
Navigating Planar Topologies
in Near-Optimal Space and Time?

José Fuentes-Sepúlvedaa,c, Gonzalo Navarrob,c, Diego Secoa,c

aDepartment of Computer Science, Universidad de Concepción, Chile.
bDepartment of Computer Science, University of Chile, Chile.

cMillennium Institute for Foundational Research on Data, Chile.

Abstract

We show that any embedding of a planar graph can be encoded succinctly
while efficiently answering a number of topological queries near-optimally. More
precisely, we build on a succinct representation that encodes an embedding of m
edges within 4m bits, which is close to the information-theoretic lower bound of
about 3.58m. With 4m+ o(m) bits of space, we show how to answer a number
of topological queries relating nodes, edges, and faces, most of them in any time
in ω(1). Indeed, 3.58m + o(m) bits suffice if the graph has no self-loops and
no nodes of degree one. Further, we show that with O(m) bits of space we can
solve all those operations in O(1) time.

Keywords: Planar graphs, Topology queries, Succinct data structures

1. Introduction

Plane embeddings, which are drawings of planar graphs on the plane, arise
naturally in many applications, especially in those that are geometrical in nature
like VLSI, computer graphics, and Geographic Information Systems (GIS) [1].
In this work we focus on efficiently answering queries that relate nodes, edges,
and faces in planar embeddings. Those are the building blocks, for example,
of the topological model, widely used in GIS applications to describe topologi-
cal relationships among objects. With this underlying motivation, we define a
comprehensive set of topological queries and show that they can be efficiently
answered within very little space.

To achieve such space-efficient representations, we build on compact data
structures [2], whose main goal is to support efficient query operations while us-
ing space close to the information-theoretic lower bound. Compact data struc-

?Funded by ANID - Millennium Science Initiative Program - Code ICN17 002, Chile and
by European Union’s Horizon 2020 research and innovation programme under the Marie
Sklodowska-Curie grant agreement No 690941 (project BIRDS). The authors received funding
from Fondecyt grants 77190038, 1200038, and 1170497, respectively. An early partial version
of this paper appeared in Proc. SPIRE 2019.

Preprint submitted to Elsevier August 12, 2022

tures have achieved remarkable results, both in theory and practice, to handle
very large volumes of data in different domains, including graph and geometric
data [3, 4, 5].

We build on Turán’s encoding [6] of plane embeddings of connected planar
graphs, where the dual of the graph (where the faces become nodes) is also
explicitly represented. This representation requires 4m bits for a graph of m
edges, where the optimum is 3.58m [7]. This representation can be reduced to
3.8m bits if the graph has no self-loops [8]. We use duality to show that this
size is also achieved if the graph has no nodes of degree one. When the graph
has none of them, the size drops to 3.58m bits [8].

Using only o(m) extra bits on top of that representation, we extend previous
results [8] in order to provide a succinct-space representation of the topological
model that efficiently supports a rich set of topological queries (most of them in
any time in ω(1)), which include those defined in current standards and flagship
implementations. Our main technical results are new ω(1)-time algorithms for
determining if two nodes are neighbors, and if a node touches a face, by orienting
edges; many other results are derived via analogous structures and exploiting
duality.

We then improve the time complexities by relaxing the space usage to O(m)
bits. We show that, within this space, all the operations can be supported
in O(1) time. Our main technique in this second part is a new O(m)-bits
representation that allows us determining in constant time whether two nodes
are in touch with the same unknown face.

2. Our Contribution in Context

2.1. An Application in GIS: The Topological Model

Geographic Information Systems (GIS) enable capture, modeling, manip-
ulation, retrieval, analysis and presentation [9] of geographically referenced
data. On the logical level, the most popular GIS model (together with the
raster model) is the vector model. There are three common representations of
collections of vector objects, called spaghetti, network, and topological model,
which mainly differ in the expression of topological relationships among the ob-
jects [10]. In the spaghetti model, the geometry of each object is represented
independently of the others and no explicit topological relations are stored. De-
spite its drawbacks, this is the most used model in practice because of its sim-
plicity and the lack of efficient implementations of the other models. Those other
two models are similar, and explicitly store topological relationships among ob-
jects. The network model is tailored to graph-based applications, such as trans-
portation networks, whereas the topological model focuses on planar networks
(e.g., all sorts of maps). This model is more efficient to answer topological
queries, which are usually expensive, thus it is gaining popularity in spatial
databases like Oracle Spatial.

The topological model represents a planar subdivision into adjacent poly-
gons. Hereinafter, we will refer to these polygons as faces. A face is represented

2

(a) A planar subdivision (b) The plane embedding of Fig. 1a.

Figure 1: Example of the topological model representing a planar subdivision.

as a sequence of edges, each of them being shared with an adjacent face, which
may be the outer face. An edge connects two nodes, which are associated with
a point in space, usually the Euclidean space. Edges also have a geometry,
which represents the boundary shared between its two faces. In Fig. 1, faces are
named with capital letters, A to J , A being the outer face. Face C is defined
by the sequence of nodes 〈1, 5, 4, 9, 8, 7, 6〉, and edge (7, 8) is shared by faces C
and G. Note, however, that a pair of nodes is insufficient in general to name
an edge, because multiple edges may exist between two nodes. Note also that
every intersection point is represented as a node (for example, node 4 represents
the top right intersection between faces C and D), but the model also admits
additional nodes such as 2, which may represent an important point of face B.

Those topological concepts are related with geographic entities. The basic
geographic entity is the point, defined by two coordinates. Each node in the
topological model is associated with a point, and each edge is associated with
a sequence of points describing a sequence of segments that form the boundary
between the two faces that share such edge. Each face is related to the area
limited by its edges (the external face is infinite).

The international standard ISO/IEC 13249-3:2016 [11] defines a basic set
of primitive operations for the model, which are also implemented in flagship
database systems1. Some of the queries relate the geometry with the topology,
for example, find the face covering a point given its coordinates. Those queries
require data structures that store coordinates, and are therefore bound to use
considerable space. Instead, we focus on pure topological queries, which can be
solved within much less space and can encompass many problems once mapped
to topological space. We also restrict our work to a static version of the model,
in which case our representation supports a much richer set of access operations.

1A prominent example is PostGIS, the topology extension to PostgreSQL, see http://

postgis.net/docs/Topology.html

3

The topological model has several advantages in comparison with the (non-
topological) spaghetti model. First, by storing shared segments between faces
only once, this model reduces the redundancy in the stored geometries, provid-
ing smaller representations. Second, it reduces inconsistencies in the data and
facilitates the digitizing and editing of data. When data are represented in a
non-topological model, each time a face is digitized or edited, a data cleaning
process is necessary to detect and repair inconsistencies such as gaps between
adjacent features. Finally, it is more efficient to answer topological queries.
Although such queries can also be solved using the geometries, this approach
is computationally very expensive (proportional to the number of points that
make up the geometries and/or to the number of geometries).

According to the first2 OGC Simple Features Implementation Specification
for SQL [12], the basic approach to comparing two geometries is to make pair-
wise tests of the intersections between the Interiors, Boundaries and Exteriors
of the two geometries and to classify the relationship between the two geometries
based on the entries in the resulting intersection matrix” [13]. Given the cost
of this approach, for some popular topological queries, such as ST Touches3

(which corresponds to our query 1.d in Table 1), flagship implementations use
a filter step based on the bounding box of the geometries and then a refinement
step based on the comparison of the actual geometries. A similar filter and
refinement strategy is used when the query involves comparing more than two
geometries, such as retrieving the objects neighboring a given one. In that case,
the filter is performed using a spatial index constructed over the bounding boxes
of the objects, such as the R-tree [14], and the refinement is computed over the
actual geometries of a set of candidates.

As we mentioned above, the geometric approach is computationally expen-
sive mainly because the geometry of each object is complex, composed of a large
number of points or pairs of geographic coordinates. To illustrate this point we
provide some statistics computed over the popular TIGER dataset,4 provided
by the U.S. Census Bureau, which contains geographic and cartographic data
about administrative divisions in the USA. The dataset provides many layers
with different characteristics. For example, the layer that represents the states
of the USA (including the District of Columbia and inhabited territories) has
an average of 17, 344 points per state; counties use an average of 2, 502 points
per county; county subdivisions use an average of 2, 891 points per element; and
school districts use an average of 718 points per district. As it can be seen, the
number of points per object varies with the type of layer, spatial resolution, etc.
but it can be in the order of hundreds or thousands of points per object, which
makes this approach expensive.

We propose instead an approach in which most of the work is done on an
in-memory compact index on the topology, resorting to the geometric data only

2Current versions of the specification do not address how to implement such operations.
3https://postgis.net/docs/ST Touches.html
4TIGER dataset, version 2021. https://www2.census.gov/geo/tiger/TIGER2021/

4

when necessary. Such an approach enables handling geometries that do not fit
in main memory, but whose topologies do, and still solving queries on them
with reasonable efficiency because secondary-memory accesses are limited. To
illustrate this, consider the example of given the coordinates of two query points,
tell if they lie on adjacent faces, and if so, which edge separates them. In our
approach, this type of query can be solved with just two mappings from the
geographical space to the topological space, and then using pure topological
queries.

Using the same example dataset, the largest layer in TIGER (called Faces)
contains about f = 20 million faces, m = 44 million edges, and n = 24 mil-
lion nodes. The shapefiles that store all geographic information (besides some
alphanumeric data) use almost 300 GB. An implementation of the topological
model based on the half-edge data structure5 (see Section 3.2 for a discussion on
how such a data structure relates to our approach) requires a pointer for each
node, face and edge to identify a half-edge, and each half-edge stores its twin,
next, vertex, edge, and face. Hence, the total space is n+m+f+5×2m = 12m
words, which in our example amounts to about 2 GB. Instead, the 4m bits of
Turán’s compact representation, on which we build, entail just over 20 MB. In
this example, then, the use of the topological model reduces the data size by
two orders of magnitude, and the use of a compact representation slashes two
further orders of magnitude in the space usage.

Table 1 lists the set of topological queries we consider on the topological
model, together with the time complexities we achieve in this paper within
4m + o(m) bits (we solve them all in O(1) time within O(m) bits). These
comprehensively consider querying about relations between two given entities
of the same or different type, and listing or counting entities related to a given
one. The set considerably extends the queries available in standards or flagship
implementations, which comprise just ST Touches (1.d and 5.b), GetNodeEdges
(3.c), and ST GetFaceEdges (3.e); we are here using the operation names defined
in the standard [11]. The queries can be useful not only in GIS applications,
but also in many others where data is modelled with plane embeddings, such as
road networks, city maps, chip design, network routing, and polygon meshes, to
name a few.

2.2. Planar Graphs

A graph is planar if it can be drawn on the plane without crossing edges.
The topology of a specific drawing of a planar graph on the plane is called
a plane embedding. Representing a plane embedding with m edges requires
m log 12 ≈ 3.58m bits [7, Eq. 5.1], which opens the door to O(m)-bit represen-
tations. This is remarkable because representing general graphs with n nodes

and m edges needs Ω(m log n2

m) bits. The lower bound for representing planar
graphs is unknown, but it is of course at most m log 12 bits because every planar

5https://cs184.eecs.berkeley.edu/sp19/article/15/the-half-edge-data-structure

5

Table 1: The queries we consider on the topological model and our time complexities within
4m + o(m)-bit space. We put in boldface those where we contributed.

1. Relations between entities of the same type
(1.a) Do edges e and e′ share a node? O(1) [8] + Lemma 2
(1.b) Do edges e and e′ border the same face? O(1) [8] + Lemma 2
(1.c) Do nodes u and v share an edge? any in ω(1) Lemma 4
(1.d) Do faces x and y share an edge? any in ω(1) Lemma 5

2. Relations between entities of different type
(2.a) Is edge e incident on node u? O(1) [8] + Lemma 2
(2.b) Is edge e on the border of face x? O(1) [8] + Lemma 2
(2.c) Is face x incident on node u? any in ω(1) Lemma 6

3. Listing related entities (time per element output)
(3.a) Endpoints of edge e O(1) [8] + Lemma 2
(3.b) Faces divided by edge e O(1) [8] + Lemma 2
(3.c) Nodes/edges neighbors of node u O(1) [8]
(3.d) Faces bordering face x O(1) [8] and duality
(3.e) Faces incident on node u O(1) Lemma 3
(3.f) Nodes/edges bordering face x O(1) Lemma 3

4. Counting related entities
(4.a) Nodes/edges/faces neighbors of node u any in ω(1) [8] extended
(4.b) Faces/edges/nodes bordering face x any in ω(1) [8] and duality

5. Relations via a third entity
(5.a) Do nodes u and v border the same face? any in ω(

√
m) Lemma 7

(5.b) Do faces x and y share a node? any in ω(
√
m) Lemma 7

graph has a plane embedding but there may be more than one plane embedding
of the same planar graph.

There are several succinct representations of planar graphs, most of which
cannot represent a particular embedding. Some offer the basic graph queries,
such as determining the adjacency of two nodes, and listing or counting the
neighbors of a node. Table 2 lists the main developments.

In this paper we use plane embeddings to represent topological models. Suc-
cinct representations of plane embeddings build on spanning trees, book embed-
dings [22], realizers [23], and small node separators [24]. Turán [6] introduced a
succinct representation using 4m bits, and Keeler and Westbrook [15] reached
the optimal m log 12 + O(1) bits, though disallowing either self-loops or nodes
with degree 1. Both used spanning trees. He et al. [16] used graph separators
and obtained m log 12 + o(m) bits without restrictions. Those representations
do not support efficient navigation of the compressed representation, however.

There exist a number of navigable representations, which support a few ba-
sic queries in optimal time: adjacency (are these two nodes connected?), neigh-

6

P
la

n
a
r

g
ra

p
h
s

(u
n
k
n
ow

n
lo

w
er

b
o
u
n
d

is
≤

3
.5

8
m

)

S
o
u
rc

e
B

it
s

F
u
n
ct

io
n
a
li
ty

G
ra

p
h

fe
a
tu

re
s

A
d
j

N
ei

g
h

D
eg

M
u
lt

i
L

o
o
p
s

S
ti

ck
s

K
ee

le
r

&
W

es
tb

ro
o
k

[1
5
]

3
.5

8
m

!
!

!

H
e

et
a
l.

[1
6
]

o
p
ti

m
a
l

!
!

!

J
a
co

b
so

n
[1

7
]

3
6
n

O
(l

o
g
n

)
O

(l
o
g
n

)
!

!
!

M
u
n
ro

&
R

a
m

a
n

[1
8
]

2
m

+
8
n

O
(1

)
O

(1
)

O
(1

)
!

!

C
h
u
a
n
g

et
a
l.

[1
9
]

2
m

+
(5

+
ε)
n

O
(1

)
O

(1
)

O
(1

)
!

!
5 3
m

+
(5

+
ε)
n

O
(1

)
O

(1
)

O
(1

)
!

2
m

+
1
4 3
n

O
(1

)
O

(1
)

!
!

4 3
m

+
5
n

O
(1

)
O

(1
)

!

C
h
ia

n
g

et
a
l.

[2
0
]

2
m

+
3
n

O
(1

)
O

(1
)

O
(1

)
!

!

2
m

+
2
n

O
(1

)
O

(1
)

O
(1

)
!

B
le

ll
o
ch

&
F

a
rz

a
n

[2
1
]

o
p
ti

m
a
l

O
(1

)
O

(1
)

O
(1

)
!

!
!

T
a
b

le
2
:

C
o
m

p
a
ri

so
n

o
f

sp
a
ce

a
n

d
fu

n
ct

io
n

a
li
ty

o
f

th
e

su
cc

in
ct

re
p

re
se

n
ta

ti
o
n

s
o
f

co
n

n
ec

te
d

p
la

n
a
r

g
ra

p
h

s.
In

th
e

fu
n

ct
io

n
a
li
ti

es
,

A
d

j
re

fe
rs

to
d

et
er

m
in

in
g

w
h

et
h

er
tw

o
n

o
d

es
a
re

a
d

ja
ce

n
t,

N
ei

g
h

to
li
st

in
g

th
e

n
ei

g
h
b

o
rs

o
f

a
n

o
d

e,
a
n

d
D

eg
to

co
m

p
u

ti
n

g
th

e
d

eg
re

e
o
f

a
n

o
d

e.
In

th
e

su
p

p
o
rt

ed
g
ra

p
h

fe
a
tu

re
s,

M
u

lt
i

re
fe

rs
to

m
u

lt
ip

le
ed

g
es

b
et

w
ee

n
p

a
ir

s
o
f

n
o
d

es
,

L
o
o
p

s
to

se
lf

-l
o
o
p

s,
a
n

d
S

ti
ck

s
to

d
eg

re
e-

1
n

o
d

es
.

T
h

e
n
u

m
b

er
o
f

n
o
d

es
in

th
e

g
ra

p
h

is
d

en
o
te

d
b
y
n

a
n

d
th

e
n
u

m
b

er
o
f

ed
g
es

b
y
m

.

7

borhood (list the neighbors of this node, in clockwise (cw) or counter-clockwise
(ccw) order), and degree (how many neighbors this node has?). Barbay et al. [25]
provided a representation for simple plane embeddings based on realizers. They
use O(m) bits and solve those queries in constant time per retrieved answer, but
the precise space complexity is over 6m bits. Blelloch and Farzan [21] devised
a representation using the optimal m log 12 + o(m) bits based on small node
separators. Ferres et al. [8] use spanning trees to provide a simple and imple-
mentable representation using 4m + o(m) bits, though adjacency and degree
queries take superconstant time.

Succinct representations of several other subclasses of planar graphs have
been studied. For example, triconnected planar graphs require 2m bits [7,
Eq. 8.17], which was matched by Castelli Aleardi et al. [4], who support constant-
time adjacency queries between nodes and faces in O(1) time and within o(m)
extra bits of space. They also matched the lower bound of triangulations (1.08m
bits [26, Eq. 5.11]) while supporting the same queries. The space was matched
earlier [16] without query support. Instead, Yamanaka and Nakano [27], and
later Ferres et al. [8], support constant-time adjacency, degree, and neighbor
listing queries in O(1) per returned result, using (the non-optimal) 2m + o(m)
bits. Those results subsume earlier ones [15, 19].

2.3. Our Contribution

In this paper we are interested in the representation of Ferres et al. [8], which
extends Turán’s encoding with o(m) extra bits in order to support efficient nav-
igation operations. They list neighbors in optimal time, and show how to list all
the edges of a face in optimal time as well. However, computing degrees requires
(any) time in ω(1) and determining adjacency of two nodes requires (any) time
in ω(log n). Compared to other more efficient representations, however, Turán’s
encoding is interesting because it includes an explicit representation of both the
plane embedding and of its dual, that is, one can directly refer to faces and
pose queries on them. We use this feature to extend the set of primitives so as
to support a full set of topological queries, formed by all the operations listed
in Table 1. Moreover, we improve their performance for adjacency and related
queries to any time in ω(1). Table 3 puts our contribution in context.

A warmup result essentially hinted by Ferres et al., our Lemma 2, sorts out
a number of simple queries (all [123].[ab]) in constant time. A consequence
of Lemma 2 is Lemma 3, which extends the algorithm of Ferres et al. listing
the neighbors of a node (3.c, GetNodeEdges) in optimal time to list the faces
incident on a node (3.e) and, by duality, to list the faces or edges bordering a
face (3.d, ST GetFaceEdges) and the nodes bordering a face (3.f), all in optimal
time. We also extend their results that count the edges incident on a node (4.a)
in ω(1) time to count nodes, edges, or faces incident on a node or bordering a
face (4.b).

Our first main result is Lemma 4, which exploits orientation of edges to
determine if two given nodes are connected by an edge (1.c) in any time in
ω(1), adding only o(m) bits to the main structure. The same procedure on
the dual graph, Lemma 5, determines in the same time if two given faces share

8

P
la

n
e

em
b

ed
d
in

g
s

(l
ow

er
b

o
u
n
d

is
3
.5

8
m

)

S
o
u
rc

e
B

it
s

F
u
n
ct

io
n
a
li
ty

G
ra

p
h

fe
a
tu

re
s

T
y
p

e
1

T
y
p

e
2

T
y
p

e
3

T
y
p

e
4

T
y
p

e
5

M
u
lt

i
L

o
o
p
s

S
ti

ck
s

T
u
rá

n
[6

]
4
m

!
!

!

K
ee

le
r

&
3
.5

8
m

!
!

W
es

tb
ro

o
k

[1
5
]

3
.5

8
m

!
!

3
m

!

H
e

et
a
l.

[1
6
]

3
.5

8
m

!
!

!

B
a
rb

ay
et

a
l.

[2
5
]

1
8
.5

1
n

1
.c
O

(1
)

3
.c
O

(1
)

4
.a
O

(1
)

!

B
le

ll
o
ch

&
3
.5

8
m

1
.c
O

(1
)

3
.c
O

(1
)

4
.a
O

(1
)

!
!

!
F

a
rz

a
n

[2
1
]

F
er

re
s

et
a
l.

[8
]

4
m

1
.c
ω

(l
o
g
n

)
3
.c
O

(1
)

4
.a
ω

(1
)

!
!

!

3
.8

0
m

1
.c
ω

(l
o
g
n

)
3
.c
O

(1
)

4
.a
ω

(1
)

!
!

3
.5

8
m

1
.c
ω

(l
o
g
n

)
3
.c
O

(1
)

4
.a
ω

(1
)

!

O
u
rs

4
m

1
.a

-b
O

(1
),

1
.c

-d
ω

(1
)

2
.a

-b
O

(1
),

2
.c
ω

(1
)

3
.a

-f
O

(1
)

4
.a

-b
ω

(1
)

5
.a

-b
ω

(√
m

)
!

!
!

3
.8

0
m

1
.a

-b
O

(1
),

1
.c

-d
ω

(1
)

2
.a

-b
O

(1
),

2
.c
ω

(1
)

3
.a

-f
O

(1
)

4
.a

-b
ω

(1
)

5
.a

-b
ω

(√
m

)
!

!

3
.8

0
m

1
.a

-b
O

(1
),

1
.c

-d
ω

(1
)

2
.a

-b
O

(1
),

2
.c
ω

(1
)

3
.a

-f
O

(1
)

4
.a

-b
ω

(1
)

5
.a

-b
ω

(√
m

)
!

!

3
.5

8
m

1
.a

-b
O

(1
),

1
.c

-d
ω

(1
)

2
.a

-b
O

(1
),

2
.c
ω

(1
)

3
.a

-f
O

(1
)

4
.a

-b
ω

(1
)

5
.a

-b
ω

(√
m

)
!

O
(m

)
1
.a

-d
O

(1
)

2
.a

-c
O

(1
)

3
.a

-f
O

(1
)

4
.a

-b
O

(1
)

5
.a

-b
O

(1
)

!
!

!

T
a
b

le
3
:

C
o
m

p
a
ri

so
n

o
f

sp
a
ce

a
n

d
fu

n
ct

io
n

a
li
ty

o
f

th
e

su
cc

in
ct

re
p

re
se

n
ta

ti
o
n

s
o
f

co
n

n
ec

te
d

p
la

n
e

em
b

ed
d

in
g
s.

T
h

e
ty

p
es

o
f

fu
n

ct
io

n
a
li
ty

re
fe

r
to

th
o
se

in
T

a
b

le
1
.

In
th

e
su

p
p

o
rt

ed
g
ra

p
h

fe
a
tu

re
s,

M
u

lt
i

re
fe

rs
to

m
u

lt
ip

le
ed

g
es

b
et

w
ee

n
p

a
ir

s
o
f

n
o
d

es
,

L
o
o
p

s
to

se
lf

-l
o
o
p

s,
a
n

d
S

ti
ck

s
to

d
eg

re
e-

1
n

o
d

es
.

T
h

e
n
u

m
b

er
o
f

n
o
d

es
in

th
e

g
ra

p
h

is
d

en
o
te

d
b
y
n

a
n

d
th

e
n
u

m
b

er
o
f

ed
g
es

b
y
m

;
w

e
o
m

it
th

e
ex

tr
a
o
(m

)
b

it
s

in
th

e
sp

a
ce

s.

9

an edge (1.d, a variant of the standard query ST Touches). Our second main
result is Lemma 6, which builds on Lemma 4 to determine if a given node is in
the frontier of a given face (2.c) in any time in ω(1), by defining a new graph
where faces become nodes as well. Determining if two given nodes border the
same face (5.a) or if two given faces share some node (5.b, a variant of query
ST Touches) is costlier, ω(

√
m).

Our general approach is to solve the queries by enumeration (queries of type
3), mapping the “hard” nodes/faces where enumeration would be too expensive
to a smaller graph where we can store extra information in o(m) bits that allows
handling the query in O(1) additional time. The main challenge is to define what
extra information to store, and how to store it, so that we take o(m) bits of space
and we can map to the reduced graph in constant time.

If we use (4 + ε)m bits of space, for any constant ε > 0, then we have
space to interpret “too expensive” in the previous paragraph to “more than a
constant”, then all the times of the form “any in ω(1)” in Table 1 become O(1).
We note that Ferres et al. are able to reduce the space of their representation
to 3.8m + o(m) bits if the graph has no self-loops, and to 3.58m + o(m) bits
if it also has no nodes of degree one, without affecting the algorithms. Those
reductions carry over our results, because none of the modifications we make to
the graph add self-loops or nodes of degree one. We also prove that the space
is 3.8m + o(m) bits if the graph has no nodes of degree one. In those cases,
our space of the form (4 + ε)m bits also becomes (3.8 + ε)m and (3.58 + ε)m,
respectively. We finally explore what can be achieved if we allow any space
usage in O(m) bits. Lemma 8 shows that, by modifying the arrangement of
Lemma 6, we also solve queries (5.a) and (5.b) in constant time. As a result,
all the queries in Table 1 can be solved in O(1) time and within O(m) bits of
space. The following theorem summarizes our results.

Theorem 1. An embedding of a connected planar graph with m edges can be
represented in 4m+o(m) bits so that the queries listed in Table 1 can be answered
in the given time complexities. The space decreases to 3.8m+ o(m) bits if there
are no self-loops or no nodes of degree one, and to 3.58m+o(m) bits if there are
none of both. By using O(m) bits, all the queries can be solved in O(1) time.

Note that the given space results assume that the graph is connected. Ferres
et al. [8] show how an embedding formed by k connected components can be
optimally represented by adding k lg(m/k)+O(k) bits and without any essential
change to the algorithms designed for connected graphs.

A preliminary version of this article appeared in Proc. SPIRE’19 [28]. In
this extended version we present the results in greater detail, and manage to
improve their time for queries (1.c) and (1.d) from O(log logm

log log logm), and for query

(2.c) from ω(log n), to any time in ω(1). We also reduce the space to 3.8m+o(m)
bits when there are no nodes of degree one. Further, we obtain constant time
on all the queries of Table 1 by relaxing the space usage to O(m) bits.

10

3. Succinct Data Structures

3.1. Sequences and Parentheses

Given a sequence S[1..n] defined over an arbitrary alphabet Σ of size σ, the
operation ranka(S, i) returns the number of occurrences of the symbol a ∈ Σ in
the prefix S[1..i], and the operation selecta(S, i) returns the position in S of the
ith occurrence of the symbol a ∈ Σ. For binary alphabets, the bitvector S can
be stored in n+o(n) bits supporting rank and select in O(1) time [29]. If S has
m 1-bits, then it can be represented in m lg n

m +O(m) + o(n) bits, maintaining
O(1)-time rank and select [30].

Binary sequences can be used to represent balanced parenthesis sequences,
by interpreting the bit values as opening or closing parentheses. Given a bal-
anced parenthesis sequence S, open(S, i)/close(S, i) returns the position in S of
the closing/opening parenthesis matching the parenthesis S[i], and enclose(S, i)
returns the rightmost position j such that j < i < close(S, j). A parentheses
sequence can be used to represent an ordinal tree, where each node is identified
by the position i of an opening parenthesis S[i] and its descendant nodes are
listed between positions i + 1 and close(S, i) − 1. The parent of the node i is
parent(S, i) = enclose(S, i). Another relevant operation for this interpretation
is child(S, i, j), which yields the opening parenthesis of the jth child of the node
identified by position i. The sequence S can be represented in n+ o(n) bits and
support open, close, enclose, parent, and child, all in O(1) time [31].

3.2. Ferres et al.’s Representation

Given a plane embedding of a connected planar graph G, the computation
of a spanning tree T of G induces a spanning tree T ∗ in the dual graph of G [32].
The edges of T ∗ correspond to the edges in the dual graph that cross edges in
G\T . Fig. 2a shows a primal (thick continuous edges) and a dual (thick dashed
edges) spanning trees for the plane embedding of Fig. 1b. Lemma 1 states that
a depth-first traversal of T induces a depth-first traversal in T ∗. We deviate a
bit from the presentation of Ferres et al. and resort to the concept of half-edge
[33]: every edge is associated with two twin half-edges, each belonging to one
of the two faces limited by the edge. The half-edges are oriented, so they have
a source and a target node, and the twin half-edges have opposite orientation.
The successive half-edges belonging to a face run in the same direction along
its frontier (i.e., the target of a half-edge is the source of the next). A corner is
defined by a pair of consecutive half-edges of the same face, such that the target
of first half-edge is the source of the second. The traversal of G then visits each
half-edge exactly once.

Lemma 1 ([8]). Consider any plane embedding of a planar graph G, any span-
ning tree T of G and the complementary spanning tree T ∗ of the dual G∗ of G.
Suppose we perform a depth-first traversal of T starting from any node on the
outer face of G and process in ccw order the half-edges whose source is the node
v we are visiting. To start, we arbitrarily choose two half-edges of the outer face
forming a corner on the root of T and start from that second half-edge; at any

11

(a) Primal and dual spanning trees of the plane embedding of Fig. 1b.

(b) The sequence of parentheses and brackets encoding the plane embedding

(c) Bitvectors A, B and B∗ representing the sequence S

Figure 2: Example of the succinct plane embedding representation of Ferres et al. [8].

other node v with parent u in T , we start from the half-edge with source v that
follows (in ccw order) the twin of the one coming from u. Then each edge not in
T corresponds to the next edge we cross in a depth-first traversal of T ∗, starting
in the node of G∗ that represents the outer face of G.

For instance, in Fig. 2a, taking node 1 as the spanning tree root and assuming
the half-edges of the outer face run cw (as it will be the case if we traverse the
node neighbors ccw), the traversal can start at half-edges (1, 1) (due to the
corner (10, 1)–(1, 1)) or (1, 2) (due to the coner (1, 1)–(1, 2)).

The compact representation of our interest [6, 8] (as well as several others
[19, 20, 27]) is based on the traversal of Lemma 1. Starting at the root of any
suitable spanning tree T , each time we visit for the first time an edge e, we write
a “(” if e belongs to T , or a “[” if not. Each time we visit an edge e for the
second time, we write a “)” if e belongs to T or a “]” otherwise. We call S the
resulting sequence of 2m parentheses and brackets, which are enclosed by an
additional pair of parentheses and of brackets that represent the root and the
outer face, respectively. Ranks of opening parentheses act as node identifiers,

12

whereas ranks of opening brackets act as face identifiers. Further, positions
in S act as edge identifiers: each edge is identified twice, first by an opening
parenthesis or bracket, and later by its corresponding closing parenthesis or
bracket. In the half-edge model, there is exactly one half-edge per position in
S; the half-edge i is precisely the one described at S[i]. An edge is identified by
its two half-edges. We note that there is no relation between the direction of a
half-edge and whether it is an opening or a closing parenthesis or bracket.

Fig. 2b shows the sequence S for the plane embedding of Fig. 2a, starting
the traversal at the half-edge (1, 2). Observe that the parentheses of S en-
code the balanced-parentheses representation of T and the brackets encode the
balanced-parentheses representation of the dual spanning tree T ∗. In general
the representation of a node v, (· · ·) where “(” is the vth opening parenthesis,
contains the sequences of nested parenthesis sequences for the children of v in
T (e.g., the sequence for node 1 in the figure contains those of the nodes 2 and
7), interspersed with top-level brackets (i.e., brackets not contained in the se-
quence of a child of v). The opening parenthesis representing v also represents
the half-edge with target v (and source u, the parent of v in T); the parenthesis
closing that of v represents the half-edge with source v and target u. The top-
level brackets represent the other half-edges with source v (e.g., the “]” of I and
the two half-edges “[]” of J with v = 1). Since the brackets also represent the
faces of G, if we exchange the roles of brackets and parentheses, the sequence
represents the dual graph G∗.

In the succinct representation of Ferres et al. [8], the sequence S is stored in
three bitvectors, A[1..2(m+ 2)], B[1..2n], and B∗[1..2(m−n+ 2)]. It holds that
A[i] = 1 if the ith entry of S is a parenthesis, and A[i] = 0 if it is a bracket.
Bitvector B stores the balanced sequence of parentheses of S, storing a 0 for
each opening parenthesis and a 1 for each closing parenthesis. Bitvector B∗

stores the balanced sequence of brackets of S in a similar way. Fig. 2c shows
the bitvectors that store the sequence S of Fig. 2b.

Adding support for rank and select operations on A, B and B∗, and for
open, close and enclose (i.e., parent) operations on B and B∗, we simulate their
support on S, as follows (match(S, i) and enclose(S, i) give the parenthesis or
bracket matching or enclosing, respectively, the one at S[i]):

S[i] =


“(′′ if A[i] = 1 ∧B[rank1(A, i)] = 0,
“)′′ if A[i] = 1 ∧B[rank1(A, i)] = 1
“[′′ if A[i] = 0 ∧B∗[rank0(A, i)] = 0,
“]′′ if A[i] = 0 ∧B∗[rank0(A, i)] = 1

rankc(S, i) =


rank0(B, rank1(A, i)) if c = “(′′,
rank1(B, rank1(A, i)) if c = “)′′

rank0(B∗, rank0(A, i)) if c = “[′′,
rank1(B∗, rank0(A, i)) if c = “]′′

selectc(S, i) =


select1(A, select0(B, i)) if c = “(′′,
select1(A, select1(B, i)) if c = “)′′

select0(A, select0(B∗, i)) if c = “[′′,
select0(A, select1(B∗, i)) if c = “]′′

13

match(S, i) =


select1(close(B, rank1(A, i))) if S[i] = “(′′,
select1(open(B, rank1(A, i))) if S[i] = “)′′,
select0(close(B∗, rank0(A, i))) if S[i] = “[′′,
select0(open(B∗, rank0(A, i))) if S[i] = “]′′

enclose(S, i) =

{
select1(enclose(B, rank1(A, i))) if S[i] = “(′′

select0(enclose(B∗, rank0(A, i))) if S[i] = “[′′

With those primitives, the succinct representation of Ferres et al. [8] supports
constant-time operations to navigate the embedding. Precisely, the represen-
tation supports the following operations (recall that the index v of the nodes
corresponds to their order in the depth-first traversal of the spanning tree T ,
whereas half-edges i are just positions in S):

source(i): the index of the node that is the source of half-edge i;

first(v)/last(v): the first/last half-edge whose source is the node v;

twin(i): the other half-edge corresponding to the same edge of i;

next(i)/prev(i): the next/previous half-edge with the same source of i, in ccw
order of the neighbors of v (note that there is one edge incident on v per
half-edge with source v).

The operations are then supported as follows [8]:

• By Lemma 1, the first half-edge of a node v is immediately after the half-
edge (u, v) coming from the parent u of v in T (except for the root of T),
thus first(v) = select“(′′(S, v) + 1. The last half-edge of v is (v, u), the
one returning to its parent, so last(v) = match(S, select“(′′(S, v)).

• The operation twin(i) is just match(S, i).

• The implementation of next(i) depends on whether the half-edge i belongs
to T or not. Specifically, next(i) = i+1 unless S[i] = “(′′, in which case it
is instead next(i) = match(S, i) + 1. Analogously, prev(i) = i − 1 unless
S[i− 1] = “)′′, in which case it is match(S, i− 1).

• Operation source(i) also depends on whether S[i] is a parenthesis or a
bracket. In the first case, the half-edge is in T and connects i with its
parent. The source is the parent, rank“(′′(S, enclose(S, i)), if S[i] = “(′′,
or the node represented by the twin of i, rank“(′′(S,match(S, i)), if S[i] =
“)′′. On brackets (i.e., S[i] = “[′′ or “]′′), we must find the lowest node of T
containing the bracket. That is, letting j = select1(A, rank1(A, i)) be the
position of the last parenthesis preceding i, the source of i is rank“(′′(S, j)
if S[j] = “(′′, and rank“(′′(S, enclose(S,match(S, j))) otherwise.

Note that those operations suffice to implement the half-edge interface [33].
As said, each of the 2m positions in S identify a half-edge i. Its twin half-edge
is twin(i), its source node is source(i), its target node is source(twin(i)), and
its edge is the pair of positions i and twin(i). The half-edge following i along

14

its face is next(twin(i)), and the one preceding it is twin(next(i)). We can take
last(v), for example, as the half-edge identifying the node v (which is the edge
returning to the parent of v in T). We show in Section 4.1 how to compute
face(i), the identifier of the face where i belongs. The dual of operation last(v)
(now on brackets) then yields a half-edge identifier for each face.

With the operations described above, we can implement more complex queries
in optimal time, such as listing all the incident edges of a node v in constant
time per returned element, and listing all the edges or nodes bordering a face
given a half-edge of the face, spending constant time per returned element:
To list the half-edges with source v in ccw order, we output i = first(v) and
move on to i = next(i), until we have listed last(v). To list cw, we go from
last(v) to first(v) with i = prev(i). To list nodes instead of half-edges, we list
source(twin(i)) instead of i. To traverse the frontier of the face of half-edge i in
cw order, we list i (or source(i)) and move to i = next(twin(i)), until returning
to i. We use prev instead to list the frontier ccw.

Other operations, such as the degree of a node and checking if two nodes are
neighbors, are not supported in constant time. For the degree of a node v, the
representation supports any time in ω(1), whereas for the adjacency test of two
nodes u and v, they achieve any time in ω(logm).

Finally, Ferres et al. [8, Sec. 5.3] show that their space can be reduced to
3.8m + o(m) bits if G has no self-loops, and to 3.58m + o(m) if it also has no
nodes of degree one, by switching to an entropy-bounded representation of S.
The query algorithms designed to run over A, B, and B∗ are shown to run
transparently on this alternative representation.

Theorem 2 summarizes the results of Ferres et al., with the extension that
we also obtain 3.8m + o(m) when the graph has no nodes of degree 1. In this
case, the pair “()” cannot appear in S. Ferres et al. [8, Sec. 5.3] analyze the
entropy of S when no self-loops exist, which implies that the pair “[]” cannot
appear in the sequence. They show that the entropy is below 3.8 bits per edge,
which is reached when m = 1.731n. Let us now exchange the brackets and
parentheses in S, so it becomes the sequence S∗ of the dual graph. This dual
graph has n∗ = m− n+ 2 nodes and m∗ = m edges, and its representation has
no occurrences of the pair “[]”. Therefore, the analysis of Ferres et al. applies to
S∗, showing that its total entropy is also 3.8m∗ = 3.8m bits (which occurs when
m∗ = 1.731n∗, i.e., when m = 1.368n in the original graph). This also implies
that the total entropy of S is 3.8m, as it differs from S∗ only by a renaming of
symbols.

Theorem 2. An embedding of a connected planar graph with m edges can be
represented in 4m + o(m) bits, supporting the listing in cw or ccw order of the
neighbors of a node and the nodes bordering a face in O(1) time per returned
node. One can also find the degree of a node in any time in ω(1), and check
if two nodes are adjacent in any time in ω(logm). The space decreases to
3.8m + o(m) bits if the graph has no self-loops or has no nodes of degree one,
and to 3.58m+ o(m) bits if it has none of them.

15

4. Some Simple Results

As a warm-up exercise, we start with some results that derive easily from
previous work [8], but that have not been clearly stated.

4.1. Nodes and Faces Connected by an Edge

We first obtain the nodes connected by a given edge, and its dual, the faces
separated by the edge. This trivially answers queries (1.a) and its dual (1.b),
(2.a) and its dual (2.b), (3.a) and its dual (3.b), all in constant time.

Note that our half-edge representation, as positions in S, is valid for both
G and its dual G∗: by Lemma 1, the spanning tree edges of G, marked with
parentheses in S, are exactly the non-spanning tree edges of G∗, and vice versa,
the brackets in S are the spanning-tree edges of G∗ and the non-spanning tree
edges of G. We then define a new operation, face(i), that returns the identifier
of the face where the half-edge i belongs. This is solved analogously to source(i),
by exchanging the meaning of parentheses and brackets:

• If S[i] is a bracket, then

– face(i) = rank“[′′(S, enclose(S, i)) if S[i] = “[′′, and

– face(i) = rank“[′′(S,match(S, i)) if S[i] = “]′′.

• If S[i] is a parenthesis, we compute the position j = select0(A, rank0(A, i))
of the last bracket preceding i; then

– face(i) = rank“[′′(S, j) if S[j] = “[′′, and

– face(i) = rank“[′′(S, enclose(S,match(S, j))) otherwise.

The following result is then trivial once we can compute operations source(·)
and face(·).

Lemma 2. The representation of Theorem 2 can determine in O(1) time the
two nodes connected by an edge, and the two faces separated by an edge.

Proof. Let i be any of the two half-edges of the edge. Then the two nodes
corresponding to the edge are source(i) and source(match(S, i)). The two faces
are face(i) and face(match(S, i)).

4.2. Listing Queries

Listing the faces bordering a given face (3.d) can be done as the dual of
listing the neighbors of a node (3.c), by exchanging the roles of brackets and
parentheses in Theorem 2. Listing the faces incident on a node (3.e) can also
be done as a subproduct of Theorem 2. To list the faces ccw, we start from
the half-edge i = first(v), list face(i) and advance to i = next(i), until having
processed last(v). The process to list the faces cw is analogous. Analogously,
given a face identifier x, we can list the nodes found in the frontier of the face
(3.f). This query is not exactly the same as in Theorem 2, because there we
must start from an edge bordering the desired face.

16

Lemma 3. The representation of Theorem 2 suffices to list, given a node u,
the faces incident on u in cw or ccw order from its parent in T , each in O(1)
time, or given a face x, the nodes in the frontier of x in cw or ccw order from
its parent in T ∗, each in O(1) time.

4.3. Counting Queries

Ferres et al. [8] count the number of edges incident on a node u (4.a) in
O(f(m)) time using o(m) bits, for any f(m) ∈ ω(1). A bitvector of length
O(m) with O(m/f(m)) 1s marks the nodes with degree f(m) or more; this
bitvector requires O(m log f(m)/f(m)) + o(m) bits in compressed form [30].
For nodes with degree below f(m), they traverse the incident edges one by
one; for the others, they store the degree explicitly in another bitvector using
O(m log f(m)/f(m)) ⊆ o(m) further bits.

We can similarly count the number of neighboring nodes or faces, with the
exception that we can reach several times the same node or face as we traverse
the edges incident on a node. Thus, we need time O(f(m) log f(m)) on nodes
with degree over f(m) in order to remove repetitions; for higher-degree nodes
we store the correct number explicitly. We then obtain O(f(m) log f(m)) time
using o(m) bits, which still achieves any time in ω(1). By building the structure
on the dual of G, we can count the number of edges or nodes in the frontier of
a face x, as well as the faces sharing an edge with face x (4.b).

5. Deciding if Two Nodes/Faces Share an Edge

We now focus on queries (1.c) and (1.d), which are used in standards and
flagship implementations, as described in Section 2.1.

Ferres et al. [8] show how we can determine if two given nodes u and v are
connected in any time f(m) ∈ ω(logm). First, they check in constant time if
they are connected by an edge of the spanning tree T : one must be the parent
of the other. Otherwise, the nodes can be connected by an edge not in T , rep-
resented by a pair of brackets. Their idea is to mark in a bitvector D[1..n] the
nodes having f(m) or more incident edges (see Fig. 3e for an example). The
subgraph G′ induced by the marked nodes, where they also eliminate self-loops
and multi-edges, has n′ ≤ 2m/f(m) nodes, because each marked node is the
source of at least f(m) half-edges and there are 2m half-edges. Since G′ is
planar and simple, it can have only m′ < 3n′ ≤ 6m/f(m) edges. They repre-
sent G′ using adjacency lists, which use o(m) bits as long as f(m) ∈ ω(logm).
Given two nodes u and v, if either of them is not marked in D, they simply
enumerate its neighbors in time O(f(m)) to check for the other node. Other-
wise, they map both to G′ using rank1(D), and binary search the adjacency list
of one of the nodes for the presence of the other, in time O(logm) ⊆ o(f(m)).
Bitvector D has n′ ≤ 2m/f(m) bits set out of n ≤ m+ 1 (this second inequal-
ity holds because G is connected), and therefore it can be represented using

17

(2m/f(m)) log(f(m)/2)) + O(m/f(m)) + o(m) ⊆ o(m) bits while answering
rank queries in constant time [30].6

5.1. Description of our new representation

We will obtain any time f(m) ∈ ω(1) by solving the query on G′ in a different
way. This requires a more complex mapping, however, because now we cannot
afford to represent the node identifiers of G′ in explicit form within o(m) bits.

In particular, we will not physically remove (all) the unmarked nodes of G to
form G′; we just paint the unmarked nodes to signal that they can be removed.
We do, instead, remove useless edges not in the spanning tree T . More precisely,
we start with G′ = G and then:

• Paint the low-degree nodes u in gray; say the high-degree ones are black.

• Remove the edges incident on gray nodes u and not belonging to T .

• Remove self-loops and multiple edges, avoiding to remove an edge of T .

The spanning tree T ′ of G′ is in principle identical to T . Note that the only
remaining neighbors of gray nodes are connected by edges in T ′. In order to
obtain the desired space/time performance the gray nodes must be reduced, yet
without affecting the traversal order of T ′ on the remaining nodes. We thus
perform the following additional pruning on G′ and T ′:

1. Consecutive gray siblings with parent v in T ′ are merged into one if they
are also consecutive neighbors of v in G′. The children lists of the merged
nodes are then concatenated.

2. A gray node with only one child that is also gray is removed, and its child
is connected to its parent.

3. Gray nodes that are leaves in T ′ are removed.

Fig. 3a shows the graph G of Fig. 1b painted with gray and black nodes and
f(m) = 3. Nodes 5 and 6 are merged into one node by pruning rule 1, to then
remove node 2 and merged nodes 5 and 6 by rule 3. Self-loops and multiple
edges are also removed, obtaining the graph G′ of Fig. 3b.

As seen, G′ has n′ ≤ 2m/f(m) black nodes. It has also gray nodes, but by
rules (1–3) above, every gray node has a first or a second child in T ′ that is
black (recall that all the edges of a gray node are in T ′, so rule (1) leaves no
consecutive gray children of a gray node in T ′). Thus, G′ has at most n′ gray
nodes. Further, since G′ is simple and contains at most 2n′ nodes (black or
gray), it contains m′ < 6n′ edges. The length of the sequence S′ representing
G′ is then 2m′ + 4 < 12n′ + 4 ≤ 24m/f(m) + 4 ∈ O(m/f(m)) ⊆ o(m).

We use an additional bitvector M that identifies with 1s the black nodes of
T ′, in preorder. Therefore, to map the identifier u of a marked node in G (i.e.,

6They do not specify how to handle queries of the form (u, u) given that they remove
self-loops. We can have a bitvector L[1..n′] of size o(m) so that, if D[u] = 1, then there is an
edge (u, u) in G iff L[rank1(D,u)] = 1.

18

(a) Graph G of Fig. 2a with painted nodes and f(m) = 3.

(b) Graph G′ with f(m) = 3 (c) Parentheses/brackets representation of G′

(d) Oriented graph G′ (e) Bitvectors D, M , U , V , W and C

Figure 3: Graph G′ used to support query (1.c). (a) Graph G of Fig. 2a before applying
the pruning rules, with f(m) = 3. (b) Graph G′ after applying all the pruning rules; node 8
is the only gray node that remains. (c) The representation of G′. On the top we mark the
gray nodes and removed edges in S. On the bottom we show the final sequence S′; we also
highlight in blue the range of parentheses and brackets representing the children of node 1.
(d) Graph G′ with oriented edges. (e) Bitvectors D, M , U , V , W , and C used to support
query (1.c).

19

D[u] = 1), we first compute u′′ = rank1(D,u), which is its preorder position
among the black nodes of T ′. We then compute u′ = select1(M,u′′) to obtain
its node identifier in T ′. Its opening parenthesis in S′ is then at select“(′′(S

′, u′).
The length of M is at most 2n′ ∈ o(m). An example of the bitvector M can be
seen in Fig. 3e.

5.2. Supporting queries

The key idea to determine if (black) nodes u′ and v′ are connected in G′

is that one can orient the edges in a simple planar graph so that every node
has outdegree at most 3 [34] (do not confuse with the orientation of half-edges).
Once G′ is oriented, determining whether (u′, v′) is an edge of G′ requires testing
whether at most 6 edges connect u′ and v′ (i.e., the 3 edges leaving u′ and the
3 edges leaving v′). For instance, Fig. 3d shows a possible orientation for the
edges of graph G′ of Fig. 3b.

The problem then reduces to finding each of the out-edges of a node u′ fast.
We can focus on the edges not in T ′, because we always start checking whether
(u, v) or (v, u) are in T , and the edges between black nodes of T ′ also belong
to T . We will find in constant time the (at most) 3 brackets that represent
out-edges in the top level of the substring (· · ·) of S′ that describes u′ (we say
that those brackets are marked). Recall that this substring contains in turn the
substrings (· · ·) of the children u1, . . . , uk of u′ in T ′, interspersed with brackets,
so “top level” means that the brackets are not inside the substring of any uj .

We proceed as follows. We define a bitvector U where we traverse T ′ in
preorder and, for each black node u′ with k children u1, . . . , uk, we add k+1 bits.
The first bit is 1 iff there are marked brackets between the opening parenthesis
of u′ and the opening parenthesis of u1 (or, if u′ has no children, between the
opening and closing parentheses of u′). For 1 < j ≤ k, the jth of the k + 1
bits is 1 iff there are marked brackets between the closing parenthesis of uj−1
and the opening parenthesis of uj . Finally, the (k + 1)th bit is a 1 iff there are
marked brackets between the closing parenthesis of uk and that of u′. Since T ′

has at most 2n′ nodes and at most 2n′ − 1 of those are children of some node,
the length of U is < 4n′ ∈ O(m′). A second bitvector, V , marks with 1s the first
of the k + 1 bits of each node described in U . Finally, we use a third bitvector
W of length O(m′), where W [i] = 1 means that, in a left to right scan of S′,
the ith opening or closing bracket is marked. For example, the bitvectors U , V
and W for the graph of Fig. 3d are shown in Fig. 3e.

To find the out-neighbors of a node u′, we first find its area U [p..p′], with
p = select1(V, u′) and p′ = select1(V, u′ + 1) − 1. We now find the (up to 3)
positions pi ∈ [p..p′] where U [pi] = 1, with pi = select1(U, rank1(U, p− 1) + i),
stopping when pi > p′. For each of those pi, we must search the area of brackets
that lie between the (pi − p)th and the (pi − p + 1)th children of u′. Let
u′ have k children. The area between the 0th and the 1st children refers to
S′[select“(′′(S

′, u′) + 1..select“(′′(S
′, u′ + 1)− 1]. The area between the ith and

the (i + 1)th children, for 1 ≤ i ≤ k, refers to S′[match(S′, child(S′, u′, i)) +
1..child(S′, u′, i + 1)], where we extend the operation child to operate on the

20

parentheses of the sequence S′ as follows:

child(S′, u′, i) = select1(A′, child(B′, select0(B′, u′), i)),

where we assume S′ is represented with bitvectors A′, B′, and (B∗)′. Fi-
nally, the area between the kth and the (k + 1)th children of u′ refers to
S′[match(S′, child(S′, u′, k)) + 1..match(S′, u′)− 1].

Let S′[q..q′] be any such area of S′, which is composed of only brackets. We
map q and q′ to W with r = rank0(A′, q) and r′ = r + (q′ − q), so we must
enumerate the (up to 3) 1s in W [r..r′]. Those are ri = select1(W, rank1(W, r−
1) + i), stopping when ri > r′. The corresponding marked brackets are qi =
ri + (q− r). Each position S′[qi] corresponds to an edge that must be tested to
see if it is incident on v′, in constant time with query (2.a). We then analogously
check if the up to 3 out-neighbors of v′ are incident on u′.

We thus solve query (1.c) with o(m) extra bits of space and O(f(m)) time,
for any f(m) ∈ ω(1).

Lemma 4. The representation of Theorem 2 can be enriched with o(m) bits so
that we can determine whether two nodes are connected in any time in ω(1).

It is natural, if two nodes are connected, to ask for one edge connecting
them. This is trivial in our case when the edge belongs to T . Otherwise, we aim
to retrieve the positions S[b..b′] of a pair of brackets that connect our mapped
nodes u′ and v′. To do this, we enrich our structure with bitvector C, which
tells which face identifiers of G (i.e., ranks of opening brackets) survive in G′

after the pruning process. See the bottom of Fig. 3e for an example. Once we
find that u′ and v′ are neighbors connected by the edge with opening bracket at
S′[x] = “[′′ and closing bracket at S[x′] = “]′′, we have that the opening bracket
number b′ = rank“[′′(S

′, x) connects them in G′. We then identify the edge in
G with b = select1(C, b′), and twin(b), in O(1) additional time. The length of
bitvector C is less than m and it has less than m′ 1s, thus it can be represented
in O(m log f(m)/f(m)) + o(m) ⊆ o(m) bits [30].

5.3. Determining Adjacency of Faces

By exchanging the interpretation of parentheses and brackets, the same se-
quence S represents the dual G∗ of G, where the roles of nodes and faces are
exchanged. We can then use the same solution of Lemma 4 to determine whether
two faces are adjacent (1.d). We do not explicitly store the sequence S∗ repre-
senting G∗, since we can simulate it using S. We do, instead, build a structure
on S∗ analogous to the one we built on S, creating sequence (S∗)′ and its aux-
iliary bitvectors. This time, the input to the query are the ranks of the opening
brackets representing both faces (i.e., node identifiers in G∗). We then solve
query (1.d).

Lemma 5. The representation of Theorem 2 can be enriched with o(m) bits so
that we can determine whether two faces are adjacent in any time in ω(1).

21

6. Determining Incidence of a Face in a Node

We now consider the problem of, given a node u and a face x, determine
whether x is incident on u (2.c). As a motivation for this query, consider a
city map where nodes are street intersections, edges are the street segments
between nodes, and faces are blocks. An algorithm for traversing from a given
intersection towards a given block needs to determine, at any new node we reach,
whether the node touches the desired face. Various traversal algorithms exist
for planar graphs, with applications to city maps and network routing [35, 36].

Since with Lemma 3 we can list each face incident on u in constant time, or
each node bordering x in constant time, we can use a scheme combining those
of Lemmas 4 and 5: If u has less than f(m) neighbors, we traverse them looking
for x. Otherwise, if x has less than f(m) bordering nodes, we traverse them
looking for u. We now show how to handle the remaining case.

We define a graph G# where we add additional nodes representing selected
faces of G, that is, those having at least f(m) nodes in their frontier. The
queries that are not handled by enumeration in G will become a node neighbor
query on G#, and solved as in Lemma 4. The graph G#, which will have O(m)
edges, will not be represented directly.

Concretely, G# adds to G a new node v(x) per selected face x, as well as
new edges connecting v(x) with all nodes in the frontier of x. Note G# is planar
because we can draw v(x) inside the face x. There are at most 2m/f(m) selected
faces x, because each has at least f(m) edges in its frontier and each edge is in
the frontier of two faces. The graph G# contains n′ ≤ n + 2m/f(m) = O(m)
nodes and m′ ≤ 3m edges (each selected face limited by j edges of G adds j
new edges in G#, and each edge of G limits two faces).

A spanning tree T# for G# is built by extending the spanning tree T of G
with leaves v(x) that represent selected faces x. An example of G# and T# is
shown in Fig. 4a. Consider the traversal of G that defines the spanning trees T
and T ∗. Let (u, v) 6∈ T be the edge in the frontier of a selected face x where the
traversal of T ∗ first reaches the face x, that is, when edge (y, x) is added to T ∗

for some face y (e.g., the edge (4, 9) in Fig. 4a). Right after visiting the edge
(u, v), we add a new leaf node v(x), as a child of u, to T# (e.g., the edge (4, C)
in Fig. 4a). We also add the edges (x,w) to the graph G# for the other nodes
w in the frontier of face x; those edges will not belong to T#.

To generate the sequence S# representing G# we traverse T# starting from
the edge that connects the outer face with the starting node that generates the
sequence S. After that, the traversal follows the same order of T . When we
reach an original selected face x (which in G# is partitioned into j triangles),
we will visit the edge (u, v(x)) ∈ T# right after (u, v) 6∈ T#. We will then
traverse the other j − 1 edges incident on v(x), none of which is in T#, and all
of which are visited for the first time because we had not entered face x before.
Therefore, the “[′′ that represents (u, v) in S# will be immediately followed by
([j−1), and then the normal layout of T will follow. Those opening brackets
will be closed later along the traversal. Fig. 4b shows the sequence S# obtained
after traversing the spanning tree T# of Fig. 4a, starting from the edge (1, A).

22

(a) Graph G# with f(m) = 3

(b) Sequence S# generated from the graph of Fig. 4a

Figure 4: Graph G# used to support query (2.c). (a) Graph G# with f(m) = 3. The selected
faces are painted in gray and the spanning tree T# is represented with thick edges. Gray edges
are those not in T#: solid edges are in T ∗ and dashed edges are those created to be incident
to the selected faces. (b) Sequence S# obtained from the traversal of T#. The parentheses
and brackets added to those in S are in black, so S is the gray subsequence of S#.

For instance, face C is bounded by the nodes 1, 5, 4, 9, 8, 7 and 6, which are
represented by ([[[[[[) in Fig. 4b.

This implies that every opening bracket in S representing a selected face x,
is immediately followed in S# by an opening parenthesis corresponding to the
node v(x) we created for the face. That is, selected faces x in S are in the same
order of added nodes v(x) in S#. Further, the nodes of G are in the same order
in S and S#. We exploit this correspondence to map nodes and faces from G
to nodes of G# by using the following bitvectors:

• The same bitvector D[1..n] of Section 5, where D[u] = 1 iff node u of G
has degree at least f(m).

• A bitvector E[1..m − n + 2], where E[x] = 1 iff face x of G has at least
f(m) nodes (or edges) in its frontier.

• A bitvector R where R[x′] = 1 iff node x′ of G# is one of the nodes v(x)
we added to G in order to form G#.

If D[u] = 1, we map it to node u′ = select0(R, u) in G# (note that
all the nodes in G appear in G#). If E[x] = 1, we map it to node x′ =
select1(R, rank1(E, x)) (only the selected faces in G appear as new nodes in

23

G#). Bitvectors D, E, and R are of length O(m) and have O(m/f(m)) 1s, so
they can be represented within O(m log f(m)/f(m)) + o(m) ⊆ o(m) bits [30].

If u has degree at least f(m) and x is limited by at least f(m) nodes, we
map node u and face x to nodes u′ and x′ in G# as explained, and determine
if they are neighbors. Note that, since x has at least f(m) nodes in its frontier,
node x′ has degree at least f(m). Node u′ also has degree at least f(m) in G#,
because it had in G and it can only get further neighbors in G#. We then build
on S# the structures of Lemma 4, without explicitly representing S#, so that
we map u′ and x′ to the reduced sequence (S#)′ and solve the query in there.
This adds o(m) bits of space and completes the query in any time in ω(1).

Lemma 6. The representation of Theorem 2 can be enriched with o(m) bits so
that, given a node u and a face x, it answers whether u is in the frontier of x
in any time in ω(1).

7. Determining Indirect Connections

We finally consider the most complex queries, (5.a) and (5.b), which cor-
respond to a variant of the query ST Touches and its dual, as mentioned in
Section 2.1.

To handle these queries, we reuse the idea of selecting a subgraph where the
query cannot be solved in time O(f(m)) and storing a suitable speed-up struc-
ture for those cases. This time, however, the idea leads to a much higher time
complexity. We later obtain constant time by relaxing the space requirement to
O(m) bits.

Let us first consider determining if two nodes are in the border of the same
(unknown) face. Given two nodes u and v, if either has less than f(m) neighbors
we can traverse its incident faces one by one and, for each face x, use Lemma 6
to determine if x is incident on the other node in time ω(1). For all the pairs of
nodes (u, v) where both have f(m) neighbors or more, we store a binary matrix
telling whether or not they lie on the same face. This requires (2m/f(m))2 bits,
which is o(m) for any f(m) ∈ ω(

√
m). Thus we can solve query (5.a) and, by

duality, query (5.b), in any time in ω(
√
m).

Lemma 7. The representation of Theorem 2 can be enriched with o(m) bits so
that, given two nodes or two faces, it answers in O(f(m)) time whether they
share a face or a node, respectively, for any f(m) ∈ ω(

√
m).

If we want to know the identity of the shared face (or, respectively, node),
this can be stored in the matrix, which now requires O((m/f(m))2 logm) bits.
We can then reach any time in ω(

√
m logm).

7.1. Constant Times with O(m) Bits of Space

As explained, those operations requiring ω(1) time in Table 1 automatically
become O(1) if we use f(m) ∈ O(1). In exchange, the space becomes (4 + ε)m
bits for any desired constant ε > 0. We now show that queries (5.a) and (5.b)

24

(a) Graph G# with oriented edges (b) Graph G$

Figure 5: Graphs G# and G$ used to support query (5.a). (a) Graph G#. Solid edges
represent edges of the original graph G (Fig. 1b), and dashed ones represent edges connecting
faces with their bordering nodes. The spanning tree T of the original graph is in black. (b)
Graph G$. Red edges represent the new edges connecting nodes linked by two out-edges of
the node induced by their common face in G#.

can also be solved in O(1) time if we raise the space to O(m) bits.7 Let us focus
on the query of Lemma 7 (5.a); we then obtain (5.b) by duality. Our solution is
inspired in a (non-compact) data structure for constant-time bounded shortest
distance queries on planar graphs [39].

Consider the graph G# of Section 6, with the following changes:

• We start with a copy of G and then remove self-loops and multiple edges
(not those that belong to T). Self-loops and multiple edges are irrelevant
for the query (5.a).

• We select all the remaining faces of G.

• We represent G# explicitly (so we use O(m) bits of space).

• We orient the edges of G# as in Section 5. Since G# is simple, the out-
degree of every node can be made at most 3.

If nodes u and v are both in the frontier of some face mapped to node x in
G#, then the following configurations of the edge orientations are possible in
G#: u → x → v, u → x ← v, u ← x ← v, and u ← x → v. The first three are
easily verified in constant time using the structures of Section 6. For example,
for u → x → v we check the (up to) 3 out-neighbors xi of u and, for those xi
that are faces in G (which is verified in bitvector R), we check their (up to) 3
out-neighbors vi,j , to see if vi,j = v.

The difficult case is u← x→ v, because we should start our quest from the
unknown node x. Fortunately, inside the face x represents in G, there can be

7In the conference version [28], we incorrectly conjectured that this problem was
intersection-hard [37, 38] even using O(m logm) bits of space.

25

at most 3 nodes that are out-neighbors of x in G#. We then create another
extended version of the original graph G (still without self-loops and multiple
edges), which we call G$, where we additionally connect those 3 nodes inside
each face x, thereby drawing a triangle inside the face (thus G$ is planar). Thus,
there is a configuration u← x→ v iff (u, v) is one of those edges of the triangles
we have added. Fig. 5b shows an example for the graph G$, based on the
oriented edges of Fig. 5a. For instance, the cases 9 ← A → 1 and 5 ← C → 7
cause the insertion of the edges (1, 9) and (5, 7), as shown in Fig. 5b. It is clear
that G$ has O(m) edges and that we can define a spanning tree T $ for it that
is identical to that of T , letting all the added edges be not in T $. We then
represent G$ as in Lemma 4 (with f(m) ∈ O(1)) and verify the configuration
u← x→ v by asking if u and v share an edge in G$. Note that this query can
return an edge that belongs to G, but in this case it is also true that u and v
border the same face. By also considering duality, we have the following result.

Lemma 8. The representation of Theorem 2 can be enriched with O(m) bits so
that, given two nodes or two faces, it answers in O(1) time whether they share
a face or a node, respectively.

In the graph G# we add inside each face of G one new node, as well as one
new edge per edge limiting the face. As each edge of G limits two faces, we add
in total m− n+ 2 new nodes and 2m new edges, so G# has up to m+ 2 nodes
and 3m edges. Its Turán’s representation then requires 12m bits. In addition
we need its bitvector R, which adds other m+ 2 bits. The impact of the graph
G$, on the other hand, can be reduced by (1) maintaining only the edges of
the spanning tree and (2) adding the triangles only on the faces x limited by at
least f(m) ∈ O(1) nodes. This retains the constant time and limits the edges
to n + O(m/f(m)). In this way, G$ requires (2n + ε)n further bits, for any
desired constant ε > 0. In total, the representation of Lemma 8 requires at
most (15 + ε)m further bits of space. This can be reduced to (13 + ε)m by
representing G$ using the techniques of Section 5, so that it shares the main
structure with G and the added edges are seen only on the O(m/f(m)) faces
that have at least f(m) neighbors.

8. Conclusions

We built on a recent extension [8] of Turán’s representation [6] for plane
embeddings so as to support a rich set of topological queries within succinct
space, 4m+ o(m) bits for an m-edge embedding. Though it exceeds the asymp-
totically optimal space of 3.58m+ o(m) bits, this representation is particularly
attractive to handle the topological model because it regards the graph and its
dual symmetrically, thereby enabling a number of queries relating nodes, edges,
and faces. We actually reach the 3.58m+ o(m) bits of space if the graph has no
self-loops and no nodes of degree one.

Starting with an improved solution to determine if two nodes are neighbors,
we exploit analogies and duality to support most of the operations in any time

26

in ω(1). We then relax our space requirements to O(m) bits, showing that in
this case we can represent variants of the graph that allow us support all the
desired queries (on the original graph) in O(1) time.

An interesting challenge is whether we can support bounded distance queries
(bounded meaning that only distances up to some constant k are distinguished)
efficiently and within O(m) bits of space. For k = 2, a relatively obvious variant
of Lemma 7 yields any time in ω(

√
m) within 4m+o(m) bits of space. We cannot

use an analogous to the O(m)-bits construction of Lemma 8 to obtain constant
time, however, because the resulting graph G$ could be non-planar. Kowalik
and Kurowski [39] show that this query can be solved in constant time using
O(m logm) bits, that is, with a classical non-compact representation. They use
the same idea of orienting the edges and are left with the hard subproblem of
the configuration u← x→ v, for which we built G$. They handle this case by
adding the edges (u, v) explicitly, which in general make the graph non-planar.
They show, however, that the resulting graph is the union of a constant number
of planar graphs, which can then be queried one by one. Our problem to obtain
O(m) bits from this idea is how to track the node identifiers across those planar
graphs, which can have very different spanning trees.

References

[1] G. D. Lozzo, A. D’Angelo, F. Frati, On planar greedy drawings of 3-
connected planar graphs, Discrete Computational Geometry 63 (1) (2020)
114–157.

[2] G. Navarro, Compact Data Structures: A practical approach, Cambridge
University Press, Cambridge, UK, 2016.

[3] L. Castelli Aleardi, O. Devillers, G. Schaeffer, Succinct representation of
triangulations with a boundary, in: Proc. 9th International Conference on
Algorithms and Data Structures (WADS), 2005, pp. 134–145.

[4] L. Castelli Aleardi, O. Devillers, G. Schaeffer, Succinct representations of
planar maps, Theoretical Computer Science 408 (2-3) (2008) 174–187.

[5] P. Bose, E. Y. Chen, M. He, A. Maheshwari, P. Morin, Succinct geomet-
ric indexes supporting point location queries, ACM Transactions on Algo-
rithms 8 (2) (2012) 10:1–10:26.

[6] G. Turán, On the succinct representation of graphs, Discrete Applied Math-
emathics 8 (3) (1984) 289–294.

[7] W. T. Tutte, A census of planar maps, Canadian Journal of Mathematics
15 (1963) 249–271.

[8] L. Ferres, J. Fuentes-Sepúlveda, T. Gagie, M. He, G. Navarro, Fast and
compact planar embeddings, Computational Geometry Theory and Appli-
cations (2020) 101630.

27

[9] M. Worboys, M. Duckham, GIS: A Computing Perspective, 2nd Edition,
CRC Press, Boca Raton, FL, USA, 2004.

[10] M. O. Scholl, Spatial Databases with Application to GIS, Morgan Kauf-
mann, San Francisco, CA, USA, 2002.

[11] ISO/IEC 13249-3:2016. Information technology – Database languages –
SQL multimedia and application packages – Part 3: Spatial, Tech. rep.
(2016).

[12] OpenGIS Simple Features Specification For SQL, Tech. rep. (1999).
URL https://www.ogc.org/standards/sfs

[13] E. Clementini, J. Sharma, M. J. Egenhofer, Modelling topological spatial
relations: Strategies for query processing, Computers & Graphics 18 (6)
(1994) 815–822.

[14] V. Gaede, O. Günther, Multidimensional access methods, ACM Comput.
Surv. 30 (2) (1998) 170–231.

[15] K. Keeler, J. Westbrook, Short encodings of planar graphs and maps, Dis-
crete Applied Mathematics 58 (1995) 239–252.

[16] X. He, M. Y. Kao, H.-I. Lu, A fast general methodology for information-
theoretically optimal encodings of graphs, SIAM Journal on Computing 30
(2000) 838–846.

[17] G. Jacobson, Space-efficient static trees and graphs, in: Proc. 30th Annual
Symposium on Foundations of Computer Science (FOCS), 1989, pp. 549–
554.

[18] J. I. Munro, V. Raman, Succinct representation of balanced parentheses
and static trees, SIAM Journal on Computing 31 (3) (2001) 762–776.

[19] R. C.-N. Chuang, A. Garg, X. He, M.-Y. Kao, H.-I. Lu, Compact encod-
ings of planar graphs via canonical orderings and multiple parentheses, in:
ICALP, LNCS 1443, 1998, pp. 118–129.

[20] Y.-T. Chiang, C.-C. Lin, H.-I. Lu, Orderly spanning trees with applications,
SIAM Journal on Computing 34 (2005) 924–945.

[21] G. E. Blelloch, A. Farzan, Succinct representations of separable graphs, in:
Proc. 21st Annual Conference on Combinatorial Pattern Matching (CPM),
2010, pp. 138–150.

[22] M. Yannakakis, The effect of a connectivity requirement on the complexity
of maximum subgraph problems, Journal of the ACM 26 (1979) 618–630.

[23] W. Schnyder, Embedding planar graphs on the grid, in: Proc. 1st Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), 1990, pp. 138–
148.

28

[24] R. J. Lipton, R. E. Tarjan, A separator theorem for planar graphs, SIAM
Journal of Applied Mathematics 36 (1979) 177–189.

[25] J. Barbay, L. C. Aleardi, M. He, J. I. Munro, Succinct representation of
labeled graphs, Algorithmica 62 (2012) 224–257.

[26] W. T. Tutte, A census of planar triangulations, Canadian Journal of Math-
ematics 14 (1962) 21–38.

[27] K. Yamanaka, S.-I. Nakano, A compact encoding of plane triangulations
with efficient query supports, Inform. Process. Lett. 110 (18-19) (2010)
803–809.

[28] J. Fuentes-Sepúlveda, G. Navarro, D. Seco, Implementing the topological
model succinctly, in: Proc. 26th International Symposium on String Pro-
cessing and Information Retrieval (SPIRE), 2019, pp. 499–512.

[29] D. R. Clark, Compact PAT trees, Ph.D. thesis, University of Waterloo,
Canada (1996).

[30] R. Raman, V. Raman, S. Satti, Succinct indexable dictionaries with appli-
cations to encoding k-ary trees, prefix sums and multisets, ACM Transac-
tions on Algorithms 3 (4) (2007).

[31] G. Navarro, K. Sadakane, Fully functional static and dynamic succinct
trees, ACM Transactions on Algorithms 10 (3) (2014) 16:1–16:39.

[32] N. Biggs, Spanning trees of dual graphs, Journal of Combinatorial Theory
B 11 (2) (1971) 127–131.

[33] D. E. Muller, F. P. Preparata, Finding the intersection of two convex poly-
hedra, Theoretical Computer Science 7 (2) (1978) 217–236.

[34] M. Chrobak, D. Eppstein, Planar orientations with low out-degree and
compaction of adjacency matrices, Theoretical Computer Science 86 (2)
(1991) 243–266.

[35] E. Kranakis, H. Singh, J. Urrutia, Compass routing on geometric networks,
in: Proc. 11th Canadian Conference on Computational Geometry (CCCG),
1999.

[36] P. Bose, P. Morin, I. Stojmenovic, J. Urrutia, Routing with guaranteed
delivery in ad hoc wireless networks, Wireless Networks 7 (6) (2001) 609–
616.

[37] H. Cohen, E. Porat, Fast set intersection and two-patterns matching, The-
oretical Computer Science 411 (40-42) (2010) 3795–3800.

[38] M. Patrascu, L. Roditty, Distance oracles beyond the Thorup-Zwick bound,
SIAM Journal on Computing 43 (1) (2014) 300–311.

[39] L. Kowalik, M. Kurowski, Oracles for bounded-length shortest paths in
planar graphs, ACM Transactions on Algorithms 2 (3) (2006) 335–363.

29

