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Abstract

We give the first fully compressed representation of a set of m points on an n x
n grid, taking H +o(H) bits of space, where H = g (Zj) is the entropy of the
set. This representation supports range counting, range reporting, and point
selection queries, with complexities that go from O(1) to (’)(lg2 n/lglg n)
per answer as the entropy of the grid decreases. Operating within entropy-
bounded space, as well as relating time complexity with entropy, opens a

new line of research on an otherwise well-studied area.
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1. Introduction

A point grid is a basic structure underlying the representation of two-
dimensional point sets, graphics, spatial databases, geographic data, binary
relations, graphs, images, and so on. It has been intensively studied from
a computational geometry viewpoint, where most of the focus has been on
two basic primitives: (orthogonal) range counting (how many points are
there in this rectangle?), and (orthogonal) range reporting (list the points
falling within this rectangle). More sophisticated setups include more com-
plex queries like finding dominant points, querying shapes more general than
rectangles, computing aggregates on values associated to points, etc. [1]. In
most cases these more complex queries build on the two basic primitives
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mentioned, plus a third one we call point selection (which is the kth point in
this range?).

Consider an n x n grid containing m points, and the RAM computa-
tion model with word size w = O(lgn). Currently the best results related
to the focus of this paper are as follows. Range counting can be done in

time O(lé%?m) and linear space, that is, O(m) words [23]. That counting

time cannot be improved within O(m polylog(m)) words space [28]. Range
reporting can be done in time O(lglgm + k), where k is the number of
points reported, using O(mlg®m) words for any constant € > 0 [2]. This
time, again, is optimal within O(m polylog(m)) words space [7]. It rises
to O((k +1)lglgm) if the space is reduced to O(mlglgm) words, and it
reaches O((k + 1)1g®m) if the space is O(m) words [7]. There are also some
bounds that may be relevant when many points are to be reported, as the
cost per reported point decreases with k: O(lgm + klglg(4m/k)) time using
O(mlglgm) words, and O(lgm + klg®(2m/k)) time using O(m) words [9].
Some of these results have been matched even in the dynamic scenario [25].

Many of the application areas for this problem handle huge volumes of
information, and in those cases superlinear-space structures are impractical.
Even the linear-space structures (i.e., O(m) words, or O(mlgn) bits) might
be excessively large. On top of the coordinates of the points, they add several
auxiliary structures that add to the constant factor multiplying the O(mlgn)
term. When space is a concern, one can aim not only at using linear space,
but at succinctness, that is, using mlgn(1 + o(1)) bits of space.

A few succinct data structures exist. Bose et al. [6] presented a struc-
ture using mlgm + o(mlgm) bits to store m = n points in an n x n grid,

lgm
lglgm

answering range counting queries in time (9( > and reporting in time

O((k + l)légfgrnm). Another proposal approaching succinctness is by Barbay

et al. [3], which uses mlgn + o(m)lgn + O(m + n) bits. Within this space
they solve many interesting range queries including counting, reporting, and
point selection, in O(lgn) and even O(lgn/lglgn) time per answer.

Even a succinct space like m 1gn bits is not the best possible for all values
of m and n. A (worst-case) lower bound on the number of bits needed to
represent a grid is the logarithm of the number of possible grids, called the



“entropy”:
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In this paper we push further in the direction of storing the grid data
within its entropy bound. Most notably, we achieve a fully compressed rep-
resentation taking H + o(H) bits of space. While the worst-case time we
achieve for the operations is (’)(lg2 n/lglg n), we obtain for most values of m

and n time complexities of the form O <lg %2 /lglg n), which improves as the

grid becomes denser (i.e., as the entropy increases), reaching even constant
time when m = Q(n?/polylog(n)). See Table 1 for the precise details. We are
not aware of previous works relating the entropy with the time complexities
of the operations, only between the space and the time in terms of m.

The paper is organized as follows. Section 2 gives basic concepts on
bitmaps and point grids, defines the problems we address, proves some techni-
cal results needed later and summarizes the results we achieve. Section 3 gives
two simple solutions obtained by plugging in existing results. While they get
close to reaching entropy space, H 4+ O(m) bits, their times are insensitive to
the entropy, typically O(lgm/lglgm). Section 4 describes a representation
taking H + o(n?) bits and achieving constant time for range counting and re-
porting. Such a redundancy is o( H) when the matrix is dense enough (but not
extremely dense). Section 5 achieves H + o(H) + O(mlglglgm) bits, in ex-
change for higher query times, namely the entropy-sensitive O <lg %2 /lglg n) :
This redundancy is o(H) when the matrix is sparse enough. Finally, Sec-
tion 6 combines the previous results to finally reach the H + o(H) bits in all
cases, yet the times become entropy-insensitive for extremely dense matrices,

O(lg*n/lglgn). In Section 7 we extend the result using H + o(n?) bits to d
dimensions. Section 8 concludes and gives further research directions.



2. Basic Concepts

2.1. The One-Dimensional Case

The one-dimensional variant of the problem has long been studied. It can
be modeled as a bitmap Bl[1,n] with m 1s, corresponding to the positions of
the points. The entropy of this bitmap is H =1g () = mlg Z+O(m + Ign).
All the range counting, range reporting, and point selection queries can be
solved in terms of two primitives: rank(B,i) is the number of 1s in BJ[1, 1],
and select(B, j) is the position in B of the jth 1. For some applications
it is also interesting to count and locate the 0Os in the bitmap, so opera-
tions rankg, rank;, selecty and select; are defined (assuming rank = rank; and
select = select; by default). While ranky(B,7) = ¢ — rank,(B, 1) is trivial,
query selectq(B, j) needs to be solved independently of select;.

Clark [11] and Munro [24] showed that all the rank and select queries can
be solved in constant time using n + o(n) bits of space, that is, B itself plus
sublinear space. The structure using that o(n) extra space is called an indez,
which operates by accessing a constant number of chunks of B. Golynski
[15] showed that, in the model where the accesses to B are restricted to a
black-box that returns any ©(w) = ©(lgn) consecutive bits in constant time,
nlglgn

Ign

the index must use 2 ( bits in order to achieve constant query time.

He also designed an index that matched this lower bound.
Pagh [27] (see also Raman et al. [32]) provided a compressed represen-
tation of B that retrieves any ©(lgn) consecutive bits in constant time and

requires H + O (”E%) =mlg>+0 (m + "E#) bits. Combined with the
index of Golynski [15], constant-time rank and select are supported within
the same asymptotic space, H + o(n) bits.

This o(n)-bit redundancy may dominate the entropy when m is much

smaller than n. It was later shown that, by not separating the bitmap from
the index, Golynski’s lower bound can be broken, and H + (’)( )> bits

polylog(n

can be achieved [17, 29, 31|, but this is still too large if m is significantly
smaller than n, e.g. m = O(n®) for a constant 0 < o < 1. Gupta et al. [22]
removed this near-linear redundancy at the expense of non-constant query
times. Their representation uses mlg > + O(m lg > /lgm +mlglg %) =
mlg > +o (m lg %) + O(m +1gn) bits and answers rank and select queries
in time O(lglgm).

We prove now a technical lemma we will need later, related to an index
having even more restricted access to the bitmap B. From now on, for
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simplicity, we will omit floors and ceilings in our formulas.

Lemma 1. Let0 < a < 1 be a constant and b = O(1g* n). Let bitmap B[1,n]
be stored in such a way that we can read chunks of the form B[b-(i—1)4+1,b-i]
in constant time, for any i. Then we can perform rank and select in constant
time using O(%) bits of extra space, and this is optimal in general.

Proof. 'We prove it only for aw < 1, as for a = 1 the result is well known.
We take any data structure achieving constant time and (’)(”E#) extra

bits, say Golynski’s [15], and adapt it to read aligned chunks of length b.
The data structure uses several indexes and accesses B a constant number
of times. Each such time, it reads a word of w = ©(lgn) consecutive bits
of B, in order to either (a) count the number of 1s in a part of the word or
(b) find the position of the kth 1 or 0 in a part of the word, using “universal
tables” (i.e., small precomputed tables that do not depend on the content of
B, only on b, and sum up to o(n) bits of size).

We introduce an indirection when accessing such universal tables. Each
word is covered by w/b chunks. For each chunk, we store the summary
number of 1s in the chunk. This requires lg(b + 1) bits, so the total space
is O(%) = O(%). Moreover, in a RAM machine with word size w
we can read all the summary numbers of the chunks covering any word in
O(1) accesses, as they add up to % = o(lgn) bits. With these summary
numbers we can index a universal table of O(2°!8™ polylog(n)) = o(n) bits,
telling (a) the number of bits set up to any given chunk of the word, and
(b) the chunk where the kth 0/1 of the word occurs. A final access to one
b-bit chunk, with another universal table of O(2"polylog(n)) = o(n) bits,
completes the query in constant time.

The lower bound comes directly from Golynski [15], who states that if one
probes t bits and answers rank/select in constant time, then the index must
be of size €2 (@) In the worst case m = ©(n) and the query algorithms
can access at most t = O(b) bits in constant time, so the index must use

Q (%) bits in general (i.e., for any value of m). O

2.2. Two Dimensions

We will consider rectangular query ranges of the form [iy, 5] X [j1, jo] =
{(3,7), 11 < i<y, j1 <j<7jo}, where iy and iy are rows and j; and j, are
columns in the grid. Over those ranges we define the queries



e rank(iy, i2, J1, j2) counts the number of points in the range; and

o select(iy, is, j1, jo, k1, k2) gives the kith to the koth points in the range,
in column-major or row-major order (this generalizes range reporting
and point selection queries).

The general case is called a 4-sided query. A particular case, a 3-sided
query, arises when one of the coordinates is always 1 or n. A 2-sided (also
called dominance) query arises when two of the coordinates, one of row and
one of column, is always 1 or n. A band query has 1 and n for either the row
or the column coordinates. Finally, a 1-sided query has only one coordinate
different from 1 or n.

Since rank(iy,i2,71,72) = rank(1l,d9,1,72) — rank(1l,iy — 1,1,72) —
rank(1,79,1, j; — 1) + rank(1,4; — 1,1, 5; — 1), we study only 2-sided queries
for rank, called rank(i,j) = rank(1,4,1,7). Also, for compliance with the
existing literature, we prefer to study the queries in terms of selecting
the kth point, select(iy, s, j1, j2, k), and reporting any k points in a range,
report(iy, is, j1, jo, k). Our solutions, however, can actually be combined to
solve the general select(iy, iz, j1, jo, k1, k2) query: Say we consider the points
in column-major order. Then we (1) find the first and last points to re-
port, (’L,j) = select(il,ig,jl,jg,kl) and (i,,j/) = SeleCt(il,iz,jl,jg, kQ), (2) if
j = j' the solution is simply report(i, 7, j, j, ko — k1 + 1); otherwise we pro-
duce the output with three calls: report(i, is, j, j, k) with k = rank(i, i2, 7, ),
report(iy, ', 7', j', k') with k' = rank(i1,4’,5',7"), and report(iy,is,j + 1,5 —
1,k — ki +1—k — k). (This returns the points in any order, otherwise we
can simply use consecutive select(iy, iz, j1, jo, k) queries.)

Furthermore, we can focus on just band and 1-sided select queries. As-
sume that any select(iy, iz, J1,J2, k) query is valid, that is, it holds k& <
rank(iy, 2, j1, jo) (which can be checked beforehand). Then a band query,
plus rank, are sufficient to solve a 4-sided query, select(iy, iz, j1, o, k) =
select(iq,i2,1,n, k + ) with x = rank(iy,i2,1, j; — 1) if select delivers in
column-major order, and analogously if in row-major order. Therefore 3-
sided queries can also be converted into band queries.

Note that the resulting band query is “perpendicular”, in the sense that
the band is horizontal and the points are considered in column-major or-
der, or vice versa. When both run in the same direction we say that
the queries are “parallel”, and they are simpler to handle. A parallel 3-
sided query can be reduced to a 1-sided select query plus rank, for example
select(1, is, j1, j2, k) = select(1, 4z, 1,n, k + x) with x = rank(1, 42,1, j; — 1), if
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the points are considered in column-major order. Therefore all the parallel
queries can be reduced to (perpendicular) 1-sided queries (even parallel 1-
sided queries can be converted to perpendicular ones in the same way). Note
that a 4-sided query is always considered perpendicular.

Finally, our sublinear-sized indexes can be computed (or the algorithms
trivially modified) for several rotations and reflections of the grid within the
same asymptotic space. Therefore we can, without loss of generality, focus
our study on the following queries:

e rank(i, j) is the number of points in [1,4] x [1, j];

e select(iy, i, k) gives the kth point in the range [iy, i2| X [1,n], in column-
major order (a perpendicular horizontal band query);

e select(s, k) gives the kth point in the range [1,4] x[1, n], in column-major
order (a perpendicular horizontal 1-sided query);

e report(iy, ia, J1, Jo, k) gives any k points in the range [i1, is] X [j1, j2].

Just as in the one-dimensional case, we can identify a grid with a binary
matrix, containing 1s at the positions of the m points and Os elsewhere.
Barbay et al. [3] propose a number of primitives on binary matrices. By
using wavelet trees [20], they achieve the following result (we only mention the
operations of interest for this paper, slightly adapting them to our purposes).

Lemma 2 ([3, Thm. 3]). A binary matriz of o rows (“labels”) by n
columns (“objects”) with t 1s can be represented within tlgo + o(t)lgo +
O(t+n) bits, so that queries rel rnk(iy,is,j1,j2) (number of points in
[i1,42] X [j1,72]), and rel min obj maj(iy,is,j) (first point, in object-major
order, in [i1,is] X [j,n]), are answered in time O(lgo/lglgn).  Fur-
thermore, query rel_acc(iy,is,j1,72) (gwing all the k points in [i1,is] X
171, J2]), is answered in time O((k+1)lgo/lglgn). Finally, query
rel_sel labmaj(i, k, j1, j2) (kth point, in label-magjor order, in [i, o] X [j1, jo] )
requires time O(lgo), and query rel_sel_objmaj(iy,is, k,J) (kth point, in
object-major order, in iy, 1] X [j,n]) requires time O(lgolgn/lglgn).

Table 1 gives in detail the complexities achieved for our operations. The
first lines report the results of two simple solutions we develop next by easily
building on previous work. Then we give our main solutions. We remark



Source Space rank time report time
Lem. 3+[6] | H+o(H)+O(m+1gn) |lgm/lglgm | lgm/lglgm
Lem. 4+[3] | H+o(H)+ O(m+1gn) |lgm/lglgm | lgm/lglgm
Thm. 1 H+O (’fgig/ign") | |
Thm. 2 H+o(H)+O(mlglglgm) | lg™ /lglgn | 1g™/Iglgn
Thm. 3 H +o(H) lgn/lglgn | lgn/lglgn

Source select time

General 1-sided or parallel

Lem. 3+4[6] lgZm/lglgm lg*m/lglgm

Lem. 4-+[3] lgm or 1g*m/1glgm lgm or g m/1glgm

Thm. 1 lgn lglgn

Thm. 2 lgn or lgn—l—ng%z/lglgn lg%2 or ng%z/lglgn

Thm. 3 lg*n/lglgn lg?n/lglgn

Table 1: Space and time complexities of entropy-compressed grid representations. The

“ 79

or” case depends on using row-major or column-major order to traverse the points. The
times for report are to be multiplied by k£ + 1 in order to retrieve k points. General select
times refer to our perpendicular band queries, which can simulate any other, whereas the
next column refers to the queries that are simulated with perpendicular 1-sided queries.

The time complexities of Theorem 2 are simplified for the case m = O(lgf‘%n), where it
achieves H + o(H) bits of space.



that the space of Theorem 2 is H + o(H) if m = O(lgf‘%n» where we
obtain entropy-sensitive complexity, and the space of Theorem 1 is H +o(H)
whenever min(m,n? — m) = w (hgln%n), where we achieve O(1) time for
counting and reporting.

When regarding the grids as binary matrices, it makes sense to consider
the complementary operations, so that we are also interested in counting,
reporting and selecting Os in a range. While this is trivial for rank queries
because rankg(iy, is, j1, J2) = (ia — i1 + 1)(ja — 71 + 1) — ranky (i1, @2, J1, j2), the
other operations need separate procedures. We obtain the same (Theorems 1
and 3) or slightly worse (Theorem 2) results for those. Finally, our results
adapt smoothly to rectangular grids of size n, x n. by replacing every n by

v/n,n. in the table.

3. Two Simple Solutions

We develop now two simple solutions by building on previous work. Then
we improve those results in the rest of the paper.

Assume we map the n x n grid with m points into an m x m grid with m
points. This is done by removing empty rows and columns, and duplicating
rows or columns having more than one point, so that in the mapped matrix
there is exactly one point per row and per column. This duplication can be
done so as to be consistent with row- and column-major orderings for select.

Two bitmaps, R[1,n+m+ 1] and C[1,n+m+ 1], represent the mapping
from the original matrix, for rows and columns respectively. To build R, we
traverse the original matrix in row-major order, appending a 0 each time we
start a row and a 1 each time we find a point, and add a final 0. Then the
original row i starts at row selecty(R, i) —i+1 and finishes at row selecty(R, i+
1) —i—1 of the mapped matrix. The column mapping C' is analogous. With
these operations we can easily map any query range to the mapped matrix.

We use Gupta et al.’s representation [22] for R and C, which solves
the queries in time O(lglgm) and requires 2mlg me + o (m lg "*Tm) +
O(m+1gn) =2mlg 2 + o (mlg2) + O(m + lgn) bits for the two bitmaps.

Now for the mapped grid we can use Bose et al.’s representation [6], which
solves rank in time O(lgm/lglgm), report in time O((k + 1)lgm/1glgm),
and select in time (’)(lg2 m/1glg m) via binary searches on rank.

As for space, the structure requires mlgm + o(mlgm) bits, which added

to the space for R and C' gives mlg %2 +o <m Ig %) + O(m + Ign) bits. This
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is H+o(H)+ O(m+Ign).

Lemma 3. An n x n grid with m points can be represented within H +
o(H)+ O(m +1gn) bits of space, where H = 1g (75), so that query rank(i, j)
is computed in O(lgm/lglgm) time, report(iy, ia, j1, j2, k) performs in time
O((k+ 1)1gm/l1glgm), and select(iy, iz, k) and select(i, k) are supported in
O(lg2 m/l1glg m) time.

An alternative is to use Barbay et al.’s representation [3] for the mapped
grid. The space of this structure is m 1g m-+o(mlg m)+O(m + n), but the last
term is not necessary in our simplified matrix with exactly one point per col-
umn and per row. Then rank is solved using rel_rnk in time O(lgm/1glgm),
report is solved using rel_acc in time O((k + 1) lgm/1glgm), and both select
queries are solved using either rel_sel _lab maj or rel_sel obj maj, in time
O(lgm) or (9(ng m/l1glg m), depending on the direction of the query.

Lemma 4. An n x n grid with m points can be represented within H +
o(H)+O(m +1gn) bits of space, where H = 1g (’Zj), so that query rank(i, j) is
computed in O(1gm/1glgm) time, and report(iq, is, j1, j2, k) performs in time
O((k+1)1gm/lglgm). In one direction (that can be chosen), select(iy, ia, k)
and select(i, k) queries are supported in O(lgm) time; in the other they take
O(1g2 m/lglgm) time.

Our next developments aim at two goals. First, we show that it is possible
to obtain a fully compressed representation, that is, using strictly H + o(H)
bits. Second, we show that some operations can be speeded up, taking less
time when the entropy of the matrix is higher.

4. A Fast Compressed Representation with Sublinear Redundancy

We first describe a solution using n? + o(n?) bits, and then convert it into
one using H +o0(n?) bits. Using this o(n?)-size index on top of the compressed
grid, we handle various operations in constant time.

4.1. Constant-Time Rank
The matrix is first subdivided into superblocks of size s x s, s = lg*n.
Each superblock is in turn subdivided into blocks of size b x b, b = \/lgT”.
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The n? bits of the matrix will be stored block-wise, that is, the b* = 1ng bits
of each block will be stored contiguously.

For each superblock in the matrix, we store the rank values at all the
positions of the rightmost column and bottom row of the superblock. In other
words, we store all rank(7, s - j;) and rank(s - is, j) values, for 1 < i,57 <n and

1 <, js < n/s. This requires O(’i{é—i") = o(n?) bits. For each block within
each superblock, we store the local (i.e., within its superblock) rank values
at all the positions of the rightmost column and bottom row of the block. If
we call rank, those local rank values, what we store are all rank,(¢’, b j,) and
ranks (b - iy, j') values, for 1 < i, 5" < s and 1 < 4, j, < s/b. This requires

O(%) = o(n?) bits.

This gives enough information to compute rank(z, j) in constant time. Let
1 =513+ 1, and j = - Js+ Jrs, SO that s-75 and s- j, are the projections of
1 and 7 to the last superblock-aligned row and column, and 0 < 7,4, J,s < S
are the local positions within their superblock. Similarly, let 7, = b - iy + i,
and j.s = b jy + jrp, with 0 < 4,4, 5,5 < b the projections into, and local
coordinates within, the blocks. Then it is easy to verify that

rank(i,7) = ranky(ip, Jrp)
+ ranky(7,b - jp) + rankg(b - 4y, j) — rankg(b - iy, b - jp)
+ rank(i,s - js) + rank(s - is,7) — rank(s - is, S - js),

where ranky (.5, jr5) is the local rank value within its block. All the rank and
rank, values in the formula are stored, whereas ranky (i, j-) Will be solved
with a universal table: As there are only 2°° = \/n different blocks, we can
store all the answers to all possible rank, queries within O(y/n polylog(n)) =
o(n) bits. Since we can read at once the b*> = O(lgn) bits of the block (stored
contiguously as explained), we can look up a table entry in constant time.

4.2. Constant-Time Report

We first solve a subproblem that might have independent interest. Given
a row range [i1, 2] and a column j, nextCol(iy,is,7) is the smallest column
number j’ > j that is nonempty (i.e., contains a 1) in the range [i1,i5]. We
now show how to support this query in constant time and o(n?) extra bits.?

2This is simplified from the conference version [13] thanks to an anonymous reviewer.
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We divide the rows into chunks of r = lgt/*n rows. For each column

Jj, 1 < 7 < n, we compute array A;[1,n/r], so that A;[i,] = nextCol(r
(i, — 1)+ 1,7 - 4., j) is the next nonempty column in the chunk 7,. We do
not store the arrays A; themselves, but just a range minimum query (RMQ)
data structure on each. Such queries find the position of the minimum in
any range of the array, and can be implemented to answer in constant time
and taking 2n/r +o(n/r) bits each, without the need to access A; [14]. Over
the n columns, the space adds up to O(n?/r) = o(n?) bits.

Now consider a chunk-aligned query neztCol(r - (iy — 1)+ 1,7 -4, j). We
find the position i, of the minimum in A;[i1, 9], and know that the answer
is to be found within chunk 4,. If, instead, the query is not chunk-aligned,
then it can be decomposed into a (possibly empty) chunk-aligned band, plus
a within-chunk band above it and a within-chunk band below it. Otherwise,
the query is completely contained in a chunk. In all cases, since the RMQ
structures narrow down the search on the chunk-aligned band to a single
chunk, the query is reduced to at most three within-chunk queries, to return
the minimum of their answers.

Now, confined within a chunk of r rows, we consider bit vectors B(iy, iz),
1 <43 <ig < r,such that B(iy, i2) is the or of rows from iy to iy, B(i1,1i2)[j] =
Mliy, j] or M[iy+1,j] or...or M|is, j| where M denotes the binary matrix.
We cannot explicitly store all these vectors, as the space would be w(n?).
However, we store the rank and select indezes for each such bit vector. To
simulate access to the virtual bit vector B(iy,1i5), we use our b x b blocks of
M stored contiguously, in order to provide in constant time any O(y/Ign)
consecutive bits of any B(i1,i3). This is done with a universal table of size
O(y/npolylog(n)) = o(n) bits that, for each possible b x b block and values
1 <1y <y < b, stores a bitmap or-ing rows #; to i5 of the block.

By Lemma 1, since we can simulate access to contiguous regions of
B(iy, i3) of length ©(y/Ign), we can achieve constant time for rank and select

using extra indexes of O(%) bits. With these operations any within-
chunk query is solved in constant time, as it is equivalent to finding the first
1in B(iy,i2)[j + 1,n], select(B(i1,i2), rank(B(i1,i2),7) + 1).

As there are (’)(l o ) chunks, each storing (’)((lgl/4 n)Q) indexes for
B(i1,15), the total space is O( T Vlgn "%”) = o(n?) bits.

Once nextCol is solved, it is easy to address report(iy, ia, J1, Jo, k) queries.
We store one-dimensional rank and select indexes for every column of the
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matrix. As already explained, their extra space adds up to O <%;’%”) = o(n)

bits per column as we can access only ©(+/Ig n) contiguous bits of any column.
The first points to report are at column j = nextCol(iy,iz,j; — 1). With
one-dimensional rank and select on column j, we can report the points at
rows [i1,45] of that column, each in constant time. We go on with j =
nextCol(iy, i, j), and so on, until either j > js or we have reported k points.
Thus the query takes time O(k + 1).

4.8. Select Queries

For select(iy, iz, k) we binary search, using rank, the position of the kth
point in O(lgn) time. We can do better for the simpler select(i, k) query.
We have already stored the rank values at the rightmost columns of the
superblocks. Assume these values are organized row-wise, and stored in one

y-fast trie data structure [33] per row. This sums to O (?;5:) = o(n) bits per

row. The trie for row ¢ permits finding the superblock column containing the
kth point in [1,4] x [1,n], in O(lglgn) time (by finding the predecessor of k).
Now a binary search over the s = lg? n values rank(1,4, 1, 5) for the columns
j inside the superblock column found gives, in another O(lglgn) time, the
precise column. Finally, one-dimensional rank and select on the column give
the position of the kth point. Thus the time is O(lglgn).

4.4. Entropy-Bounded Space

We have assumed the b x b blocks are explicitly stored. Instead, we can
replace them by a (¢, 0) pair, just as Pagh [27] does for one-dimensional bit
vectors. Let a block contain ¢ 1s. Then its class is ¢ and its offset o is an
(arbitrary) identifier of this particular b x b block among all the different
blocks of class ¢. A universal table indexed by ¢ and o storing the contents
of all the possible bit vectors of each class has ) ..., (lc’) = 2> = \/n entries
and takes O(y/nlgn) = o(n) bits, and recovers any block content in constant
time from its (¢, 0) code.

Each ¢ value is stored in Ig(b* + 1) = O(Iglgn) bits, adding up to

O(%) = o(n?) bits in total. The number of bits required for all

the o fields, assuming the ith block contains m; bits set, is >, [lg (Tbjﬂ <
lg (’7‘:) + O(fg—i) [27, Lem. 4.1]. Finally, we also need pointers to find an o

field in constant time, as these have variable-length representations. These
pointers can also be represented within O(@) bits [27].

Ign
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Theorem 1. An nxn binary matriz with m 1s and entropy H = lg (Zi) can

be represented within H+QO <"12gi§ignn> bits, so that query rank(i, j) is computed

in O(1) time, report(iy, is, j1, J2, k) performs in time O(k + 1), select(iy, i, k)
is supported in O(lgn) time, and select(i, k) takes O(lglgn) time.

4.5. Eaxtensions

We can define the complementary queries, where 0Os are considered instead
of 1s. As explained, this is immediate for rank but not for report nor select.
However, it is not hard to see that we can support these complementary
queries as well, by adding other similar o(n?) bits of space corresponding to
the complemented matrix, that is, asymptotically for free. As explained, we
can also support the select variants where rows and columns are exchanged,
within o(n?) additional space.

In order to handle rectangular grids of size n, x n., we can define square

superblocks of side s = lg*(n,n.), square blocks of side b = +/lg(n,n.)/2
and chunks of 7 = lg"/*(n,n,) rows. We obtain H + O(%W) =

H + o(n,n.) bits of space, and the same operation times of Theorem 1,
replacing every n by \/n,n..

If the two sides of the rectangle are very different, say n, = o(s) =
o(lg’n,) (thus lgn, = O(glgn,) and lg(n,n.) = O(lgn.)), we can-
not use those superblock sizes anymore. Instead, we can use just
one wavelet tree of Lemma 2 with n, labels, which will answer rank
queries in time O(lgn./lglg(n,n.)) = O(1), report queries in time
O((k +1)1gn,/lglg(n.n.)) = O(k + 1), and queries select in time O(lgn,)
or O(lg*n,/lglg(n.n.)), both O(lglgn,). Thus the time complexities are
retained. The space of this wavelet tree is mlgn, +o(mlgn,) + O(m + n.).
The last term is due to a bitmap of length m + n., with m bits set, which
is stored in plain form [3]. Instead, we use Raman et al.’s compressed
representation [32], which retains constant rank and select time and uses

mlg %+O<m + w) =mlg %+O<m + %) bits. Added to the

lgne

space of the wavelet tree, we have m 1g 2= +o (m lg %) +0 (m + w)

m lgne
bits. This is H + o(n,n.).?

3Moreover, it can be shown to be H + O(%W) for the range of values of m
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5. Towards a Fully-Compressed Representation

Our compressed representation achieves entropy-bounded space for the
matrix itself, but the extra space is o(n?). This may dominate the entropy
bound H. In this section we get much closer to using H + o(H) bits. The
key to achieving indexes sublinear in H is to adapt the partitioning into
superblocks and blocks to the number of bits set in the matrix. As now the
blocks will be much larger, we cannot handle them with universal tables,
but will make use of the wavelet trees of Lemma 2. The price will be a
superconstant time for all queries.

5.1. Rank Query

V\/e2 first divide the matrix into superblocks of size s x s, where now
s = ”1% (assume for now m = Q(nlgm); we consider the other case in
Section 5.4). The superblocks are further divided into blocks of size b x b,
for b = 79@%' Just as for Section 4.1, we store absolute ranks at the
borders of superblocks and local ranks at the borders of blocks. As the former

require lgm bits to be represented, they add up to O(”?ng m) = O(m)

bits. The latter require lgs? bits per value, adding up to (’)(”7: g 32) =

O(lggm g “25m> = (’)(lggm (lg %2 + lglgm>) =0 <mlg %) + O(m).

As before, the problem is reduced to supporting local rank within a block
of size b?. We store each whole column of blocks [b-(j,—1)+1, b-753] x [1, n], for
1 < jp < n/b, using the wavelet tree of Lemma 2. This is regarded as having n
objects (the ith object represents row i) and b labels (the jth label represents
column b - (j, — 1) + j). Say that column of blocks j, contains m;, bits set,
then its wavelet tree requires m;, 1gb+ o(m;, 1gb) + O(m;, + n) bits. Added
over all the columns of blocks, this is mlgb + o(mlgb) + O(m + n?/b) =

mlg%2 +o (mlg %) + O(mlglglgm).
The wavelet tree answers rel rnk queries in time O(lgb/lglgn) =

O(lg %Q/Ig Ig n) The local rank,(i,j) value within a block is thus com-

puted using two rel_rnk queries on the wavelet tree representing the column
that contains the block: Let ¢/ be the top row of the block of interest, then

NyNe
1gt/® (nrne)

Q(mlglgn.) and the o(mlgn,) bits of the wavelet tree are o(mlglgn..).

): In this range it holds mlg 2cle =

where Theorem 1 will be used, m = w ( =
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rank,(i, j) = rel rnk(j,i’ —1+41¢) —rel_rnk(j,7 —1). The result is analogous
if we choose to represent rows of blocks with the wavelet trees.

5.2. Select Queries

Let us first consider (horizontal) band queries, assuming that wavelet trees
represent columns of blocks. As we have stored all the values rank(i, s - js),
rank(s - i, j), and rankg(i,b - j,), we can compute any rank(iy, iz, 1,b - j;) in
constant time. Thus we can binary search for the column of blocks where
the kth point of [i1, ] X [1,n] lies. This takes time O(lg2).

Let jj, be the column of blocks found, then the local rank of the (globally)
kth point, within block-column j,, is k' = k — rank(iy,i2, 1,0 - (j, — 1)).
Now we can use the wavelet tree of the j,th block of columns to find the
k'th point, in label-major order, between objects i; and iy, with operation
rel_sel labmaj, in O(lgb) time. Overall, the query takes time O(lgn).

The situation is more complicated if wavelet trees represent rows of blocks
(or, symmetrically, the query band is vertical, but we are sticking to horizon-
tal bands). After finding the column of blocks j, where the answer lies, we
refine the search to find its exact column. We binary search within columns
[b-(jp— 1)+ 1,b- jp) using rank(iy,ie,1,7), for b- (jy — 1) < j < b- j,. This
rank is not constant-time because we are not in borders of blocks. Hence the
time rises to O(1g2 b/lglg n) = O<1g2 %2/ lglg n)

Once we know the column j, we must find the £”th point in it, within
rows [iy, s, for k" = k — rank(iy, 19,1, 7 — 1). We first search the column for
the block row i, where £” lies. This can be done in time O(lg %) because the
values rank(b - i, j) are precomputed.

Finally, when we are confined within a single column of a block, we report
the correct point in O(lgb) time using rel_sel lab maj on the wavelet tree of
the column of blocks (note that the area is of width 1, so the query is correct
even if the wavelet tree orders points in column-major order). Overall, the

query time is O(lg n +lg’ :‘n—Q/ lglg n>

Now we consider the (horizontal) 1-sided select queries. We use the same
procedure of band queries, but we do better when searching for j,. For
each row, we arrange the n/s superblock ranks in a y-fast trie, so as to pay

O(lglgm) time to find the superblock (note that the trie stores values up
to m), and then binary search for j, inside its superblock in time (’)(lg %) =

O(lglgm). This trie requires (’)(”S—2 Ig m) = O(m) bits of space. Therefore,
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in the easy case where the direction of the query is perpendicular to that of
wavelet trees, 1-sided queries require time O(lg lgem + 1g %)

For the harder case, we also use a second set of y-fast tries to speed up
the binary searches in the values rank(b - iy, 7). For each column j, we store
the values rank(lgm -b-ip, j) in a y-fast trie. We first search the y-fast trie in
time O(lglgm), and then binary search the area of lgm blocks found with
the y-fast trie, again in time O(lglgm). The n tries, one per column, require

(’)(fé%”) = o(m) bits. Thus the time is O <lg lgm +1g ”—nj + 1g? %2/ lglg n)

5.3. Range Reporting

Let us assume that we have stored rows of blocks in wavelet trees (the
other case is analogous because reporting queries are 4-sided and we report in
no particular order). We start considering report(iy, iz, j1, j2, k) queries that
span an integral number of rows of blocks. We first need to find the next
column after j; — 1 that is nonempty in the range [i,is]. We use the same
RMQ-based idea of Section 4.2, using blocks of height b instead of chunks
of height . We store the RMQ structures of the arrays A; corresponding
to blocks of rows, for a total space of O(n?/b) = o(m) bits. Instead of the
virtual bitmaps B(i1,i2) used for ranges [i1, 42| within a block of rows, to
find the next 1 in the band [iq, 7] X [j1,n] we use the horizontally arranged
wavelet trees. We find this 1 using rel min_objmaj, in O(lgb/lglgn) time.

Say such a query gives column j as the next one containing points. Now
we must find all the 1s in column j before proceeding to the next one. Those
1s within the first block from global row i; are easily found with rel_acc
in the wavelet tree of the block, each in time O(lgb/lglgn). In order to
find the next block downwards containing points in column j, we store a
signature bit vector B;[1,n/b] for each column j, so that B;[i;] = 1 iff there
is a 1 in the range [b- (iy — 1) + 1,b - 4] X [7, 4] of the matrix. Using rank
and select on the B; vector, we find the next block downwards that has a 1
in the current column, in constant time. All the points in column j mod b
of that block are then reported using rel_acc on the object j of the wavelet
tree that represents that row. Bit vectors B; require O(n?/b) = o(m) bits in
total.

Thus the total time to report k points is O((k+1)1gb/lglgn) =

O((k—i— 1)lg %/lg lg n) If the query is not aligned to rows of blocks, it
may have one unaligned band above and one below the block-aligned part.
Then, in addition to the points reported by the procedure described, we use

17



rel acc on the wavelet trees of the (one or two) partially covered rows of
blocks. Similarly, if the query is totally contained in a block of rows, it is
directly solved with a single wavelet tree. The time complexity is maintained.

5.4. The Final Result

A missing piece is to cover the case m = o(nlgm) = o(nlgn), where
our partition into superblocks of size s and blocks of size b does not work
anymore because it requires s = w(n). When the matrix is so sparse we have
lg %2 = O(lgn), and thus we can just use the simple Lemma 4, whose times
are within the general times we have obtained for denser matrices.

Summing up, the space is mlg 7;”—2 +o (m lg %) + O(mlglglgm +lgn).
By Eq. (1), it holds H = mlg”—nj + (n* —m)lg —— + O(Ign) > mlg %2,
therefore the space can be written as H +o(H) + O(mlglglgm +1gn). The
last term, lgn, is relevant only if m = O(1), in which case we can just store
the points in compressed form and solve all the queries in constant time by
traversing them all. Therefore, we can safely remove this term.

2

Theorem 2. An n xn binary matriz with m 1s can be stored in H+o(H)+

O(mlglglgm) bits, so that query rank(i, j) is computed in O(lg %/lg lg n)

time and report(iy,is, j1,J2,k) in time (9<(k+1)lg %/lglgn). In one
direction (that can be chosen), select(iy,ia, k) is computed in O(lgn)
time, and select(i, k) in time 0<lglgm+lg %) In the other direction,

select(iy, 1o, k) Tequires (’)(lgn + 1g? %2/ lglg n> time, and select(i, k) requires
O(lglgm +lg ”—nj + 1g? %/lglgn) time.
In the final construction, we will make use of Theorem 2 for m =
@ % . In this case, its time complexities are considerably simplified
lg/ n
because Ig %—2 becomes Q(lglgn), and thus lglgm is absorbed by O(lg Zn—z>
and this term in turn is absorbed by (’)(lg2 %2 /lglg n) The space is also

simplified, because it holds mlglglgm = o (m lg %) = o(H), and thus the
total space becomes fully compressed, H + o(H).
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5.5. Extensions

If we want to operate on 0s instead of on 1s, some queries become costlier.
We need no further space nor time for rank, as explained. For all band
select queries we can essentially use the procedure described for band queries
when the wavelet trees are parallel to the band, as it is entirely based on
binary searches on rank values. The only difference is that we cannot use
rel_sel _lab maj, but must resort to binary search inside the block using

rel_rnk. This does not change the complexity O <lg n + lg? %2 /lglg n) . The

1-sided queries can be speeded up with y-fast tries counting 0s. Since these
may store values up to n?, they will answer in time O(lglgn) and will be

sampled every v = n2l8n yows or columns, so that they take (’)(”2% =
O(m) bits. The y-fast trie on superblock columns will store one value every
v/s = llgg—;fb superblocks, and thus the total search time will be O(lglgn). The
second y-fast trie on block rows that are multiples of 1g m will store one value

out of ~2— = 187 so the search time is the same. Overall, 1-sided select
blgm lgmlglgm’ )

queries of Os take time (’)(lg lgn + 1g? %Q/Ig lg n) Under the assumption
m = O(lgl’%n), this simplifies to O(lg2 %2 /lglg n) Finally, report queries
can be solved via select queries, thus taking time (’)((k +1)1g? %2/ lglg n>

Let us consider the case of rectangular matrices of n, x n.. We obtain
essentially the same results by using s = % and b = Menelglsm g,

m ’
NyrNe

. . 2 .. .
that any t1m§ onmplemty lg = becomes lg “z< and any lglgn divisors in
time complexities become lglg(n,n.). When m = o(max(n,., n.) lg(n,n.)) we
cannot use those superblock sizes anymore, but we can use just one wavelet
tree, which maintains the space and time complexities as before.

6. A Fully Compressed Representation

We now have all the necessary pieces to prove our main result.

Theorem 3. Annxn grid with m points can be represented within H+o(H)
bits of space, where H = 1g (:i), so that range counting takes O(lgn/lglgn)
time, range reporting of k points requires time (’)((k +1)1g’n/lglg n), and
point selection queries are solved in O(lg2 n/lglg n) time.
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Proof.  We use our “almost fully compressed” solution (Theorem 2) when

m = O(lgl"%n), and our “compressed” solution (Theorem 1) when m =
w (g%) and n? —m =w <lg?+n> As shown at the end of Section 5.4, we
obtain H + o(H) bits in the first case. In the second case, because of the

range of m values we consider, the redundancy is (’)(”2 g lg”> = o(m), and

lg1/4n
H>mlg %2 > m form < n?/2. If m > n?/2, we have that the redundancy is

also O(ﬁ;g/ign" =o(n?*—m),and H > (n*—m)lg n2”_2m > n? —m. Therefore

the redundancy is always o(H).

2

We have not yet handled the case of large m = n? — (’)(lngn) In

this case, we complement the matrix and use Theorem 2 with queries on Os
instead of queries on 1s. This worsens some times, as shown in Section 5.5.
Moreover, we must assume the smallest possible values on m for query times
that improve with m, because we are using the complemented matrix. ([l

Note that, although we give the worst cases in the theorem, for most
values of m the times are indeed lower. Note also that the times of the
theorem are valid as well when querying for both Os and 1s.

7. Higher Dimensions

We now generalize our results of Section 4 to any dimension d. In princi-
ple, the only restriction on d is that the RAM machine can handle coordinates
up to lg(n?) in constant time, that is, w = Q(dlgn). Our space usage, how-
ever, will become Q(n?) bits for relatively small d. Therefore, the d values of
interest will be constant or very slightly superconstant.

In the literature d is generally considered constant. Multidimen-
sional rank can be carried out using O(m(lgm/lglgm)??) words of
space and O((Igm/lglgm)*!) time [23]. For reporting k points, the
best current solutions require O(m(lg m/l1glg m)d*‘g’) words of space and
O((gm/lglgm)®2 + k) time [23], or O(mlg”™ *"m) words of space and
O((lgm/1glgm)*31glgm + k) time [7]. When the lower coordinate of
the query in every dimension is 1, one can obtain O(m(lg m/l1glg m)d_3)
words of space and O((lgm/lglgm)*31glgm + k) time [8]. Chazelle [10]
proved that any reporting time of the form O(polylog(m)+ k) requires
Q(m(lgm/1glgm)®!) words of space on a pointer machine (note that the
upper bounds, which are on the RAM model, slightly break this lower bound).
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Again, we obtain better times by using space H + o(n?), where now
H=1g (’Zj) This space is H +o(H) when the matrix is sufficiently dense, as
before. We first consider rank and select queries, which are relatively simple,
then report queries in 3 dimensions and, finally, report queries for d > 4.

7.1. Rank and Select Queries

It is not difficult to generalize our bounds for rank. To do this, we subdi-
vide the matrix into superblocks of size s¢ with each edge of length s = 1g° n.
We further subdivide the superblocks into blocks of size b with each edge

of length b = {/ lng' As before, we store the rank values at the sides of the

superblocks and the local rank values at the sides of the blocks.
We use the same encoding technique of Section 4.4. It is not hard to see

that the space adds up to H + O(%) =H+ O(%) = H + o(n%).
To this we must add the space required by the rank values stored along the
sides of all the s?-sized cubes. Since d-dimensional cubes have 2d faces, each

containing s?! cells, and we must store numbers up to n¢, we require in total
O(Z—Z ds?=! lg(nd)> = O(@) bits for the superblock counters. Similarly,

gn

for blocks, which require only Ig(s?) bits per counter, the space required is

(’)(’g—j dbi—1 lg(sd)> = O(%). Finally, we must precompute answers

to every possible dominance query inside every possible block, which adds up

to O(bd DL lg(bd)> = O(y/nlgnlglgn) bits. Therefore the total space can
be written as H+O (%) , which is H+o(n?) ford <lglgn/(31glglgn).
The computation of rank takes constant time for constant d, by adding
and subtracting counters at the sides of superblocks and blocks, and finally
using the universal tables over the b% = 1ng bits of a b%-sized cube to complete
the computation. To compute the time as a function of d, consider that we
have to project the point into every face of the superblock (i.e., we project one
dimension, in (‘f) ways). This counts more than once those points covered
when projecting any two dimensions, so we must project two dimensions, to
subtract those ranks, in (;l) ways. Points covered by three projections have
been subtracted more than once, then we have to project three dimensions,
in (g) ways, to add back those ranks, and so on. All those combinatorials add
up to 2¢ computations we must perform. Thus the time for rank is C’)(2d).
We can also easily generalize our bounds for select. Suppose we are given
an ordering on the dimensions and asked to find the kth point in an arbitrary
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d-dimensional box. We can again use binary search with rank to find that
point in O(Ign) time, assuming d is constant. The cost as a function of n
and d is O(241g(n?)) = O(2%d1gn).

Now suppose one corner of the box is at the origin, that is, the point whose
coordinates are all 1. We start by considering only the first dimension. For
each beam of cells running along that dimension, we pick one value out of s,
and store all the rank values at those points in a y-fast trie data structure.
This requires O (n?'21g(n?)) = O(fgind) extra bits. This trie tells us, in
O(lglgn) time, the interval of length s where the select answer lies along a
chosen beam. Then a binary search using rank finds the precise point in time
O(2%1gs) = O(2%1glgn). This point determines the (d — 1)-dimensional
plane, perpendicular to the first dimension, that contains the kth point in
the box. This leaves us with the same problem in d — 1 dimensions; when we
reach 2 dimensions, we can apply Theorem 1. The space cost of the solution

for the d dimensions is O(ﬁ—”;) bits, and the time is O(2dd lglg n) This
time is O(lglgn) for constant d.

Finally, note that we may wish to choose any order of dimensions of select
at query time. In such a case the space overheads have to be added for each

ordering of the dimensions, multiplying the space by a factor of d!. This
yields space O<d2d!”d), which is o(n?) for d <lglgn/lglglgn.

Ign

7.2. Report Queries in 3 Dimensions

It is not so easy to generalize report, the main difficulty being to generalize
nextCol to nextPlane, which takes a range in each of the first d—1 dimensions
and a starting point j in the last dimension, and returns the smallest j' > j
such that there is a point contained in the intersection of those ranges and the
plane whose last coordinate is j'. To apply the technique of Section 4.2, we
would need an extension of the one-dimensional RMQ techniques we used to
multidimensional arrays. Although there is a linear-bits space index solving
RMQs in constant time for two dimensions [12] (which needs access to the
array, however), the best result for higher dimensions [34] takes linear-words
space, which is too high for us. In addition, the simple division into chunks
and within-chunk bands becomes much more complicated in two and more
dimensions, as we see soon. Therefore, we develop a different technique, akin
to a classical idea used for one-dimensional RMQs in the past [4, 5] (i.e., to
consider any one-dimensional range as the union of at most two ranges whose
sizes are powers of 2).
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Let us first consider the relatively simple case d = 3. We take the 2-
dimensional submatrix obtained by ignoring the last dimension, and divide
it into 2-dimensional batches of size s x s, where again s = lg*n.

For each rectangle of batches whose side lengths are both powers of 2 when
measured in batches, we store a signature bit vector indicating for which
coordinates in the third dimension that rectangle contains at least one point.
We call such rectangles type 1 rectangles, and their signature bit vectors take

a total of O(n (%)2 Ig? n) = o(n?) bits. We also store a signature bit vector

for each rectangular range [s- (i, —1)+1, s- (i, +2% —1)] x [, j + 2% — 1] with
1<is<n/s,1<j<n 0<k <lg(n/s)and 0 < ky <lgs, and similarly
in the other direction, [i,i+2% —1] x [s-(js—1)+1,s- (js+2¥ —1)] for 1 <
i <nand1l<j, <n/s. We call such rectangular ranges type 2 rectangles,
and their signature bit vectors take a total of O(n (%) nlgnlgs) = o(n?)
bits (this space dominates that of type 1 rectangles). Notice that any 2-
dimensional rectangular range can be expressed as the union of at most 4
type 1 rectangles, at most 16 type 2 rectangles (4 at each of the 4 sides of
the main rectangle), and at most 4 rectangular ranges completely contained
within single batches.

We deal with the ranges within single batches by dividing each batch into
2-dimensional chunks of size  x 7, where this time r = 1g"/? n. We use the
same machinery for chunks as we did for batches. The extra space for all

the chunk-level bit vectors is O(n (%) nlgslgr) = O<M> = o(n?)

lgl/gn
bits. Finally, there are O((n/r)*rt) = O<n2 1g%/? n) rectangular ranges
completely contained within single chunks. Applying Lemma 1, with our

3/lgn

5—, we store indexes for them all in

b?-sized matrix blocks and b =
O<n2 1g%%n, - %) = o(n?) bits. Once we have solved neztPlane in
one dimension, we solve nextCol as usual on the two remaining dimensions.

lgn
2

used in Section 4, as we already have the b3-sized cubes encoded for three
dimensions.

The only difference is that we use this b value instead of the value

7.3. Report Queries in Higher Dimensions

There are many more types than 1 and 2 in higher dimensions. Along
each dimension (except the one we are eliminating) we can choose to sample
in the form [s- (i, — 1) + 1,5 - (is + 28 — 1)] or in the form [j, j + 22 — 1].
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The number of bits we use at the batch level can thus be bounded by

O (n . Z (d ; 1) (g)z nd=t11g¢ p, 1g=t-1 S)

1<¢<d—1

_ O<n- (("lsg” —i—nlgs)d_l - (nlgs)d1>>

= (’)(n~(d—1)nlsgn(nlgs)d2)
_ O(dnd(lglgn)d_z)’

lgn

which is o(n?) for d <lglgn/lglglgn.
We set the side length of each chunk to r = 1g*/ @ 1. The number of bits
we use at the chunk level can be bounded, analogously, by

O(n- Z (d; 1> (;)an51 g’ s 1g4t1 r>

1<0<d—1

_ O(n-(d—l)nlgs(nlgr)d_2> - O(—"d(lglgn)d_l>,

r (J2d—5 lgl/d2 n

which is o(n?) for d < (31glgn/lglglgn)/3.
Finally, there are (’)((%)d_l r2(d_1)> rectangular ranges completely con-

tained within single chunks, so applying Lemma 1 with b = /8", we store
indexes for them all in

3
n\d=L y, gy nlglgn  /nllglgn
@((J , ) = oS

bits. This is o(n?) for d = o(y/lglgn/lglglgn). The number of operations is
proportional to the number of rectangles needed to cover the query. At the
batch level, this is 6?71, as we show in the Appendix. At the chunk level we
have to consider that there are 2%~1 vertices in the query rectangle, each of
which is covered with chunks using the same technique. This rises the total
complexity to O(12¢).

Once we find the (d — 1)-dimensional hyperplane where the next point
lies, we have the same problem on d — 1 dimensions. We proceed recursively,
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yet we maintain the r and b values we have used for the first problem (as
we have the data encoded according to them). The time complexities do not
grow when adding over lower dimensions as they are already exponential in
d. This gives us our higher-dimensional generalization of Theorem 1.

Theorem 4. Consider a binary matriz with edge length n in d dimen-
sions, on a RAM machine with words of Q(dlgn) bits. Suppose the ma-

trix contains m 1s and thus has entropy H = lg (:f) Then 1t can be

represented within H + O(M) bits, which is H + o(n?) for d <

d2d—51gl/d%
(3lglgn/lglglgn)'/?, such that rank takes O(2%) time (i.e., O(1) for con-
stant d), report takes O((k +1)12%) time (i.e., O(k+ 1) for constant d),
and select takes O(Qdd lg n) time in general or O(?dd lglg n) time when one
corner is at the origin (i.e., O(lgn) and O(lglgn) for constant d).

8. Conclusions

Although orthogonal range searching has received much attention, the
interesting case where the structure achieves entropy-bounded space has re-
mained largely under-explored. This work completes a relevant portion of the
picture, not only reaching fully-compressed space but also uncovering inter-
esting relations between the time complexities that can be achieved and the
entropy of the grid: We show that grids with higher entropy can be queried
faster within fully-compressed space. Previous work has been blind to this
relation, focusing only on the relation between time and space in terms of
the number of points of the grid.

A natural question is what the lower bounds are when the entropy comes
into play. While this issue has been studied in the one-dimensional case [15-
19, 21, 30, 31], it is new in two and more dimensions (there are some lower
bounds on binary matrices, but considering one-dimensional operations like
rank and select on rows or columns [16]). The fact that we have presented
various upper bounds that are patched to form a complete solution, where
some patches have incomparable complexities and there are some abrupt
transitions from one patch to another (e.g., see Table 1 and the proof of
Theorem 3), suggest that there must be a more uniform complexity as a
function of the entropy we have not yet reached.

The relation with the one-dimensional case is also intriguing in some
aspects. For example, in one-dimensional bitmaps operation select can be
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solved in constant time, and it is actually easier on sparser bitmaps, whereas
in more dimensions we have not achieved that. For rank, on the other hand,
we have achieved constant time on dense matrices and entropy-related time
on sparse ones, much as in some one-dimensional solutions [26].

As for the space, H = 1g (’Zj) is a crude worst-case lower bound that does
not account for regularities, such as clusters of points, that arise in real life.
Our actual space for storing the bitmaps can indeed be much better than H
when such regularities arise: It is the sum of local entropies of small blocks.
Our o( H)-bits indexes on the data, however, reach this space by design and
do not improve if the data has regularities. An interesting challenge is to
make the redundancy sensitive to the data distribution as well.

Other natural directions for future work would be to consider further oper-
ations [3], achieving dynamic compressed structures, and secondary-memory
variants. Finally, note that we have extended to d dimensions the variant
that uses H + o(n?) bits, but the strongly 2-dimensional nature of wavelet
trees prevented us extending the H + o(H) bit structures analogously.
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Appendix A. Number of Rectangles Covering a Batch

Assume the box crosses a batch boundary in some dimension. If it does
not,

then we handle it at the chunk level, and the calculations are similar.

Consider the (d — 1)-dimensional box as the product of d — 1 intervals, one
in each dimension. Each interval consists of (a) a part of length < s “to the
left of” the first complete batch (i.e., whose coordinate along that dimension
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is smaller than the minimum value of the first batch), (b) a maximal part
consisting of complete batches, and (¢) a part of length < s “to the right of”
the last complete batch. The last two parts can be empty.

Let us first break the rectangle up into zones, where two points are in
the same zone if they are in the same part of each interval. We can count
the number of zones as follows: (1) we sum over ¢ from 0 to d — 1, where ¢
is the number of dimensions for which the zone is in the part consisting of
complete batches; (2) there are ( diﬁ Z) = (dzl) ways to choose for which of
the remaining dimensions the zone is to the left or right; (3) there are 2¢-17¢
ways to choose for which of those remaining dimensions the zone is to the
left and for which it is to the right.

Any zone is a (d — 1)-dimensional box that is aligned with a batch bound-
ary on at least one side and, in every dimension, it is either aligned with batch
boundaries on both sides or it is narrower than a batch. Therefore, we can
cover it with 297! boxes for which we have the vectors stored.

Thus the total number of rectangles we need is at most

d—1

2d71 . Z (d; 1) 2d717€ S 2d71 . 3d71 — 6d71‘

(=1
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