates and G. Navarro. A faster algorithm for approximate string matching. InProc. CPM'96, LNCS 1075, pages 1{23, 1996.[5] R. Baeza-Yates and G. Navarro. Block-addressing indices for approximate text retrieval. InProc. CIKM'97, 1997. Las Vegas, Nevada, Nov 11-15. To appear.[6] R. Baeza-Yates and G. Navarro. Multiple approximate string matching. In Proc. WADS'97,LNCS 1272, pages 174{184, 1997.[7] R. Baeza-Yates, G. Navarro, E. Sutinen, and J. Tarhio. Indices for approximate informationretrieval. Technical Report TR/DCC-97-2, Dept. of Computer Science, Univ. of Chile, 1997.[8] R. Baeza-Yates and C. Perleberg. Fast and practical approximate pattern matching. In Proc.CPM'92, pages 185{192, 1992. LNCS 644.[9] W. Chang and J. Lampe. Theoretical and empirical comparisons of approximate stringmatching algorithms. In Proc. CPM'92, pages 172{181, 1992. LNCS 644.

[10] A. Cobbs. Fast approximate matching using su�x trees. In Proc. CPM'95, pages 41{54,1995.[11] G. Gonnet. A tutorial introduction to Computational Biochemistry using Darwin. Technicalreport, Informatik E.T.H., Zurich, Switzerland, 1992.[12] P. Jokinen and E. Ukkonen. Two algorithms for approximate string matching in static texts.In Proc. MFCS'91, volume 16, pages 240{248, 1991.[13] J. K�arkk�ainen and E. Sutinen. Lempel-Ziv index for q-grams. In Proc. ESA'96, pages 378{391, 1996. LNCS 1136.[14] J. K�arkk�ainen and E. Ukkonen. Lempel-Ziv parsing and sublinear-size index structures forstring matching. In Proc. WSP'96, pages 141{155. Carleton University Press, 1996.[15] R. Karp and M. Rabin. E�cient randomized pattern-matching algorithms. IBM J. Res.Development, 31(2):249{260, March 1987.[16] O. Lehtinen, E. Sutinen, and J. Tarhio. Experiments on block indexing. In Proc. WSP'96,pages 183{193. Carleton University Press, 1996.[17] U. Manber and G. Myers. Su�x arrays: a new method for on-line string searches. In ACM-SIAM Symposium on Discrete Algorithms, pages 319{327, 1990.[18] U. Manber and S. Wu. glimpse: A tool to search through entire �le systems. TechnicalReport 93-34, Dept. of CS, Univ. of Arizona, Oct 1993.[19] E. Myers. A sublinear algorithm for approximate keyword searching. Algorithmica,12(4/5):345{374, Oct/Nov 1994.[20] P. Sellers. The theory and computation of evolutionary distances: pattern recognition. J. ofAlgorithms, 1:359{373, 1980.[21] F. Shi. Fast approximate string matching with q-blocks sequences. In Proc. WSP'96, pages257{271, 1996.[22] E. Sutinen and J. Tarhio. On using q-gram locations in approximate string matching. InProc. ESA'95, 1995. LNCS 979.[23] E. Sutinen and J. Tarhio. Filtration with q-samples in approximate string matching. In Proc.CPM'96, pages 50{61, 1996.[24] E. Ukkonen. Finding approximate patterns in strings. J. of Algorithms, 6:132{137, 1985.[25] E. Ukkonen. Approximate string matching over su�x trees. In Proc. CPM'93, pages 228{242,1993.[26] E. Ukkonen. Constructing su�x trees on-line in linear time. Algorithmica, 14(3):249{260,Sep 1995.[27] S. Wu and U. Manber. Fast text searching allowing errors. CACM, 35(10):83{91, 1992.[28] S. Wu, U. Manber, and E. Myers. A sub-quadratic algorithm for approximate limited ex-pression matching. Algorithmica, 15(1):50{67, 1996.

1 21 2
12020406080100120 k 1 41 2 3 4

12020406080100120 k 1 61 2 3 4 5 6
12020406080100120 k

1 21 2
12020406080100120 k 1 41 2 3 4

12020406080100120 k 1 61 2 3 4 5 6
12020406080100120 k

1 21 2
12020406080100120 k 1 41 2 3 4

12020406080100120 k 1 61 2 3 4 5 6
12020406080100120 kFigure 3: Query time using the index divided by query time using the on-line algorithm (percent-age). The rows correspond to q = 3, 4 and 5. The columns correspond to m = 8, 16 and 24.The dashed line corresponds to character addressing, full lines to block addressing. From lowerto upper (at k = 1) they correspond to b = 2, 4, 8, 16, 32 and 64 Kb.

