Indexacién mediante Arrays de Sufijos para
., ., » *
Recuperacion de Informaciéon Geografica

Nieves R. Brisaboa!, Miguel R. Luaces!, Gonzalo Navarro?, and Diego Seco!

! Laboratorio de Bases de Datos, Universidade da Coruiia
Campus de Elvifia, 15071, A Coruiia, Espafia
{brisaboa,luaces,dseco}@udc.es
2 Departamento de Ciencias de la Computacion, Universidad de Chile
Blanco Encalada 2120, Santiago, Chile
gnavarro@dcc.uchile.cl

Resumen La recuperacion de informaciéon geografica constituye un area
de investigacion joven, pero que esta captando mucha atencién debido al
interés de los usuarios de repositorios de informacion digital en obtener
informacién relevante en el lugar geogréafico donde se encuentran o que
van a visitar. El objetivo principal de dicha &area consiste en recupe-
rar informacién relevante no solo en cuanto a su contenido textual sino
también en cuanto a su referente geografico (es decir, al lugar al que se
refiere). Para ello una de las tareas fundamentales es la indexacion de
la informacién. La mayoria de las propuestas realizadas hasta la fecha
combinan un indice invertido con algin indice espacial.

En este articulo presentamos una estructura de indexacién que no emplea
un indice invertido para indexar el contenido textual, sino que emplea
un array de sufijos. Esto permite dotar a los sistemas de recuperacion de
informacién geografica de nueva funcionalidad. Por ejemplo, no excluye
lenguajes humanos que no son facilmente separables en palabras, como
el chino o el coreano. Ademas, constituye una alternativa a la utilizacion
de un indice invertido cuando la bisqueda de frases es frecuente.

Key words: Recuperacién de informacion geografica, indexacidén, array
de sufijos, R-tree.

1. Introduccion

La recuperacion de informacion geografica (GIR) constituye un area de in-
vestigaciéon incipiente que estd captando gran cantidad de atencién dentro de
las comunidades de sistemas de informacion geogréfica (GIS) y recuperacion de
informacién (IR). Los estudios sobre la enorme cantidad de referencias geogra-
ficas que se encuentran dentro del texto desestructurado de bibliotecas digitales

* Este trabajo ha sido financiado parcialmente por el Ministerio de Ciencia e In-
novacion (PGE y Fondos FEDER) [ref. TIN2009-14560-C03-02], y por la Xunta
de Galicia (cofinanciado con Fondos FEDER) [refs. 10SIN028E y 2010/17] para el
grupo de la Universidade da Coruiia; Fondecyt [ref. 1-110066] para el tercer autor;
y programa Angeles Alvarifio para el cuarto autor.

y otros repositorios de informacién han abierto la puerta a la colaboracion de
investigadores de GIS con la comunidad IR. Ademas, la era de los dispositivos
moéviles ha incrementado drasticamente el interés de los usuarios de reposito-
rios de informacion digital acerca de informacién relacionada con areas donde se
encuentran o que van a visitar. Esto no se restringe solo al ejemplo clésico de
puntos de interés cerca de donde se encuentra el usuario. Algunos otros ejem-
plos pueden ser el amante del misterio que quiere comprar on-line libros sobre
casas encantadas en su zona, o el precavido turista que desea consultar en una
biblioteca digital catastrofes naturales cerca de su posible destino vacacional.

Una prueba més del interés suscitado por esta area es el Workshop en recu-
peracion de informacion geografica [1], realizado por primera vez en 2004 y en el
que este afio se debatieron cuatro temas fundamentales dentro de la recuperaciéon
de informacién geografica: definiciéon de huellas geograficas de documentos, in-
dexacion, elaboracion de rankings, y estrategias de evaluacién. En este trabajo
nos centramos en la segunda de ellas: la indexacién. En la Seccién 2 revisamos
las principales propuestas realizadas para indexar documentos tanto textual co-
mo espacialmente. En general, dichas estructuras combinan un indice invertido
con algin indice espacial (un grid, un R-tree, etc.). Aunque la eleccion del indice
invertido estd justificada dada su popularidad y demostrada eficiencia, hay cier-
tos escenarios donde no ofrece toda la funcionalidad necesaria al permitir solo
busqueda de palabras y frases sobre texto en lenguaje natural. Esto excluye al-
gunos lenguajes humanos, como el chino o el coreano, y también lenguajes donde
las palabras se componen como aglutinaciones de las particulas de busqueda, co-
mo el finés o el alemén. Desde la comunidad de String Processing and Pattern
Matching se han propuesto alternativas eficientes para estos escenarios, siendo
muchas de ellas variantes comprimidas del clasico array de sufijos.

En este articulo exploramos el uso del array de sufijos en sistemas de recu-
peracion de informacion geografica. Esta propuesta hereda las ventajas del uso
de arrays de sufijos en recuperacion de informacién. Es decir, es adecuado para
lenguajes que no se pueden separar de manera natural en palabras, puede uti-
lizarse en sistemas que requieran la bisqueda de patrones arbitrarios (y no solo
palabras o frases) y, en términos de eficiencia, ofrece una interesante alternativa
a los indices invertidos para la busqueda de frases. Ademaés, nuestra propuesta
explota ciertas caracteristicas del array de sufijos que hacen que se pueda combi-
nar de manera natural y elegante con el R-tree (el indice espacial méas utilizado
en sistemas de informacion geografica).

2. Trabajo relacionado

Las estructuras de indexacion desarrolladas para sistemas GIR deben per-
mitir la resolucién de consultas que tengan tanto una componente textual como
una componente espacial. En esta seccion revisamos algunas de las propuestas
realizadas hasta la fecha.

El primer proyecto de amplio alcance en recuperacion de informacion geogra-
fica en el que se propusieron estructuras de indexacion fue el proyecto SPIRIT [2].

Estas estructuras se basan en la combinacion de una estructura de grid [3] (uno
de los indices espaciales mas sencillos) con un indice invertido [4,5] (el indice tex-
tual clasico). Los autores de este trabajo realizaron pruebas combinando el grid y
el indice invertido en una dnica estructura y también manteniéndolos por separa-
do. Su conclusién méas importante es que manteniendo ambos indices separados
se consigue un menor coste de almacenamiento aunque, por contra, puede im-
plicar mayores tiempos de respuesta. Ademaés, tener separados los indices tiene
ventajas en cuanto a la modularidad, y facilidad de implementacién y man-
tenimiento. Sus resultados también muestran que los métodos propuestos son
capaces de competir en términos de velocidad y coste de almacenamiento con
estructuras de indexacién textual clasicas. Aunque la estructura propuesta es
muy sencilla, y se han propuesto otras que la superan tanto en velocidad como
en coste de almacenamiento, este trabajo es muy relevante ya que ha establecido
una de las caracteristicas distintivas de todas las propuestas posteriores. Dicha
caracteristica establece la distincion entre estructuras hibridas, que combinan los
indices textual y espacial en una tnica estructura, y estructuras de doble indice,
que los mantienen por separado.

Trabajos més recientes, como [6,7], describen las dos estrategias base de
la indexacién en sistemas GIR teniendo en cuenta las propuestas del proyecto
SPIRIT. Estas dos propuestas se nombran como Text-First y Geo-First. A nivel
general, ambos algoritmos asumen la existencia de un indice espacial y de un
indice textual, y emplean la misma estrategia para resolver las consultas: primero
se emplea un indice para filtrar los documentos (el indice textual en el caso de
Text-First y el indice espacial en el caso de Geo-Fiirst); el conjunto de documen-
tos resultante se ordena por sus identificadores y posteriormente se filtra usando
el otro indice (el indice espacial en el caso de Text-First y el indice textual en el
caso de Geo-First). Estos nombres se pueden emplear también para estructuras
hibridas, de tal modo que si la estructura emplea primero el indice textual es
de tipo Text-First, mientras que si emplea primero el indice espacial es de tipo
Geo-First.

En [8] los autores proponen emplear un indice invertido y un R-tree [9] (en
lugar de la estructura grid), y realizan pruebas combinandolos de las tres formas
que acabamos de describir. En sus experimentos concluyen que mantener por
separado los indices aumenta los tiempos de consulta (esta misma conclusion
habia sido obtenida en [2]) y que sus estructuras son mas eficientes que las que
emplean la estructura de grid.

En [7], los autores comparan tres estructuras que combinan un indice inver-
tido con la estructura grid, con el R-tree, y con curvas de llenado del espacio
[10,11]. Las curvas de llenado del espacio se basan en el almacenamiento de los
objetos espaciales en un orden determinado por la forma de la curva de llenado.
La conclusién de los autores es que la estructura que emplea estas curvas de
llenado del espacio mejora el rendimiento de las otras aproximaciones.

Finalmente, en el proyecto STEWARD [12], los autores proponen emplear
una estructura que mantenga por separado un indice invertido y un Quad-tree
[13]. El Quad-tree es una estructura similar al grid (ambas son dirigidas por el

espacio y no por los objetos a indexar), que va dividiendo el espacio en cuadrantes
hasta que los objetos se pueden almacenar en una pagina de disco. Ademas, en
este trabajo se propone el empleo de un optimizador de consultas que decida si
emplear primero el indice textual o el indice espacial en funcién de la previsiéon
de cuél va a obtener menos resultados. Para poder emplear este optimizador
de consultas el sistema debe almacenar estadisticas que permitan realizar la
estimacién del nimero de documentos resultante de una busqueda de términos
clave particular o de una ventana de consulta espacial determinada.

En resumen, la mayoria de las estructuras propuestas hasta la fecha combi-
nan un indice invertido con algtn indice espacial. La eleccion del indice invertido
es sensata y esta justificada teniendo en cuenta que su eficiencia ha sido ampli-
amente demostrada y que es una de las estructuras més utilizadas en IR. Sin
embargo, como ya mencionamos en la introduccién de este articulo, existen cier-
tos escenarios donde no es posible su uso. Las principales alternativas al indice
invertido para estos escenarios, en donde la separaciéon en palabras no es posi-
ble, se engloban en lo que se denomina indices full-tezt. Dichos indices permiten
la busqueda eficiente de cualquier patrén arbitrario (y no solo de palabras o
frases) en grandes repositorios de informacion. Ademas, se ha dedicado mucho
esfuerzo a la compresién de los mismos y actualmente ocupan tamafio propor-
cional al texto comprimido (es decir, menos que el texto original) permitiendo
basquedas de cualquier patréon arbitrario més rapido que si se realizasen sobre
el texto descomprimido. Estos indices que permiten reemplazar el texto (ya que
es recuperable desde el propio indice) se han denominado auto-indices [14].

En este trabajo exploramos el uso de arrays de sufijos en sistemas GIR. En
concreto, combinamos un array de sufijos con un R-tree. Dado que estas dos
estructuras constituyen la base de nuestro indice, las explicamos con més detalle
en la siguiente seccion.

3. Componentes de nuestra propuesta

Como acabamos de mencionar, los bloques constituyentes de nuestra estruc-
tura son el array de sufijos y el R-tree. Para hacer el articulo auto-contenido, en
esta seccion explicamos ambas estructuras en mas detalle. El lector familiariza-
do con dichas estructuras puede saltarse esta seccién ya que no contiene ningin
detalle particular de nuestra aportaciéon. De igual modo, remitimos al lector que
quiera ampliar informacion sobre los arrays de sufijos a [14] y sobre el R-tree
a [15].

3.1. Arrays de sufijos

Los indices full-text surgen en dominios donde la separaciéon en palabras
no es posible. Esto incluye, ademas de los lenguajes humanos ya mencionados
como chino o coreano, otras aplicaciones como ADN, genes, proteinas, audio,
etc. En este contexto, los arrays de sufijos [16] aparecieron en los noventa como
una mejora importante sobre los arboles de sufijos [17] ya que requieren mucho

menos espacio y mantienen practicamente la misma funcionalidad y eficiencia.
Dado un texto T, su array de sufijos SA es una permutacion de todos los sufijos
en orden lexicografico. Dicha permutacion requiere nlogn bits para un texto de
n caracteres y es muy eficiente para buscar patrones arbitrarios o, dicho de otro
modo, cualquier subcadena del texto. Dado que el SA almacena todos los sufijos
en orden lexicogréfico, es facil ver que todos los sufijos prefijados por un patrén
P se encuentran contiguos en el SA. Por tanto, si se quieren localizar todas
las ocurrencias de P en T es suficiente con realizar dos busquedas binarias para
encontrar el inicio y el final del intervalo donde se encuentran dichas ocurrencias.
Si el largo del patron es m, en cada paso de la biisqueda binaria se pueden realizar
hasta m comparaciones y esto resulta en una complejidad de O(mlogn) para el
algoritmo de bisqueda.

Los SA no son auto-indices, es decir, no reemplazan el texto sino que son
complementarios al texto. Ademads, en la préctica requieren hasta cuatro veces
el tamano del texto. Esto ha motivado una gran cantidad de trabajo en lo que se
denominan auto-indices comprimidos, es decir, indices que reemplazan el texto
(ya que puede ser recuperado a partir de ellos), ocupan tamano proporcional al
texto comprimido, y resuelven las operaciones propias de un indice full-text de
manera eficiente. El array de sufijos comprimido (CSA) [18,19] es uno de los auto-
indices comprimidos més populares. Ademas, en dominios donde la busqueda
de patrones arbitrarios no es interesante, existen variantes del CSA orientadas
a palabra [20] que ofrecen una alternativa interesante a los indices invertidos
especialmente para busqueda de frases y cuando hay poco espacio disponible
para el indice. En la Figura 1 mostramos un ejemplo de un array de sufijos
orientado a palabra. Como paso previo a la construccion del array de sufijos se
construye un vocabulario con todas las palabras distintas del texto y se crea un
array de enteros T;; donde cada palabra se reemplaza por su correspondiente
posicion en el vocabulario. EI SA se construye sobre este array T;q.

En la figura mostramos también un ejemplo de busqueda del patrén “el
CERI”. El resultado de la misma son las ocurrencias del patrén en el texto,
es decir, las posiciones 1y 7. Como se puede observar, dichos valores se encuen-
tran consecutivos en el SA. Insistimos en esta caracteristica de que el resultado
de la busqueda es un rango, ya que es clave para la combinacién con un R-tree.

3.2. R-tree

El R-tree [9] es uno de los métodos de acceso espacial mas populares y se
puede considerar un ejemplo paradigmatico. Esta estructura se basa en un ar-
bol balanceado derivado del B-tree [21] que divide el espacio en rectangulos de
cobertura minima (MBRs) agrupados jerarquicamente. El naumero de nodos hijo
de cada nodo interno varia entre un minimo y un maximo. El arbol se mantiene
balanceado dividiendo aquellos nodos que tienen un ntmero de descendientes
por encima del umbral de carga méaxima y combinando aquellos otros que tienen
un niamero de descendientes por debajo del umbral de carga minima. Cada nodo
hoja tiene asociado un MBR que delimita el 4rea del espacio que cubre ese nodo.
Ademés, los nodos internos también almacenan un MBR que delimita el area que

1.2 3 4 5 G1 6 10 11 G2 12

8 9
T = el CERI|2010 fue en Madrid y|el CERI|2012 es en Valencia$
Ta=43 1 7 5 8 43 2 6 5 0
0 P

sA=[12[3]|9(2[8[1]7[11]5 [10]4] 6|

Vocabulario Huellas Geograficas
2010 Madrid (40,-3)
2012 Valencia (39, 0)
CERI

el

en

es

fue

y

O~NO A WN =

Figura 1. Ejemplo de array de sufijos orientado a palabra (WCSA). En esta figura
adelantamos que las referencias o huellas geogréficas reciben un tratamiento especial,
por lo que no se indexan en el array de sufijos SA.

cubren todos sus descendientes. La descomposicion del espacio que proporciona
el R-tree es adaptativa (es decir, dependiente de la distribucion de los objetos
geograficos indexados) y puede presentar solapes (es decir, los nodos del arbol
pueden representar regiones no disjuntas). Aunque no ofrece garantias tedricas
(en el peor caso puede visitar todos los nodos aun cuando el resultado de la con-
sulta sea vacio) ha demostrado ser muy eficiente en la practica y se encuentra
disponible en la mayoria de las extensiones espaciales para bases de datos. Sobre
la propuesta original de Guttman se han ido proponiendo muchas variantes para
mejorar su eficiencia.

Aunque el R-tree soporta varias operaciones, por ejemplo distintas variantes
de los vecinos mas cercanos, en este trabajo solo explotamos su eficiencia para
resolver consultas de rango. En dos dimensiones, estas consultas se corresponden
con rectangulos y el resultado son todos los objetos geograficos que tienen algin
punto en comin con el rectidngulo de consulta. Aunque su uso mas habitual es
con datos geograficos, no debe olvidarse que es un indice multidimensional y
presenta una buena escalabilidad ante el aumento del nimero de dimensiones.

4. Nuestra propuesta

En esta seccion describimos como combinar el SA con un R-tree. Como se
ha explicado en la seccién anterior, existen muchas variantes del SA que ofrecen
diferente funcionalidad y son adecuadas para diferentes escenarios. Todas ellas
comparten la propiedad de que la busqueda de un patréon resulta en un rango
de posiciones consecutivas en el array de sufijos. Esta es la tnica propiedad
que asume nuestra estructura y, por tanto, puede trabajar con cualquier SA.
La eleccion del SA depende del dominio donde se vaya a utilizar. Por ejemplo,

se puede emplear con un WCSA resultando en una alternativa a la estructura
presentada en [8]. En lo sucesivo denotamos como SA cualquier array de sufijos.

La estructura esta disenada para trabajar en sistemas GIR. Por tanto, asum-
imos la existencia de una etapa anterior a la indexacién en la que se anota cada
sufijo con los referentes geogréficos a los que se refiere (ver [22] para mas infor-
macion sobre la tarea de geo-referenciacion de toponimos). El caso méas habitual
en sistemas GIR consiste en anotar cada documento con un conjunto de objetos
geograficos que representan los lugares mencionados en el texto de dicho doc-
umento. Nuestra estructura funciona con dicho esquema (todos los sufijos que
forman parte de un documento heredan su huella geografica), pero no se re-
stringe a él. En nuestro sistema se define el concepto de unidad geo-referenciada
consistente en un conjunto de sufijos consecutivos que comparten huella geogra-
fica. Dichas unidades pueden representar documentos, pero también parrafos,
sentencias, o incluso sufijos que se encuentran a menos de una cierta distancia
de la posicion en el texto donde se menciona una referencia geografica. Volvien-
do sobre el ejemplo ilustrado en la Figura 1, se podria asumir que el texto esta
compuesto de dos unidades geo-referenciadas: el rango [1 — 5] se corresponde
con la huella geografica Madrid y el rango [6 — 11] se corresponde con Valencia.
Si refinamos la busqueda del ejemplo como el CERI en {(37,0),(41,2)} (coorde-
nadas de un rectangulo de consulta que contiene la Comunidad Valenciana), el
resultado ya no serén las posiciones 1 y 7, sino solo la 7. Este tipo de consultas
constituyen el objetivo de nuestra estructura.

Siguiendo la tendencia marcada en la literatura de indices para GIR, pro-
ponemos dos formas de combinar las componentes de nuestra estructura. La
mas ingenua consiste en una estructura de doble indice que mantiene el SA y el
R-tree por separado. El SA se construye con todos los sufijos del texto y el R-tree
se construye con todos los referentes geograficos (cada referente geografico alma-
cena como identificador la posicion en el SA del sufijo al que se refiere). En esta
estructura, el algoritmo de consulta realiza un primer paso en el que se resuelven
de manera independiente las componentes textual y espacial de la consulta. El
resultado final se obtiene en un segundo paso realizando la interseccion de los
resultados parciales obtenidos en el paso anterior.

El problema de esta variante es que la intersecciéon que se realiza en el se-
gundo paso del algoritmo puede ser muy costosa e ineficiente. Es decir, puede
haber muchos candidatos resultantes de la bisqueda textual y muchos candidatos
resultantes de la bisqueda espacial, pero la interseccién de las dos listas de can-
didatos ser vacia. La idea es almacenar cierta informacién extra que permita
acelerar dicha interseccion. En nuestra propuesta aprovechamos que el R-tree
es muy eficiente para resolver busqueda de rangos y que la bisqueda en un SA
resulta en un rango. Esto nos permite combinar ambas estructuras de manera
natural y elegante. El SA se mantiene igual que en la variante anterior. Por su
parte, el R-tree pasa de ser bidimensional a ser tridimensional. Como tercera
dimension se emplea la posicion en el SA. Es decir, por cada objeto geogréafico
que contenia el R-tree en la variante anterior, se construye un objeto tridimen-
sional con las coordenadas originales en las dos primeras dimensiones mas una

tercera dimension que es la posicion en el SA que ocupa el sufijo que tiene como
huella geografica dicho objeto. La Figura 2 muestra un ejemplo de este proceso.
En ella, los ejes X e Y representan el espacio geografico original (es decir, el
espacio al que son traducidas las huellas geogréficas de los sufijos) y el eje Z rep-
resenta la posicion del sufijo en el SA. Debe aclararse que el R-tree es un indice
multidimensional, por lo que no es necesario ningiin cambio sobre el mismo. Por
el mismo motivo, si se desea extender esta estructura para soportar busquedas
espacio-temporales en GIR, la extension es igual de natural. Ademés, el R-tree
soporta la insercion tanto de puntos, que dan lugar a puntos tridimensionales
(d, e y f en la figura), como de rectangulos, que dan lugar a cajas planas o
rectangulos que varian su posiciéon en la tercera dimension (a, b, y c).

ya
a o °
vl |/ .

Figura 2. Ejemplo de proyeccién del rango resultante de una bisqueda textual en el
SA a una consulta tridimensional g en el espacio indexado por el R-tree.

El algoritmo de busqueda realiza en primer lugar una busqueda textual en
el SA, obteniendo como resultado un rango. En segundo lugar, se construye
una consulta tridimensional con la parte espacial de la consulta original mas
el rango obtenido en el paso anterior (ver Figura 2). Finalmente, se resuelve
dicha consulta tridimensional en el R-tree obteniendo el resultado de la consulta
espacio-textual.

Dado que nuestra estructura es una generalizacion del array de sufijos, ob-
tiene como resultado una lista de ocurrencias. Es decir, dada una consulta, la
estructura reporta las posiciones del texto donde aparece el patréon buscado y
que tienen una huella geografica que tiene una intersecciéon no vacia con la con-
sulta espacial. Dichas posiciones seran de caracter o de palabra segin lo sea el
array de sufijos empleado. Este estandar de facto en la comunidad de pattern
matching puede resultar chocante para el lector familiarizado con la recuperaciéon
de informacién mas tradicional donde el resultado més comun es una lista de
documentos. Nos gustaria remarcar que en los tltimos anos se ha dedicado mu-
cho esfuerzo a adaptar los arrays de sufijos (y otros indices full-text) a este
estandar [23,24]. Basicamente se guarda cierta informacion adicional en paralelo

con el indice textual que indica para cada posicién a qué documento pertenece.
Una vez solucionada la biisqueda textual el problema se reduce a reportar los
identificadores diferentes que caen dentro del rango. Adaptar dichas estructuras
a nuestro indice no es inmediato ya que el resultado final de la estructura ya
no es un rango. Dejamos como linea abierta el explorar el potencial de nuestra
propuesta para realizar listado de documentos en lugar de listado de ocurrencias.

5. Experimentos

En esta seccion presentamos algunos experimentos realizados para comprobar
el rendimiento de nuestra propuesta. Estos resultados preliminares no tratan de
ser exhaustivos, sino una prueba de concepto que muestre la aplicabilidad de
nuestra solucién. Todos los experimentos presentados aqui se realizaron en una
maquina Intel Core i3 M330@2.13GHz, con 4GB de memoria RAM y sistema
operativo Ubuntu (kernel 2.6.32-39). El codigo en C se compil6 con gec version
4.4.3 empleando las directivas de compilaciéon -m32 -03.

El conjunto de datos utilizado para las pruebas corresponde a los experimen-
tos para reconocimiento de nombres de lugar en CoNLL y pertenece al Reuters
Corpora [25]. En concreto se emplearon los ficheros en inglés etiquetados y revisa-
dos a mano. En total la coleccién se compone de 1.393 documentos. El namero de
sufijos es 1.089.032 y el numero de referencias geogréficas localizadas es 10.599
(una media de 7 por documento).

Para la implementacion de nuestra estructura empleamos como array de su-
fijos un WCSA. En concreto, empleamos la implementacién que se presenta
en [20]. En cuanto al R-tree, empleamos la implementaciéon de Marios Had-
jieleftheriou que esté disponible en [26].

En nuestros experimentos comparamos la variante de doble indice de nuestra
propuesta (es decir, la que mantiene el array de sufijos y el R-tree por sepa-
rado) con la variante hibrida (es decir, la que emplea un R-tree tridimensional
utilizando como tercera dimension la posicion en el array de sufijos). Las consul-
tas realizadas se componen de una parte textual y una parte espacial. La parte
textual estd formada por patrones compuestos por una palabra (dado que uti-
lizamos un array de sufijos orientado a palabra). En cuanto a la parte espacial,
se crearon ventanas de consulta rectangulares cuyo tamafio representa el 1% del
area cubierta por las huellas geograficas de los documentos. La tabla 1 muestra
los resultados de este experimento. En la primera columna se muestra el espacio
que necesita cada variante y las dos columnas restantes se corresponden con dis-
tintos tipos de consulta: contar el nimero de ocurrencias y mostrar un fragmento
de texto en torno a dichas ocurrencias, respectivamente. Las variaciones en es-
ta ultima columna son minimas ya que solo considera el tiempo para mostrar
las ocurrencias una vez localizadas por lo que, en teoria, el tiempo esperado
es el mismo y las variaciones en la préctica se deben unicamente al proceso de
medicién de tiempos.

Estos resultados concuerdan con las conclusiones previas obtenidas por Vaid
et al. [2] y Zhou et al. [8]: la estructura de doble indice requiere menos espacio

Espacio (MB)|Cont. (ms/occ.)|Most. (ms/caréicter)
Doble indice 158 5,03 0,00101
Hibrida 181 0,005 0,00099
Tabla 1. Comparacién de las variantes de doble indice e hibrida.

que la estructura hibrida, pero la eficiencia de la segunda es mucho mayor. Este
resultado es facilmente explicable ya que se puede interpretar que la estructura
hibrida esta almacenando informacién adicional para evitar el tener que realizar
la interseccién de resultados parciales. Sin embargo, nuestra estructura tiene
una peculiaridad con respecto a las anteriores que hace que se pueda optimizar
drasticamente el comportamiento de la estructura de doble indice. La clave es
observar que en la estructura de doble indice se estan insertando muchos objetos
geograficos repetidos que tan solo se diferencian en el identificador (es decir, en
el sufijo que representan). Por tanto, es posible realizar un preprocesado de los
datos e insertar cada objeto geografico una tnica vez, almacenando externamente
para cada objeto geografico una lista de los sufijos con los que se asocia. Con esta
optimizaciéon se consigue reducir el tamano del indice a poco més de 6MB con
un tiempo de consulta de 0,27ms/occ. Observamos también que para consultas
espaciales méas selectivas (es decir, rectangulos de consulta mas pequefios) la
estructura de doble indice optimizada llega a ser mas eficiente que la hibrida.
Por ejemplo, repitiendo el mismo experimento con consultas que representan el
0,01 % del espacio la estructura de doble indice tarda 0,54ms/occ frente a los
1,34ms/occ de la estructura hibrida.

Es facil de ver que la misma optimizacién no se puede realizar de manera
trivial en la estructura hibrida ya que cada objeto geografico no tiene por qué
corresponderse con un rango contiguo de sufijos en el array de sufijos (recordemos
que el array de sufijos es una permutacion del texto original). Sin embargo,
es posible que existan rangos en el array de sufijos que compartan la misma
huella geografica. Por ejemplo, en un array de sufijos orientado a palabra y
donde el texto proviene de diferentes documentos, es probable que existan ciertas
construcciones sintcticas que se repitan dentro del mismo documento pero que
no aparezcan en los otros. Dichas construcciones formaran rangos consecutivos en
el array de sufijos. Dejamos como linea de trabajo futuro el explorar la reduccién
del tamano de la estructura hibrida teniendo en cuenta estas regularidades.

A continuacion estudiamos en méas detalle los tiempos de consulta cuando
variamos la selectividad de la parte espacial de las consultas (Figura 3(a)) y
cuando variamos el nimero de palabras que componen el patrén de la parte
textual (Figura 3(b)). La estructura Doble-indice (P), se corresponde con la
optimizacion de la estructura de doble indice que acabamos de explicar.

A la vista de estos resultados la influencia de ambos parametros en el tiempo
de consulta no parece muy importante. Sin embargo, debe tenerse en cuenta que
los tiempos mostrados son en milisegundos por ocurrencia y, por tanto, consultas
que devuelven mas resultados compensan en cierto modo el tardar més tiempo
en completarse.

8 8 ———
- Hibrida —+— | P Ko Hibda]
— Doble-indice ---x--- — Doble-indice ---x---
§ 6 [“-.._Doble-indice (P) ~-x- o § 6 - Doble-indice (P) -~ -
% 5F e E s 5t E
O
E 4t i E 4| i
2 3} i 2 3| i
§ §
£ 2[1 o R |
1r 7 tE o e
0 >F J 0 * 1
0.01% 0.1% 1% 2 4 6 8
Selectividad Numero de palabras
(a) Componente espacial. (b) Componente textual.

Figura 3. Influencia de las componentes espacial y textual en el tiempo de consulta.

6. Conclusiones y trabajo futuro

En este articulo proponemos el uso de arrays de sufijos para indexar la com-
ponente textual en estructuras de indexacion para recuperacion de informacién
geografica (a diferencia de trabajos previos que emplean indices invertidos). Las
ventajas de nuestra propuesta son similares a las del uso de arrays de sufijos
en recuperaciéon de informaciéon. Es decir, es adecuado para lenguajes que no
se pueden separar de manera natural en palabras, puede utilizarse en sistemas
que requieran la busqueda de patrones arbitrarios (y no solo palabras o frases),
y ofrece una interesante alternativa a los indices invertidos sobre todo para la
busqueda de frases.

La estructura que presentamos obtiene como resultado las posiciones del pa-
tron buscado en el texto (esto atiende a un modelo habitual para la comunidad
de String processing and pattern matching). Una primera linea de trabajo fu-
turo consiste en la adaptacion de la misma al modelo habitual en recuperacion
de informacion (es decir, obtener como resultado los identificadores de los docu-
mentos relevantes para la consulta). Aunque existen algunos trabajos [23,24] que
permiten hacer esto con arrays de sufijos, su adaptacion a nuestra estructura no
es inmediata ya que el resultado final de la misma deja de ser un rango contiguo
del array de sufijos. La adaptacion al modelo de IR constituye un paso previo a
realizar una comparacion justa con la estructura de Zhou et al. [8] que emplea un
indice invertido y un R-tree. Finalmente, otra linea de trabajo futuro consiste en
reducir el tamano de la estructura hibrida. La idea consiste en emplear ciertas
regularidades existentes en el array de sufijos para reducir el nimero de obje-
tos tridimensionales a insertar en el R-tree (ya que es probable que posiciones
consecutivas del array de sufijos compartan la misma huella geogréfica).

Referencias

1. Purves, R., Gaio, M., Bucher, B.: Geographic information retrieval tu-
torial at agile (2012) Fecha de consulta: Marzo de 2012. Disponible en:

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

http://www.geo.uzh.ch/ rsp/girt.

Vaid, S., Jones, C.B., Joho, H., Sanderson, M.: Spatio-Textual Indexing for Geo-
graphical Search on the Web. In: Proc. of SSTD. (2005) 218 — 235

Nievergelt, J., Hinterberger, H., Sevcik, K.C.: The grid file: An adaptable, sym-
metric multi-key file structure. In: Proc. of the ECI Conference. (1981) 236-251
Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. Addison Wesley
(1999)

Witten, I.H., Moffat, A., Bell, T.C.: Managing Gigabytes: Compressing and In-
dexing Documents and Images. Academic Press (1999)

Martins, B., Silva, M.J., Andrade, L.: Indexing and ranking in Geo-IR systems.
In: Proc. of GIR, ACM Press (2005) 31-34

Chen, Y.Y., Suel, T., Markowetz, A.: Efficient query processing in geographic web
search engines. In: Proc. of SIGMOD. (2006) 277-288

Zhou, Y., Xie, X., Wang, C., Gong, Y., Ma, W.Y.: Hybrid index structures for
location-based web search. In: Proc. of CIKM, ACM (2005) 155-162

Guttman, A.: R-Trees: A Dynamic Index Structure for Spatial Searching. In
Yormark, B., ed.: SIGMOD’84, Boston, Massachusetts, ACM Press (1984) 4757
Morton, G.M.: A computer oriented geodetic data base and a new technique in
file sequencing. Technical report, IBM Ltd. (1966)

Bohm, C., Klump, G., Kriegel, H.P.: Xz-ordering: A space-filling curve for objects
with spatial extension. In: Proc. of the SSD Conference. (1999) 75-90
Lieberman, M.D., Samet, H., Sankaranarayanan, J., Sperling, J.. STEWARD:
Architecture of a Spatio-Textual Search Engine. In: ACMGIS. (2007) 186 — 193
Nelson, R.C., Samet, H.: A consistent hierarchical representation for vector data.
In: Proc. of the SIGGRAPH Conference. (1986) 197-206

Navarro, G., Mikinen, V.: Compressed full-text indexes. ACM Comput. Surv.
39(1) (2007)

Manolopoulos, Y., Nanopoulos, A., Papadopoulos, A.N., Theodoridis, Y.: R-Trees:
Theory and Applications. Springer-Verlag New York, Inc. (2005)

Manber, U., Myers, G.: Suffix arrays: a new method for on-line string searches. In:
SODA’90. (1990) 319-327

Apostolico, A.: The myriad virtues of subword trees. In: Combinatorial Algorithms
on Words, NATO ISI Series. (1985) 85-96

Sadakane, K.: Compressed text databases with efficient query algorithms based on
the compressed suffix array. In: ISAAC. (2000) 410-421

Grossi, R., Vitter, J.S.: Compressed suffix arrays and suffix trees with applications
to text indexing and string matching. In: STOC. (2000) 397-406

Farifia, A., Brisaboa, N.R., Navarro, G., Claude, F., Places, A.S., Rodriguez, E.:
Word-based self-indexes for natural language text. TOIS 30(1) (2012) 1-34
Bayer, R., McCreight, E.M.: Organization and maintenance of large ordered in-
dices. Acta Inf. 1 (1972) 173-189

Amitay, E., HarEl, N., Sivan, R., Soffer, A.: Web-a-where: geotagging web content.
In: SIGIR’04, New York, USA, ACM (2004) 273-280

Muthukrishnan, S.: Efficient algorithms for document retrieval problems. In: SO-
DA. (2002) 657-666

Navarro, G., Nekrich, Y.: Top-k document retrieval in optimal time and linear
space. In: SODA. (2012) 1066-1077

Lewis, D.D., Yang, Y., Rose, T., , Li, F.: Rcvl: A new benchmark collection for text
categorization research. Journal of Machine Learning Research 5 (2004) 361-397
Hadjieleftheriou, M.: Spatial index library. (2009) Fecha de consulta: Marzo de
2012. Disponible en: http://libspatialindex.github.com/.

