
Block Addressing Indices for Approximate Text Retrieval �Ricardo Baeza-Yates Gonzalo NavarroDepartment of Computer ScienceUniversity of ChileBlanco Encalada 2120 - Santiago - Chilefrbaeza,gnavarrog@dcc.uchile.clAbstractAlthough the issue of approximate text retrieval is gainingimportance in the last years, it is currently addressed by onlya few indexing schemes. To reduce space requirements, theindices may point to text blocks instead of exact word posi-tions. This is called \block addressing". The most notoriousindex of this kind is Glimpse. However, block addressing hasnot been well studied yet, especially regarding approximatesearching.Our main contribution is an analytical study of the space-time trade-o�s related to the block size. We �nd that, un-der reasonable assumptions, it is possible to build an indexwhich is simultaneously sublinear in space overhead and inquery time. We validate the analysis with extensive experi-ments, obtaining typical performance �gures. These resultsare valid not only for approximate searching queries but alsofor classical ones.Finally, we propose a new strategy for approximate search-ing on block addressing indices, which we experimentally�nd 4-5 times faster than Glimpse. This algorithm takesadvantage of the index even if the whole text has to bescanned. As a side e�ect, we �nd that using blocks of �xedsize is better than, say, addressing �les.1 IntroductionWith the advent of larger and larger databases, approxi-mate text retrieval is becoming an important issue. As textdatabases grow and become more heterogeneous, includingdata from di�erent sources, it is more and more di�cult toassure the quality of the information. Errors coming frommisspelling, mistyping or from optical character recognition(OCR) are examples of agents that inevitably degrade thequality of large text databases. Words which are stored erro-neously are no longer retrievable by means of exact queries.Moreover, even the queries may contain errors, for instance�This work has been supported in part by Fondecyt grants 1960881and 1950622.

in the case of misspelling a foreign name or missing an accentmark.A model which captures very well that kind of errors is theLevenshtein distance, or simply edit distance. The edit dis-tance between two strings is de�ned as the minimum numberof character insertions, deletions and replacements neededto make them equal. For example, the edit distance be-tween "color" and "colour" is 1, while between "survey"and "surgery" is 2. Phonetic issues can be incorporatedin this similarity measure. There are other similarity mea-sures, such as semantic similarity, which are out of the scopeof this paper.The problem of approximate string matching is de�ned asfollows: given a text and a pattern, retrieve all the seg-ments (or \occurrences") of the text whose edit distance tothe pattern is at most k (the number of allowed \errors").This problem has a number of other applications, such ascomputational biology, signal processing, etc. We call n thesize of the text.There exist a number of solutions for the on-line versionof this problem (i.e. the pattern can be preprocessed butthe text cannot). All these algorithms traverse the wholetext. If the text database is large, even the fastest on-linealgorithms are not practical, and preprocessing the text be-comes mandatory. This is normally the case in informationretrieval (IR). However, the �rst indexing schemes for thisproblem are only a few years old.There are two types of indexing mechanisms: word-retrievingand sequence-retrieving. In the �rst one, oriented to nat-ural language text and IR, the index is capable of retrievingevery word whose edit distance to the pattern is at most k.In the second one, useful also when the text is not naturallanguage, the index can retrieve every matching sequence,without notion of word separation.The existing indices of the �rst kind are modi�cations ofthe inverted list approach. They store the vocabulary of thetext (i.e. the list of distinct words) and the occurrencesof each word (i.e. the positions in the text). To searchan approximate pattern in the text, the vocabulary is �rstsequentially scanned, word by word (with an on-line algo-rithm). Once the set of matching words is known, theirpositions in the text are retrieved. Since the vocabulary isvery small compared to the text, they achieve acceptableperformance. These indices can only retrieve whole wordsor phrases. However, this is in many cases exactly what iswanted. Examples of these indices are Glimpse [5] and Igrep[1]. Glimpse uses block addressing (i.e. pointing to blocks of

text instead of words) to reduce the size of the index, at theexpense of more sequential processing at query time.This work is focused on block addressing for word retrievingindices. Not only there exist few indexing schemes, but alsothe problem is not very well studied. However, our mainresults apply to classical queries too. We study the use ofblock addressing to obtain indices which are sublinear inspace and in query time, and show analytically a range ofvalid combinations to achieve this. Ours is an average caseanalysis which gives \big-O" (i.e. growth rate) results andis strongly based on some heuristic rules widely acceptedin IR. We validate this analysis with extensive experiments,obtaining typical performance �gures.We also propose a new strategy for approximate searchingon block addressing indices, which we experimentally �nd4-5 times faster than Glimpse, and that unlike Glimpse,takes advantage of the vocabulary information even whenthe whole text has to be veri�ed. As a side e�ect, we �ndthat block addressing is much better than �le addressing(i.e. pointing to �les).This paper is organized as follows. In Section 2 we reviewprevious work. In Section 3 we study analytically the space-time trade-o�s related to the block size. In Section 4 we vali-date experimentally the analysis. In Section 5 we explain ournew search algorithm and compare it experimentally againstGlimpse. Finally, in Section 6 we give our conclusions andfuture work directions.2 Previous WorkThe �rst proposal for an approximate word-retrieving indexis due to Manber and Wu [5]. In a very practical approach,they propose a scheme based on a modi�ed inverted �le andsequential approximate search.The index structure is as follows: the text is logically dividedinto \blocks". The index stores all the di�erent words of thetext (the vocabulary). For each word, the list of the blockswhere the word appears is kept. See Figure 1.To search a word allowing errors, the vocabulary is sequen-tially scanned, word by word, with Agrep [9]. Agrep is anon-line approximate search software, which will treat the vo-cabulary as a simple piece of text. For each matching word,all the blocks where it appears in the text are marked. Then,for every marked block (i.e. where some matching wordis present), a new sequential search is performed over thatblock (using Agrep again).The idea of sequentially traversing the vocabulary (whichis typically small) leads to a great deal of exibility in thesupported query operations.The use of blocks makes the index small, at the cost ofhaving to traverse parts of the text sequentially. The indexis small not only because the pointers to the blocks mayneed less bytes, but also because all the occurrences of aword in a single block are referenced only once. This schemeworks well if not too many blocks are searched, otherwise itbecomes similar to sequential search on the text using Agrep.If the number of allowed errors in the pattern is reasonable(1{3), the number of matching words is small. Otherwise thequery is of little use in IR terms, because of low precision.Glimpse does not allow to tune the number or size of theblocks to use. The basic scheme works with 200 to 250blocks, and works reasonably well for text collections of up

b wordsblock ofb wordsblock ofb wordsblock of r blocksText
words occurrences

IndexFigure 1: The word indexing scheme.to 200 Mb. To cope with larger texts, it o�ers an index ad-dressing �les instead of blocks (\�le addressing"). Finally,for very large texts it can be switched to full inversion (i.e.word addressing), where each word points to its exact oc-currences in the text. Typical �gures for the size of theindex with respect to the text are: 2-4% for blocks, 10-15%for �les, 25-30% for words. Note that the last percentage issimilar to the overheads of classical inverted lists.To overcome the need of sequentially searching parts of thetext, the approach of full inversion is taken in Igrep [1]. Foreach word, the list of all its occurrences in the text are kept.This changes completely the second phase of the search:once the matching words in the vocabulary are identi�ed,all their occurrence lists are merged and the text is neveraccessed. This makes the approach much more resistant tothe size of the text collection. The scheme is shown to workwell with text collections of more than 1 Gb of text.Instead of Agrep, the scheme uses another on-line search al-gorithm [2], which is especially well suited for short patterns(e.g. words). The scheme also allows to search phrases, bysplitting them into words and combining the results.The index is built in a single pass over the text and in lineartime. The construction proceeds in-place, in the sense thatthe space requirement to build the index is that of the �nalindex.The analysis shows that the retrieval costs are sublinear foruseful searches (i.e. those with reasonable precision). Thespace requirements are similar to those of classical invertedlists (30-40%). This is the cost for not accessing the text atall, but compression schemes are being studied [6].3 Average Space-Time Trade-o�sGlimpse and Igrep are two extremes of a single idea. Glimpseachieves small space overhead at the cost of sequentially tra-versing parts of the text. Igrep achieves better performance

by keeping a large index. We study in this section the possi-bility of having an intermediate index, which is sublinear insize and query performance at the same time. We show thatthis is possible in general, under reasonable assumptions.Our analysis is strongly based on some widely acceptedheuristic rules which are explained next. Those rules dealwith average cases of natural language text. We obtain re-sults regarding the growth rate of index sizes and querytimes, and therefore our analysis uses the O(),
() and �()notation. Hence, our analysis refers to the average case,gives \big-O" results and is valid only if the heuristic rulesthat we use are valid in the text data.3.1 Modeling the TextWe assume some empirical rules widely accepted in IR, whichare shown accurate in our experiments.The �rst one is Heaps law, which relates the text size n andthe average vocabulary size V by the formula V = O(n�)for 0 < � < 1 [4].The second rule is the generalized Zipf's law [10], whichstates that if the words of the vocabulary are sorted indecreasing order of frequency, then the frequency of the i-th word is n=(i�H(�)V), where H(�)V = PVj=1 1=j�, for some� � 1. For � = 1 it holds H(1)V = ln V +O(1), while for � > 1we have H(�)V = O(1). For instance, in the texts of the treccollection [3], � is between 0.4 and 0.6, while � is between1.7 and 2.0.The third rule assumes that user queries distribute uni-formly in the vocabulary, i.e. every word in the vocabularycan be searched with the same probability. This is particu-larly true in approximate searching, since even if the usersearches, say, very unfrequent words, those words matchwith k errors with other words, with no relation to the fre-quencies of the matched words.Finally, the words are assumed to be uniformly distributedin the text. Although widely accepted, this rule may not betrue in practice, since words tend to appear repeated in smallareas of the text. For our purposes, uniform distribution isa pessimistic assumption we make.Recall Figure 1. The text of n words is divided into r blocksof size b (hence n � rb). The vocabulary (i.e. every di�erentword in the text) is stored in the index. For each word, thelist of blocks where it appears is stored.3.2 Query Time ComplexityTo search an approximate pattern, a �rst pass runs an on-line algorithm over the vocabulary. The sets of blocks whereeach matching word appears are collected. For each suchblock, a sequential search is performed on that block.The sequential pass over the vocabulary is linear in V , henceit is �(n�), which is sublinear in the size of the text.An important issue is how many words of the vocabularymatch a given pattern with k errors. In principle, there is aconstant bound to the number of distinct words which matcha given pattern with k errors, and therefore we can say thatO(1) words in the vocabulary match the pattern. However,not all those words will appear in the vocabulary. Instead,while the vocabulary size increases, the number of matching

words that appear increases too, at a lower rate1. We showexperimentally in the next section that a good model for thenumber of matching words in the vocabulary is O(n�) (with� < �).For classical word queries we have � = 0 (i.e. only oneword matches). For pre�x searching, regular expressionsand other multiple-matching queries, we conjecture that theset of matching words grows also as O(n�) if the query isgoing to be useful in terms of precision. However, this issuedeserves a separate study and is out of the scope of thispaper.Since the average number of occurrences of each word in thetext is n=V = �(n1��), the average number of occurrencesof the pattern in the text is O(n1��+�). This fact is sur-prising, since one can think in the process of traversing thetext, where each word appears with a �xed probability andtherefore there is a �xed probability of matching each newword. Under this model the number of matching words isa linear proportion of the text. The fact that this is notthe case (demonstrated experimentally in the next section)shows that this model is not realistic. The new words thatappear as the text grows deviate it from the model of wordsappearing with �xed probability.The blocks to work on in the text are those including someoccurrence of the pattern. Call w the number of matchingwords in the text. Since we assume that the words appearuniformly in the text, the probability that a given blockdoes not contain a given word is 1 � 1=r. Therefore, theprobability of not containing any words is (1� 1=r)w. Sincethere are r blocks, the average number of non-empty blocksis r(1� (1�1=r)w). Since sequentially traversing each blockcosts �(b), we have a total cost of �(br(1� (1� 1=r)w)) =�(n(1� (1� 1=r)w)).We now simplify that expression. Notice that (1� 1=r)w =ew ln(1�1=r) = e�w=r+O(w=r2) = �(e�w=r). Hence the querytime complexity if w occurrences are searched is�(n(1� e�w=r))As we observed before, w = �(n1��+�) on average. There-fore, on average the search cost is �(n(1� e�b=n���)).Expressions of the form \1� e�x" appear frequently in thisanalysis. We observe that they are O(x) whenever x = o(1)(since e�x = 1�x+O(x2)). On the other hand, if x =
(1),then e�x is far away from 1, and therefore \1�e�x" is
(1).For the search cost to be sublinear, it is thus necessary thatb = o(n���), which we call the \condition for time sublin-earity".3.3 Space ComplexityWe consider space now. The average size of the vocabularyitself is already sublinear. However, the total number of ref-erences to blocks where each word appears may be linear (itis truly linear in the case of full inversion, which correspondsto single-word blocks, i.e. b = 1).Suppose that a word appears ` times in the text. Thesame argument used above shows that it appears in �(r(1�1This is the same phenomenon observed in the size of the vocab-ulary. In theory, the total number of words is �nite and thereforeV = O(1). But in practice that limit is never reached, and the modelV = O(n�) describes reality much better.

e�`=r)) blocks on average. Recall that the index stores anentry in the list of occurrences for each di�erent block wherea word appears. Under the Zipf's law, the number of occur-rences of the i-th most frequent word is `i = n=(i�H(�)V).Therefore, the number of blocks where it appears is� �r �1� e�`i=r�� = ��r �1� e�b=(i�H(�)V)��and the total number of references to blocks isr VXi=1 1� e�b=(i�H(�)V) (1)a summation which is hard to solve exactly. However, wecan still obtain the required information of order. We shownow that there is a threshold a such thata = � bH(�)V �1=�1. The O(a) most frequent words appear in �(r) blocks,and therefore contribute �(ar) to the size of the listsof occurrences. This is because each term of the sum-mation (1) is
(1) provided b =
�i�H(�)V � which isequivalent to i = O(a).2. The O(V �a) least frequent words appear nearly eachone in a di�erent block, that is, if the word appears` times in the text, it appears in
(`) blocks. This isbecause r(1 � e�`=r) = �(`) whenever ` = o(r). For`i = n=(i�H(�)V), this is equivalent to i = !(a).Summing the contributions of those lists and boundingwith an integral we haveVXi=a+1 ni�H(�)V = nH(�)V 1=a��1 � 1=V ��1�� 1 (1 + o(1))= �� na��1� = �(ar)where we realistically assume � > 1 (we cover the case� = 1 later).Therefore, the total space for the lists of occurrences is al-ways �(ar) = �(rb1=�) for � > 1.Hence, for the space to be sublinear we just need r = o(n).Therefore, simultaneous time and space complexity can beachieved whenever b = o(n���) and r = o(n).3.4 Combined SublinearityTo be more precise, assume we want to spendSpace = �(n)space for the index. Given that the vocabulary alone isO(n�), � � must hold. Solving rb1=� = n we haver = ��n ��1��1 �(a condition which imposes � 1=�) andb = ��n �(1�)��1 �

Space Timen0:90 n0:99n0:92 n0:95n0:94 n0:91n0:96 n0:87n0:98 n0:82n1:00 n0:78 SpaceTime�0 0 11 �1��+� �()Figure 2: On the left, valid combinations for time and spacecomplexity assuming � = 1:87, � = 0:4 and � = 0:18. Onthe right, time and space complexity exponents.Since the condition for time sublinearity imposes b = o(n���)and we had previously that � �, we conclude > �() = max��; 1 + (1� � + �)(�� 1)� �In that case, the time complexity becomesTime = ��n1��+�+ �(1�)��1 �(and �(n) if � �()). Note that the above expressionturns out to be just the number of matching words in thetext times the block size.The combined Time� Space complexity isTime� Space = ��n1��+�+ ����1 �which is minimized for = 1 (full inversion), where Space =�(n) and Time = �(n1��+�).The practical values of the trec collection show that mustbe larger than 0.77 .. 0.89 in practice, in order to answerqueries with at least one error in sublinear time and space.Figure 2 shows possible time and space combinations for� = 0:4 and � = 1:87, values that correspond to the col-lection we use in the experiments. The values correspondto searching with k = 2 errors, which, as found in the nextsection, matches with � = 0:18. If less space is used, thetime keeps linear (as in Glimpse). Better complexities canbe expected for larger � (which is normally the case).We also show schematically the valid time and space com-binations. We plot the exponents of n for varying . As theplot shows, the only possible combined sublinear complexityis achieved in the range �() < < 1, which is quite narrow.We have left aside the case � = 1, because it is usuallynot true un practice. However, we show now what happensin this case. The analysis for query time remains the same.For space, we have that a = �(b= log V) = �(b= log n). Sum-ming the two parts of the vocabulary we have that the spacefor the lists of occurrences is�� nlog n + n�1� log blog n + log log nlog n ��

which is sublinear provided b =
(n�), for every � < 1(e.g. b = n= log n). This condition opposes to the one fortime sublinearity, even for classical searches with � = 0.Therefore, it is not possible to achieve combined sublinearityin this (unrealistic) case.We end this section with a couple of practical considerationsregarding this kind of index. First, using blocks of �xed sizeimposes no penalty on the overall system, since the blockmechanism is a logical layer and the �les do not need to bephysically split or concatenated.Another consideration that arises is how to build the indexincrementally if the block size b has to vary when n grows.Reindexing each time with a new block size is impractical.A possible solution is to keep the current block size until itshould be doubled, and then process the lists of occurrencesmaking equal all blocks numbered 2i with those numbered2i+1 (and deleting the resulting duplicates). This is equiva-lent to deleting the least signi�cant bit of the block numbers.The process is linear in the size of the index (i.e. sublinearin the text size) and fast in practice.4 Experimental ValidationIn this section we validate experimentally the previous analy-sis. For our experiments, we use one of the collections con-tained in trec, namely the wsj (Wall Street Journal). Thecollection contains 250 Mb of text. To mimic common IRscenarios, all the texts were transformed to lower-case, allseparators to single spaces (respecting lines); and stop-wordswere eliminated. We are left with almost 200 Mb of �lteredtext. Throughout this exposition we talk in terms of the sizeof the �ltered text, which takes 80% of the original text. Wemeasure n and b in bytes, not in words.The collection is considered as a unique large �le, which islogically split into blocks of �xed size. The larger the blocks,the faster to build and the smaller the index, but also thelarger the proportion of text to search sequentially at querytime. To measure the behavior of the index as n grows, weindex the �rst 20 Mb of the collection, then the �rst 40 Mb,and so on, up to 200 Mb.4.1 VocabularyWe measure V , the number of words in the vocabulary interms of n (the text size). Figure 3 (left side) shows thegrowth of the vocabulary. Using least squares we �t thecurve V = 78:81n0:40 . The relative error is very small(0.84%). Therefore, � = 0:4 for our experiments.We then measure the number of words that match a givenpattern in the vocabulary. For each text size, we select wordsat random from the vocabulary allowing repetitions. This isto mimic common IR scenarios. In fact, not all user queriesare found in the vocabulary in practice, which reduces thenumber of matches. Hence, this test is pessimistic in thatsense.We test k = 1, 2 and 3 errors. To avoid taking into accountqueries with very low precision (e.g. searching a 3-letterword with 2 errors may match too many words), we imposelimits on the length of words selected: only words of length4 or more are searched with one error, length 6 or more withtwo errors, and 8 or more with three errors.

We perform a number of queries which is large enough to en-sure a relative error smaller than 5% with a 95% con�denceinterval. Figure 3 (right side) shows the results. We useleast squares to �t the curves 0:31n0:14 for k = 1, 0:61n0:18for k = 2 and 0:88n0:19 for k = 3. In all cases the relativeerror of the approximation is under 4%. These are the �values mentioned in the analysis.4.2 Space versus Time for Fixed Block SizeWe show the space overhead of the index and the time toanswer queries for three di�erent �xed block sizes: 2 Kb,32 Kb and 512 Kb. See Figure 4. Observe that the time ismeasured in a machine-independent way, since we show thepercentage of the whole text that is sequentially searched.Since the processing time in the vocabulary is negligible, thetime complexity is basically proportional to this percentage.The decreasing percentages indicate that the time is sublin-ear.The queries are the same used to measure the amount ofmatching in the vocabulary, again ensuring at most 5% oferror with a con�dence level of 95%. Using least squares weobtain that the amount of traversed text is 0:10n0:79 for b =2 Kb, 0:45n0:85 for b = 32 Kb, and 0:85n0:89 for b = 512 Kb.In all cases, the relative error of the approximation is un-der 5%. As expected from the analysis, the space overheadbecomes linear (since = 1) and the time is sublinear (theanalysis predicts O(n0:78), which is close to these results).We observe that the analysis is closer to the curve for smallerb. This is because the fact that b = O(1) shows up earlier(i.e. for smaller n) when b is smaller. The curves with largerb will converge to the same exponents for larger n.4.3 Space versus Time for Fixed Number of BlocksTo show the other extreme, we take the case of �xed r. Theanalysis predicts that the time should be linear and the spaceshould be sublinear (more speci�cally, O(n1=�) = O(n0:53)).This is the model used in Glimpse for the tiny index (wherer � 256).See Figure 5, where we measure again space overhead andquery times, for r = 28, 212 and 216. Using least squares we�nd that the space overhead is sublinear in the text size n.For r = 28 we have that the space is 0:87n0:53 , for r = 212 itis 0:78n0:75 , and for r = 216 it is 0:74n0:87 . The relative errorof the approximation is under 3%. As before, the analysisis closer to the curve for smaller r, by similar reasons (thee�ect is noticed sooner for smaller r).On the other hand, the percentage of the traversed textincreases. This is because the number of matching wordsincreases as O(n1��+�). The percentage will eventually sta-bilize, since it is increasing and bounded by 100%.4.4 Sublinear Space and TimeFinally, we show experimentally in Figure 6 that time andspace can be simultaneously sublinear. We test = 0:92,0.94 and 0.96. The analysis predicts the values shown in thetable of Figure 2.Using least squares we �nd that the space overhead is sub-linear and very close to the predictions: 0:42n0:95 , 0:41n0:92

40 20040 80 120 160 20020406080100120140160
n (Mb)�103

40 20040 80 120 160 2000
35
0510152025
3035 n (Mb)k = 1k = 2k = 3

Figure 3: Vocabulary tests for the wsj collection. On the left, the number of words in the vocabulary. On the right, numberof matching words in the vocabulary.
20040 80 120 160 2000

80
0102030405060
7080 n (Mb)Mb b = 512Kbb = 32Kbb = 2Kb

20040 80 120 160 2000
60
01020304050
60

n (Mb)% b = 2Kbb = 32Kbb = 512Kb
Figure 4: Experiments for �xed block size b. On the left, space taken by the indices. On the right, percentages of the textsizes sequentially searched.and 0:40n0:89 respectively. The error of the approximationsis under 1%.The percentage of the traversed text decreases, showing thatthe time is also sublinear. The least squares approxima-tion shows that the query times for the above values are0:24n0:95 , 0:17n0:94 and 0:11n0:91, respectively. The relativeerror is smaller than 2%.Hence, we can have for this text2 an O(n0:94) space and timeindex (our analysis predicts O(n0:93)).5 A New Searching AlgorithmWe present in this section an alternative approximate searchapproach which is faster than Glimpse.We also start the search by sequentially scanning the vocab-ulary with an on-line approximate search algorithm. Oncethe blocks to search have been obtained, Glimpse uses Agrep(i.e. approximate searching) again over the blocks. How-ever, this can be done better.Since we have run an online search over the vocabulary2The wsj collection has especially low � value, which worsens thecomplexities. We selected it for its size.

�rst, we know not only which blocks contain an approxi-mate match of the search pattern, but also which words ofthe vocabulary matched the pattern and are present in eachblock. Hence, instead of using again approximate searchover the blocks as Glimpse, we can run an exact search forthose matching words found in the vocabulary. In mostcases, this can be done much more e�ciently than approx-imate searching. Moreover, since as we show later, most ofthe search time is spent in the search of the text blocks, thisimprovement has a strong impact on the overall search time.We use an extension of the Boyer-Moore-Horspool-Sundayalgorithm [7] to multipattern search. This gave us betterresults than an Aho-Corasick machine, since as shown inFigure 3, few words are searched on each block (this decisionis also supported by [8]).We compared this strategy against Glimpse version 4.0. Weused the \small" index provided by Glimpse, i.e. the one ad-dressing �les (i.e. the sequential search must be done on thematching �les). Our index used also �les as the addressingunit for this comparison.All the tests were run on a Sun SparcServer 1000 with 128Mb RAM, running SunOS 5.5. However, only 4 Mb or RAMwere used by the indexers. The tests were run when the

20040 80 120 160 2000
80
0102030405060
7080 n (Mb)Mb r = 28r = 212r = 216

20040 80 120 160 2000
50
010203040
50

n (Mb)% r = 216r = 212r = 28
Figure 5: Experiments for �xed number of blocks r. On the left, space taken by the indices. On the right, percentages of thetext sizes sequentially searched.

20040 80 120 160 2000
70
01020304050
6070 n (Mb)Mb = 0:92 = 0:94 = 0:96

20040 80 120 160 2000
25
05101520
25

n (Mb)% = 0:96 = 0:94 = 0:92
Figure 6: Experiments for �xed (simultaneous sublinearity). On the left, space taken by the indices. On the right,percentages of the text sizes sequentially searched.server was not performing other tasks. We used the samewsj collection for the comparison. It is composed of 278�les of almost 1 Mb each.The stop-word mechanism and treatment of upper and lower-case letters is somewhat particular in Glimpse. We circum-vent this problem by performing all �ltering and stop-wordelimination directly in the source �les, and then using bothindices without �ltering or stop-words considerations.Our indexer took near 16 minutes to index the collection(i.e. more than 10 Mb per second), while Glimpse took 28minutes. This is due to di�erent internal details which arenot of interest to this work, e.g. the indexers have di�erentcapabilities apart from approximate searching. Both indicestook approximately 7 Mb. This is less than 3% of the size ofthe collection (this good result is because the �les are quitelarge).We are not comparing the complete indexing mechanisms,but only their strategy to cope with approximate search ofwords when they have to be sequentially searched on thetext. Issues such as a di�erent addressing granularity willnot change the proportion between the search times.In both indices we retrieve whole words that match the pat-tern. This is the default in this paper and we believe thatthis option is more natural to the �nal user than allowing

subword matching (i.e. "sense"matching with one error in"consensus").Table 1 (upper table) shows the times obtained (user times).As it can be seen, the mechanism we propose is 4-5 timesfaster in practice (i.e. taking into account all the processingneeded). We also show the percentage of the text sequen-tially inspected and the average number of matches found, aswell as the number of words matching in the vocabulary. Wecan see that an important part of the text is inspected, evenfor queries with acceptable precision (this is because the �lesare large). Moreover, the times are almost proportional tothe amount of sequential search done (we process near 5Mb/sec, while Glimpse is close to 1 Mb/sec). Therefore, theadvantage of searching with a multipattern exact search in-stead of an approximate search algorithm is evident. Evenif the whole text is searched (in which case Glimpse is notbetter than Agrep, i.e. a complete sequential search), ourindexing scheme takes advantage of the vocabulary, becauseit never searches the text for an approximate pattern.Table 1 (lower part) presents the less interesting case inwhich subword matching is also allowed. The precision ismuch lower (i.e. there are more matches), which shows thatthis query is unlikely to be interesting for the users. It canalso be seen that much more text is traversed. The perfor-

Errors Ours Glimpse Ours/Glimpse % inspected # matches # vocab. matchesMatching Complete Words1 8.20 34.99 23.42% 24.94% 871.86 4.972 18.05 82.50 21.91% 43.83% 2591.02 25.543 29.37 143.69 20.43% 77.81% 7341.84 31.15Subword Matching Allowed1 39.37 16.05 245.30% 41.45% 44541.50 159.072 73.04 64.12 113.91% 64.28% 44991.80 230.483 75.84 132.56 57.21% 77.39% 31150.50 182.92Table 1: Times (in seconds) and other statistics to retrieve all occurrences of a random word with di�erent number of errors.mance of our algorithm degrades due to a larger amount ofwords matching in the vocabulary, which reduces the e�ec-tiveness of our multipattern exact searching against plainapproximate search. On the other hand, Glimpse improvesfor one and two errors because of specialized internal al-gorithms to deal with this case. The net result is that ouralgorithm is slower for one and two errors, although it is stillfaster for three errors. This test shows that our approach isbetter when not too many words match in the vocabulary,which is normally the case of useful queries.6 Conclusions and Future WorkWe focused on the problem of block addressing for approx-imate word retrieving indices. We found theoretically andexperimentally that it is possible to obtain a block address-ing index which is at the same time sublinear in space (likeGlimpse) and in query time performance (like full invertedindices), and showed practical compromises achieving thatgoal. For instance, we built for our example text an indexwhich is O(n0:94) space and answers approximate queries inO(n0:94) time. Those results apply to classical queries too(not only to approximate searching). Finally, we proposed avariation in Glimpse's sequential search, which is 4-5 timesfaster than Glimpse and takes advantage of the index evenif all the text must be processed.We also discovered, as a side e�ect, that block addressing ismuch better in general than �le addressing, because blocksare of �xed size. This is not shown in the experiments be-cause the �les were cut to almost the same size, but onnormal �les the di�erences in length make �le addressingsearching more than twice the text that is searched withblock addressing. This translates directly into performanceimprovements. The reason is that some �les are quite longwhile others are short. Larger �les have higher probabilityof containing a given word and therefore are traversed morefrequently. Therefore, the amount to search is directly re-lated to the variance in the size of the addressing units. Asexplained, using blocks imposes no penalty on the overallsystem.We plan to study other improvements to the search algo-rithm. For instance, we observe that when the vocabularyis sequentially searched, the words are in lexicographical or-der, and therefore tend to share a common pre�x with theprevious one. This information could be stored in the indexat little space penalty. At query time, common pre�xes canbe skipped by restarting the processing of the previous wordat the proper point.Finally, we have still not considered e�cient storage of the

pointers to blocks. In our current implementation, eachpointer takes one computer word (in the experiments againstGlimpse, the small number of �les allowed to use two bytes).Clearly, they can be smaller if r is not large (e.g. the tinyindex of Glimpse uses pointers of one byte because r < 256).In theory, this adds a multiplying factor of O � log rlog n � to theindex space, which does not a�ect our analysis of sublinear-ity. However, the reduction in space may be signi�cativein practice (up to 50% reduction). We are also studyingcompression schemes to search directly in the compressedtext.References[1] M. Ara�ujo, G. Navarro, and N. Ziviani. Large textsearching allowing errors. In Proc. 4th South AmericanWorkshop on String Processing, WSP'97, 1997. Val-para��so, Chile. To appear.[2] R. Baeza-Yates and G. Navarro. A faster algorithm forapproximate string matching. In Proc. CPM'96, pages1{23, 1996.[3] D. Harman. Overview of the Third Text REtrievalConference. In Proc. Third Text REtrieval Conference(TREC-3), pages 1{19, 1995. NIST Special Publication500-207.[4] J. Heaps. Information Retrieval - Computational andTheoretical Aspects. Academic Press, NY, 1978.[5] U. Manber and S. Wu. glimpse: A tool to searchthrough entire �le systems. Technical Report 93-34,Dept. of CS, Univ. of Arizona, Oct 1993.[6] E. Moura, G. Navarro, and N. Ziviani. Indexing com-pressed text. In Proc. 4th South American Workshopon String Processing, WSP'97, 1997. Valpara��so, Chile.To appear.[7] D. Sunday. A very fast substring search algorithm.CACM, 33(8):132{142, Aug 1990.[8] B. Watson. The performance of single and multiple key-word pattern matching algorithms. In Proc. WSP'96,pages 280{294, 1996.[9] S. Wu and U. Manber. Agrep { a fast approximatepattern-matching tool. In Proc. USENIX, pages 153{162, 1992.[10] G. Zipf. Human Behaviour and the Principle of LeastE�ort. Addison-Wesley, 1949.

