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ABSTRACT

We introduce new compressed inverted indexes for highly
repetitive document collections. They are based on run-
length, Lempel-Ziv, or grammar-based compression of the
differential inverted lists, instead of gap-encoding them as is
the usual practice. We show that our compression methods
significantly reduce the space achieved by classical compres-
sion, at the price of moderate slowdowns. Moreover, many
of our methods are universal, that is, they do not need to
know the versioning structure of the collection.

We also introduce compressed self-indexes in the compar-
ison. We show that techniques can compress much further,
using a small fraction of the space required by our new in-
verted indexes, yet they are orders of magnitude slower.

Categories and Subject Descriptors

E.1 [Data Structures]; E.4 [Coding and Information
Theory]; H.3.3 [Information Storage and Retrievall:
Information Search and Retrieval

General Terms
Algorithms

1. INTRODUCTION

Large versioned document collections, such as Wikipedia
(www.wikipedia.org) and the Wayback Machine from the
Internet Archive (www.archive.org/web/web.php), are ex-
amples of the emergence of highly repetitive document col-
lections, where most documents are near-duplicates. Apart
from versioned document collections, other cases where this
problem arises are software repositories (where the tree of
versions is maintained), biological databases (where many
DNA or protein sequences of the same or related species
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are maintained), periodic technical publications (where the
same data, with small updates, are republished), and so on.

These collections may be very large, but at the same time
highly compressible. While Lempel-Ziv compressors [24] are
successful in capturing their repetitiveness, such compres-
sion is suitable only for archival purposes. The applications
we have enumerated require, instead, fast searching and di-
rect access capabilities. Thus, we need to compress not only
the data, but also the indexes.

There is a burst of recent activity in exploiting this repet-
itiveness at the indexing structures in order to provide fast
searches into the collection within little space. Both inverted
indexes for word and phrase queries over natural language
texts [2, 5, 11, 12], and other indexes for general string col-
lections [16, 6, 14, 7], have been pursued.

The focus of this paper is on natural language text col-
lections, which can be decomposed into words, and queried
for words or phrases. The classical data structure to index
such collections is the inverted index, where a list of the oc-
currences of each distinct word is maintained. The variant
where the lists are sorted by increasing document identi-
fier has gained relevance, since such ordering is most useful
for list intersections. Intersections of inverted lists arise as
a fundamental task under the Google-like default policy of
treating bag-of-word queries as ranked AND-queries. There-
fore, intersections conform the heaviest part of the search
process, and relevance ranking is done as a postprocessing
step [9]. Intersections are also used for phrase queries.

In this context, there are two different types of indexes.
Non-positional indexes find, given a word or bag-of-words
query, the documents containing all the words. They store,
for each word, the increasing list of documents containing
it. Positional indexes retrieve the precise positions in each
document where a word or phrase query appears. They
store, in addition to the document identifiers, the word offset
of the occurrences within each document.

Traditional techniques to compress inverted indexes [25]
represent the differences between consecutive document or
position values. Many of those differences tend to be small,
and thus they are encoded in a way that favors small num-
bers. While very effective for traditional collections, this
compression technique fails to capture the repetitiveness that
arises in versioned collections.

He et al. [11, 12] have presented alternative compression



methods specifically targeted at highly repetitive collections.
Their approach merges all versions of each document for cre-
ating the inverted lists and then keeps a secondary index
that allows one to list the versions of a document that con-
tain a given term. They obtained spectacular compression
results for non-positional inverted indexes.

In this paper we introduce techniques for compressing
inverted indexes on highly repetitive collections. Some of
those are universal in the sense that they do not need to iden-
tify which document is a version of which. The techniques of
He et al. [11, 12] work under a model where there exists a set
of independent documents, each of which has a number of
versions, and this versioning information must be available
to the index. Our techniques can also work on cases where
the versions form a tree structure (as in collaborative docu-
ment creation, software repositories, or phylogenetic trees),
or where it is unknown or unclear which documents are ver-
sions of which (as in DNA sequence databases).

Instead of using the classical encoding of differences, we
adapt and apply run-length, grammar [15] or Lempel-Ziv
[24] compression on the lists of differences. Our techniques
largely outperform classical inverted index compression in
this scenario. For example, our Lempel-Ziv-based index is
15 times smaller than a Rice-encoded index (the best choice
for classical text collections), and at most 70% slower on
word and conjunctive queries. Our grammar-based com-
pressed index is up to 18 times smaller and up to 3 times
slower. Our experiments also show that other classical en-
codings, such as Simple9 [1] and PforDelta [26], perform
surprisingly well on repetitive collections, yet they still re-
quire 5 times more space than ours. Our techniques still do
not match the performance of He et al.’s methods [12] when
their assumptions hold, but these methods are not universal.

Some of our methods work well also for positional indexes,
where the work of He et al. does not apply but other tech-
niques are possible. Our Lempel-Ziv based index is 3.6 times
smaller, yet up to 8 times slower, than classical inverted in-
dexes. For this case we also consider self-indexes, which are
compressed indexes (not based on inverted indexes) that en-
compass the text and the index. We use and adapt existing
self-indexes designed for highly repetitive collections (mostly
for computational biology scenarios) [16, 6, 14]. They com-
press up to 16 times more than our Lempel-Ziv-based index,
yet their query times are 10 to 500 times higher.

2. RELATED WORK

2.1 Datastructuresfor inverted lists

The compression of inverted lists usually represents each
list {p1, p2,p3, ..., pe) as a sequence of d-gaps (p1, p2—p1,P3—
D2y...,Pe — Pe—1), and uses a variable-length encoding for
these differences, such as Rice codes [25]. Those methods
assign shorter codes to smaller values, taking advantage of
the fact that, on longer lists, the d-gaps are shorter.

If the lists reside on disk, reducing their space (and then
the I/O cost to fetch them) is the most important criterion.
If they reside in RAM, we must also consider the time to
traverse them. We pay attention to both in this paper.

Gap encoding techniques that allow very fast in-memory
traversals are Vbyte [23], Simple9 [1] and PforDelta [26].

Intersections can be carried out by traversing the lists se-
quentially. When one list is much shorter than the other, it
is advantageous to provide direct access so that the longer

list can be searched for the elements of the shorter one. It
was shown experimentally [3] that in practice the best is to
sort the lists by length, taking the shortest as the “candi-
date” list, and iteratively intersect the candidate list with
longer and longer lists, making it shorter and shorter. A
technique to provide random access [8] samples regularly
the compressed list and stores separately the array of sam-
ples, which is searched with exponential search. Very long
lists are replaced by a bitmap. Given a parameter k, a list
of length ¢ is sampled every k log, £ positions. Another good
method [22] regularly samples the universe of positions, so
that the exponential search is avoided. Given a parameter
B, it samples the universe of size u at intervals 2/1°82(»B/01,

In the particular case of highly repetitive collections, the
best figures so far have been presented by He et al. [12] in
the non-positional case. They model versioned document
collections using so-called two-level indexes. The first level
of the inverted list of a term stores all the documents where
the term appears in, at least, one of its versions. The sec-
ond level is a bit vector that marks all document versions
where the term appears. Experiments on Wikipedia and
Internet Archive subsets report improvements in space and
query times with respect to the original one-level techniques.

2.2 Re-Pair compression algorithm

Re-Pair [15] is a linear-time compressor that repeatedly
finds the most frequent pair of symbols in a sequence of
integers and replaces it with a new symbol, until no more
replacements are useful. Over a sequence L, Re-Pair: (1)
Identifies the most frequent pair ab in L; (2) Adds the rule
s — ab to a dictionary R, where s is a new symbol not
appearing in L; (3) Replaces every occurrence of ab in L by
s; (4) Tterates until every pair in L appears once.

We call C the sequence resulting from L after compression.
Every symbol in C represents a phrase (a substring of L),
which is of length 1 if it is an original symbol (called a ter-
minal) or longer if it is an introduced one (a non-terminal).
Any phrase can be recursively expanded in optimal time
(i.e., proportional to its length), even if C' is stored on sec-
ondary memory (as long as the rules R fit in RAM).

We represent R using a method [10] that allows access-
ing any rule without decompressing the whole set of rules.
It represents the DAG of rules as a set of trees. Each tree
is represented as a sequence of leaf values (collected into a
sequence Rg) and a bitmap that defines the tree shapes in
preorder (collected into a bitmap Rp). Nonterminals are
represented by the starting position of their tree (or sub-
tree) in Rp. In Rp, internal nodes are represented by 1s
and leaves by 0Os, so that the value of the leaf at position 7 in
Rp is found at Rg[ranko(Rp,i)]. Operation ranky counts
the number of Os in Rg[1,] and can be implemented in con-
stant time, after a linear-time preprocessing that stores only
o(|RB|) bits of space [18] on top of the bitmap. To expand a
nonterminal, we traverse Rp and extract the leaf values, un-
til we have seen more Os than 1s. Leaf values corresponding
to nonterminals must be recursively expanded.

2.3 Lempel-Ziv compression

The Lempel-Ziv 1977 (LZ77) compression algorithm [24]
works by decomposing the text from left to right into max-
imal phrases, so that each phrase is a substring of the pre-
vious text. The main drawback of LZ77 is that it does not
support random access to the compressed text.



An alternative parsing called LZ-End [13] limits the sub-
strings to end at a previous phrase, and uses this limitation
to offer reasonable access time. This approach was shown
[13] to compete very closely in space with LZ77.

24 Compressed self-indexes

Compressed self-indexes are data structures that enable
efficient searches over an arbitrary string collection (called
the text), and also replace the text by supporting extraction
of arbitrary snippets or documents. The supported searches
obtain all the positions of a substring in the collection, which
makes them candidates to compete in the positional setting.

Self-indexes have undergone much progress in the last
decade [19]. Recently they have been adapted to index
highly repetitive sequences [16, 6, 14]. While general self-
indexes have been successful by targeting at statistical com-
pression, they have been proved insufficient on highly repet-
itive collections [16]. The indexes aimed at repetitive collec-
tions seek instead to capture repetitions in the text.

The first self-index successfully capturing high repetitive-
ness was the RLCSA [16]. This index adapts the well-known
CSA of Sadakane [21] to better cope with the regularities that
arise when indexing highly repetitive sequences. A vari-
ant aimed at indexing natural language, WCSA [4], regards
the text as a sequence of words and separators instead of
characters, but it is not so oriented to much repetitiveness.
Another index aimed at repetitive collections is the SLP [7,
6], which exploits the regularities of highly repetitive se-
quences because its structure is determined by a grammar-
based compressor (Re-Pair). We adapt the SLP to words
(WSLP) in this paper. Finally, other strong indexes for repet-
itive sequences are LZ77-index and LZend-index [14], which
are based on the LZ77 or LZ-End compression algorithms,
respectively. The LZ77 parsing is, at least, as powerful as
any grammar representation [20], and thus, it is also a good
candidate for highly repetitive sequences.

3. NEW LIST REPRESENTATIONS

Our basic idea, for both non-positional and positional in-
dexes, is to differentially encode the inverted lists, trans-
forming a sequence (p1, p2, p3, . . . , pe) into the d-gap sequence
(p1,p2 —p1,P3—Da2,...,Pe —Pe—1), and then apply a general
compression algorithm to the sequence formed by the con-
catenation of all the lists. Each vocabulary word will store
a pointer to the beginning of its list in the compressed data.

3.1 Using run-length compression

A typical regularity in highly repetitive collections arises
when the versions of a document happen to receive consecu-
tive identifiers. As most of the words in such documents will
appear in all versions, a consecutive sequence of numbers
will appear in each inverted list of non-positional indexes.
Consider the word w; appearing in documents d;, ..., d;yx:
the d-gapped list for w; will contain k — 1 consecutive ones.

In this representation we use any variable-length encoding
for the differences. However, when this difference is 1, the
next encoded number is the number of 1s in that run (k, in
the previous paragraph). This encoding allows us skipping
whole runs in a single operation, when processing intersec-
tions. It also allows combining with sampling techniques
that support intersection methods other than the sequential
one [8, 22]. In this paper we combine run-length compression
with Rice coding, giving rise to method Rice-Runs.

Note that this technique works well only under the as-
sumption that the documents can be linearized so that close
documents receive consecutive numbers. While such kinds
of assumptions are used in previous work [11, 12], we aim
to handle more general cases in this paper. Moreover, this
technique can be efficient only for non-positional indexes.

3.2 UsingLZMA

This representation (already used for compressing g-gram
indexes on DNA [6]) compresses each d-gap list with Vbyte
and then with the LZMA variant of LZ77 (www.7-zip.org).
LZMA is applied only on the lists where it reduces space. A
bitmap marks which words were compressed with LZMA.

This representation, called Vbyte-LZMA, only supports ex-
tracting a list from the beginning, that is, we cannot jump
to a random position on the list, and thus the only intersec-
tion algorithm supported is the sequential one. Moreover,
unlike run-length compression, it cannot skip a compressed
subsequence without fully processing it.

In this paper we apply LZMA to non-positional indexes
as well, and evaluate it at intersections. LZMA handles
more complex regularities than run-length compression. In
particular, it works well on positional indexes: Consider r
repetitions of a long substring S in the collection, for ex-
ample in any r similar documents across the collection. For
each word w; in S, with occurrences at relative positions
i1,142,...,1 in S, the sublist i2 — 41,...,ix — ix—1 appears
r times in the list of word w;. Hence, LZMA will capture
this repetition and represent r — 1 of those sublists with just
one reference. Note that this will occur independently of
whether the versions are consecutive, and even without any
need to know which documents are close versions of which.

4. RE-PAIR COMPRESSED LISTS

LZMA is limited to spotting intra-list regularities. A
grammar-based compressor aimed at globally compressing
the lists of d-gaps could spot inter-list similarities as well.
In the same example of Section 3.2, consider that we have a
phrase w¢, wy, ... ws, occurring k times in S. Then the se-
quence 2 — 1, ...,%x — tx—1 Will appear r times inside each
of the s lists, and a grammar compressor could be able to re-
place rs — 1 of the occurrences by a single reference. LZMA
would have replaced only rs — s.

We use Re-Pair as our grammar compressor. We operate
over the integer values and not over their Vbyte encodings.

We prevent phrases from spanning multiple lists, which
can be easily enforced at compression time. Thus we can
store pointers from the vocabulary to the points in the com-
pressed sequence C' where the lists begin, and any list can
be expanded in optimal time. We also store the Re-Pair
dictionary, in the compact format described in Section 2.2.

The terminal symbols are directly the corresponding dif-
ferential values (e.g. value 3 is represented by the terminal
integer 3). This saves table accesses at decompression time.

4.1 Skipping

An attractive feature of our Re-Pair method is that we
can add extra information to nonterminals that enables fast
skipping over the compressed list data without decompress-
ing. This yields much faster sequential list intersections.

The key idea is that nonterminals also represent differen-
tial values, namely the sum of the differences they expand
into. We call this the phrase sum of the nonterminal.



Phrase sums will be stored in sequence Rg, aligned with
the 1 bits of sequence Rp. Thus rank is not anymore neces-
sary to move from one sequence to the other. The Os in Rp
are aligned in Rgs to the leaf data, and the 1s to the phrase
sums of the corresponding nonterminals.

In order to find whether a given document d is in the com-
pressed list, we first scan the entries in C, adding up in a
sum s the value C[¢] if it is a terminal, or Rg[C[i]] if it is a
nonterminal. If at some point we get s = d, then d is in the
list. If instead s > d at some point, we consider whether the
last C[i] processed is a terminal or not. If it is a terminal,
then d is not in the list. If it is a nonterminal, we restart the
process from s — C[i] and process the Rg values correspond-
ing to the Os in Rg[C[i],...], recursing as necessary until we
get s =d or s > d after reading a terminal.

4.2 Intersection algorithm

To intersect several lists, we sort them in increasing order
of their uncompressed length (which we store separately).
Then we proceed iteratively, searching in step ¢ the list ¢4 1
for the elements of the candidate list (recall Section 2.1).

At each intersection, the candidate list is sequentially tra-
versed. Let x be its current element. We skip phrases of list
i + 1, accumulating gaps until exceeding x, and then con-
sider the previous and current cumulative gaps, 1 < x < 2.
Then the last phrase represents the range [z1,z2). If x1 =
we report x and shift to the next element in the candidate
list. In either case, we advance in the candidate list until
finding the largest ' < x2. Then, we process all the inter-
val [z, z'] within the phrase representing [x1,z2) in Rg in a
recursive fashion, until one of the two lists gets empty.

This procedure can be speeded up by adding samples, but
we do not consider them in this paper. We will only consider
a variant that stores skipping information on nonterminals
(RePair-Skip), and one that does not (RePair).

5. SELF-INDEXES

Self-indexes support positional indexing. We will apply
them on the concatenated text collection, D. The self-index
will find all the occurrences of the pattern, yet usually not
in order, so a sorting post-processing is necessary.

Some self-indexes compared in this paper (see Section 2.4),
are character-oriented: LZ77-index, LZend-index, RLCSA,
and SLP (this one including several improvements upon its
previous version [6]). They regard the text as a sequence of
characters and report any substring matching the pattern.

Two self-indexes, instead, are word-oriented: WCSA and
WSLP (this one created for this paper). Words and separa-
tors (maximal spaces between words) are mapped to inte-
gers, and the indexes represent the integer sequence. We use
the spaceless words model [17], where the single whitespace
separator is omitted and assumed by default.

6. EXPERIMENTAL RESULTS

We tested the non-positional and positional scenarios. We
used the 108.5 GB Wikipedia collection described by He et
al. [12], which is a 10% of the complete English Wikipedia.
This collection is formed by 240,179 articles, each of which
has a number of versions. There are 8,467,927 versions, of
average size 13,757 bytes. We chose a random subset of
the articles, and collected all their versions. Each version
is considered as a document in our collection. For the non-

positional setting our subset contained 24.77 GB, whereas
for positional indexes we chose 1.94 GB of random articles.

We consider four query sets, with 1000 queries per set.
Two sets are one-word searches, chosen at random from the
vocabulary of the indexed subcollection. In the first we take
words with up to 1000 occurrences in the subcollection. In
the second we take words with more than 1000 occurrences.
The other two query sets correspond to phrases of 2 and 5
words chosen at random from the text of the subcollection.
For non-positional indexes this is taken as an AND query,
whereas for the positional ones it is taken as a phrase query.

6.1 Non-positional indexes

The machine used in this scenario has an Intel(R) Xeon(R)
E5520 CPU running at 2.27 GHz, 8 MB cache, 72 GB of
RAM memory, 4 cores. The operating system installed is
an Ubuntu GNU/Linux version 9.10 running kernel 2.6.31-
19-server (64 bits) and g++ compiler version 4.4.1. Our code
was compiled with the -09 directive. We measure user times.

We use in these indexes exactly the same parsing of words
of He et al. [12], which involves case folding, removing 20
very common stopwords, and no stemming. This reduces
the original 108.5 GB to about 85.55 GB, and the 24.79 GB
of text we index to about 19.54 GB. Yet we report the space
results with respect to the original text size.

We compared a number of variants. The first are repre-
sentatives of the best classical techniques we are aware of,
see Section 2. These include various encodings of the d-gaps
with no sampling (Rice, Simple9, PforDelta, and Vbyte),
and a Vbyte encoding of the d-gaps with samplings in the
type of Culpepper and Moffat [8] with & = 32 (Vbyte-CM),
or Sanders and Transier [22] with B = 128 (Vbyte-ST).

The second group is formed by methods proposed in this
paper to handle repetitive sequences. None uses sampling, so
intersections are sequential: Rice-Runs (Section 3.1), Vbyte-
LZMA (Section 3.2), RePair and RePair-Skip (Section 4).

Figure 1 shows the space/time tradeoffs for all the non-
positional indexes. The space is given as a percentage of
that used by the text in plain form (we are not considering
in this experiment the compressed representation of the text
itself). The time is shown in microseconds per occurrence.

We can see that, among classical compression methods,
the newer methods Simple9 and PforDelta are much bet-
ter in space than older techniques like Rice (one third the
space) and Vbyte (one fifth the space). In typical collections
Rice achieves the best space, but these newer methods take
advantage of the many runs of 1s. They are also several
times faster than Rice, and roughly as fast as Vbyte on word
queries. On conjunctive queries, however, Vbyte is faster. In
those queries adding samples [8, 22| is advantageous: Vbyte-
CM and Vbyte-ST are significantly faster than Vbyte (more
than 3 times faster on 5-word queries). The little impact
(and even reduction) in size owes to the fact that values
stored in the samples are removed from the differential se-
quence. All the other methods (except Vbyte-LZMA) can
be combined with such samplings to speed up long queries.
Yet, the most important conclusion with regard to classi-
cal encoding methods is that they are unsuitable for highly
repetitive collections. Our new techniques take one order of
magnitude less space, yet they are also significantly slower
than the fastest classical variants.

Our first simple method to take advantage of repetitive-
ness, Rice-Runs, makes an important leap in space, from 1%
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Figure 1: Space/time tradeoffs for non-positional indexes. Logscale.

taken by Simple9 and PforDelta to around 0.3%. It takes
one tenth the space of plain Rice and is at the same time
faster, as it needs much less decompression work. It does
not, however, get close to the space of stronger methods
like Vbyte-LZMA, which achieves around 0.2% by exploiting
other types of redundancy, but it is significantly faster than
Vbyte-LZMA (up to 3 times). We recall that runs can only
be exploited if we can arrange the versions consecutively.
Vbyte-LZMA is close to the smallest space that we can
achieve. It is significantly faster than RePair (up to 10
times) and than RePair-Skip (up to 3 times) at word queries,
as it decompresses faster the inverted list. However, on con-
junctive queries, where many of the decoded values have
to be discarded, the ability of RePair-Skip to skip nonter-
minals without decompressing them finally makes it almost
twice as fast as Vbyte-LZMA, and even faster than Rice-Runs.
Note that RePair obtains lower space (85%) than Vbyte-
LZMA, despite the fact that LZ77 compression is more power-
ful than Re-Pair. This is a consequence of LZMA exploiting
only intra-list regularities, and shows that significant fur-
ther repetitions are captured when considering the inter-list
redundancies. The skipping information added to Re-Pair
adds very little space (6%), but significantly improves time
performance (almost 20 times faster on long phrases). This
improvement occurs even on one-word queries (up to 2.6
times faster), since RePair-Skip does not need to carry out
rank operations on Rp (recall Section 2.2).
Comparison with previous work. As described in Sec-
tion 2.1, the best previous work for repetitive collections is
by He et al. [12]. Our experiments show that they still ob-
tain roughly half the space and time than RePair-Skip. The
advantage of RePair-Skip is that it works for more general
scenarios their techniques are not designed for.

6.2 Positional indexes

For this scenario we used an Intel(R) Xeon(R) E5335 CPU
running at 2.00 GHz, 4 MB cache, 16 GB of RAM mem-
ory, 8 cores. The operating system installed is an Ubuntu
GNU/Linux version 8.04.4 LTS running kernel 2.6.24-29-
server (64 bits) and g++ compiler version 4.2.4. Our code
was compiled with the -09 directive. We measure user times.

Since self-indexes must reproduce the precise text, we
cannot apply case folding nor any kind of filtering in this
scenario. We index the original text as is. As explained,
word-based self-indexes will regard (and index) the text as
a sequence of words and separators. For fairness, the posi-
tional inverted indexes will index separators as valid words
as well, and phrase queries will choose sequences of tokens,
be they words or separators. Still, we note that character-
based self-indexes will return more occurrences than word-
based self-indexes (or than inverted indexes), as they report
all the non-word-aligned ones too. Times per occurrence still

seem comparable, yet they slightly favor character-based
self-indexes since the time per occurrence drops as more oc-
currences are reported (there is a fixed time cost per query).

We consider the same techniques of the non-positional set-
ting, now operating on position lists. We used sampling
k = 32 for Vbyte-CM and B = 64 for Vbyte-ST. We had to
adapt Simple9 because it is unable to represent gaps longer
than 228, While such gaps do not arise on document lists,
they occur in position lists. We use the gap 22 — 1 as an
escape code and then the next 32 bits represent the real
gap. We exclude PforDelta because it has the same limi-
tation, fixing it is more cumbersome, and its performance
is not very different from that of Simple9. We also exclude
Rice-Runs, as runs do not arise in the positional setting.

In order to compare fairly with self-indexes, we compress
the text with Re-Pair without any sampling and add the
space to that of the inverted indexes. This adds just 1.21%
of the text size. Adding sampling would slightly increase
this space and provide progressively faster extraction time.

We compare the self-indexes described in Section 5: RLCSA
and WCSA (the curves come from using different sampling
steps for internal data structures), SLP and WSLP, and LZ77-
index and LZend-index (the latter using their minimum-
space variant [14]). Figure 2 shows the space/time tradeoffs
achieved for the four types of queries.

All classical inverted indexes achieve similar space, slightly
over 35% ratio. Simple9 is slightly faster than Vbyte for
decompressing (i.e., one-word queries), yet Vbyte becomes
much faster on phrases. Adding sampling, particularly Vbyte-
ST, improves phrase query times significantly while almost
not affecting the space. Rice is not competitive.

RePair and RePair-Skip achieve almost the same space,
slightly below 30%, and the latter is always faster for the
same reasons as on non-positional indexes. While for words
RePair-Skip is slower than the classical methods, their times
become similar on phrases.

The best space of inverted indexes is achieved by Vbyte-
LZMA, which reaches a compression ratio near 10%. This rep-
resents a significant improvement upon the state of the art.
Moreover, for single-word queries its times are only slightly
worse than those of RePair-Skip, yet on phrase queries its
need to fully decompress the list makes it clearly slower, and
closer to the times of Rice.

Self-indexes are able to use much less space. WSLP is only
slightly better than SLP. This shows that grammar-based
compressors do not gain much from handling words instead
of characters. They achieve 2%—-3% compression ratio. This
important reduction in space is paid with a sharp increase
in search times. On words they are up to 500 times slower
than Vbyte-LZMA. This gap, however, reduces to 50 times
on 2-word queries and to 5 on 5-word queries. Self-indexes
are usually mostly insensitive to the number of words in the



Word queries (low frequency) Word queries

1000

(high frequency)
1000

v v
S 0
c &
ol Vbyte-LZMA ——&-- o Rice ——@
5 . RePair ---@ o . Simple9 ~—¥--
3 100 o RLCSA - 3 100 - RePair-Skip O
. WOSA —-@enn .
o e Y WCSA & 0 o o
2 10 g N SLP —9— 2 10 *0 S
2 - ® R
I 2 o
= 5 J
8 1 3 g 1 2
3 A o
g 0.1 ° 4 0.1 IN
E 2 £ )
o F 4
£
5
o

)
)

time
)
o

1 10 100

space (% of the collection) space (% of the collection)

1 10 100

(microsec/occurrence)

time

Phrase queries (2 words) Phrase queries (5 words)

1000

v
8
Vbyte -k 3 LZ77-Index &
o Vbyte-CM ~—{ ] LZEnd-Index —@—
100 RePair-Skip O 2 100 . Vbyte-ST M-
w‘.. WSLP —¥— g A ¢
Chas 3 ow.
10 ° . Q 9 10 @ LN .
e . 2 o
. ) O
1 A Blee § 1 ‘)ﬁ\.‘x
%ﬁ il ©

)
time
)

1 10 100

space (% of the collection)

1 10 100

space (% of the collection)

Figure 2: Space/time tradeoffs for positional indexes. Logscale.

query, whereas inverted indexes become much slower when
looking for longer phrases.

The RLCSA offers a space/time tradeoff that goes from the
space of SLP (where the latter is faster) to that of classical
inverted indexes. These are faster for word searches, but
slower as the search phrase becomes longer. The WCSA can
be regarded as a word-based variant of the RLCSA, yet it is
not so well optimized for highly repetitive sequences. It is
indeed faster than RLCSA when using sufficient space. For
that space, other indexes are much faster on word queries,
but the WCSA retains a niche on phrase queries.

Finally, the LZ77-index achieves the least space, over-
coming its variant LZend-index and grammar-based com-
pressors both in time and space. The LZ77-index takes less
than 2% space and answers queries in less than 20 microsec-
onds per occurrence. Other indexes need at least twice its
space to achieve faster query processing.
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