Block Addressing Indices for Approximate Text Retrieval *

Ricardo Baeza-Yates

Gonzalo Navarro

Department of Computer Science
University of Chile
Blanco FEncalada 2120 - Santiago - Chile
{rbaeza,gnavarro}@dcc.uchile.cl

Abstract

Although the issue of approximate text retrieval is gaining
importance in the last years, it is currently addressed by only
a few indexing schemes. To reduce space requirements, the
indices may point to text blocks instead of exact word posi-
tions. This is called “block addressing”. The most notorious
index of this kind is Glimpse. However, block addressing has
not been well studied yet, especially regarding approximate
searching.

Our main contribution is an analytical study of the space-
time trade-offs related to the block size. We find that, un-
der reasonable assumptions, it is possible to build an index
which is simultaneously sublinear in space overhead and in
query time. We validate the analysis with extensive experi-
ments, obtaining typical performance figures. These results
are valid not only for approximate searching queries but also
for classical ones.

Finally, we propose a new strategy for approximate search-
ing on block addressing indices, which we experimentally
find 4-5 times faster than Glimpse. This algorithm takes
advantage of the index even if the whole text has to be
scanned. As a side effect, we find that using blocks of fixed
size 1s better than, say, addressing files.

1 Introduction

With the advent of larger and larger databases;, approxi-
mate text retrieval is becoming an important issue. As text
databases grow and become more heterogeneous, including
data from different sources, it is more and more difficult to
assure the quality of the information. Errors coming from
misspelling, mistyping or from optical character recognition
(OCR) are examples of agents that inevitably degrade the
quality of large text databases. Words which are stored erro-
neously are no longer retrievable by means of exact queries.
Moreover, even the queries may contain errors, for instance

*This work has been supported in part by Fondecyt grants 1960881
and 1950622,

in the case of misspelling a foreign name or missing an accent
mark.

A model which captures very well that kind of errors is the
Levenshtein distance, or simply edit distance. The edit dis-
tance between two strings is defined as the minimum number
of character insertions, deletions and replacements needed
to make them equal. For example, the edit distance be-
tween "color" and "colour" is 1, while between "survey"
and "surgery'" is 2. Phonetic issues can be incorporated
in this similarity measure. There are other similarity mea-
sures, such as semantic similarity, which are out of the scope
of this paper.

The problem of approximate string matching is defined as
follows: given a text and a pattern, retrieve all the seg-
ments (or “occurrences”) of the text whose edit distance to
the pattern is at most k (the number of allowed “errors”).
This problem has a number of other applications, such as
computational biology, signal processing, etc. We call n the
size of the text.

There exist a number of solutions for the on-line version
of this problem (i.e. the pattern can be preprocessed but
the text cannot). All these algorithms traverse the whole
text. If the text database is large, even the fastest on-line
algorithms are not practical, and preprocessing the text be-
comes mandatory. This 1s normally the case in information
retrieval (IR). However, the first indexing schemes for this
problem are only a few years old.

There are two types of indexing mechanisms: word-retrieving
and sequence-retrieving. In the first one, oriented to nat-
ural language text and IR, the index is capable of retrieving
every word whose edit distance to the pattern is at most k.
In the second one, useful also when the text is not natural
language, the index can retrieve every matching sequence,
without notion of word separation.

The existing indices of the first kind are modifications of
the inverted list approach. They store the vocabulary of the
text (i.e. the list of distinct words) and the occurrences
of each word (i.e. the positions in the text). To search
an approximate pattern in the text, the vocabulary is first
sequentially scanned, word by word (with an on-line algo-
rithm). Once the set of matching words is known, their
positions in the text are retrieved. Since the vocabulary is
very small compared to the text, they achieve acceptable
performance. These indices can only retrieve whole words
or phrases. However, this is in many cases exactly what is
wanted. Examples of these indices are Glimpse [5] and Igrep
[1]. Glimpse uses block addressing (i.e. pointing to blocks of

text instead of words) to reduce the size of the index, at the
expense of more sequential processing at query time.

This work is focused on block addressing for word retrieving
indices. Not only there exist few indexing schemes, but also
the problem is not very well studied. However, our main
results apply to classical queries too. We study the use of
block addressing to obtain indices which are sublinear in
space and in query time, and show analytically a range of
valid combinations to achieve this. Ours is an average case
analysis which gives “big-O” (i.e. growth rate) results and
is strongly based on some heuristic rules widely accepted
in IR. We validate this analysis with extensive experiments,
obtaining typical performance figures.

We also propose a new strategy for approximate searching
on block addressing indices, which we experimentally find
4-5 times faster than Glimpse, and that unlike Glimpse,
takes advantage of the vocabulary information even when
the whole text has to be verified. As a side effect, we find
that block addressing is much better than file addressing
(i.e. pointing to files).

This paper is organized as follows. In Section 2 we review
previous work. In Section 3 we study analytically the space-
time trade-offs related to the block size. In Section 4 we vali-
date experimentally the analysis. In Section 5 we explain our
new search algorithm and compare it experimentally against
Glimpse. Finally, in Section 6 we give our conclusions and
future work directions.

2 Previous Work

The first proposal for an approximate word-retrieving index
is due to Manber and Wu [5]. In a very practical approach,
they propose a scheme based on a modified inverted file and
sequential approximate search.

The index structure is as follows: the text is logically divided
into “blocks”. The index stores all the different words of the
text (the vocabulary). For each word, the list of the blocks
where the word appears is kept. See Figure 1.

To search a word allowing errors, the vocabulary is sequen-
tially scanned, word by word, with Agrep [9]. Agrep is an
on-line approximate search software, which will treat the vo-
cabulary as a simple piece of text. For each matching word,
all the blocks where it appears in the text are marked. Then,
for every marked block (i.e. where some matching word
is present), a new sequential search is performed over that
block (using Agrep again).

The idea of sequentially traversing the vocabulary (which
is typically small) leads to a great deal of flexibility in the
supported query operations.

The use of blocks makes the index small, at the cost of
having to traverse parts of the text sequentially. The index
is small not only because the pointers to the blocks may
need less bytes, but also because all the occurrences of a
word in a single block are referenced only once. This scheme
works well if not too many blocks are searched, otherwise it
becomes similar to sequential search on the text using Agrep.
If the number of allowed errors in the pattern is reasonable
(1-3), the number of matching words is small. Otherwise the
query is of little use in IR terms, because of low precision.

Glimpse does not allow to tune the number or size of the
blocks to use. The basic scheme works with 200 to 250
blocks, and works reasonably well for text collections of up

block of
b words

occurrences

block of
b words

> r blocks

LT TH] 8
i

block of
b words

Index Text

Figure 1: The word indexing scheme.

to 200 Mb. To cope with larger texts, it offers an index ad-
dressing files instead of blocks (“file addressing”). Finally,
for very large texts it can be switched to full inversion (i.e.
word addressing), where each word points to its exact oc-
currences in the text. Typical figures for the size of the
index with respect to the text are: 2-4% for blocks, 10-15%
for files, 25-30% for words. Note that the last percentage is
similar to the overheads of classical inverted lists.

To overcome the need of sequentially searching parts of the
text, the approach of full inversion is taken in Igrep [1]. For
each word, the list of all its occurrences in the text are kept.

This changes completely the second phase of the search:
once the matching words in the vocabulary are identified,
all their occurrence lists are merged and the text is never
accessed. This makes the approach much more resistant to
the size of the text collection. The scheme is shown to work
well with text collections of more than 1 Gb of text.

Instead of Agrep, the scheme uses another on-line search al-
gorithm [2], which is especially well suited for short patterns
(e.g. words). The scheme also allows to search phrases, by
splitting them into words and combining the results.

The index is built in a single pass over the text and in linear
time. The construction proceeds in-place, in the sense that
the space requirement to build the index is that of the final
index.

The analysis shows that the retrieval costs are sublinear for
useful searches (i.e. those with reasonable precision). The
space requirements are similar to those of classical inverted
lists (30-40%). This is the cost for not accessing the text at
all, but compression schemes are being studied [6].

3 Average Space-Time Trade-offs

Glimpse and Igrep are two extremes of a single idea. Glimpse
achieves small space overhead at the cost of sequentially tra-
versing parts of the text. Igrep achieves better performance

by keeping a large index. We study in this section the possi-
bility of having an intermediate index, which is sublinear in
size and query performance at the same time. We show that
this is possible in general, under reasonable assumptions.

Our analysis is strongly based on some widely accepted
heuristic rules which are explained next. Those rules deal
with average cases of natural language text. We obtain re-
sults regarding the growth rate of index sizes and query
times, and therefore our analysis uses the O(), () and ©()
notation. Hence, our analysis refers to the average case,
gives “big-O” results and is valid only if the heuristic rules
that we use are valid in the text data.

3.1 Modeling the Text

We assume some empirical rules widely accepted in IR, which
are shown accurate in our experiments.

The first one is Heaps law, which relates the text size n and
the average vocabulary size V by the formula V = O(n’B)
for 0 < 8 < 1[4].

The second rule is the generalized Zipf’s law [10], which
states that if the words of the vocabulary are sorted in
decreasing order of frequency, then the frequency of the i-

th word is n/(ieHE/e)), where HE/Q) = ZV 1/5°, for some

=1
> 1. For 6 = 1it holds H{") = In V +0(1), while for § > 1

we have HE/Q) = O(1). For instance, in the texts of the TREC
collection [3], § is between 0.4 and 0.6, while § is between
1.7 and 2.0.

The third rule assumes that user queries distribute uni-
formly in the vocabulary, i.e. every word in the vocabulary
can be searched with the same probability. This is particu-
larly true in approximate searching, since even if the user
searches, say, very unfrequent words, those words match
with &k errors with other words, with no relation to the fre-
quencies of the matched words.

Finally, the words are assumed to be uniformly distributed
in the text. Although widely accepted, this rule may not be
true in practice, since words tend to appear repeated in small
areas of the text. For our purposes, uniform distribution is
a pessimistic assumption we make.

Recall Figure 1. The text of n words is divided into r blocks
of size b (hence n ~ rb). The vocabulary (i.e. every different
word in the text) is stored in the index. For each word, the
list of blocks where it appears is stored.

3.2 Query Time Complexity

To search an approximate pattern, a first pass runs an on-
line algorithm over the vocabulary. The sets of blocks where
each matching word appears are collected. For each such
block, a sequential search is performed on that block.

The sequential pass over the vocabulary is linear in V', hence
it is ©(n?), which is sublinear in the size of the text.

An important issue is how many words of the vocabulary
match a given pattern with k errors. In principle, there is a
constant bound to the number of distinct words which match
a given pattern with k errors, and therefore we can say that
O(1) words in the vocabulary match the pattern. However,
not all those words will appear in the vocabulary. Instead,
while the vocabulary size increases, the number of matching

words that appear increases too, at a lower rate'. We show
experimentally in the next section that a good model for the
number of matching words in the vocabulary is O(n®) (with

a < B).

For classical word queries we have o = 0 (i.e. only one
word matches). For prefix searching, regular expressions
and other multiple-matching queries, we conjecture that the
set of matching words grows also as O(n®) if the query is
going to be useful in terms of precision. However, this issue
deserves a separate study and is out of the scope of this
paper.

Since the average number of occurrences of each word in the
text is n/V = ©(n'~?), the average number of occurrences
of the pattern in the text is O(n'=?%). This fact is sur-
prising, since one can think in the process of traversing the
text, where each word appears with a fixed probability and
therefore there is a fixed probability of matching each new
word. Under this model the number of matching words is
a linear proportion of the text. The fact that this is not
the case (demonstrated experimentally in the next section)
shows that this model is not realistic. The new words that
appear as the text grows deviate it from the model of words
appearing with fixed probability.

The blocks to work on in the text are those including some
occurrence of the pattern. Call w the number of matching
words in the text. Since we assume that the words appear
uniformly in the text, the probability that a given block
does not contain a given word is 1 — 1/r. Therefore, the
probability of not containing any words is (1 —1/r)". Since
there are r blocks, the average number of non-empty blocks
is r(1—(1—1/r)"). Since sequentially traversing each block
costs ©(b), we have a total cost of O(br(1 — (1 —1/r)¥)) =
On(1 - (1 - 1/r)").

We now simplify that expression. Notice that (1 —1/r)* =
ewin(1=1/r) _ g—w/r+O(w/r?) _ @(e_w/r). Hence the query
time complexity if w occurrences are searched is

O(n(1—e~™"))

As we observed before, w = @(nl_ﬁ‘i'a) on average. There-

fore, on average the search cost is ©(n(1 — e_b/"ﬂ_a)).

Expressions of the form “1 —e™%” appear frequently in this
analysis. We observe that they are O(z) whenever =z = o(1)
(since e™* = 1 —x+0O(z?)). On the other hand, if = = Q(1),

then e™7 is far away from 1, and therefore “1—e™” is Q(1).

For the search cost to be sublinear, it is thus necessary that
b = o(n®~), which we call the “condition for time sublin-
earity”.

3.3 Space Complexity

We consider space now. The average size of the vocabulary
itself is already sublinear. However, the total number of ref-
erences to blocks where each word appears may be linear (it
is truly linear in the case of full inversion, which corresponds
to single-word blocks, i.e. b =1).

Suppose that a word appears £ times in the text. The
same argument used above shows that it appears in ©(r(1—

! This is the same phenomenon observed in the size of the vocab-
ulary. In theory, the total number of words is finite and therefore
V = O(1). But in practice that limit is never reached, and the model

V = O(n®) describes reality much better.

e_z/r)) blocks on average. Recall that the index stores an
entry in the list of occurrences for each different block where
a word appears. Under the Zipf’s law, the number of occur-

rences of the i-th most frequent word is ¢; = n/(ieHE/e)).
Therefore, the number of blocks where it appears is

O (r (1=) =0 (s (1))

and the total number of references to blocks is
d (@)
DI (1)
i=1

a summation which is hard to solve exactly. However, we
can still obtain the required information of order. We show
now that there is a threshold a such that

~ p \1/°
a = —HE/Q)

1. The O(a) most frequent words appear in ©(r) blocks,
and therefore contribute ©(ar) to the size of the lists
of occurrences. This is because each term of the sum-

mation (1) is (1) mnvmedb:=s2(ﬁfﬁf0 which is
equivalent to ¢ = O(a).
2. The O(V — a) least frequent words appear nearly each

one in a different block, that is, if the word appears
£ times in the text, it appears in ©(£) blocks. This is

because r(1 — e~*/") = ©(¢) whenever £ = o(r). For
l; = n/(ieHE/e)), this is equivalent to i = w(a).
Summing the contributions of those lists and bounding

with an integral we have

ZV: n _ n 1/a7t —1/V°7?
eH? HO -1

t=a+1

(1+0(1))

@(aQL_l) = Ofar)

where we realistically assume 6 > 1 (we cover the case
6 =1 later).

Therefore, the total space for the lists of occurrences is al-

ways O(ar) = @(rbl/e) for 6 > 1.

Hence, for the space to be sublinear we just need r = o(n).
Therefore, simultaneous time and space complexity can be
achieved whenever b = o(n®~%) and r = o(n).

3.4 Combined Sublinearity
To be more precise, assume we want to spend
Space = O(n")

space for the index. Given that the vocabulary alone is
O(n®), v > # must hold. Solving rb'/% = n7 we have

~6—1
r = © (n 6-1)

(a condition which imposes v > 1/6) and

by - @(no(gl_—lv))

1 Space
[Space [Time

2090 2090 | 1-p+a Time
n0.92 n0.95
20 TF [001 8
n0.96 nO 87
n0.98 n0.82
nl.OO n0.78

0 ~y

0 g pv) 1

Figure 2: On the left, valid combinations for time and space
complexity assuming ¢ = 1.87, # = 0.4 and « = 0.18. On
the right, time and space complexity exponents.

Since the condition for time sublinearity imposes b = o(nﬁ_a)
and we had previously that v > 3, we conclude

1+U—5+MW—U)
0

v > ply) = max (/5‘,
In that case, the time complexity becomes
Time = O (n1_5+a+%)

(and O(n) if v < p(y)). Note that the above expression
turns out to be just the number of matching words in the
text times the block size.

The combined Time x Space complexity is
» 1—ptat §=
Time x Space = O |n e=1

which is minimized for ¥ = 1 (full inversion), where Space =
O(n) and Time = O(n!~Ft),

The practical values of the TREC collection show that v must
be larger than 0.77 .. 0.89 in practice, in order to answer
queries with at least one error in sublinear time and space.
Figure 2 shows possible time and space combinations for
S = 0.4 and 8 = 1.87, values that correspond to the col-
lection we use in the experiments. The values correspond
to searching with k& = 2 errors, which, as found in the next
section, matches with @ = 0.18. If less space is used, the
time keeps linear (as in Glimpse). Better complexities can
be expected for larger 3 (which is normally the case).

We also show schematically the valid time and space com-
binations. We plot the exponents of n for varying . As the
plot shows, the only possible combined sublinear complexity
is achieved in the range pu(y) < v < 1, which is quite narrow.

We have left aside the case § = 1, because it is usually
not true un practice. However, we show now what happens
in this case. The analysis for query time remains the same.
For space, we have that « = ©(b/log V) = ©(b/log n). Sum-
ming the two parts of the vocabulary we have that the space
for the lists of occurrences is

6 n 4 o 1_logb+loglogn
log n log n log n

which is sublinear provided b = Q(n%), for every § < 1
(e.g. b = n/logn). This condition opposes to the one for
time sublinearity, even for classical searches with o = 0.
Therefore, it is not possible to achieve combined sublinearity
in this (unrealistic) case.

We end this section with a couple of practical considerations
regarding this kind of index. First, using blocks of fixed size
imposes no penalty on the overall system, since the block
mechanism is a logical layer and the files do not need to be
physically split or concatenated.

Another consideration that arises is how to build the index
incrementally if the block size b has to vary when n grows.
Reindexing each time with a new block size is impractical.
A possible solution is to keep the current block size until it
should be doubled, and then process the lists of occurrences
making equal all blocks numbered 2: with those numbered
241 (and deleting the resulting duplicates). This is equiva-
lent to deleting the least significant bit of the block numbers.
The process is linear in the size of the index (i.e. sublinear
in the text size) and fast in practice.

4 Experimental Validation

In this section we validate experimentally the previous analy-
sis. For our experiments, we use one of the collections con-
tained in TREC, namely the wsJ (Wall Street Journal). The
collection contains 250 Mb of text. To mimic common IR
scenarios, all the texts were transformed to lower-case, all
separators to single spaces (respecting lines); and stop-words
were eliminated. We are left with almost 200 Mb of filtered
text. Throughout this exposition we talk in terms of the size
of the filtered text, which takes 80% of the original text. We
measure n and b in bytes, not in words.

The collection is considered as a unique large file, which is
logically split into blocks of fixed size. The larger the blocks,
the faster to build and the smaller the index, but also the
larger the proportion of text to search sequentially at query
time. To measure the behavior of the index as n grows, we
index the first 20 Mb of the collection, then the first 40 Mb,
and so on, up to 200 Mb.

4.1 Vocabulary

We measure V', the number of words in the vocabulary in
terms of n (the text size). Figure 3 (left side) shows the
growth of the vocabulary. Using least squares we fit the
curve V = 78.81n°*°. The relative error is very small
(0.84%). Therefore, § = 0.4 for our experiments.

We then measure the number of words that match a given
pattern in the vocabulary. For each text size, we select words
at random from the vocabulary allowing repetitions. This is
to mimic common IR scenarios. In fact, not all user queries
are found in the vocabulary in practice, which reduces the
number of matches. Hence, this test is pessimistic in that
sense.

We test k =1, 2 and 3 errors. To avoid taking into account
queries with very low precision (e.g. searching a 3-letter
word with 2 errors may match too many words), we impose
limits on the length of words selected: only words of length
4 or more are searched with one error, length 6 or more with
two errors, and 8 or more with three errors.

We perform a number of queries which is large enough to en-
sure a relative error smaller than 5% with a 95% confidence
interval. Figure 3 (right side) shows the results. We use
least squares to fit the curves 0.310°'* for k = 1, 0.61n°1®
for k = 2 and 0.882°'° for k = 3. In all cases the relative
error of the approximation is under 4%. These are the «o
values mentioned in the analysis.

4.2 Space versus Time for Fixed Block Size

We show the space overhead of the index and the time to
answer queries for three different fixed block sizes: 2 Kb,
32 Kb and 512 Kb. See Figure 4. Observe that the time is
measured in a machine-independent way, since we show the
percentage of the whole text that is sequentially searched.
Since the processing time in the vocabulary is negligible, the
time complexity is basically proportional to this percentage.
The decreasing percentages indicate that the time is sublin-
ear.

The queries are the same used to measure the amount of
matching in the vocabulary, again ensuring at most 5% of
error with a confidence level of 95%. Using least squares we
obtain that the amount of traversed text is 0.10n°° for b =
2 Kb, 0.45n°%° for b = 32 Kb, and 0.852°%° for b = 512 Kb.
In all cases, the relative error of the approximation is un-
der 5%. As expected from the analysis, the space overhead
becomes linear (since v = 1) and the time is sublinear (the
analysis predicts O(n®7®), which is close to these results).

We observe that the analysis is closer to the curve for smaller
b. This is because the fact that b = O(1) shows up earlier
(i.e. for smaller n) when b is smaller. The curves with larger
b will converge to the same exponents for larger n.

4.3 Space versus Time for Fixed Number of Blocks

To show the other extreme, we take the case of fixed r. The
analysis predicts that the time should be linear and the space
should be sublinear (more specifically, O(nl/e) = 0(n°%%)).
This is the model used in Glimpse for the tiny index (where
r 2 256).

See Figure 5, where we measure again space overhead and
query times, for r = 2, 2'% and 2'°. Using least squares we
find that the space overhead is sublinear in the text size n.
For r = 2% we have that the space is 0.87n%°% for r = 2% it
is 0.78n°7°, and for r = 2*® it is 0.74n°®7. The relative error
of the approximation is under 3%. As before, the analysis
is closer to the curve for smaller r, by similar reasons (the
effect is noticed sooner for smaller r).

On the other hand, the percentage of the traversed text
increases. This is because the number of matching words
increases as O(nl_ﬁ‘i'a). The percentage will eventually sta-
bilize, since it is increasing and bounded by 100%.

4.4 Sublinear Space and Time

Finally, we show experimentally in Figure 6 that time and
space can be simultaneously sublinear. We test v = 0.92,
0.94 and 0.96. The analysis predicts the values shown in the
table of Figure 2.

Using least squares we find that the space overhead is sub-
linear and very close to the predictions: 0.42n°°° 0.41n°°2

160
140
x10°
120

100

60
40

20

T T T T 1
40 80 120 160 200

n (Mb)

35

k=3
30
25

k=2
20
15
10

k=1
5—/‘/1\/\

n (Mb)

0 T T T T 1
40 80 120 160 200

Figure 3: Vocabulary tests for the wsJ collection. On the left, the number of words in the vocabulary. On the right, number

of matching words in the vocabulary.
07 b = 2Kb
70

Mb
60

50 b= 32Kb
40
30

50 b = 512Kb

40 80 120 160 200

Figure 4: Experiments for fixed block size b. On the left, space

sizes sequentially searched.

and 0.40n°®° respectively. The error of the approximations
is under 1%.

The percentage of the traversed text decreases, showing that
the time is also sublinear. The least squares approxima-
tion shows that the query times for the above v values are
0.24n°°% 0.171°%°* and 0.11n°°1, respectively. The relative
error is smaller than 2%.

094} space and time

Hence, we can have for this text? an O(n
index (our analysis predicts O(n%?%)).

5 A New Searching Algorithm

We present in this section an alternative approximate search
approach which is faster than Glimpse.

We also start the search by sequentially scanning the vocab-
ulary with an on-line approximate search algorithm. Once
the blocks to search have been obtained, Glimpse uses Agrep
(i.e. approximate searching) again over the blocks. How-
ever, this can be done better.

Since we have run an online search over the vocabulary

2The wsi collection has especially low 8 value, which worsens the
complexities. We selected it for its size.

60
] b= 512Kb
% 50
40
30
szb
20 -
10
b = 2Kb
- =
n (Mb)

0 T T T T 1
40 80 120 160 200

taken by the indices. On the right, percentages of the text

first, we know not only which blocks contain an approxi-
mate match of the search pattern, but also which words of
the vocabulary matched the pattern and are present in each
block. Hence, instead of using again approximate search
over the blocks as Glimpse, we can run an exact search for
those matching words found in the vocabulary. In most
cases, this can be done much more efficiently than approx-
imate searching. Moreover, since as we show later, most of
the search time is spent in the search of the text blocks, this
improvement has a strong impact on the overall search time.

We use an extension of the Boyer-Moore-Horspool-Sunday
algorithm [7] to multipattern search. This gave us better
results than an Aho-Corasick machine, since as shown in
Figure 3, few words are searched on each block (this decision
is also supported by [8]).

We compared this strategy against Glimpse version 4.0. We
used the “small” index provided by Glimpse, i.e. the one ad-
dressing files (i.e. the sequential search must be done on the
matching files). Our index used also files as the addressing
unit for this comparison.

All the tests were run on a Sun SparcServer 1000 with 128
Mb RAM, running SunOS 5.5. However, only 4 Mb or RAM

were used by the indexers. The tests were run when the

80

r = 216
70
Mb
60
50 e
40
30
20 r=2°
10 —//
n (Mb
0 T T T T] (Mb)

40 80 120 160 200

50
7= 28
% 40
30
r =212
20 —
10 = 216
L
0 T T T T 1 ()

40 80 120 160 200

Figure 5: Experiments for fixed number of blocks r. On the left, space taken by the indices. On the right, percentages of the

text sizes sequentially searched.

70
~ =096
60 -
Mb ~ = 0.94
50
~ =092
40
30
20
10
n (Mb
0 T T T T ! (M)

40 80 120 160 200

Figure 6: Experiments for fixed v (simultaneous sublinearity).

percentages of the text sizes sequentially searched.

server was not performing other tasks. We used the same
wsJ collection for the comparison. It is composed of 278
files of almost 1 Mb each.

The stop-word mechanism and treatment of upper and lower-
case letters is somewhat particular in Glimpse. We circum-
vent this problem by performing all filtering and stop-word
elimination directly in the source files, and then using both
indices without filtering or stop-words considerations.

Our indexer took near 16 minutes to index the collection
(i.e. more than 10 Mb per second), while Glimpse took 28
minutes. This is due to different internal details which are
not of interest to this work, e.g. the indexers have different
capabilities apart from approximate searching. Both indices
took approximately 7 Mb. This is less than 3% of the size of
the collection (this good result is because the files are quite
large).

We are not comparing the complete indexing mechanisms,
but only their strategy to cope with approximate search of
words when they have to be sequentially searched on the
text. Issues such as a different addressing granularity will
not change the proportion between the search times.

In both indices we retrieve whole words that match the pat-
tern. This is the default in this paper and we believe that
this option is more natural to the final user than allowing

25
= 0.92
% 204 ~— 7
w_\\lﬁ\\‘hﬁ*“‘x_ij&%
10
~ = 0.96
- 0=
5_
n (Mb
0 T T T T] (Mb)

40 80 120 160 200

On the left, space taken by the indices. On the right,

subword matching (i.e. "sense" matching with one error in
Yconsensus").

Table 1 (upper table) shows the times obtained (user times).
As it can be seen, the mechanism we propose is 4-5 times
faster in practice (i.e. taking into account all the processing
needed). We also show the percentage of the text sequen-
tially inspected and the average number of matches found, as
well as the number of words matching in the vocabulary. We
can see that an important part of the text is inspected, even
for queries with acceptable precision (this is because the files
are large). Moreover, the times are almost proportional to
the amount of sequential search done (we process near 5
Mb/sec, while Glimpseis close to 1 Mb/sec). Therefore, the
advantage of searching with a multipattern exact search in-
stead of an approximate search algorithm is evident. Even
if the whole text is searched (in which case Glimpse is not
better than Agrep, i.e. a complete sequential search), our
indexing scheme takes advantage of the vocabulary, because
it never searches the text for an approximate pattern.

Table 1 (lower part) presents the less interesting case in
which subword matching is also allowed. The precision is
much lower (i.e. there are more matches), which shows that
this query is unlikely to be interesting for the users. It can
also be seen that much more text is traversed. The perfor-

[Errors | Ours | Glimpse | Ours/ Glimpse | % inspected | # matches | # vocab. matches |

Matching Complete Words
1 8.20 34.99 23.42% 24.94% 871.86 4.97
2 18.05 82.50 21.91% 43.83% 2591.02 25.54
3 29.37 143.69 20.43% 77.81% 7341.84 31.15
Subword Matching Allowed
1 39.37 16.05 245.30% 41.45% 44541.50 159.07
2 73.04 64.12 113.91% 64.28% 44991.80 230.48
3 75.84 132.56 57.21% 77.39% 31150.50 182.92

Table 1: Times (in seconds) and other statistics to retrieve all occurrences of a random word with different number of errors.

mance of our algorithm degrades due to a larger amount of
words matching in the vocabulary, which reduces the effec-
tiveness of our multipattern exact searching against plain
approximate search. On the other hand, Glimpse improves
for one and two errors because of specialized internal al-
gorithms to deal with this case. The net result is that our
algorithm is slower for one and two errors, although it is still
faster for three errors. This test shows that our approach is
better when not too many words match in the vocabulary,
which is normally the case of useful queries.

6 Conclusions and Future Work

We focused on the problem of block addressing for approx-
imate word retrieving indices. We found theoretically and
experimentally that it is possible to obtain a block address-
ing index which is at the same time sublinear in space (like
Glimpse) and in query time performance (like full inverted
indices), and showed practical compromises achieving that
goal. For instance, we built for our example text an index
which is O(n0'94) space and answers approximate queries in
O(n°?*) time. Those results apply to classical queries too
(not only to approximate searching). Finally, we proposed a
variation in Glimpse’s sequential search, which is 4-5 times
faster than Glimpse and takes advantage of the index even
if all the text must be processed.

We also discovered, as a side effect, that block addressing is
much better in general than file addressing, because blocks
are of fixed size. This 1s not shown in the experiments be-
cause the files were cut to almost the same size, but on
normal files the differences in length make file addressing
searching more than twice the text that is searched with
block addressing. This translates directly into performance
improvements. The reason is that some files are quite long
while others are short. Larger files have higher probability
of containing a given word and therefore are traversed more
frequently. Therefore, the amount to search is directly re-
lated to the variance in the size of the addressing units. As
explained, using blocks imposes no penalty on the overall
system.

We plan to study other improvements to the search algo-
rithm. For instance, we observe that when the vocabulary
is sequentially searched, the words are in lexicographical or-
der, and therefore tend to share a common prefix with the
previous one. This information could be stored in the index
at little space penalty. At query time, common prefixes can
be skipped by restarting the processing of the previous word
at the proper point.

Finally, we have still not considered efficient storage of the

pointers to blocks. In our current implementation, each
pointer takes one computer word (in the experiments against
Glimpse, the small number of files allowed to use two bytes).
Clearly, they can be smaller if r is not large (e.g. the tiny
index of Glimpse uses pointers of one byte because r < 256).

In theory, this adds a multiplying factor of O (izg;) to the
index space, which does not affect our analysis of sublinear-
ity. However, the reduction in space may be significative
in practice (up to 50% reduction). We are also studying
compression schemes to search directly in the compressed

text.

References

[1] M. Aratdjo, G. Navarro, and N. Ziviani. Large text
searching allowing errors. In Proc. 4th South American
Workshop on String Processing, WSP’97, 1997. Val-
paraiso, Chile. To appear.

[2] R. Baeza-Yates and G. Navarro. A faster algorithm for
approximate string matching. In Proc. CPM’96, pages
1-23, 1996.

[3] D. Harman. Overview of the Third Text REtrieval
Conference. In Proc. Third Text RFEtrieval Conference
(TREC-3), pages 1-19, 1995. NIST Special Publication
500-207.

[4] J. Heaps. Information Retrieval - Computational and
Theoretical Aspects. Academic Press, NY, 1978.

[5] U. Manber and S. Wu. GLIMPSE: A tool to search
through entire file systems. Technical Report 93-34,
Dept. of CS, Univ. of Arizona, Oct 1993.

[6] E. Moura, G. Navarro, and N. Ziviani. Indexing com-
pressed text. In Proc. 4th South American Workshop
on String Processing, WSP’97,1997. Valparaiso, Chile.
To appear.

[7] D. Sunday. A very fast substring search algorithm.
CACM, 33(8):132-142, Aug 1990.

[8] B. Watson. The performance of single and multiple key-
word pattern matching algorithms. In Proc. WSP’96,
pages 280-294, 1996.

[9] S. Wu and U. Manber. Agrep — a fast approximate
pattern-matching tool. In Proc. USENIX, pages 153—
162, 1992.

[10] G. Zipf. Human Behaviour and the Principle of Least
Effort. Addison-Wesley, 1949.

