
Backwards Search in Context Bound Text Transformations

Matthias Petri
RMIT University
School of CS&IT

matthias.petri@rmit.edu.au

Gonzalo Navarro
University of Chile

Dept. of Computer Science
gnavarro@dcc.uchile.cl

Simon J. Puglisi
RMIT University
School of CS&IT

simon.puglisi@rmit.edu.au

J. Shane Culpepper
RMIT University
School of CS&IT

shane.culpepper@rmit.edu.au

Abstract—The Burrows-Wheeler Transform (BWT) is the
basis for many of the most effective compression and self-
indexing methods used today. A key to the versatility of the BWT
is the ability to search for patterns directly in the transformed
text. A backwards search for a pattern P can be performed
on a transformed text by iteratively determining the range of
suffixes that match P . The search can be further enhanced
by constructing a wavelet tree over the output of the BWT in
order to emulate a suffix array. In this paper, we investigate
new algorithms for search derived from a variation of the BWT
whereby rotations are only sorted to a depth k, commonly
referred to as a context bound transform. Interestingly, this
BWT variant can be used to mimic a k-gram index, which are
used in a variety of applications that need to efficiently return
occurrences in text position order. In this paper, we present
the first backwards search algorithms on the k-BWT, and show
how to construct a self-index containing many of the attractive
properties of a k-gram index.

Keywords-backwards search; text indexing; BWT; context
bound transform, k-gram index;

I. INTRODUCTION

The pattern matching problem is defined as finding all
occurrences of a pattern P = p1p2 . . . pm in a text T =
t1t2 . . . tn where both T and P are sequences over a finite
alphabet Σ of size σ. The traditional problem of pattern
matching has undergone a revival in recent years, due mainly
to significant advances in a new class of algorithms capable
of indexing large text collections [1], [2], [3]. Self-indexes
are now capable of searching for any pattern P of length
m in time linear to m, and can reproduce any segment of
the original text using only the index. Self-indexes are a
synthesis of several fundamental text compression and search
algorithms.

Many self-indexing methods are derived from a suffix ar-
ray (SA) [4]. An SA supports search over a text T by sorting
all suffixes in lexicographical order. The BWT permutes a
text T into a more compressible representation. Remarkably,
the output of the BWT can be used in conjunction with
a wavelet tree [5] to emulate the search capabilities of a
suffix array while using space proportional to the compressed
representation of T . In order to emulate an SA search, a
wavelet tree is constructed over the BWT output so that
jumps between lexicographically ordered suffixes in T is
possible. To perform the context jumps, it is necessary to

determine the symbol at position j − 1 in T for a starting
position j. This process is used to perform backwards search
for any pattern P . To do this efficiently, self-indexes exploit
the duality between an SA and a BWT over T .

Prior to the discovery of the searching capabilities of the
BWT, a folklore method for reducing space called a k-gram
index was commonly used for substring searches [6], [7], [8],
[9]. A k-gram index records the occurrences of each distinct
substring of length k in an attempt to mimic the efficiency of
inverted indexes. The k-gram index is still commonly used
today to support substring search in text that is not amenable
to term segmentation and extraction. While suffix arrays
(and the BWT) are often more convenient when searching for
general patterns, there are various applications where using a
k-gram index is still advantageous. Since text suffixes need to
be sorted only up to the first k symbols, a k-gram index can
be built using less space and time, and are more I/O-friendly
than full suffix arrays. Also, searches for patterns of a fixed
length k can be performed very efficiently are returned with
all occurrences by increasing text position order. However,
a suffix array, returns positions lexicographically ordered by
the suffix that follows the occurrences, which often requires
additional processing.

An example where a k-gram index may be more con-
venient than a suffix array is for indexed approximate
searching [10]. Backtracking in a suffix array is possible,
but the time is exponential in the error threshold allowed. A
more efficient solution is to split the pattern and search for
each subpattern using a lower threshold (or even exactly).
Using this approach, the full search can be completed
by backtracking or by generating a “neighborhood” of all
possible k-grams that match the subpattern within the error
threshold. The approximate occurrences of the subpattern
must be merged, and the occurrence lists for the distinct
pieces are (essentially) intersected to find areas where an
occurrence may be present. False matches must be filtered
out from each possible occurrence using an on-line pattern
matching algorithm such as the Boyer-Moore-Horspool
algorithm [11]. This process requires subpatterns of a fixed
length k, and having potential matches returned in text
position order is vital to efficient intersection and union
operations. A suffix array needs additional query time and
space to sort the possible occurrences in text order. In fact,

one of the most prolific genomic search systems, BLAST,
is reliant on a k-gram index and not SA based algorithms
for this reason [12]. The k of interest in BLAST is around
11–12 for DNA, and 3–4 for protein sequences. However,
the space cost to explicitly store all possible k-grams grows
exponentially with k, limiting the substring segment sizes
used in practice.

While FM-indexes utilize BWT to achieve suffix array
compression and self-indexing [1], [2], [3], k-gram indexes
have not received much attention beyond applying the
classical techniques for compressing inverted lists [13],
despite being widely used in practice.

In this paper, we explore a variant of self-indexing derived
from k-grams. We build on a common alternative to the
BWT, known as a context bound block sorting transformation
(k-BWT). In a BWT, the symbols in T are fully sorted in
lexicographical order of contexts. A context bound block
sorting transformation only sorts the suffixes in T up to a
certain length k. We explore the potential of the k-BWT
as a self-index representation of text that offers k-gram
index search capabilities. We present the first backwards
search algorithm for k-BWT permuted text, showing that it is
possible to search for patterns in the same way as in a k-gram
index, retrieving the occurrences in text position order. We
also show how to recover any substring of the original text.
Somewhat surprisingly, operations within k-BWT appear to
be significantly more challenging than on a full BWT, and so
our solution trades some compression effectiveness when k
is small. Our space performance improves for larger k values,
whereas compression using a classical k-gram approach
worsens as k increases. We present the first steps in this
new direction and regard our work as opening an interesting
and challenging area, with practical potential applications.

II. NOTATION

Throughout this paper we consider a text T = T [0, n− 1]
of n symbols. The symbols in T are drawn from an alphabet
Σ with σ = |Σ|. The last symbol in T is $, an end of
string marker defined to be lexicographically smaller than
any s ∈ Σ. We define the string Ti = T [i, n− 1]T [0, i− 1]
as the ith rotation of T . The substring T [i, n− 1] is referred
to as the ith suffix of T , or “suffix i”. Because the unique
$ we can unambiguously refer to a rotation by the suffix of
T by which it is prefixed: Rotation i is prefixed with suffix
i. The BWT is formed with the characters preceding the
lexicographically sorted rotations. Let Ti0 , Ti1 , . . . , , Tin−1

be the rotations in lexicographic order, then T BWT = T [i0 −
1 mod n]T [i1 − 1 mod n] . . . T [in−1 − 1 mod n].

The k-BWT depends upon a partial sort of the rotations of
T , partial because it is based on an ordering of the prefixes
of these rotations that are of length k ≥ 1. We refer to this
partial ordering as a k-ordering of rotations into k-order,
and to the process itself as a k-sort. If two or more rotations

are equal under k-order, we say that they fall into the same k-
group; they are accordingly said to be k-equal. Throughout
this paper we always assume a k-sort is stable, so that within
each k-group, the ordering of the rotations is the order of
their starting positions in T . We refer to the output of the
k-BWT as T k-BWT.

III. ALGORITHMIC FRAMEWORK

Many succinct data structures depend on two basic
operations over a bitvector B[0, n− 1]:

RANK0/1(B, i) : return the number of 0’s/1’s in B[0, i]
SELECT0/1(B, i) : return the position of the ith of 0’s/1’s

in B

Both operations can be performed in constant time. A
simple constant time RANK0/1 solution uses o(n) space in
addition to storing B [14]. Efficient RANKc and SELECTc
over an alphabet of size σ > 2 can be performed using
a wavelet tree [5]. A wavelet tree decomposes the RANKc
and SELECTc operations over [0, σ − 1] into RANK0/1 and
SELECT0/1 operations on a binary alphabet using a binary
tree. The root of the tree represents the whole alphabet.
Its children represent each half of the alphabet of the
parent node. Each leaf node in the tree represents one
symbol in [0, σ − 1]. When answering the RANKc query
for a specific symbol c, we perform RANK0/1 operations
at each level in the tree until we arrive at the leaf node
representing c. The overall RANKc(T, i) can be computed
by combining the RANK0/1 results at each tree level in
O(log σ) time. Any symbol T [i] is also computed in time
O(log σ) with a similar algorithm; we call this operation
ACCESS(T, i). Using a succinct representation of RANK0/1
and SELECT0/1 [15], a wavelet tree requires nH0+o(n log σ)
bits of space, where H0 ≤ log σ is the zero-order entropy
of T .1 A wavelet tree built on T BWT uses nHk + o(n log σ)
bits [16] for any k ≤ α logσ(n) − 1 and constant α < 1.
Here Hk ≤ Hk−1 ≤ . . . ≤ H0 ≤ log σ is the k-th order
entropy of T [17], a lower bound to the performance of any
compressor using k-th order statistical modeling on T . The
same space bound holds on T k-BWT, where we only k-sort the
rotations. A suffix array SA[0, n−1] over T stores the offsets
to all suffixes in T in lexicographical order. Any pattern
P of length m occurring in T is a prefix of one or more
suffixes in SA. These suffixes, due to the lexicographical
order within SA, are grouped together in the range SA[sp, ep].
To determine SA[sp, ep] we perform two binary searches over
SA and T . Each binary search comparison requires up to m
symbol comparisons in T , for a total of O(m log n) time.
Using additional auxiliary data structures this cost can be
reduced to O(m+ log n) [18]. Suffix array construction is
a well studied problem, and many efficient solutions with

1We assume logarithms are in base 2.

various tradeoffs are readily available [19], [20]. However,
searching for a pattern P in T using only a suffix array
requires O(n log n) bits to store both T and SA, which in
practice is at least 5 times the text size. With the BWT, the
key operations of a basic SA can be emulated within much
less space, close to the size of T in compressed form.

IV. THE BURROWS-WHEELER TRANSFORM

The Burrows-Wheeler Transform [21] (BWT) – also known
as the “block-sorting transform” – produces a permutation of
a string T , denoted T BWT, by sorting the n cyclic rotations
of T into full lexicographical order, and taking the last
column of the resulting n × n matrix M to be T BWT.
The resulting string T BWT tends to be more compressible
as symbols are grouped together based on their context
in T , which makes the BWT an important part in many
state of the art compression systems [17]. To produce T BWT

for a given text T , it is not necessary to construct M as
there is a duality between T BWT and the SA over a text T :
T BWT[i] = T [SA[i]− 1 mod n].

Remarkably, the original text T can be recovered from
T BWT in linear time without the need for any additional
information. To recover T from only T BWT we first recover
the first column, F , in M by sorting the last column (L =
T BWT), in lexicographical order. By mapping the symbols in
L to their respective positions in F so L[i] = F [j] (usually
referred to as the LF mapping, j = LF(i)) we can recover
T backwards as T [n − 1] = T BWT[0] = $ and T [j − 1] =
T BWT[LF(i)] if and only if T [j] = T BWT[i]. The LF mapping
is computed using the equation

LF(i) = LF(i, c) = C[c] + RANKc(T BWT, i) (1)

where c is the symbol T BWT[i], and C[c] stores the number
of symbols in T BWT smaller than c. Figure 1 shows an
example of the BWT permutation matrix M for the string
T = acacacracaca$ including the LF mapping.

Using the LF mapping we can recover T starting with
position of symbol $ in T BWT: T BWT[4] = $, thus T [n −
1] = $. T [n − 2] = T BWT[LF(4) = 0] = a. Consequently
we recover T [n − 3] = T BWT[LF(0) = 1] = c and T =
acacacracaca$ in reverse order.

V. CONTEXT BOUND BLOCK TRANSFORMS

Independently, Schindler [22] and Yokoo [23] described
a variation of the BWT which partially sorts the n rotations
based on k length prefixes. This transform is widely known
as the k-BWT.

Unlike the full BWT, the k-BWT only sorts the permutation
matrixM up to a depth k (Mk). Figure 2 shows theM3 ro-
tations of the k-BWT for the string T = acacacracaca$
and k = 3, producing T 3-BWT. Due to the fixed sorting depth,
multiple suffixes can be treated as k-equal during the sorting
stage. These suffixes are grouped in context groups, where
suffixes are stored in ascending order according to their

i LF SA F L(T BWT)
0 1 12 $ a c a c a c r a c a c a
1 7 11 a $ a c a c a c r a c a c
2 8 9 a c a $ a c a c a c r a c
3 12 7 a c a c a $ a c a c a c r
4 0 0 a c a c a c r a c a c a $
5 9 2 a c a c r a c a c a $ a c
6 10 4 a c r a c a c a $ a c a c
7 2 10 c a $ a c a c a c r a c a
8 3 8 c a c a $ a c a c a c r a
9 4 1 c a c a c r a c a c a $ a

10 5 3 c a c r a c a c a $ a c a
11 6 5 c r a c a c a $ a c a c a
12 11 6 r a c a c a $ a c a c a c

Figure 1. Example BWT permutation matrix M of the string T =
acacacracaca$ with the output being the last column inM: T BWT =
accr$ccaaaaac.

i D3 LF3 F 1 2 L(T 3-BWT)
0 1 1 $ a c a c a c r a c a c a
1 1 7 a $ a c a c a c r a c a c
2 1 0 a c a c a c r a c a c a $
3 0 8 a c a c r a c a c a $ a c
4 0 12 a c a c a $ a c a c a c r
5 0 9 a c a $ a c a c a c r a c
6 1 10 a c r a c a c a $ a c a c
7 1 2 c a $ a c a c a c r a c a
8 1 3 c a c a c r a c a c a $ a
9 0 4 c a c r a c a c a $ a c a

10 0 5 c a c a $ a c a c a c r a
11 1 6 c r a c a c a $ a c a c a
12 1 11 r a c a c a $ a c a c a c

Figure 2. The k-BWT permutation matrix for the string T =
acacacracaca$ with k = 3.

position in T for each context group. The k-group boundaries
can be can be marked in a bitvector, D3, or just D for short.
For our example shown in Figure 2, Dk is 1110001110011.
We formally define Dk as follows:

Definition 1. For any 0 ≤ k < n, let Dk[0, n − 1] be a
bitvector, such that Dk[0] = 1 and, for 1 ≤ i < n,

Dk[i] =

{
0 if Mk[i][0, k − 1] =Mk[i− 1][0, k − 1]
1 if Mk[i][0, k − 1] 6=Mk[i− 1][0, k − 1]

Recovering T from T k-BWT using LFk requires additional
work since the mapping only allows us to determine the
context preceding the current symbol as a result of the

incomplete sorting of Mk. For example, consider the
following context jump in Figure 2, where our initial starting
position is T 3-BWT[10] = a and LFk(10) = 5. The symbol
preceding “a” should be T 3-BWT[5] = c, but due to the
incomplete sorting of Mk, the correct row – in the same
k-group – is actually 4, which results in T 3-BWT[4] = r.
When recovering T from T 3-BWT, LFk only guarantees to
jump to the correct preceding k-group. Individual context
groups need to be processed in reverse sequential order. After
performing LFk, instead of using the row similar to the full
BWT, we jump to the last unprocessed row within a given k-
group. To consistently determine the correct context bounds,
a bitvector Dk is required in order to reconstruct T from
T k-BWT. Dk can be reconstructed in O(n) time from T k-BWT

[24] or it can be stored with T k-BWT at a cost of n bits. These
and other trade-offs are explored in [25].

Interestingly, the k-BWT requires less processing in the
rotation sorting phase of the transform than the BWT.
Similarly to the BWT, we can build the k-BWT efficiently
by constructing a suffix array (SA) over T , but must only
compare each suffix to a depth of k. For texts containing
long repetitions, a k-BWT permutation can be constructed
much more efficiently. Within each k-group, the suffixes
are ordered in ascending text order. This unique property of
the k-BWT allows external memory construction. A simple
external memory construction algorithm can determine the
starting positions of each k-context in T by making one pass
over T in O(n) time and O(σk log n) space. In a second
pass over the suffix array positions, the respective symbol
in T k-BWT is written based on the context.

VI. BACKWARDS SEARCH

Performing a search in BWT permuted text is straight-
forward. Recall that all rows are sorted in lexicographical
order in M. Therefore, for a pattern P , all occurrences of
P in T must have a corresponding row in M within a
range 〈sp, ep〉, where Tsp[0,m − 1] = Tep[0,m − 1] = P .
To determine the range within M, we first determine the
range 〈spm, epm〉 within M that corresponds to pm using
C[]. Then, for each symbol j = m − 1 . . . 0 in P , we
iteratively find 〈spj , epj〉 by calculating the number of rows
within 〈spj+1, epj+1〉 that are preceded by the symbol pj
in T . For a given row j, the LF mapping can be used to
determine the row in M representing the symbol preceding
j in T . The preceding row is determined by counting the
number of occurrences of c = T BWT[j] before the current
row and ranking these occurrences within C[c]. Assume we
have located 〈spj+1, epj+1〉, which corresponds to the rows
prefixed by P [j + 1,m]. Then

spj = LF(spj+1 − 1, pj) + 1 (2)

will calculate the position in F of the first occurrence of
pj within 〈spj+1, epj+1〉, and thus compute the start of

our range of rows within M that correspond to P [j,m].
Similarly, we compute

epj = LF(epj+1, pj). (3)

For example, in Figure 1, assume we have previously
determined the range of the rows corresponding to ca as
〈7, 10〉. We can now determine the rows in M that match
aca by performing sp = LF(6, a) + 1 = 2, as the number
of a’s in T BWT before row 7 is 1 and the rows prefixed
by a in M lie within 〈1, 6〉. Similarly, we determine the
ep = LF(10, a) = 5. Thus the rows prefixed by aca are
bounded within 〈2, 5〉.

Once the area 〈sp, ep〉 is determined, self-indexes offer a
way to find any occurrence position SA[j], for sp ≤ j ≤ ep.
This is accomplished by sampling T at regular intervals, and
marking positions of SA that point to sampled text positions
in a bitmap E[0, n− 1]. Sampled suffix array positions are
stored in an array G[RANK1(E, j)] = SA[j] if E[j] = 1.
Given a desired value SA[j], successive values i = 0, 1, . . .
can be evaluated until E[LFi(j)] = 1, producing the desired
answer of SA[j] = SA[LFi(j)] + i. If every s th text position
is sampled, we guarantee i can be found for every 0 ≤ i < s,
and sampling requires O((n/s) log n) extra bits for G (and
for E in compressed form [15]), and computes any entry of
SA within s applications of LF.

Similarly, in order to recover any text substring T [l, r −
1] (including the whole T), we can use the same sam-
pling of text position multiples of s, and store H[i] =
SA−1[i · s]. Thus, we extend the range to T [l, r′ − 1], for
r′ = s · dr/se and display from the suffix array position
j = SA−1[r′]. Then, we can display the area backwards
as T BWT[j], T BWT[LF(j)], T BWT[LF2(j)], Each such step
requires one RANKc and one ACCESS operation, which has
the same cost as LF. Therefore, we display T [l, r−1] within
O(r − l + s) applications of LF.

VII. BACKWARDS SEARCH IN k-BWT PERMUTED TEXT

As explained, performing backwards search on a k-BWT
permuted text is not so straightforward. The following lemma
shows that one can, however, run the counting as usual on
patterns of length m ≤ k.

Lemma 1. The LF(i, c) mapping formula of Eq. (1) works
correctly on the k-BWT if i is the last row of a context group.

Proof. The formula counts the number of occurrences of c
in T BWT[0, i]. Since i is the last row of a k-context, the set
of rows in M[0, i] is the same set of rows in Mk[0, i], and
therefore the number of occurrences of any c in T BWT[0, i]
is the same as in T k-BWT[0, i].

Therefore, we can seamlessly search for patterns up to
length k.

Lemma 2. If the length of a search pattern is m ≤ k, then
the algorithm used to compute the range SA[sp, ep] for BWT
is sufficient for k-BWT.

Proof. As long as m ≤ k, all ranges 〈spi, epi〉 will be
composed of whole k-contexts. Therefore, the formulas
in Eqs. (2) and (3) compute LF on rows that are at the
end of k-contexts. By Lemma 1, all the 〈spi, epi〉 are thus
computed correctly.

Note in particular that when m = k, we are able to collect
the occurrences in text position order, since SA[sp, ep] will
correspond precisely to a k-context of T k-BWT. However,
we cannot compute correct ranges SA[sp, ep] for patterns
longer than k because the contexts are only k-sorted, and
the occurrences of longer patterns are not contiguous within
k-BWT.

For example, considerM3 in Figure 3. The rows prefixed
by the pattern caca are 8 and 10. However, the row 9 within
the range 〈8, 10〉 is not prefixed by caca but cacr.

A way to handle longer patterns P [0,m− 1] is to search
for P [m−k,m−1] as usual, and then track each candidate to
determine whether it is an occurrence of the full P . But, we
must be able to compute LF(j) for any j. Computing arbitrary
LF(j) values is also necessary for locating occurrences
and for displaying arbitrary substrings of T , by using the
sampling mechanisms described at the end of Section VI.
The remainder of the section is devoted to showing how to
compute LF.

Theorem 1. The function LF on matrixMk can be computed
in the time required to compute RANK and ACCESS using
nHk + 2nHk−1 + o(n log σ) bits of space, for any k ≤
α logσ(n)− 1 and constant α < 1.

Proof. In order to compute i = LF(j), we use bitmap Dk

to find p = SELECT1(RANK1(Dk, j)), which corresponds
to the beginning of the group row of Mk[j]. Let Mk[j] =
xayb, where |x| = k − 1 and |a| = |b| = 1, such that row j
belongs to group Cxa. Then, Mk[i] = bxay belongs to the
group Cbx. Moreover, since occurrences of xa are sorted in
text position order inside Cxa, row j is the (j − p + 1)-th
occurrence of xa in T in text position order.

In order to find the starting position p′ of
group Cbx, we use bitmap Dk−1. First, we find
the starting position p∗ of group Cx in T k-1-BWT

using p∗ = SELECT1(Dk−1,RANK1(Dk−1, j)). Now,
p′ = C[b] + RANKb(T k-BWT, p∗ − 1) + 1 gives the desired
starting position of group Cbx in T k-BWT. We can confirm this
is true since RANKb(T k-BWT, p∗ − 1) counts the number of
text substrings of the form bz, with z < x in lexicographic
order.

Now, within group Cbx, the rows are sorted in text position
order, thus row i corresponds to the (i−p′+1)-th occurrence
of bx in T in text order. Furthermore, we know that the row

i D2 F 1 S T 2-BWT

0 1 $ a c a c a c r a c a c a
1 1 a $ a c a c a c r a c a c
2 1 a c a c a c r a c a c a $
3 0 a c a c r a c a c a $ a c
4 0 a c r a c a c a $ a c a c
5 0 a c a c a $ a c a c a c r
6 0 a c a $ a c a c a c r a c
7 1 c a c a c r a c a c a $ a
8 0 c a c r a c a c a $ a c a
9 0 c a c a $ a c a c a c r a

10 0 c a $ a c a c a c r a c a
11 1 c r a c a c a $ a c a c a
12 1 r a c a c a $ a c a c a c

M2

i D3 LF3 F 1 2 T 3-BWT

0 1 1 $ a c a c a c r a c a c a
1 1 7 a $ a c a c a c r a c a c
2 1 0 a c a c a c r a c a c a $
3 0 8 a c a c r a c a c a $ a c
4 0 12 a c a c a $ a c a c a c r
5 0 9 a c a $ a c a c a c r a c
6 1 10 a c r a c a c a $ a c a c
7 1 2 c a $ a c a c a c r a c a
8 1 3 c a c a c r a c a c a $ a
9 0 4 c a c r a c a c a $ a c a

10 0 5 c a c a $ a c a c a c r a
11 1 6 c r a c a c a $ a c a c a
12 1 11 r a c a c a $ a c a c a c

M3

Figure 3. The k-BWT permutation matrixMk used to search for pattern
P = cacr in text T = acacacracaca$ where k = 2 (top) and k = 3
(bottom).

Mk[i] points to an occurrence of bxa in T , whereas Mk[j]
points to the next position, xa preceded by b.

So, a way to connect j and i is as follows. Store the
wavelet tree of T k-1-BWT, where all the characters preceding x
are in text position order for the area corresponding to group
Cx. Similarly, store the wavelet tree of S, which is similar
to T k-1-BWT but the characters following (not preceding) x
are recorded for each context Cx (note the areas coincide for
T k-1-BWT and S). Therefore, r = SELECTa(S,RANKa(S, p∗−
1)+j−p+1) finds the rank of rowMk[j] (i.e., its occurrence
of xa), in text position order, among the occurrences of x in
T , and q = RANKb(T k-1-BWT, r)−RANKb(T k-1-BWT, p∗−1) is

i 0 1 2 3 4 5 6 7 8 9 10 11 12
LF3 1 7 0 8 12 9 10 2 3 4 5 6 11
LF 1 7 0 8 12 10 9 5 2 3 4 6 11
δ +1 -1 +3 -1 -1 -1

Figure 4. The difference between LF and LF3()

the number of occurrences of bx up to that position. Hence,
the answer is i = LF(j) = p′ + q − 1.

Note this method requires finding out a. This can be stored
in an array A of at most σk entries containing Mk[j][k]
for all rows j belonging to each context. Therefore, a =
A[RANK1(Dk, j)].

The total time required is a constant number of RANK
and ACCESS operations on the wavelet trees. As for space,
we have the wavelet trees of T k-BWT and those of T k-1-BWT

and S. If we use Raman et al.’s method [15] to represent
the bitmaps of the wavelet trees, T k-BWT requires nHk(T) +
O(σk+1 log n) bits for any k ≥ 0. The existing proof of
this space bound for T BWT [16] makes use of the fact that
the suffixes are k-sorted, and therefore it also applies to
T k-BWT. Similarly, T k-1-BWT requires nHk−1 + O(σk log n)
bits. Finally, S requires nHk−1 +O(σk log n) bits because
the sets of characters within each (k−1)-context is the same
as for (T rev)k-1-BWT, where T rev is T read backwards, and
the (k−1)-th order empirical entropy of S and (T rev)k-1-BWT

are equal. Furthermore, the (k−1)-th order entropy between
T and T rev differs only by O(log n) bits for any k [26].
The bitmaps Dk and Dk−1 have only O(σk) bits set out of
n, and can be represented within O(σk log n) + o(n) bits
while supporting constant-time RANK0/1 and SELECT0/1 [15].
Array A requires an additional O(σk log k) bits.

To obtain the final space bound of the theorem we note
that O(σk+1 log n) ⊂ o(n log σ) if k ≤ α logσ(n) − 1 for
any constant α < 1.

VIII. PRACTICAL EVALUATION AND ALTERNATIVES

In our initial approach, we require three wavelet trees over
different permutations of T to fully support LF in a k-BWT
permuted text. Figure 4 shows the difference between LF3

and the LF mapping to jump to the correct preceding row.
Instead of storing additional wavelet trees, we could also

explicitly store the correction information δ for each row in
Mk that does not jump to the correct preceding row using
only LFk. For each context C of size d, we can store the
correction information required in at most d log d bits. The
context length decreases as we increase the sorting depth k.
Therefore, we need to store less correction information as k
increases. The correction information can be calculated as
follows in linear time:

1) Perform the reverse k-BWT to recover T from T k-BWT.
2) During the reverse transform, each context group C is

processed in reverse sequential order.

3) For each context group, keep track of the current
position p.

4) The value δj is the correction information required to
jump from row j to row v and can be calculated as
δj = pv − LFk(j).

Note that we only store correction information for the
n′ non-trivial k-groups (that is, those of size more than 1).
Those k-groups are stored according to their order within
Dk at a cost of n′ log n bits, in addition to the cost of storing
the correction information for each k-group in d log d bits.
To access the correct k-group for a given row j, we compute
the number of non-trivial k-groups, o, preceding j, where
o = RANK10(Dk, j) (this is an extension of binary rank for
fixed substrings, which is easily handled in constant time
within o(n) extra space).

We can further apply the same concept to our wavelet tree
approach: Remove the information inMk−1 associated with
trivial k-groups. The k-groups inMk−1 of size 1 will never
be used to calculate LF as Eq. (1) is already correct on the
last row of each group, hence it is correct for all groups of
size 1. To map a row j inMk to its corresponding row j′ in
Mk−1, we subtract the number of trivial groups before j′, as
these are not stored explicitly. A trivial k-group corresponds
to two consecutive 1s in Dk−1. Therefore, the correct row
j′′ = j′ − RANK11(Dk−1, j

′). By combining all of these
techniques, the additional information required to perform
LF decreases as we increase the sorting depth k.

We now compare our backward search approach storing
three wavelet trees, to storing the correction information δj
explicitly. In our experiment, we compare multiple 50 MB
data sets from the Pizza & Chili Corpus and the TREC
collection [27]. The number of k-groups and their mean
average size for each data set is shown in Figure 5.

2 4 6 8 10
k

m
ea

n
co

nt
ex

t
si

ze

WSJ

DNA

SOURCES

XML

1
10

0
50

k
3m

Figure 5. Mean average k-group size for each data set as k increases.
Note the logarithmic scale of the y-axis.

The mean average context size decreases logarithmically

for DNA. For the data sets WSJ, SOURCES and XML, and
a sorting depth of 5, the mean average k-group size is less
than 100. For large k, this suggests that storing the correction
information is a viable alternative to storing three wavelet
trees (although these would also decrease their sizes due to
the increase of trivial groups). To validate this assumption,
the total space requirements for the wavelet tree approach
and the explicit storage of correction information for each
data set was measured. We use Huffman shaped wavelet
trees in conjunction with succinct RANK0/1 operations [15]
to store and access the wavelet trees over T k-1-BWT and S.
Figure 6 shows the size of the wavelet trees as a percentage
of the space required to store the correction information
explicitly using d log d bits for a k-group of size d.

As expected, the ratio increases with k. While both
approaches benefit from the trivial groups that appear, the
correction information benefits from smaller groups due to
its log d space factor, whereas the wavelet tree space usage
is independent of the group sizes. Note also that storing
the correction information explicitly is more efficient for
English text (WSJ) and source code (SOURCES) for k > 6
or 7. However, DNA and XML can always be stored more
efficiently using the wavelet tree approach. The reason for
this discrepancy is two-fold. Firstly, DNA has a large number
of contexts, even for k = 10, relative to the other test
collections. Secondly, the XML file shows similar k-group
sizes to WSJ and SOURCES, but it can be stored more
efficiently using the wavelet tree approach as it is more
compressible.

2 4 6 8 10
k

w
tr

ee
si

ze
pr

op
.t

o
ex

pl
ic

it
st

or
ag

e

WSJ

DNA

SOURCES

XML

50
75

10
0

15
0

Figure 6. Storage requirements of the wavelet tree approach as a percentage
of storing the correction information explicitly for variable k.

In addition to comparing our two LF mapping approaches,
we now compare a simple k-gram inverted index to our
k-BWT wavelet tree approach. We implemented a simple
k-gram inverted index using d-gap and gamma encoded
inverted lists for all match positions in the text. Figure 7

reports total size of each index for increasing values of
k. The size of the k-gram index is reported as the size
of all compressed posting lists, plus the space required
to store all necessary k-grams (v) in a dictionary, namely
v log n + vk log σ. To provide a fair estimate of the lower
cost bound to optimally store the gamma encoded, d-gapped
posting lists, the measured size of the q-gram index was
halved. We compare this conservative estimate against the
actual size to store T k-1-BWT, S, Dk and Dk−1 in succinct
form as described above. Note we are not considering the
cost of storing the compressed text in the k-gram index, or
the cost of storing T BWT, which should be similar.

2 4 6 8 10

50
10

0
15

0
20

0

k

w
tr

ee
si

ze
pr

op
ro

tio
na

l
to

k-
gr

am
id

x

WSJ

DNA

SOURCES

XML

Figure 7. Storage requirements of the wavelet tree approach as a percentage
of the k-gram index space usage.

For small k, the k-gram index is more space efficient than
our k-BWT based wavelet tree approach. As we increase the
sorting length, the k-gram index space usage grows rapidly,
whereas our approach consistently uses less space. For k = 4
or 5, we already require less space than the k-gram index.
For k = 10, the wavelet trees require 30% to 50% of the
k-gram index size (recall this is a lower bound as we are
halving the gamma-codes space). The size of the k-gram
index increases as the posting listing size decreases for larger
k. Smaller posting lists can be compressed less effectively
using d-gap and gamma encoding. The dictionary size also
increases dramatically as more unique k-grams are stored.
The wavelet trees become more compressible as we increase
the sorting length and the amount of extra information
required to perform LF decreases as the number of trivial
k-groups increases. To conclude the practical evaluation, we
compare the absolute space usage of our approach to the
k-gram index, a normal wavelet tree over T BWT as used by
a FM-Index, and a wavelet tree over T k-BWT. Figure 8 shows
absolute space usage in MB for the WSJ data set. The wavelet
tree over T BWT uses the least amount of space. For k = 5, the
space usage of T k-BWT comes close to that of T BWT. The k-

gram index is most efficient when k is small. But, the k-gram
index space usage can grow exponentially with respect to
sorting depth. The T k-BWT plus auxiliary information required
to perform LF requires around 3 times the space of T k-BWT.
The amount of auxiliary information required decreases as
the sorting depth increases.

2 4 6 8 10

50
10

0
15

0
20

0

k

si
ze

[M
B

]

T BWT

T k-BWT

T k-BWT + T k-1-BWT + S
k-gram index

Figure 8. Absolute storage requirements in MB of the wavelet tree
approach, the k-gram index, the wavelet tree over T k-BWT , and over T BWT

for the WSJ data set.

IX. APPLICATION: A k-GRAM SELF-INDEX

As explained in Section I, a context bound transformation
can be regarded as a self-index representation of a k-
gram index [6], [7], [8], [9]. A k-gram index is a popular
alternative for constructing inverted indexes on languages
that are not amenable to term tokenization and stemming, and
a core component in the highly successful BLAST application
for searching in genomic data [12].

In essence, our method can represent the sequence T
in compressed form, and replaces the need to explicitly
store the position offsets for each k-gram. We have shown
in Section VII how to carry out searches for patterns of
length k, and deliver all occurrence positions in text order.
Thus, we obtain a listing that is explicitly stored in a
classical k-gram index on the fly. We are also able to display
any text substring from the self-indexed representation.
Furthermore, our experiments in Section VIII show an
interesting phenomenon: the space requirements for our index
decrease as k grows, whereas in a classical k-gram index,
the space grows exponentially faster with k. This makes our
representation attractive, for example, in applications where
using larger k values is desirable, but not possible a with
classical k-gram index.

In Section VII we derived simple techniques to handle
searches for patterns of length greater than k, for applications
where such a search is necessary. In general, our index can
mimic any of the well-known algorithms on k-gram indexes.

For example, we can split the pattern P into k size chunks
P1,P2, . . . Pr. For each chunk Pi, we determine 〈spi, epi〉
and the locations of each match to Pi. We then intersect these
results to to locate the larger pattern P . Since the ranges
〈spi, epi〉 for each chunk in produced ascending order, we
can perform an r-way merge using a min-heap over the
smallest element in each occurrence range to get the final
occurrence listing.

Another example occurs in BLAST-like applications, where
approximate searches for P are reduced to a set of searches
for k-grams of P . Then, in the most general formulation [10],
one looks for text areas where at least h distinct k-grams
of P appear in nearby text positions. Retrieving the k-gram
occurrences in text order is essential for the effectiveness of
these methods.

Using our approach, we are able to leverage standard
inverted indexing techniques to process queries, without
explicitly storing the inverted lists for each k-gram occur-
rence. In fact, k-gram based inverted files often do not
explicitly store the position of each k-gram, but rather the
document occurrence. This saves space, but means false
match filtering must be performed on each possible document
occurrence [13]. Our method is able to return the exact
positions without the need to perform false match filtering.
As a final comment, an area where suffix arrays perform
poorly is on position-restricted searches [28], where the goal
is to return occurrences of P within an area of T . As a k-
gram index delivers positions in text order, we can binary
search the range of the relevant occurrences. This is much
more complex for suffix arrays, which deliver the occurrences
in any order, and need additional index structures to handle
these queries efficiently.

X. FUTURE WORK

In this paper, we have outlined the initial algorithms
required to create self-indexes capable of emulating all k-
gram index functionality. Our first aim is to complete the
implementation of these self-indexes and measure their time
performance for a variety of queries and data collections.
In particular, the explicit storage of the differences is
likely to be much faster than storing the two extra wavelet
trees, and finding other pragmatic solutions for succinctly
storing the auxiliary information could further increase the
performance. A robust implementation will also expose
any additional time cost overhead incurred, for example in
comparison to the time that a BLAST-based index must spend
in finding candidate text areas and process them with a
(slow) sequential approximate pattern matching algorithm.
We would like to empirically establish if extracting all
the occurrences in suffix array order is more cumbersome
and space-demanding than our algorithm, or is significantly
slower.

We also believe there may be better solutions to implement
the LF mapping than we have presented here. It is indeed

somewhat surprising that an index traditionally regarded as
simpler than a suffix array is harder to handle when regarded
as a partial Burrows-Wheeler transform. In general, we feel
we are opening an area full of new challenges with tangible
applications, more than closing it. We hope more advances
on this research topic will follow.

ACKNOWLEDGEMENTS

The second author was partially funded by Millennium
Institute for Cell Dynamics and Biotechnology (ICDB),
Grant ICM P05-001-F, Mideplan, Chile. The third and forth
authors were supported by the Australian Research Council.

REFERENCES

[1] P. Ferragina and G. Manzini, “Opportunistic data structures
with applications.” in Proceedings of the 41st IEEE Annual
Symposium on Foundatations of Computer Science (FOCS
2000). IEEE Computer Society Press, November 2000, pp.
390–398.

[2] P. Ferragina, G. Manzini, V. Mäkinen, and G. Navarro,
“Compressed representations of sequences and full-text
indexes,” ACM Transactions on Algorithms (TALG), vol. 3,
no. 2, p. article 20, 2007.

[3] G. Navarro and V. Mäkinen, “Compressed full-text indexes.”
ACM Computing Surveys, vol. 39, no. 1, pp. 2–1 – 2–61, 2007.

[4] U. Manber and G. Myers, “Suffix arrays: A new method for
on-line search.” SIAM Journal on Computing, vol. 22, no. 5,
pp. 935–948, 1993.

[5] R. Grossi, A. Gupta, and J. S. Vitter, “Higher-order entropy-
compressed text indexes.” in Proceedings of the 14th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA 2003),
January 2003, pp. 841–850.

[6] J. Ullman, “A binary n-gram technique for automatic
correction of substitution, deletion, insertion and reversal
errors in words.” The Computer Journal, vol. 10, pp. 141–
147, 1977.

[7] P. Jokinen and E. Ukkonen, “Two algorithms for approximate
string matching in static texts.” in Proceedings of the 16th
Annual Symposium on Mathematical Foundations of Computer
Science (MFCS 1991), ser. LNCS, A. Tarlecki, Ed., vol. 520.
Springer, September 1991, pp. 240–248.

[8] E. Sutinen and J. Tarhio, “Filtration with q-samples in
approximate string matching.” in Proceedings of the 7th
Annual Symposium on Combinatorial Pattern Matching (CPM
1996), ser. LNCS, D. Hirschberg and G. Myers, Eds., vol.
1075. Springer, June 1996, pp. 50–63.

[9] O. Lehtinen, E. Sutinen, and J. Tarhio, “Experiments on
block indexing.” in Proceedings of the 3rd South American
Workshop on String Processing (WSP 1996), ser. Carleton
University Press Informatics Series, N. Ziviani, R. Baeza-
Yates, and K. Guimarães, Eds., no. 4, August 1996, pp. 183–
193.

[10] G. Navarro, R. Baeza-Yates, E. Sutinen, and J. Tarhio,
“Indexing methods for approximate string matching,” IEEE
Data Engineering Bulletin, vol. 24, no. 4, pp. 19–27, 2001.

[11] R. N. Horspool, “Practical fast searching in strings,” Software
Practice and Experience, vol. 10, no. 6, pp. 501–506, 1980.

[12] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J.
Lipman, “Basic local alignment search tool.” Journal of
Molecular Biology, vol. 215, pp. 403–410, 1990.

[13] S. J. Puglisi, W. F. Smyth, and A. Turpin, “Inverted files
versus suffix arrays for locating patterns in primary memory.”
in Proceedings of the 13th International Symposium on String
Processing and Information Retrieval (SPIRE 2006), ser.
LNCS, F. Crestani, P. Ferragina, and M. Sanderson, Eds.,
vol. 4209. Springer, October 2006, pp. 122–133.

[14] J. I. Munro, “Tables,” in Proceedings of the 16th Conference
on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS 1996), ser. LNCS, V. Chandru
and V. Vinay, Eds., vol. 1180. Springer, December 1996, pp.
37–42.

[15] R. Raman, V. Raman, and S. S. Rao, “Succinct indexable
dictionaries with applications to encoding k-ary trees and
multisets,” in Proceedings of the 13th ACM-SIAM symposium
on Discrete algorithms (SODA 2002). ACM/SIAM, January
2002, pp. 233–242.

[16] V. Mäkinen and G. Navarro, “Implicit compression boosting
with applications to self-indexing,” in Proceedings of the
14th International Conference on String Processing and
Information Retrieval (SPIRE 2007), ser. LNCS, N. Ziviani
and R. A. Baeza-Yates, Eds., vol. 4726. Springer, October
2007, pp. 229–241.

[17] G. Manzini, “An analysis of the Burrows-Wheeler transform.”
Journal of the ACM, vol. 48, no. 3, pp. 407–430, May 2001.

[18] U. Manber and E. W. Myers, “Suffix arrays: A new method
for on-line string searches,” SIAM J. Comput., vol. 22, no. 5,
pp. 935–948, 1993.

[19] S. J. Puglisi, W. F. Smyth, and A. H. Turpin, “A taxonomy
of suffix array construction algorithms.” ACM Computing
Surveys, vol. 39, no. 2, pp. 4–1 – 4–31, 2007.

[20] M. A. Maniscalco and S. J. Puglisi, “An efficient, versatile
approach to suffix sorting,” J. Exp. Algorithmics, vol. 12, pp.
1.2:1–1.2:23, June 2008.

[21] M. Burrows and D. J. Wheeler, “A block-sorting lossless data
compression algorithm.” Digital Equipment Corporation, Palo
Alto, California, Tech. Rep. 124, May 1994.

[22] M. Schindler, “A fast block-sorting algorithm for lossless
data compression.” in Proceedings of the 7th IEEE Data
Compression Conference (DCC 1997), J. A. Storer and
M. Cohn, Eds. Los Alamitos, California: IEEE Computer
Society Press, March 1997, p. 469.

[23] H. Yokoo, “Notes on block-sorting data compression.”
Electronics and Communications in Japan, Part 3, vol. 82,
no. 6, pp. 18–25, 1999.

[24] G. Nong, S. Zhang, and W. H. Chan, “Computing inverse
ST in linear complexity.” in Proceedings of the 19th Annual
Symposium on Combinatorial Pattern Matching (CPM 2008),
ser. LNCS, P. Ferragina and G. M. Landau, Eds., vol. 5029.
Springer, July 2008, pp. 178–190.

[25] J. S. Culpepper, M. Petri, and S. J. Puglisi, “Revisiting
bounded context block-sorting transformations.” RMIT
University, Melbourne, Victoria, Australia, Tech. Rep. 1, Apr
2011.

[26] P. Ferragina and G. Manzini, “Indexing compressed text.”
Journal of the ACM, vol. 52, no. 4, pp. 552–581, 2005, a
preliminary version appeared in FOCS 2000.

[27] P. Ferragina and G. Navarro, “Pizza & Chili corpus –
Compressed indexes and their testbeds.” September 2005.
[Online]. Available: http://pizzachili.dcc.uchile.cl

[28] V. Mäkinen and G. Navarro, “Position-restricted substring
searching,” in Proc. 7th Latin American Symposium on
Theoretical Informatics (LATIN), ser. LNCS 3887, 2006, pp.
703–714.

